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Abstract

Under the validity of a Landesman-Lazer type condition, we prove the
existence of solutions bounded on the real line, together with their first
derivatives, for some second order nonlinear differential equation of the
form ü + g(u) = p(t), where the reaction term g is bounded. The proof
is variational, and relies on a dual version of the Nehari method for the
existence of oscillating solutions to superlinear equations.

1 Introduction

This paper concerns the existence of solutions, bounded on the real line together
with their first derivative, for the differential equation

ü+ g(u) = p(t), (1)

where g ∈ C2(R) is bounded, increasing, and has exactly one inflection point,
and p ∈ C(R) ∩ L∞(R) admits asymptotic average A(p) ∈ R, that is

lim
T→+∞

1

T

∫ t+T

t

p(s) ds = A(p),

uniformly in t ∈ R. Such an equation describes the forced motions of an oscil-
lator exhibiting saturation effects. As a model problem, the reader may think
to the equation

ü+ arctanu = p(t),

even though we do not require any symmetry assumption on the reaction term g.
Under the above assumption, the main result we prove is the following theorem.

Theorem 1.1. Equation (1) admits a bounded solution if and only if

g(−∞) < A(p) < g(+∞). (2)

In such a case, equation (1) admits a countable set of bounded solutions, having
arbitrarily large L∞-norm.
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The motivation for our investigation relies on the papers [1, 5], which in turn
have been inspired by some classical results of Landesman-Lazer type holding
in the periodic framework. Such studies concern the equation

ü+ cu̇+ g(u) = p(t), (3)

where c ∈ R and the continuous function g, not necessarily monotone, admits
limits at ±∞, with the property that

g(−∞) < g(s) < g(+∞)

for every s. Also the cases g(±∞) = ±∞ can be considered, requiring g to be
sublinear at infinity if c = 0. When p is T -periodic, it is nowadays well known
that equation (1) admits a periodic solution if and only if the Landesman-Lazer
condition

g(−∞) <
1

T

∫ T

0

p(s) ds < g(+∞)

is satisfied, regardless of the constant c; this result was first proved by Lazer,
using the Schauder fixed point theorem, see [3]. When p is merely bounded,
one would like to find analogous conditions for the search of bounded solutions.
This problem was first studied by Ahmad [1], under the assumption that p has
asymptotic average, in the sense explained above; by means of techniques of the
qualitative theory of dissipative equations, the existence of a bounded solution
is characterized, whenever c 6= 0, by (2). The case in which p is an arbitrary
continuous function was solved by Ortega [5], who assumes c 6= 0 and provides a
sharp necessary and sufficient condition: (3) has a bounded solution if and only
if p can be written as p∗+p∗∗, where p∗ has bounded primitive and p∗∗ assumes
values strictly contained between g(−∞) and g(+∞). This result relies on the
Krasnoselskii’s method of guiding functions, and was generalized by Ortega and
Tineo [6] to equations of higher order, using the notions of lower and upper
averages of p; again, the condition c 6= 0 sticks as a crucial assumption. Later,
by means of the method of lower and upper solutions, Mawhin and Ward [4]
achieved some results in the case c = 0, but in the complementary situation in
which g(−∞) ≥ g(+∞). Up to our knowledge, this last is the unique extension
of the Landesman-Lazer theory to second order equations without friction, and
the question in the case g(−∞) < g(+∞) is still open. Under this perspective,
in this paper we go back to the setting originally considered by Ahmad, and we
prove that its aforementioned result holds also in the case c = 0, at least for the
particular class of g that we consider.

The proof of our result is variational: we use a dual Nehari method which
was first introduced in [7] to obtain bounded solutions in the case of a sublinear
reaction (i.e. g(s) = s1/3). The method consists in two steps.

Firstly, we consider the boundary value problem




ü+ g(u) = p(t) t ∈ (a, b),

u(a) = 0 = u(b),

u(t) > 0 t ∈ (a, b),

(4)

searching for solutions as minimizers of the action functional

J(a,b)(u) :=

∫ b

a

[
1

2
u̇2(t)−G(u(t)) + p(t)u(t)

]
dt
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in the weakly closed set {u ∈ H1
0 (a, b) : u ≥ 0}. In Section 3 we obtain some

general properties of the nonnegative minimizers of J(a,b) in any interval (a, b); in
Section 4 we prove that, when b−a is sufficiently large, the minimizer u+(· ; a, b)
is unique and solves problem (4). The proof of these results is substantially
different from the corresponding one in the sublinear case [7]: indeed in the
present situation the nonlinearity g and the forcing term p have the same order
of growth (they are both bounded), while, as far as b − a is sufficiently large,
the forced sub-linear problem can be considered as a small perturbation of the
unforced one. This fact introduces a lot of complications, which we can overcome
thanks to a careful analysis of the balance between g and p, via measure theory
tools, and of the asymptotic properties of the functional J(a,b) as b− a→ +∞.
Of course, analogous results can be obtained for negative minimizers u−(· ; a, b).
To proceed, it is necessary to prove that u±(· ; a, b) is non-degenerate and that
J(a,b)(u±(· ; a, b)) is differentiable as a function of (a, b). This is the object of
Sections 5, 6, and it is the only part which requires g ∈ C2. We believe that
this assumption can be weakened by a suitable approximating procedure, but
we prefer to avoid further technicalities at this point.

Once the existence of one-signed solutions is established, in Section 7 we
juxtapose positive and negative minimizers with alternate signs to obtain oscil-
lating solutions. Indeed, let us fix k ≥ 1, a bounded interval [A,B] sufficiently
large, and let us consider the class of partitions

Bk :=

{
(t1, . . . , tk) ∈ R

k

∣∣∣∣
A =: t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 := B,
ti+1 − ti is sufficiently large for any i

}
.

For each partition P = (t1, . . . , tk) of Bk there is a function uP obtained by jux-
taposing u±(· ; ti, ti+1) with alternate signs + and −. In general, this function is
not a solution of equation (1), because the derivatives u̇P (t

±
i ) may not coincide.

We prove that these corner points disappear for the partition maximizing the
quantity

ψ(P ) =

k∑

i=0

J(ti,ti+1)(u±(· ; ti, ti+1)).

This argument provides a solution of (1) having k zeros in [A,B], together with
some estimates which depend only on the ratio (B − A)/k. Therefore, taking
A → −∞, B → +∞ and k → +∞ in an appropriate way, one can pass to the
limit and obtain the desired bounded solution. In doing this, one must again
modify the corresponding arguments in the sub-linear case, indeed they do not
allow to treat the non-symmetric case g(+∞)−A(p) 6= A(p)− g(−∞).

Incidentally, assuming p to be T -periodic, a simple variation of the argument
above allows to obtain the existence of infinitely many subharmonic solutions,
i.e. solutions which have minimal period nT , n ∈ N (see Theorem 7.7 at the
end of the paper).

To conclude, we remark that also the case of infinite limits g(±∞) can be
treated by variational methods. On one hand, as already mentioned, infinitely
many bounded solutions for equation (1) were obtained in [7] when g(s) =
|s|q−1s, 0 < q < 1, and p ∈ L∞(R). On the other hand, the original Nehari
method, together with a limiting procedure, allows to obtain an analogous result
also when g is superlinear at infinity, as done in [8, 9].
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2 Preliminaries

It is not difficult to check that if equation (1) admits a bounded solution with
bounded derivative, then necessarily condition (2) is satisfied. Indeed, by inte-
grating equation (1) in (t, t+ T ), we obtain

u̇(t+ T )− u̇(t)

T
=

1

T

∫ t+T

t

(p(s)− g(u(s))) ds.

Since u̇ is bounded, passing to the limit as T → +∞ we deduce that the left
hand side tends to 0, so that

0 = lim
T→+∞

1

T

∫ t+T

t

(p(s)− g(u(s))) ds

= A(p) − lim
T→+∞

1

T

∫ t+T

t

g(u(s)) ds.

(5)

Now, the boundedness of u and the monotonicity of g implies also that for every
s ∈ R

g(−∞) < g (−‖u‖∞) ≤ g(u(s)) ≤ g (‖u‖∞) < g(+∞), (6)

and a comparison between (5) and (6) gives the desired result (in fact, from this
point of view, it is sufficient that g(−∞) < g(s) < g(+∞) for every s).

We observe that, by means of suitable translations, it is not restrictive to
assume that

g(0) = 0, g ∈ C2(R) is bounded, strictly increasing in R,

strictly concave in (0,+∞) and strictly convex in (−∞, 0).
(h1)

We denote as G the primitive of g vanishing in 0, and

lim
s→±∞

g(s) = g±,

so that

lim
s→±∞

G(s)

s
= g± and g− <

G(s)

s
< g+ ∀s ∈ R.

As far as the function p is concerned, as we already mentioned, we assume that
p ∈ C(R) ∩ L∞(R) is such that for every ε > 0 there exists T̄ > 0 such that if
T > T̄ then

sup
t∈R

∣∣∣∣∣
1

T

∫ t+T

t

p(s) ds−A(p)

∣∣∣∣∣ < ε,

in such a way that

p is bounded and continuous in R,

and has asymptotic average g− < A(p) < g+.
(h2)

Note that we do not make any assumption on the L∞ norm of p.
In view of the previous considerations and notations, we can rephrase The-

orem 1.1 as follows.

Theorem 2.1. Under assumptions (h1)-(h2), there exists a sequence (um) of
solutions of (1) defined in R, with um, u̇m ∈ L∞(R) and ‖um‖∞ → ∞ as
m→ ∞. Moreover, each um has infinitely many zeros in R.
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3 Existence and basic properties of nonnegative

minimizers

In this section we deal with the boundary value problem (4):





ü(t) + g(u(t)) = p(t) t ∈ (a, b),

u(a) = 0 = u(b),

u(t) > 0 t ∈ (a, b).

We seek solutions as minimizers of the related action functional

J(a,b)(u) :=

∫ b

a

[
1

2
u̇2(t)−G(u(t)) + p(t)u(t)

]
dt

in the H1-weakly closed set

H1
0 (a, b)

+ := {u ∈ H1
0 (a, b) : u ≥ 0}.

