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SHARP ASYMPTOTICS FOR THE POROUS MEDIA EQUATION

IN LOW DIMENSIONS VIA GAGLIARDO-NIRENBERG INEQUALITIES

GABRIELE GRILLO, MATTEO MURATORI

Abstract. We prove sharp asymptotic bounds for solutions to the porous media equation
with homogeneous Dirichlet or Neumann boundary conditions on a bounded Euclidean
domain, in dimension N = 1 and N = 2. This is achieved by making use of appropriate
Gagliardo-Nirenberg inequalities only. The generality of the discussion allows to prove
similar bounds for weighted porous media equations, provided one deals with weights for
which suitable Gagliardo-Nirenberg inequalities hold true. Moreover, we show equivalence
between such functional inequalities and the mentioned asymptotic bounds for solutions.

1. Introduction

We consider weak solutions to the homogeneous Dirichlet and Neumann problems for the
porous media equation posed on an Euclidean domain Ω ⊂ R

N , where N = 1 or N = 2.
More precisely, the Dirichlet problem reads





ut = ∆(um) in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞)

u = u0 on Ω× {0}

, (1.1)

while the Neumann problem reads (in this case we shall also assume that Ω is a regular
bounded domain) 




ut = ∆(um) in Ω× (0,∞)
∂(um)
∂n = 0 on ∂Ω× (0,∞)

u = u0 on Ω× {0}

. (1.2)

Notice that we define as usual, here and throughout the paper, um := |u|m−1u. We refer
the reader to [25] as the general reference concerning this equation.

Our goal will be to prove sharp bounds on ‖u(t)‖∞ for short times and then to study the
long-time behaviour of the solutions as well (Section 2). This has been done in dimension
N ≥ 3 in [11], improving on previous results given in [2, 4]. The method of proof used in
such paper strongly depends on the validity of the Sobolev inequality on Ω, and fails to
produce the correct short-time behaviour in lower dimension. In fact, consider for simplicity
the Dirichlet problem with |Ω| < ∞. By exploiting the methods of proof of [11] and using
the Sobolev inequalities associated to the dimension of the space, namely

‖v‖p ≤ C(p) ‖∇v‖2 ∀v ∈ W 1,2
0 (Ω) , ∀p ∈ (2,∞) , Ω ⊂ R

2

and
‖v‖∞ ≤ C ‖∇v‖2 ∀v ∈ W 1,2

0 ((a, b)) , (a, b) ⊂ R ,

it can only be shown that the solution u(t) corresponding to L1 data satisfies the estimate

‖u(t)‖∞ ≤ Cε t
− 1

m
−ε for any ε > 0 and t ∈ (0, 1] in the case N = 2, whereas it satisfies

the estimate ‖u(t)‖∞ ≤ C t−
1
m for any t ∈ (0, 1] in the case N = 1. On the other hand,

1



2 GABRIELE GRILLO, MATTEO MURATORI

the correct time behaviour of solutions corresponding to such data is t−
1
m when N = 2

and t−
1

m+1 when N = 1. Indeed this is exactly the short-time behaviour associated to the
well-known Barenblatt solutions (see e.g. the monograph [24]).

Our first main result will recover the correct low-dimensional estimates by using a purely
functional analytic approach involving, for the Dirichlet problem, suitable Gagliardo-Nirenberg
inequalities which follow from the well-known Nash inequality

‖f‖2 ≤ C(N) ‖∇f‖
N

N+2

2 ‖f‖
2

N+2

1 ∀f ∈ C∞
c (RN ) , (1.3)

valid in any dimension N ≥ 1. Such an approach is standard in the linear case, and it has
been successfully adapted in some nonlinear setting in [18]. An entirely similar discussion
holds for solutions to the Neumann problem too. For the detailed statements see Theorem
2.1, which deals with the case N = 1, and Theorem 2.2, which deals with the case N = 2.
Notice that in higher dimensions our approach would yield nothing more than what we
proved in [11], since for N ≥ 3 the standard Sobolev inequality is equivalent to the Nash
inequality corresponding to the same dimension (see, for instance, the results of [3]).