We introduce the value

ϕ+(a, b) := inf
u∈H1

0
(a,b)+

J(a,b)(u).

Remark 1. Of course, even though in the following we focus on positive so-
lutions, negative ones can be treated similarly as well, seeking solutions to the
boundary value problem





ü(t) + g(u(t)) = p(t) t ∈ (a, b)

u(a) = 0 = u(b)

u(t) < 0 t ∈ (a, b)

associated to the candidate critical value

ϕ−(a, b) := inf
u∈H1

0
(a,b)−

J(a,b),p(u),

where H1
0 (a, b)

− := {u ∈ H1
0 (a, b) : u ≤ 0}. Indeed, the two problems are

related by the change of variable v = −u, ḡ(s) = −g(−s) and p̄ = −p, and ḡ, p̄
satisfy (h1)-(h2) if and only if g, p do. In particular, when dealing with negative
solutions, in all the explicit constants we will find the quantity g± should be
replaced by −g∓, and A(p) by −A(p).

Lemma 3.1. The value ϕ+(a, b) is a real number and it is achieved by u(a,b) ∈
H1

0 (a, b)
+.

Proof. It is not difficult to check that J(a,b) is weakly lower semi-continuous and
coercive, so that the direct method of the calculus of variations applies.

In what follows we are going to show, that, if (a, b) is sufficiently large, a
minimizer u(a,b) is an actual solution of (4); this is not obvious, because in
principle u(a,b) could vanish somewhere. Having in mind to let (a, b) vary and
wishing to catch the behaviour of the minimizers u(a,b) under variations of the
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domain, it is convenient to introduce suitable scaling to work on a common
time-interval. To be precise, for every u ∈ H1

0 (a, b)
+ we can define

û(t) :=
1

(b − a)2
u(a+ t(b − a)) ⇐⇒ u(t) = (b − a)2û

(
t− a

b− a

)
, (7)

and p̂(a,b)(t) := p(a+ t(b− a)). Of course, û ∈ H1
0 (0, 1)

+ and

J(a,b)(u) = (b− a)3
∫ 1

0

[
1

2
˙̂u 2(t)− 1

(b − a)2
G((b − a)2û(t)) + p̂(a,b)(t)û(t)

]
dt

=: (b − a)3Ĵ(a,b)(û). (8)

This reveals that the minimizations of J(a,b) inH
1
0 (a, b)

+ and of Ĵ(a,b) inH
1
0 (0, 1)

+

are equivalent; in particular, the function û(a,b) defined by (7) with u = u(a,b)

is a minimizer of Ĵ(a,b) in H
1
0 (0, 1)

+.

The Euler-Lagrange equation associated to the functional Ĵ(a,b) yields to the
research of solutions to





ẅ(t) + g((b− a)2w(t)) = p̂(a,b)(t) in (0, 1)

w(0) = 0 = w(1)

w(t) > 0 in (0, 1).

(9)

Our aim is to show that if b − a is sufficiently large than a minimizer û(a,b) is
an actual solution of (9). We start showing that where it is positive it solves
equation (1), and it is of class C1 in the whole (0, 1).

Lemma 3.2. Let (c, d) ⊂ (0, 1) be such that

û(a,b) > 0 in (c, d).

Then û(a,b) is a classical solution of the first equation in (9) in (c, d). Moreover,

if c > 0 then ˙̂u(a,b)(c
+) = 0, and if d < 1 then ˙̂u(a,b)(d

−) = 0.

Proof. The fact that û(a,b) is a (classical) solution in (c, d) follows from the
extremality of û(a,b) with respect to variations with compact support in (c, d).

Now we assume that c > 0 and prove that ˙̂u(a,b)(c
+) = 0. By contradiction, let

˙̂u(a,b)(c
+) = ξ > 0. Given ε > 0 small enough such that [c − ε, c + ε] ⊂ (0, d),

we consider the set

Λε :=
{
v ∈ H1(c− ε, c+ ε) : v(c± ε) = û(a,b)(c± ε)

}
.

As
‖v‖∞ ≤

√
2ε‖v̇‖2 +min{û(a,b)(c− ε), û(a,b)(c+ ε)} ∀v ∈ Λε,

the functional Ĵ(a,b) (considered on the interval (c− ε, c+ ε)) is bounded below
and coercive in the weakly closed set Λε, so that there exists a minimizer vε.
Clearly, vε ∈ C2(c− ε, c+ ε) and is a solution of

v̈ε(t) + g((b − a)2vε(t)) = p̂(a,b)(t). (10)

Since the restriction û(a,b) is not differentibale in c, we deduce

Ĵ(a,b)(vε) < Ĵ(a,b)(û(a,b)|(c−ε,c+ε)).
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We claim that vε ≥ 0 in (c − ε, c + ε). If vε is monotone, this follows from its
boundary conditions. If it is not monotone, there exists τ ∈ (c− ε, c+ ε) such
that v̇ε(τ) = 0. As a consequence, from equation (10) it follows that

‖v̇‖∞ ≤ (‖g‖∞ + ‖p‖∞) 2ε,

and hence, for every t ∈ (c− ε, c+ ε), we have

vε(t) ≥ vε(c+ ε)− |vε(c+ ε)− vε(t)| ≥ û(a,b)(c+ ε)− (‖g‖∞ + ‖p‖∞) 4ε2.

Now, û(a,b)(c + ε) = ξε + O(ε2), so that at least for ε small enough we have
vε(t) ≥ 0 in (c− ε, c+ ε), as announced. This implies that the function

ũ(t) :=

{
û(a,b)(t) t ∈ [0, c− ε) ∪ (c+ ε, 1],

vε(t) t ∈ (c− ε, c+ ε)

stays in H1
0 (0, 1)

+ and, clearly, Ĵ(a,b)(ũ) < Ĵ(a,b)(û(a,b)), in contradiction with
the minimality of û(a,b).

In the following lemma we prove that the family of the minimizers {û(a,b)}
is uniformly bounded and equi-Lipschitz-continuous.

Lemma 3.3. For every (a, b) ⊂ R and any û(a,b), it holds

|û(a,b)(t)| ≤ (‖g‖∞ + ‖p‖∞) ∀t ∈ (0, 1)

| ˙̂u(a,b)(t)| ≤ (‖g‖∞ + ‖p‖∞) ∀t ∈ (0, 1).

Proof. Let (c, d) ⊂ [0, 1] be such that û(a,b) > 0 in (c, d), vanishing at c and d.
From Lemma 3.2 it follows that

|¨̂u(a,b)(t)| ≤
∣∣g((b − a)2û(a,b)(t))

∣∣+ |p(t)| ≤ ‖g‖∞ + ‖p‖∞ ∀t ∈ (c, d).

Since û(a,b)(c) = 0 = û(a,b)(d) and û(a,b) ∈ C1(0, 1), there exists τ ∈ (c, d) such

that ˙̂u(a,b)(τ) = 0. Hence

| ˙̂u(a,b)(t)| ≤ | ˙̂u(a,b)(τ)| + ‖g‖∞ + ‖p‖∞ = ‖g‖∞ + ‖p‖∞ ∀t ∈ (c, d).

Since this relation holds in each interval (c, d) as before, one can easily conclude
by recalling that, being u ∈ H1, it holds

∫

{u(t)=0}

|u̇(t)| dt = 0.

Let

s(t) =
n−1∑

k=0

ykχ[tk,tk+1)(t)

denote a simple function. We define the quantity

δ(s) := inf{tk+1 − tk : k = 0, . . . , n− 1}. (11)

Given any measurable function u ∈ M(0, 1), it is well known that for every ε > 0
there is a simple function su such that ‖u− su‖∞ < ε. In general the quantity
δ(su) depends on u and ε. The following Lemma says that if we consider the
family of the minimizers {û(a,b)}, given ε > 0 it is possible to find a family
of approximating simple functions {s(a,b)} such that δ(s(a,b)) is bounded below
uniformly with respect to (a, b).
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Lemma 3.4. For every ε > 0, let m ∈ N be such that m > (‖g‖∞ + ‖p‖∞)/ε.
Then for every (a, b) ⊂ R

s(a,b)(t) :=
m−1∑

k=0

û(a,b)

(
k

m

)
χ[ k

m
, k+1

m )(t)

is such that

‖û(a,b) − s(a,b)‖∞ < ε and δ(s(a,b)) = δ̄ :=
1

m
.

In particular, m can be chosen only depending on ε and ‖p‖∞, and not on p.

Proof. For every t ∈ (0, 1) there exists k ∈ {0, . . . ,m − 1} such that t ∈
[k/m, (k + 1)/m), so that by Lemma 3.3

|û(a,b)(t)−s(a,b)(t)| =
∣∣∣∣∣

∫ t

k

m

˙̂u(a,b)(τ) dτ

∣∣∣∣∣ ≤
1

m
(‖g‖∞ + ‖p‖∞) ∀t ∈ (0, 1).

4 The boundary value problem for large inter-

vals

Here and in the next section we consider the minimizer u(a,b) as function of a, b
and p. For this reason, we write

• u(· ; a, b; p) and û(· ; a, b; p) instead of u(a,b) and û(a,b) respectively,

• J(a,b),p and Ĵ(a,b),p instead of J(a,b) and Ĵ(a,b) respectively,

• ϕ+(a, b; p) instead of ϕ+(a, b),

to emphasize the dependence we are considering. As we have already mentioned,
we can introduce an auxiliary problem which carries the asymptotic behaviour
of (9) for b− a→ +∞. Let us consider

{
ẅ(t) = − (g+ −A(p)) =: −k in (0, 1)

w(0) = 0 = w(1),
(12)

with k > 0 thanks to (h2). Of course, this problem has the unique solution

wk(t) =
k

2
t(1− t). (13)

The related action functional is

J∞
k (w) :=

∫ 1

0

[
1

2
ẇ2(t)− kw(t)

]
dt, (14)

which has the unique minimizer wk in H1
0 (0, 1)

+ (the uniqueness follows from
the strict convexity of J∞

k ). A direct computation gives

J∞
k (wk) = −k

2

24
.
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Having in mind to compare minimizers related to different forcing terms, for
any p satisfying (h2) it is convenient to introduce a subset P of L∞(R) such
that the mentioned threshold can be chosen independently of q ∈ P . To this
aim, first of all we recall the following result.

Lemma 4.1 ([5, Lemma 2.2]). Let p satisfy (h2). For every ε > 0 there exists
a decomposition p = p1,ε + ṗ2,ε, where ‖p1,ε − A(p)‖∞ < ε

2 and p2,ε ∈ L∞(R).

This means that if p has asymptotic average it can be written as a sum
between a term p1,ε which is arbitrarily close to the average A(p), plus a term
ṗ2,ε which has bounded primitive.

Given p ∈ L∞(R), we compute ‖p‖∞ and A(p), and for any 0 < ε < 1 we
consider a decomposition as in Lemma 4.1; we introduce

M1 := ‖p‖∞ + 1 and Mε := ‖p2,ε‖∞ + 1.

We define

P :=




q ∈ L∞(R)

∣∣∣∣∣∣∣∣

‖q‖∞ < M1, q has asymptotic average,
A(q) = A(p), and for any ε ∈ (0, 1)
there exists a decomposition q = q1,ε + q̇2,ε
as in Lemma 4.1, with ‖q2,ε‖∞ < Mε




. (15)

Remark 2. Note that given any p satisfying assumption (h2) we can define the
set P , which definition depends on p. Clearly, p ∈ P and the constant function
A(p) belongs to P . Moreover, if q is of type

q(t) = A(p) + q̇2(t) or q(t) = p(t) + q̇2(t),

with ‖q2‖∞, ‖q̇2‖∞ < 1, then q ∈ P .

We are ready to show that problem (12) is the limit problem of (4) as
b− a→ +∞, in the following sense.

Proposition 4.2. Let p satisfy assumption (h2), and let P be defined by (15).

For every 0 < ε < (g+−A(p))2

24 there exists L1 > 0 depending only on ε such that
if b− a ≥ L1 then

−α ≤ Ĵ(a,b),q(û(· ; a, b; q)) ≤ −α ∀q ∈ P ,

where

α :=
(g+ −A(p))2

24
+ ε and α :=

(g+ −A(p))2

24
− ε. (16)

Remark 3. The upper bound on ε implies that û(· ; a, b; q) cannot vanish iden-
tically whenever b− a > L1.

To prove Proposition 4.2 we need some intermediate results.

Lemma 4.3. Let F ⊂ H1
0 (0, 1)

+ be such that

‖u‖L1(0,1) ≤M ∀u ∈ F.

9



For every ε > 0 there exists L2 = L2(ε) > 0 such that, if b − a > L2, then

∣∣∣∣
∫ 1

0

[
1

(b− a)2
G((b − a)2u)− g+u

]∣∣∣∣ < ε

∣∣∣∣
∫ 1

0

[
g((b− a)2u)u− g+u

]∣∣∣∣ < ε

∣∣∣∣
∫ 1

0

[
g((b− a)2u)u− 1

(b− a)2
G((b − a)2u)

]∣∣∣∣ < ε,

for every u ∈ F.

Proof. Let K1 := 2(1 +Mg+) and ε > 0 be fixed. By assumption (h1) we infer
the existence of s̄ > 0 such that

s > s̄ =⇒
(
1− ε

K1

)
g+ ≤ G(s)

s
≤ g+.

For every (a, b) and for every u ∈ F we can write

∫ 1

0

G((b − a)2u)

(b− a)2
=

∫

{(b−a)2u≤s̄}

G((b − a)2u)

(b− a)2u
u

+

∫

{(b−a)2u>s̄}

G((b − a)2u)

(b− a)2u
u. (17)

As far as the first integral on the right hand side is concerned, since s > 0
implies 0 ≤ G(s)/s ≤ g+, it results

0 ≤
∫

{(b−a)2u≤s̄}

G((b − a)2u)

(b− a)2u
u ≤

∫

{(b−a)2u≤s̄}

g+u ≤ g+s̄

(b− a)2
<

ε

K1
, (18)

whenever b− a > L2 sufficiently large, for every u ∈ F. Note also that the same
choice of L2 gives

b− a > L2 =⇒ 0 ≤ g+

(∫ 1

0

u−
∫

{(b−a)2u>s̄}

u

)
<

ε

K1
∀u ∈ F.

Let us consider the second integral on the right hand side of (17). Our choice
of s̄ and the previous relation imply that, if b− a > L2, then

−
(
1− ε

K1

)
ε

K1
+ g+

(
1− ε

K1

)∫ 1

0

u ≤ g+

(
1− ε

K1

)∫

{(b−a)2u>s̄}

u

≤
∫

{(b−a)2u>s̄}

G((b − a)2u)

(b− a)2u
u ≤ g+

∫

{(b−a)2u>s̄}

u ≤ g+

∫ 1

0

u,

for every u ∈ F. Due to the boundedness of the family F in L1(0, 1), it results

0 ≤ g+

∫ 1

0

u−
∫

{(b−a)2u>s̄}

G((b − a)2u)

(b− a)2u
u ≤ (1 +Mg+)

ε

K1
=
ε

2
, (19)

for every u ∈ F. Collecting together (17), (18) and (19), we obtain the first
estimate of the thesis. To prove the second one, we can adapt the same argument
because of assumption (h1). The third estimate follows easily.
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Lemma 4.4. Let F ⊂ H1
0 (0, 1)

+ be such that

‖u‖L1(0,1) ≤M ∀u ∈ F.

For ε > 0, δ1 > 0 and for every u ∈ F, let us assume the existence of a simple
function su such that

‖u− su‖∞ < ε1 and δ(su) ≥ δ1,

where δ(·) is defined as in (11) and ε1 := ε/(M1 + M + ‖g‖∞ + 1). Then
there exists L3 > 0, depending on ε, δ1 but independent of q ∈ P, such that, if
b− a > L3, then ∣∣∣∣

∫ 1

0

(
q̂(a,b) −A(p)

)
u

∣∣∣∣ < ε,

for every u ∈ F and q ∈ P.

Proof. Let K2 := (M1 +M + ‖g‖∞ + 1), and let us assume that (a, b) = (0, L)
to ease the notation. It is straightforward to apply the following argument for
a general (a, b) ⊂ R. Let us consider, for (c, d) ⊂ [0, 1],

∫ d

c

q̂L(t) dt =
1

L

∫ dL

cL

q(t) dt =
d− c

L(d− c)

∫ dL

cL

q(t) dt.

For any ε > 0 sufficiently small, we consider the decomposition q = q1,ε + q̇2,ε
given by Lemma 4.1. By definition of P , we know that

sup
t∈R

∣∣∣∣∣
1

T

∫ t+T

t

q(σ) dσ −A(p)

∣∣∣∣∣

≤ sup
t∈R

(
1

T

∫ t+T

t

|q1,ε(σ) −A(p)| dσ +

∣∣∣∣∣
1

T

∫ t+T

t

q̇2,ε(σ) dσ

∣∣∣∣∣

)

<
ε

2
+

2

T
‖q2,ε‖∞ <

ε

2
+

2

T
Mε < ε

whenever T > T̄ (ε) := 4Mε/ε, independently of q ∈ P . Therefore, if (d− c)L >
T̄ (ε/K2), then

∣∣∣∣∣
1

L(d− c)

∫ Ld

Lc

q(t) dt−A(p)

∣∣∣∣∣ <
ε

K2
∀q ∈ P .

Let us consider the family of simple functions {su : u ∈ F}. Let us set L3 :=

(1/δ1)T̄ (ε/K2); for su =
∑n−1

k=0 ykχ[tk,tk+1), we note that if L > L3, then

(tk+1 − tk)L ≥ δ1L3 = T̄

(
ε

K2

)
,

so that

∣∣∣∣
∫ 1

0

(q̂L −A(p)) su

∣∣∣∣ ≤
n−1∑

k=0

|yk|(tk+1 − tk)

∣∣∣∣∣
1

L(tk+1 − tk)

∫ Ltk+1

Ltk

q(σ) dσ −A(p)

∣∣∣∣∣

<
ε

K2

∫ 1

0

|su| <
ε

K2
(M + 1),
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independently of u ∈ F and on q ∈ P , where for the last inequality we use the
boundedness of F in L1(0, 1). Therefore, if L ≥ L3, then

∣∣∣∣
∫ 1

0

(q̂L −A(p))u

∣∣∣∣ ≤
∫ 1

0

|q̂L +A(p)| |u− su|+
∣∣∣∣
∫ 1

0

(q̂L −A(p)) su

∣∣∣∣

< (‖q‖∞ + ‖g‖∞) ‖u− su‖∞ +
ε

K2
(M + 1)

< ε,

for every u ∈ F and for every q ∈ P (for the reader’s convenience, we recall that
by definition M1 > ‖q‖∞ for every q ∈ P).

We are in position to prove Proposition 4.2.

Proof of Proposition 4.2. Let us consider the family

F := {û(· ; a, b; q) : (a, b) ⊂ R, q ∈ P} ∪ {w(g+−A(p))},

where we recall that û(·; a, b; q) is the minimizer of Ĵ(a,b),q (defined by (8)), and
w(g+−A(p)) has been defined by (13). In light of Lemmas 3.3 and 3.4, the family
satisfies the assumptions of Lemmas 4.3 and 4.4.

Let L1 := max {L2 (ε/2) , L3 (ε/2)}, where L2 and L3 have been defined in
the quoted statements, and we recall that L3 is independent of q ∈ P . By
definition, if b− a > L1, then

Ĵ(a,b),q(û(· ; a, b; q)) >
∫ 1

0

[
1

2
˙̂u 2(t; a, b; q)− (g+ −A(p)) û(t; a, b; q)

]
dt− ε

≥ inf
H1

0
(0,1)+

J∞
(g+−A(p)) − ε = − (g+ −A(p))

2

24
− ε,

for every q ∈ P , where we recall that J∞
k has been defined in (14) for any k ∈ R.

Moreover, by minimality,

Ĵ(a,b),q(û(· ; a, b; q)) ≤ Ĵ(a,b),q(w(g+−A(p)))

<

∫ 1

0

[
1

2
ẇ2

(g+−A(p))(t)− (g+ −A(p))w(g+−A(p))(t)

]
dt+ ε

= inf
H1

0
(0,1)+

J∞
(g+−A(p)) + ε = − (g+ −A(p))

2

24
+ ε,

whenever b− a > L1.

Now we can come back on the time interval [a, b]: due to the explicit relations
(7) and (8), we can summarize the previous results in the following statement.

Corollary 4.5. For 0 < ε < (1 − A(p))2/24, let L1(ε) be defined as in Propo-
sition 4.2. If b − a > L1(ε) then

−α(b − a)3 ≤ ϕ+(a, b; q) ≤ −α(b− a)3,

for every q ∈ P, where α, α are defined as in equation (16).

12



Remark 4. By definition, L1 ≥ L2, L3. Therefore, if b − a > L1, Lemmas 4.3
and 4.4 hold true; in particular, we deduce that for every 0 < ε < 1

24 (1−A(p))2,
if b− a > L1(ε), then

∣∣∣∣∣

∫ b

a

[g (u(t; a, b; q))u(t; a, b; q)−G (u(t; a, b; q))] dt

∣∣∣∣∣ < ε(b − a)3

for every q ∈ P .

In the next statement and in the rest the symbol ‖ · ‖ denotes the Dirichlet
H1

0 norm on the considered interval, that is,

‖u‖ =

(∫ b

a

u̇2(t) dt

)1/2

∀u ∈ H1
0 (a, b).

Corollary 4.6. There exists L4 > 0 and a positive constant C1 > 0 such that,
if b−a ≥ L4, then ‖u(· ; a, b; q)‖ ≥ C1(b−a)3/2 and ‖u(· ; a, b; q)‖∞ ≥ C1(b−a)2
for every q ∈ P.

Proof. Since the function λ 7→ J(a,b),q(λu(· ; a, b; q)) reaches its minimum at
λ = 1, it results

∫ b

a

[
u̇2(t; a, b; q)− g (u(t; a, b; q))u(t; a, b; q) + q(t)u(t; a, b; q)

]
dt = 0.

We can solve this identity for the last term and substitute in the expression of
J(a,b),q(u(·; a, b; q)):

J(a,b),q(u(· ; a, b; q)) = −
∫ b

a

1

2
u̇2(t; a, b; q) dt

+

∫ b

a

[g (u(t; a, b; q))u(t; a, b; q)−G (u(t; a, b; q))] dt.

Given ε > 0 sufficiently small, if b − a > L1(ε) defined in Proposition 4.2, we
have (we refer also to Corollary 4.5 and to Remark 4)

J(a,b),q(u(· ; a, b; q)) > −1

2
‖u̇(· ; a, b; q)‖2 − ε(b− a)3 and

J(a,b),q(u(· ; a, b; q)) ≤
(
− (g+ −A(p))2

24
+ ε

)
(b − a)3,

for every q ∈ P , from which we deduce

‖u̇(· ; a, b; q)‖2 >
(
(g+ −A(p))2

12
− 4ε

)
(b − a)3 ∀q ∈ P .

We choose ε̄ = (g+ −A(p))2/96 and set L4 = L1(ε̄). Hence

‖u(· ; a, b; q)‖ ≥ (g+ −A(p))√
24

(b− a)
3
2 ∀q ∈ P ,
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and

(g+ −A(p))2

24
(b− a)3 ≤

∫ b

a

u̇2(t; a, b; q) dt

=

∫ b

a

[g (u(t; a, b; q))u(t; a, b; q)− q(t)u(t; a, b; q)] dt

≤ (‖g‖∞ +M1) ‖u(·; a, b; q)‖∞(b− a),

which gives the desired result for

C1 :=
(g+ −A(p))2

24(‖g‖∞ +M1)
.

Finally, we can prove that if b − a is sufficiently large, then any minimizer
u(· ; a, b; q) with q ∈ P is an actual solution of the boundary problem (4).

Proposition 4.7 (Existence). Let p satisfy assumption (h2), and let P be de-
fined by (15). There exists L̃ ≥ L4 such that, if b− a ≥ L̃, then u(t; a, b; q) > 0
for every t ∈ (a, b), q ∈ P. Hence, u(· ; a, b; q) is a solution of (4).

Proof. For q ∈ P , let

{t ∈ (a, b) : u(t; a, b; q) > 0} =
⋃

i∈I

(ai, bi),

where I is a family of indexes and u(t; a, b; q) > 0 for t ∈ (ai, bi) (thus the
(ai, bi) are disjoint intervals). By continuity, there exists j ∈ I such that in
(aj , bj) there exists a point τ of global maximum for u(·; a, b; q). By Corollary
4.6, we know that u(τ ; a, b; q) ≥ C1(b − a)2 whenever b − a ≥ L4, for every
q ∈ P . Assume by contradiction that (aj , bj) 6= (a, b); say, for instance, aj > a.
In order to obtain a contradiction, we consider separately the cases A(p) > 0 or
A(p) ≤ 0.

The case A(p) > 0. We choose 0 < ε < min {C1, 2A(p)/3}, where we recall
that C1 has been defined in Corollary 4.6, and we consider the decomposition of
Lemma 4.1 for the forcing term q. By the monotonicity of g, assumption (h1),
there exists sε := g−1 (A(p)− 3ε/2). Assuming b− a sufficiently large in such a
way that u(τ) > sε we can introduce

T := inf {t̄ > aj : u(t; a, b; q) > sε for every t ∈ (t̄, τ)} ,
a′ := inf {t̄ ≤ T : u̇(t; a, b; q) ≥ 0 for every t ∈ [t̄, T ]}

(in particular, if u̇(T ; a, b; q) = 0 then a′ := T ). Note that, by definition,

{
0 ≤ u(t; a, b; q) ≤ sε if t ∈ [a′, T ]

u(t; a, b; q) ≥ sε if t ∈ [T, τ ].
(20)

As u(· ; a, b; q) ∈ C1(a, b), a′ ≥ aj > a necessarily implies u̇(a′; a, b; q) = 0. As a
consequence, if we reach a contradiction, we deduce that both a′ = aj = a and
u̇(a; a, b; q) > 0.
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Step 1) there exists C2 > 0 independent of q ∈ P such that T − a′ ≤ C2.
By the monotonicity of g and (20), we deduce that, for every t ∈ (a′, T ),

ü(t; a, b; q) = −g(u(t; a, b; q)) + q1,ε(t) + q̇2,ε(t)

≥ −g(sε) +A(p)− ε

2
+ q̇2,ε(t) = ε+ q̇2,ε(t).

By integrating twice in (a′, t), and using the fact that u̇(a′; a, b; q) = 0, we obtain

sε ≥ u(T ; a, b; q)− u(a′; a, b; q) ≥ ε

2
(T − a′)2 − 2Mε(T − a′),

which provides the desired estimate.

Step 2) There exists C3 > 0 independent of q ∈ P such that u̇(T ; a, b; q) ≤ C3.
As g(s) ≥ 0 for s ≥ 0, we see that, for every t ∈ (a′, T ),

ü(t; a, b; q) = −g(u(t; a, b; q)) + q1,ε(t) + q̇2,ε(t)

≤ A(p) +
ε

2
+ q̇2,ε(t).

By integrating in (a′, T ), we deduce that

u̇(T ; a, b; q) ≤
(
A(p) +

ε

2

)
(T − a′) + 2Mε ≤ C3,

where we use the first step and the fact that u̇(a′; a, b; q) = 0.

Step 3) Conclusion of the proof in case A(p) > 0.
By the monotonicity of g (assumption (h1)) and (20), we deduce that, for every
t ∈ (T, τ),

ü(t; a, b; q) = −g(u(t; a, b; q)) + q1,ε(t) + q̇2,ε(t)

≤ −g(sε) +A(p) +
ε

2
+ q̇2,ε(t) = 2ε+ q̇2,ε(t).

By integrating twice in (T, t) and evaluating in τ , we deduce

u(τ ; a, b; q) ≤ ε(b− a)2 + (u̇(T ; a, b; q) + 2Mε) (b − a) + u(T ; a, b; q)

≤ ε(b− a)2 + (C3 + 2Mε) (b − a) + sε,

where we used the result of the previous step and the definition of T . The
choice ε < C1 gives a contradiction with Corollary 4.6 for b−a sufficiently large
(greater than a constant L̃ depending only on P and not on the particular choice
of q).

The case A(p) ≤ 0. We choose 0 < ε < C1, where we recall that C1 has been
defined in Corollary 4.6, and consider the decomposition of Lemma 4.1 for the
forcing term q. For every t ∈ (aj , bj) we have

ü(t; a, b; q) = −g (u(t; a, b; q)) + q1,ε(t) + q̇2,ε(t) ≤
ε

2
+ q̇2,ε(t),
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where we used the fact that g(s) ≥ 0 for s ≥ 0. By integrating twice in (aj , t)
with t ∈ (aj , bj), and evaluating in τ , we obtain

u(τ ; a, b; q) ≤ ε(b− a)2 + 2Mε(b − a).

Having chosen ε < C1, this immediately contradicts Corollary 4.6 for b − a
sufficiently large.

For the results of the next sections it is important to prove the uniqueness
of the minimizer of the functional J(a,b),q with q ∈ P . In light of the previous

and the next statements, this uniqueness is guaranteed provided b − a > L̃. In
the following proposition the forcing term p is fixed; therefore, we will use the
simplified notation of the previous section.

Proposition 4.8 (Uniqueness). Let u and v be functions in C2(a, b)∩H1
0 (a, b)

such that u > 0 and v > 0 in (a, b). Assume that

J(a,b)(u) = J(a,b)(v) = ϕ+(a, b).

Then u ≡ v in [a, b].

Proof. Let us consider the function

Φ(λ) := J(a,b)((1− λ)u + λv).

We note that Φ ∈ C1(R) and

Φ′(λ) = dJ(a,b)((1 − λ)u + λv)[v − u].

As Φ(0) = Φ(1), there exists λ̄ ∈ (0, 1) such that Φ′(λ̄) = 0, that is,
∫ b

a

[(
1− λ̄

)
u̇+ λ̄v̇

]
(v̇ − u̇)− g

((
1− λ̄

)
u+ λ̄v

)
(v − u) + p(v − u) = 0. (21)

Also, by minimality we know that Φ′(0) = Φ′(1) = 0, that is
∫ b

a

u̇(v̇ − u̇)− g(u)(v − u) + p(v − u) = 0 (22)

∫ b

a

v̇(v̇ − u̇)− g(v)(v − u) + p(v − u) = 0. (23)

If we consider (21) and subtract (1− λ̄) times (22) and λ̄ times (23), we obtain
∫ b

a

[(
1− λ̄

)
g(u) + λ̄g(v)− g

((
1− λ̄

)
u+ λv

)]
(v − u) = 0. (24)

We claim that

either u ≡ v or the function v − u changes sign in (a, b). (25)

Indeed, assume u 6≡ v and, w.l.o.g., v ≥ u in (a, b). The set A := {t ∈ (a, b) :
v(t) > u(t)} is not empty and has positive measure. Hence, by (24) and the
strict concavity of g in (0,+∞), assumption (h1), we deduce that

0 =

∫ b

a

[(
1− λ̄

)
g(u) + λ̄g(v)− g

((
1− λ̄

)
u+ λv

)]
(v − u)

=

∫

A

[(
1− λ̄

)
g(u) + λ̄g(v)− g

((
1− λ̄

)
u+ λv

)]
(v − u) < 0,
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a contradiction. This proves the claim (25), so that it remains to show that v−u
cannot change sign in (a, b). By contradiction again, assume that v−u changes
sign in (a, b), so that in particular there exists τ in (a, b) such that u(τ) = v(τ).
Say, for instance, that

∫ τ

a

(
1

2
u̇2 −G(u) + pu

)
≤
∫ τ

a

(
1

2
v̇2 −G(v) + pv

)
;

necessarily it results

∫ b

τ

(
1

2
u̇2 −G(u) + pu

)
≥
∫ b

τ

(
1

2
v̇2 −G(v) + pv

)
.

Let

ũ(t) :=

{
u(t) if t ∈ (a, τ)

v(t) if t ∈ [τ, b).

By definition ũ ∈ H1
0 (a, b)

+, ũ > 0 in (a, b) and J(a,b)(ũ) ≤ J(a,b)(u) = ϕ+(a, b),
that is, ũ is a minimizer of J(a,b) in H

1
0 (a, b)

+ which is strictly positive in (a, b);
hence, it solves the boundary value problem (4) and has to be of class C2(a, b).
This implies that u̇(τ) = v̇(τ), and recalling that u(τ) = v(τ), we can apply
the uniqueness theorem for the initial value problems, proving that u ≡ v in
(a, b).

Let p ∈ P , and let P be defined by (15). Collecting together the results
of Propositions 4.7 and 4.8, we can conclude that there exists L̃ > 0 such that
for every (a, b) ⊂ R with b − a ≥ L̃ and for every q ∈ P there exists a unique
minimizer u(· ; a, b; q) of the functional J(a,b),q in H1

0 (a, b)
+, which is strictly

positive in (a, b) and hence solves problem (4) with forcing term q. It is then
possible to define a map which associates to each triple (a, b, q), with b− a ≥ L̃
and q ∈ P , the unique minimizer u(·; a, b; q). We conclude this section proving
that this map is continuous.

Lemma 4.9. Let p satisfy (h2), and let P be defined by (15). Let A and B be
fixed and let

I :=
{
(t, a, b) ∈ R

3 : b− a > L̃, A < a ≤ t ≤ b < B
}
,

where L̃ has been defined in Proposition 4.7. Let us consider the metric space
P endowed with the distance d(q1, q2) = ‖q1 − q2‖L2(A,B). The map

(t, a, b, q) ∈ I × P 7→ (u(t; a, b; q), u̇(t; a, b; q)) ∈ R
2

is continuous.

Proof. Let (an, bn, pn) → (a∗, b∗, p∗) in I × P . Thanks to the explicit re-
lations (7), we can consider the scaled functions ûn := û(· ; an, bn; p̂n) and
û∗ := û(· ; a∗, b∗; p̂∗). Having chosen b − a > L̃ and (pn) ⊂ P , from the previ-
ous results we deduce that each ûn solves problem (9) with an, bn, p̂n instead
of a, b, p̂. By Lemma 3.3, we know that the sequence (ûn) is bounded in
H1

0 (0, 1), so that, up to a subsequence, it is weakly convergent in H1
0 (0, 1) to

some ũ ∈ H1
0 (0, 1)

+. This, together with the fact that, up to a subsequence,

17



p̂n → p̂∗ almost everywhere in [0, 1] (this follows from the convergence of p̂n to
p̂∗ in L2(0, 1)), implies that ûn → ũ in H2(0, 1) ∩H1

0 (0, 1), and




¨̃u(t) + g
(
(b∗ − a∗)2ũ(t)

)
= p̂∗(t) t ∈ (0, 1)

ũ(0) = 0 = ũ(1)

ũ(t) ≥ 0 t ∈ (0, 1).

We aim at proving that ũ ≡ û∗; if this is not true, then the variational charac-
terization of û∗ and Proposition 4.8 imply that

Ĵ(a∗,b∗),p∗(û∗) < Ĵ(a∗,b∗),p∗(ũ). (26)

By the continuity of Ĵ with respect to u, p, a and b, we have also

Ĵ(an,bn),pn
(ûn) → Ĵ(a∗,b∗),p∗(ũ) and Ĵ(an,bn),pn

(û∗) → Ĵ(a∗,b∗),p∗(û∗). (27)

A comparison between (26) and (27) for n sufficiently large gives a contradic-

tion with the fact ûn reaches the minimum of Ĵ(an,bn),pn
in H1

0 (0, 1)
+, so that

necessarily ũ ≡ û∗. Since this argument holds for any subsequence, we deduce
the convergence of the whole sequence, and to obtain the desired result it is
sufficient to observe that, since ûn → û∗ in H2(0, 1) ∩ H1

0 (0, 1), then ûn → û∗

in C1([0, 1]).

5 Non-degeneracy of positive minimizers

Assume that u solves (4) in (a, b); we can consider the variational equation
{
ψ̈(t) + g′(u(t))ψ(t) = 0 t ∈ (a, b)

ψ(a) = 0 = ψ(b).
(28)

Definition 1. We say that u is non-degenerate as solution of (4) if problem
(28) has only the trivial solution ψ ≡ 0 in H2(a, b) ∩H1

0 (a, b).

The main result of this section is the following.

Proposition 5.1. Let p satisfy (h2), P be defined by (15), and L̃ be defined as
in Proposition 4.7, and let us assume that b − a ≥ L̃. The function u(·; a, b; p)
is non-degenerate as solution of the boundary value problem (4).

For the proof, we will use some known results in singularity theory, which
we recall here and for which we refer to Section 3.2 of the book by Ambrosetti
and Prodi [2].

Definition 2. Let Φ : Ω ⊂ E → F be of class C2(Ω), where Ω is open, E and
F are Banach spaces and u0 ∈ Ω. We say that u0 is singular if dΦ(u0) is not
invertible. It is ordinary singular if it is singular and

(i) Ker (dΦ(u0)) is one-dimensional:

Ker (dΦ(u0))) = Rψ0 for some ψ0 ∈ E \ {0};

Range (dΦ(u0)) is closed and has codimension 1:

Range (dΦ(u0)) = {q ∈ F : 〈γ0, q〉 = 0} with γ0 ∈ F ∗ \ {0}.
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(ii) 〈γ0, d2Φ(u0)[ψ0, ψ0]〉 6= 0.

Theorem 5.2 (Ambrosetti-Prodi). Let u0 be an ordinary singular point for Φ,
and, say,

〈γ0, d2Φ(u0)[ψ0, ψ0]〉 > 0;

let q0 = Φ(u0), and let q ∈ F be such that 〈γ0, q〉 > 0. Then there exists a
neighbourhood U of u0 in E and a positive number ε∗ such that the equation

Φ(u) = q0 + εq, u ∈ U

has exactly two solutions for 0 < ε < ε∗ and no solution for −ε∗ < ε < 0.

We are ready to show that u(·; a, b; p) is non-degenerate.

Proof of Proposition 5.1. Let

X := H2(a, b) ∩H1
0 (a, b), ‖u‖X := ‖ü‖2, Y := L2(a, b).

We introduce the map F : X → Y defined by

F(u) = −ü− g(u).

Under assumption (h1), it is immediate to see that F ∈ C2(X,Y ) and

dF(u)ψ = −ψ̈ − g′(u)ψ, d2F(u)[ψ1, ψ2] = −g′′(u)ψ1ψ2.

By the Fredholm alternative, u(·; a, b; p) is degenerate as solution of (4) if and
only if it is singular for F . So, let us assume by contradiction that u(·; a, b; p)
is degenerate as solution of (4).

Step 1) u(·; a, b; p) is ordinary singular for F .
We have to show that u(·; a, b; p) satisfies points (i) and (ii) of Definition 2. By
degeneracy, problem

{
ψ̈(t) + g′(u(t; a, b; p))ψ(t) = 0 t ∈ (a, b)

ψ(a) = 0 = ψ(b)
(29)

has a nontrivial solution ψ0, that is, 0 is an eigenvalue for the operator
dF(u(t; a, b; p)); this is a Sturm-Liouville operator with Dirichlet boundary con-
ditions, hence all its eigenvalues are simple, and in particular
Ker (dF(u(t; a, b; p))) = Rψ0. Moreover, in light of the Fredholm alternative,
dF(u(t; a, b; p)) is a Fredholm operator with index 0, so that property (i) in
Definition 2 follows.

As far as point (ii) is concerned, first of all we claim that 0 is the first
eigenvalue of dF(u(t; a, b; p)); if not, there exists λ1 < 0 and ψ1 ∈ X \ {0} such
that {

ψ̈1(t) + g′(u(t; a, b; p))ψ1(t) = −λ1ψ1(t) t ∈ (a, b)

ψ1(a) = 0 = ψ1(b).
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On the other hand, as u(t; a, b; p) is a local minimizer for J(a,b),p, we see that
d2J(a,b),p(u(t; a, b; p)) is a positive semi-definite quadratic form; this implies that

0 ≤ d2J(a,b),p(u(t; a, b; p))[ψ1, ψ1] = −
∫ b

a

(
ψ̈1 + g′(u(t; a, b; p))ψ1

)
ψ1

= λ1

∫ b

a

ψ2
1 < 0,

a contradiction. Having proved that 0 is the first eigenvalue of dF(u(t; a, b; p)),
we can assume that ψ0 > 0 in (a, b). By the Fredholm alternative, we know that

Range (dF(u(t; a, b; p))) = {q ∈ Y : 〈γ0, q〉 = 0}, where 〈γ0, q〉 =
∫ b

a ψ0q. Hence

〈γ0, d2F(u(t; a, b; p))[ψ0, ψ0]〉 = −
∫ b

a

g′′(u(t; a, b; p))ψ3
0 6= 0

being g′′ < 0 in (0,+∞) and ψ0 > 0 in (a, b).

Step 2) Conclusion of the proof.
By definition, F(u(t; a, b; p)) = p. We can choose q ∈ Y such that

•
∫ b

a qψ0 > 0;

• p+ εq ∈ P for every |ε| sufficiently small.

Indeed, let φ ∈ C∞
c (a, b) \ {0} be negative. Taking q = φ̈, we obtain

∫ b

a

φ̈ψ0 =

∫ b

a

φψ̈0 = −
∫ b

a

g′ (u(t; a, b; q))φψ0 > 0,

because −g′ < 0 in R and ψ0 > 0 in (a, b). Also, it is easy to check that the
function p + εq ∈ P whenever |ε| is sufficiently small (see Remark 2). So, by
definition, F (u(·; a, b; p+ εq)) = p + εq (to ensure that u(·; a, b; p + εq) solves
(4) with forcing term p + εq, it is essential to know that p + εq ∈ P), and by
Lemma 4.9 it results u(·; a, b; p + εq) → u(·; a, b; p) in X as ε → 0−. On the
other hand, by Theorem 5.2 there exists a neighbourhood U of u(·; a, b; p) in X
such that the equation F(u) = p+ εq has no solution in U for ε < 0 sufficiently
small, a contradiction.

As an easy consequence of the Fredholm alternative, we obtain also the
following corollary.

Corollary 5.3. Let p satisfy (h2), let P be defined by (15), let L̃ be defined in
Proposition 4.7, and assume that b− a ≥ L̃. The boundary value problem

{
ψ̈(t) + g′(u(t; a, b; q))ψ(t) = 0 t ∈ (a, b)

ψ(a) = ψa, ψ(b) = ψb

has a unique solution for every q ∈ P.
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6 Differentiability of ϕ+(a, b)

In this section we will show that ϕ+(a, b) = J(a,b),p(u(· ; a, b; p)) is differentiable
as function of a and b.

Lemma 6.1. Let p satisfy (h2), and let P be defined by (15). Let A and B be
fixed and let

I :=
{
(t, a, b) ∈ R

3 : b− a > L̃, A < a ≤ t ≤ b < B
}
,

where L̃ has been defined in Proposition 4.7. If q ∈ P is of class C1, then the
map

(t, a, b) ∈ I 7→ (u(t; a, b; q), u̇(t; a, b; q)) ∈ R
2

is of class C1, too. More precisely,

∂u

∂a
(t; a, b; q) = ξ1(t)

∂u̇

∂a
(t; a, b; q) = ξ̇1(t)

∂u

∂b
(t; a, b; q) = ξ2(t)

∂u̇

∂b
(t; a, b; q) = ξ̇2(t),

where ξ1 and ξ2 are the solutions (unique by Corollary 5.3) of

ξ̈(t) + g′(u(t; a, b; q))ξ(t) = 0

with the boundary conditions

{
ξ1(a) = −u̇(a+; a, b; q)
ξ1(b) = 0

or

{
ξ2(a) = 0

ξ2(b) = −u̇(b−; a, b; q),

respectively.

Proof. In light of the results of the previous sections, it is not difficult to adapt
the proof of Lemma 5.1 in [7]. We report the sketch of the proof for the sake of
completeness. Thanks to the explicit relations (7)-(9), the first part of the thesis
follows if we prove the differentiability of û(· ; a, b; q) with respect to (t, a, b). Let
∆ := {(a, b) ∈ R

2 : b − a > L̃,A < a < b < B}, X = H1
0 (0, 1) ∩ H2(0, 1), and

consider the map Φ : ∆×X → L2(0, 1) defined by

Φ(w, a, b) = −ẅ − g
(
(b− a)2w

)
+ q(a+ t(b− a)).

By definition, Φ (û(· ; a, b; q); a, b) = 0; we wish to show that the implicit function
theorem applies to Φ in a neighbourhood of û(· ; a, b; q). Having chosen q ∈
C1(R), it is not difficult to check that Φ ∈ C1(∆×X,Y ), and that in particular

∂wΦ (û(· ; a, b; p); a, b) [ψ] = −ψ̈ − (b− a)2g′
(
(b − a)2û(· ; a, b; p)

)
ψ,

which is invertible thanks to Proposition 5.1. Therefore, the implicit function
theorem applies and the map (a, b) 7→ û(· ; a, b; q) is of class C1(∆, X). By
looking at the topology of X , this means that the map

(t, a, b) ∈ I 7→ (u(t; a, b; q), u̇(t; a, b; q)) ∈ R
2
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has partial derivatives with respect to a and b, and that they are continuous
in the three variables. The differential equation for û(· ; a, b; q) reveals that
also the partial derivative with respect to t exists and is continuous, that is,
the map is C1, which completes the first part of the proof. At this point, the
characterizations of ξ1 and ξ2 can be obtained by differentiating problem (4) by
a and b respectively.

Proposition 6.2. For every p satisfying (h2), the function
ϕ+(a, b) = ϕ+(a, b; p) is of class C1 with respect to a and b in {b− a > L̃}, with
derivatives

∂ϕ+

∂a
(a, b) =

1

2
u̇2(a+; a, b; p) and

∂ϕ+

∂b
(a, b) = −1

2
u̇2(b−; a, b; p).

Proof. If p ∈ C1(R) then we can apply Lemma 6.1, obtaining that ϕ+(a, b) =
J(a,b),p(u(· ; a, b; p)) is differentiable. In such case, the expressions of its deriva-
tives follow by direct computation. In the general case, we claim that

there exists (qn) ⊂ P ∩ C1(R) such that qn → p in L2(A,B). (30)

This is not straightforward, since P is defined as in (15). Let εn → 0 as n→ ∞,
an let us consider the decomposition

p = p1,εn + ṗ2,εn

given by Lemma 4.1. For any fixed n, we consider

qn,m = A(p) +
d

dt
(ρm ∗ p2,εn) = A(p) + ρm ∗ ṗ2,εn ,

where (ρm) is a family of mollifiers, ∗ denotes the usual product of convolution,
and the last identity follows from the fact that p2,ε ∈ C1(R). It is not difficult
to check that qn,m ∈ P ∩C1(R) for any m,n, and that for any n there exists mn

sufficiently large such that

‖qn,mn
− p‖L2(A,B) < εn.

Hence, the sequence (qn,mn
) has the desired properties, and claim (30) follows.

We introduce ϕn(a, b) := ϕ+(a, b; qn) and ϕ(a, b) := ϕ+(a, b; p), and observe
that, thanks to the previous step, each ϕn is of class C1(R). Let ∆ := {(a, b) :
b− a > L̃,A < a < b < B}. We claim that

ϕn → ϕ uniformly for (a, b) ∈ ∆. (31)

If not,

sup
(a,b)∈∆

|ϕn(a, b)− ϕ(a, b)| = sup
(a,b)∈∆

∣∣ϕ+(a, b; qn)− ϕ+(a, b; p)
∣∣ = cn ≥ c̄ > 0.

By Lemma 4.9 and the continuity of J(a,b),p(u) as function of (u, a, b, p), the
function ϕ+ is continuous in the three variables, so that by compactness for
every n the supremum is achieved by (an, bn) ∈ ∆. Therefore, if (31) does not
hold, then ∣∣ϕ+(an, bn; qn)− ϕ+(an, bn; p)

∣∣ ≥ c̄
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for any n. Since, up to subsequences, both an and bn converge, this contradicts
the continuity of ϕ+.

With a similar argument we see also that u̇(τ ; a, b; qn) → u̇(τ ; a, b; p) for
τ = a, b, uniformly in ∆, so that

∂ϕn

∂a
(a, b) → 1

2
u̇2(a+; a, b; p) and

∂ϕn

∂b
(a, b) → −1

2
u̇2(b−; a, b; p),

uniformly in ∆. The convergence of (ϕn) and of the sequences of the derivatives
reveals that ϕ is of class C1 in ∆, and the thesis follows.

7 Sign-changing solutions

In this section we complete the proof of Theorem 2.1. Firstly, we prove the exis-
tence of sign-changing solutions of (1) in bounded (sufficiently large) intervals;
then, by an exhaustion procedure, we pass to the whole real line. To do this,
we juxtapose positive and negative solutions on adjacent intervals, the latter
existing and satisfying analogous properties of the former ones, as enlightened
in Remark 1. To distinguish between positive and negative solutions, and since
the forcing term p is now fixed, we change our notations accordingly, denoting
such solutions as u±(· ; a, b). Resuming, we have the following result.

Proposition 7.1. For every ε > 0 there exists L > 0 such that, if b − a ≥ L,
then the value ϕ±(a, b) is achieved by a unique u±(· ; a, b) ∈ H1

0 (a, b), which is
strictly positive/negative and solves equation (1) in (a, b). Moreover,

‖u±(· ; a, b)‖ ≤ (‖g‖∞ + ‖p‖∞)(b− a)
3
2

−α(b − a)3 ≤ ϕ+(a, b) ≤ −α(b− a)3

−β(b − a)3 ≤ ϕ−(a, b) ≤ −β(b− a)3,

where α, α have been defined in (16) and

β :=
(−g− +A(p))2

24
+ ε and β :=

(−g− +A(p))2

24
− ε.

Proof. The proposition directly follows from Proposition 4.7, Lemma 3.3, Corol-
lary 4.5 and Remark 1.

By assumption (h2), there are two possibilities:

either g+ −A(p) = −g− +A(p) or g+ −A(p) 6= −g− +A(p).

In the former case, we observe that for a given ε it results α = β and α = β.
Otherwise, it is possible to choose ε sufficiently small in such a way that

either α < β or β < α.

To fix the ideas, in the following we consider the case

β < β < α < α. (32)

The reader can easily adapt the arguments below in order to cover also the other
situations (actually, if g+ − A(p) = −g− + A(p), the problem is considerably
simplified).
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Firstly, we start by choosing ε > 0 sufficiently small in Proposition 7.1 in
such a way that

β
(
1 +

√
β/α

)2 < β; (33)

by definition, one can easily check that this choice is possible.

Remark 5. Let ν := β/α. It is useful to observe that equation (33) implies
that

α

( √
ν

1 +
√
ν

)3

+ β

(
1

1 +
√
ν

)3

− β < 0

α

( √
ν

1 +
√
ν

)3

+ β

(
1

1 +
√
ν

)3

− α < 0.

First of all, by (32) we immediately see that the second of these relations is
automatically satisfied provided the first one holds. And for the first one it is
sufficient to note that

α

( √
ν

1 +
√
ν

)3

+ β

(
1

1 +
√
ν

)3

= α

(
1

1 +
√
ν

)3 [(√
ν
)3

+ ν
]

=
αν

(1 +
√
ν)

2 =
β

(
1 +

√
β/α

)2 .

Let (A,B) ⊂ R and k ∈ N be such that (k + 1)L ≤ B − A; hence, it is
possible to divide the interval (A,B) in k + 1 sub-intervals, in such a way that
each of them is larger than L. We define the set of admissible partitions of
(A,B) in (k + 1) sub-intervals as

Bk :=
{
(t1, . . . , tk) ∈ R

k : A =: t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 := B, ti+1 − ti ≥ L
}
;

also, we introduce the function ψ : Bk → R defined by

ψ(t1, . . . , tk) :=

k∑

i=0

ϕσ(i)(ti, ti+1), where σ(i) =

{
+ if i is even

− if i is odd.
(34)

We consider the maximization problem

ck(A,B) := sup {ψ(t1, . . . , tk) : (t1, . . . , tk) ∈ Bk} . (35)

Remark 6. It is possible to consider also the maximization problem for the
function having opposite σ(i). The situation is essentially the same.

Lemma 7.2. The value ck(A,B) is achieved by a partition (t̄1, . . . , t̄k) ∈ Bk.

Proof. This follows from the continuity of ϕσ(i) (in fact ϕσ(i) is differentiable,
Proposition 6.2), and from the compactness of Bk.

To each interval (t̄i, t̄i+1) we associate

ui := uσ(i)(· ; t̄i, t̄i+1).
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In this way, it is defined on the whole [A,B] a function

u(A,B),k(t) := ui(t) if t ∈ [t̄i, t̄i+1], (36)

which is a solution of (1) in (A,B) \ {t̄1, . . . , t̄k}, and has exactly k zeros in
(A,B). If we show that it is differentiable in each t̄i, then u(A,B),k will be a
solution in the whole (A,B). To prove the smoothness of u(A,B),k, we wish to

exploit the knowledge of the explicit expression of the derivatives of ϕσ(i), given
in Proposition 6.2. Having this in mind, we observe that, if (t̄1, . . . , t̄k) is an
inner point of Bk, then by maximality it results ∇ψ(t̄1, . . . , t̄k) = 0, where the
partial derivatives of ψ can be expressed in terms of the partial derivatives of
ϕσ(i). Therefore, the next step consists in the proof of the following lemma.

Lemma 7.3. There exists H, depending only on L and on p, such that for any
(A,B) ⊂ R, k ∈ N with

B −A ≥ H(k + 1),

the corresponding maximizing partition (t̄1, . . . , t̄k) ∈ Bk is an inner point of Bk,
that is, t̄i+1 − t̄i > L for every i.

We need two intermediate results. The first one says that the ratio between
two adjacent sub-intervals of a maximizing partition can be controlled by means
of a positive constant depending only on L and on p.

Lemma 7.4. Let (t̄1, . . . , t̄k) ∈ Bk be a maximizing partition for (35). There
exists h̄ ≥ 1, depending only on L and on p, such that

1

h̄
(t̄i − t̄i−1) ≤ t̄i+1 − t̄i ≤ h̄(t̄i − t̄i+1)

for every i = 1, . . . , k.

Proof. For an arbitrary i, let λ = t̄i − t̄i−1 and hλ = t̄i+1 − t̄i. We wish to
show that h is bounded from below and from above by two positive constants
depending only on L and on p. Let ν := β/α, which belongs to (0, 1) by (32).
If both λ and hλ are smaller than or equal to L/

√
ν, then

√
ν ≤ h ≤ 1/

√
ν.

Otherwise, at least one between λ and hλ is greater then L/
√
ν, so that

(1 + h)λ >

(
1 +

1√
ν

)
L. (37)

Firstly, let us consider the case σ(i − 1) = +, that is, i− 1 is even. Let

s := t̄i−1 +

√
ν

1 +
√
ν
(t̄i+1 − t̄i−1) ∈ (t̄i−1, t̄i+1).

We consider the variation of (t̄1, . . . , t̄k) obtained replacing t̄i with s. This is an
admissible partition in Bk, as by (37) we have

s− t̄i−1 =

√
ν

1 +
√
ν
(1 + h)λ >

√
ν

1 +
√
ν

(
1 +

1√
ν

)
L = L

t̄i+1 − s =
1

1 +
√
ν
(1 + h)λ >

1

1 +
√
ν

(
1 +

1√
ν

)
L > L.
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The variational characterization of (t̄1, . . . , t̄k) implies that

ψ(t̄1, . . . , t̄i−1, s, t̄i+1, . . . , t̄k) ≤ ψ(t̄1, . . . , t̄i−1, t̄i, t̄i+1, . . . , t̄k);

by definition, this means

ϕσ(i−1)(t̄i−1, s) + ϕσ(i)(s, t̄i+1) ≤ ϕσ(i−1)(t̄i−1, t̄i) + ϕσ(i)(t̄i, t̄i+1).

Therefore, recalling that we are considering the case σ(i−1) = +, by Proposition
7.1 we deduce

−α
( √

ν

1 +
√
ν

)3

(1 + h)3λ3 − β

(
1

1 +
√
ν

)3

(1 + h)3λ3 ≤ −αλ3 − βh3λ3,

that is,

[
α

( √
ν

1 +
√
ν

)3

+ β

(
1

1 +
√
ν

)3

− β

]
h3

+ 3

[
α

( √
ν

1 +
√
ν

)3

+ β

(
1

1 +
√
ν

)3
]
(h2 + h)

[
α

( √
ν

1 +
√
ν

)3

+ β

(
1

1 +
√
ν

)3

− α

]
≥ 0.

As observed in Remark 5, thanks to the choice (33), the coefficient of h3 and
the last term are negative, so that this relation cannot be satisfied if h is too
small or too large: this implies that necessarily 1/h̄1 ≤ h ≤ h̄1 for a positive
constant h̄1 > 1, which depends only on L and on p.

In case σ(i − 1) = −, one can follow the same line of reasoning, replacing
the previous definition of s with

s := t̄i−1 +
1

1 +
√
ν
(t̄i+1 − t̄i−1) ∈ (t̄i−1, t̄i+1).

Again, the relation

ψ(t̄1, . . . , t̄i−1, s, t̄i+1, . . . , t̄k) ≤ ψ(t̄1, . . . , t̄i−1, t̄i, t̄i+1, . . . , t̄k)

implies that for the quantity h̄1 > 1 previously introduced it results 1/h̄1 ≤ h ≤
h̄1, and the desired result follows choosing h̄ := max{1/√ν, h̄1}.

Now we can show that, in a maximizing partition, the ratio between the
larger sub-interval and the smaller one is bounded by a constant depending
only on L and on p.

Lemma 7.5. Let

λ := min
i

(t̄i+1 − t̄i) and λ := max
i

(t̄i+1 − t̄i) .

Then there exists h∗ ≥ 1, depending only on L and on p, such that

λ ≤ h∗λ.
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Proof. Let us denote with i 6= j, 0 ≤ i, j ≤ k, two indexes such that

λ = t̄i+1 − t̄i and λ = t̄j+1 − t̄j .

To fix the ideas we consider the case i < j. As the previous lemma asserts that
the length of any interval is comparable with the one of its neighbors, we can
assume without loss of generality i and j to be even, k ≥ 5 and j − i ≥ 4, i.e.
i+ 2 ≤ j − 2. Let us set again ν := β/α, and let

σ̄ :=
1

2

(
1

2
+

1
3
√
2

) √
ν

1 +
√
ν
.

If λ ≤ max{L/σ̄, L/(1− 2σ̄)}, we can choose h∗ = max{1/σ̄, 1/(1− 2σ̄)}. Oth-
erwise, we consider a variation of (t̄1, . . . , t̄k) introducing two points

s1 := t̄i + σ̄(t̄i+1 − t̄i) and s2 := t̄i + (1− σ̄)(t̄i+1 − t̄i).

between t̄i and t̄i+1, and eliminating t̄j and t̄j+1 if j < k; if j = k, we eliminate
t̄k−1 and t̄k. For the reader’s convenience, we explicitly observe that, since
ν ∈ (0, 1), it results t̄i < s1 < s2 < t̄i+1.

t̄i t̄i+1

t̄j−1

t̄j

t̄j+1

t̄j+2
t̄i

t̄i+1

t̄j−1 t̄j+2

s1

s2

In what follows, the notation corresponds to the case j < k.
As λ > max{L/σ̄, L/(1− 2σ̄)}, the new partition is in Bk: indeed

s1 − t̄i = σ̄(t̄i+1 − t̄i) = σ̄λ > L

s2 − s1 = (1− 2σ̄)(t̄i+1 − t̄i) = (1− 2σ̄)λ > L

t̄i+1 − s2 = σ̄(t̄i+1 − t̄i) = σ̄λ > L.

(38)

As a consequence, by maximality,

ψ(t̄1, . . . , t̄i, s1, s2, t̄i+1, . . . , t̄j−1, t̄j+2, . . . , t̄k) ≤ ψ(t̄1, . . . , t̄k),

that is,

ϕ+(t̄i, s1) + ϕ−(s1, s2) + ϕ+(s2, t̄i+1) + ϕ+(t̄j−1, t̄j+2)

≤ ϕ+(t̄i, t̄i+1) + ϕ+(t̄j−1, t̄j) + ϕ−(t̄j , t̄j+1) + ϕ+(t̄j+1, t̄j+2).

We know that ϕ+(t̄i, t̄i+1) ≤ −αλ3, and the other terms on the right hand side
are negative; on the other hand, for the left hand side we can use the expressions
(38) and the fact that, by Lemma 7.4, t̄j+2 − t̄j−1 ≤ (2h̄+ 1)λ. Therefore

−2ασ̄3λ
3 − β(1− 2σ̄)3λ

3 − α(2h̄+ 1)3λ3 ≤ −αλ3,
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which gives

[
α− 2ασ̄3 − β(1 − 2σ̄)3

] (λ
λ

)3

≤ α(2h̄+ 1)3.

We claim that
α− 2ασ̄3 − β(1 − 2σ̄)3 > 0;

as a consequence, the thesis will follows. To show the claim, we note that, by
definition of σ̄, it results

2σ̄3 <

( √
ν

1 +
√
ν

)3

and (1− 2σ̄)3 <

(
1

1 +
√
ν

)3

;

Thanks to the choice (33), recalling also Remark 5, we easily deduce

α− 2ασ̄3 − β(1− 2σ̄)3 > α− α

( √
ν

1 +
√
ν

)3

− β

(
1

1 +
√
ν

)3

> 0,

which completes the proof.

End of the proof of Lemma 7.3. Let H = h∗(L + 1), with h∗ introduced in
Lemma 7.5. Then any partition of an interval of length B − A ≥ H(k + 1)
in k+1 sub-intervals has a sub-interval larger than h∗(L+1), and in particular
λ ≥ h∗(L+ 1). Applying Lemma 7.5, we immediately deduce λ ≥ L+ 1.

We are ready to prove the existence of sign-changing solutions of (1) in large
intervals.

Proposition 7.6. There exists H, depending only on L and on p, such that if
B −A ≥ H(k + 1) and (t̄1, . . . , t̄k) is a maximizing partition for (35), then the
function u(A,B),k defined by (36) is a solution of (1).

Proof. By construction, u(A,B),k solves (1) in (A,B) \ {t̄1, . . . , t̄k}. Moreover,
by Lemma 7.3, (t̄1, . . . , t̄k) is a free critical point of the function ψ, so that
∇ψ(t̄1, . . . , t̄k) = 0. In view of Proposition 6.2, this writes

−1

2
u̇2i−1(t̄

−
i ) +

1

2
u̇2i (t̄

+
i ) = 0 i = 1, . . . , k.

But then u(A,B),k is C1 across each t̄i, and the proposition follows.

Remark 7. Directly from the construction of u(A,B),k, it is possible to obtain
some estimates which will be useful in the next proof; we keep here the notation
previously introduced. First of all, we note that for every t ∈ (A,B) there exists
i such that t ∈ [t̄i, t̄i+1). Thanks to Lemma 3.3, we deduce that

|u(A,B),k(t)| = |ui(t)| ≤ C(t̄i+1 − t̄i)
2 ≤ Cλ

2

|u̇(A,B),k(t)| = |u̇i(t)| ≤ C(t̄i+1 − t̄i) ≤ Cλ,

where C is a positive constant depending only on g and p. As a consequence

‖u(A,B),k‖L∞(A,B) ≤ Cλ
2

and ‖u̇(A,B),k‖L∞(A,B) ≤ Cλ.
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On the other hand, let τ be a point of maximum of |u(A,B),k|. There exists
j ∈ {0, . . . , k} such that τ ∈ (t̄j , t̄j+1), so that by Corollary 4.6 it results

‖u(A,B),k‖L∞(A,B) = |uj(τ)| ≥ C1(t̄j+1 − t̄j) ≥ C1λ,

where C1 is a positive constant depending only on g and p.

It is now possible to complete the proof of the main result.

Proof of Theorem 2.1. For a fixed L > L̄, let h̄, h∗ and H be as in Lemmas 7.4,
7.5 and Proposition 7.6 respectively. Let µ ≥ H be fixed (we explicitly remark
that h∗ is independent of µ). For every n ∈ N we have 2nµ ≥ 2nH , so that by
Proposition 7.6 there exists uµ,n := u(−µn,µn),2n−1 which is a solution of (1) in
(−µn, µn) with 2n− 1 zeros, and its zeros correspond to a partition

−µn =: t̄0 < t̄1 < . . . , t̄2n−1 < t̄2n := µn,

maximizing for c2n−1(−µn, µn), defined by (35). At least one of the sub-
intervals of the partition has to be smaller than or equal to µ; recalling that
λ := mini(t̄i+1 − t̄i) and λ = maxi(t̄i+1 − t̄i), it results λ ≤ µ; this implies, by
means of Lemma 7.5, that λ ≤ h∗µ, where h∗ does not depend on n or on µ.
Analogously, from the fact that at least one of the sub-intervals of the partition
has to be larger than or equal to µ, it is possible to deduce that λ ≥ µ/h∗.

By using the estimates of Remark 7, it is immediate to obtain

C1

( µ
h∗

)2
≤ ‖uµ,n‖L∞(−µn,µn) ≤ C(h∗µ)2 and ‖u̇µ,n‖L∞(−µn,µn) ≤ C(h∗µ).

Furthermore, being uµ,n a solution of (1), it results

‖üµ,n‖L∞(−µn,µn) ≤ ‖g‖∞ + ‖p‖∞.

The previous estimates reveals that the sequence (uµ,n)n∈N is uniformly bounded

in W 2,∞
loc (R), so that by the Ascoli-Arzelà theorem it converges in C1

loc(R), up to
a subsequence, to a function uµ which is a solution of (1) in the whole R, and
satisfies

C1

( µ
h∗

)2
≤ ‖uµ‖L∞(R) ≤ C(h∗µ)2 and ‖u̇µ‖L∞(R) ≤ C(h∗µ) (39)

By construction, uµ has infinitely many zeros tending to infinity in both the
directions; indeed, if this were not true, then |uµ(t)| ≥ C > 0 on an interval of
length greater than h∗µ, and by the C1

loc convergence the same should hold also
for uµ,n when n is sufficiently large, which is not possible.

We have constructed a solution of (1) defined inR, which is bounded together
with its first derivative. Now, we can obtain the sequence of bounded solutions
um = uµm

simply repeating the same procedure for a sequence of parameters
µm such that µm → +∞ and

µm >

√
C

C1
(h∗)2µm−1

for every m. Indeed, thanks to equation (39), we deduce

‖um−1‖L∞(R) ≤ C(h∗µm−1)
2 < C1

(µm

h∗

)2
≤ ‖um‖L∞(R),

so that um−1 6≡ um and ‖um‖∞ → +∞ as m→ ∞.
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To conclude, as we mentioned in the introduction, we turn to the periodic
framework. We keep the previous notations, in particular H is defined as in
Lemma 7.3. We have the following.

Theorem 7.7. Let g satisfy (h1), and let p be a continuous T -periodic function
such that

g− < A(p) =
1

T

∫ T

0

p(t) dt < g+.

Then, for any (k, n) ∈ N
2 with k odd and nT ≥ H(k + 1), there exist a nT -

periodic solution of (1), having exactly k zeros in each interval of periodicity.

Remark 8. The nodal characterization of the solutions ensures that, whenever
T is the minimal period of p, and n and k + 1 are coprime integers, then nT is
the minimal period of the corresponding solution. This ensures the existence of
an infinite sequence of subharmonic solutions, with diverging minimal period.

Proof. Let

Ak :=

{
(t0, t1, . . . , tk) ∈ R

k

∣∣∣∣
t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 := t0 + nT,
ti+1 − ti ≥ L, t0 ∈ [−T, 2T ]

}
,

and let ψ : Ak → R defined as in (34) (we point out that now t0 is not fixed).
There exists a maximizer (t̄0, t̄1 . . . , t̄k) for ψ. Since p is T -periodic, we can
assume t̄0 ∈ [0, T ). As a consequence, it results ∇ψ(t̄0, t̄1, . . . , t̄k) = 0. The
expression of the partial derivatives of ψ with respect to ti, i = 1, . . . , k, says that
the function u(t̄0,t̄0+nT ),k (defined as in (36)) is a solution of (1) in (t̄0, t̄0+nT );
also, the fact that ∂t0ψ(t̄0, t̄1, . . . , t̄k) = 0 implies that

−1

2
u̇2(t̄0,t̄0+nT ),k(t̄

+
0 ) +

1

2
u̇2(t̄0,t̄0+nT ),k((t̄0 + nT )−) = 0,

that is, u(t̄0,t̄0+nT ),k can be extended by nT -periodicity as a (smooth) solution
of (1) in the whole R.
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