Having at our disposal a strategy of proof depending only on the validity of appropriate
functional inequalities, we generalize the results of [12] and [11] to discuss the asymptotics
of weighted porous media equations, as concerns both the Dirichlet and the Neumann case,
under the sole assumption that a suitable weighted Gagliardo-Nirenberg inequality holds
true (Section 3). We refer to [15, 16, 9, 10, 19, 21, 7, 8, 22, 23, 14, 20, 11, 12, 13] and refer-
ences quoted therein, without any claim for completeness, as general references to weighted
degenerate diffusion equations. Given two weights ̺ν , ̺µ which are positive and sufficiently
smooth in Ω (but having possible degeneracies or singularities at the boundary), we shall
consider weak solutions to the weighted Dirichlet problem





̺ν ut = div (̺µ∇(um)) in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞)

u = u0 on Ω× {0}

(1.4)

and to the weighted Neumann problem (in this case under the additional hypothesis that
̺ν ∈ L1(Ω))





̺ν ut = div (̺µ∇(um)) in Ω× (0,∞)

̺µ
∂(um)
∂n = 0 on ∂Ω× (0,∞)

u = u0 on Ω× {0}

. (1.5)

Weak solutions to problems (1.4)-(1.5) are defined precisely in [12, Sect. 3]. Since non-
uniqueness issues may occur, additional assumptions on the solution must be made: for the
reader’s convenience we recall briefly the situation in Section 3. In the latter section we shall
also prove that suitable bounds on the L∞ norm of the solutions are equivalent to certain
weighted Gagliardo-Nirenberg inequalities which naturally generalize the Nash inequality
(1.3). Actual examples of weights for which such weighted Gagliardo-Nirenberg inequalities
do hold are given in Section 4. We remark that these examples are produced by choosing
appropriate samples of the well-known Caffarelli-Kohn-Nirenberg inequalities [6].

As concerns the long-time asymptotics of solutions, we collect the relevant results in
Sections 2.1 and 3.1 for the unweighted and weighted problems, respectively. The proofs of
such results require less essential modifications w.r.t. the ones given in [4, 11, 12].
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2. The unweighted case

In this section we shall prove L∞ regularizing estimates for solutions to the unweighted
problems (1.1) and (1.2), by means of Gagliardo-Nirenberg inequalities which are conse-
quences of the Nash inequality (1.3) for N = 1 and N = 2. Subsection 2.1 is then devoted
to improving such estimates for t → ∞.

In the proofs of the forthcoming results, we shall often make use of the following well-
known properties of the solutions u to (1.1) or (1.2). First, the Lp norm of u is non-increasing:

‖u(t)‖p ≤ ‖u0‖p ∀t > 0 , ∀p ∈ [1,∞] . (2.1)

Moreover, if u and v are solutions to (1.1) or (1.2) associated to the initial data u0 and v0
respectively, the L1-contractivity principle

‖u(t)− v(t)‖1 ≤ ‖u0 − v0‖1 ∀t > 0 (2.2)

holds true.
For notational simplicity, in the sequel we shall often denote inessential positive numerical

constants (possibly changing from line to line) by C, without any further comment.

Theorem 2.1 (N=1). Assume that Ω is an interval. Let u be the solution to the Dirichlet
problem (1.1) starting from an initial datum u0 ∈ L1(Ω) ∩ Lp0(Ω), with p0 ≥ 1. Then the
bound

‖u(t)‖∞ ≤ C
‖u0‖

2p0
2p0+m−1
p0

t
1

2p0+m−1

∀t > 0 (2.3)

holds true.
Assume that Ω is a bounded interval. Let u be the solution to the Neumann problem (1.2)

starting from an initial datum u0 ∈ Lp0(Ω), with p0 ≥ 1. Then the bound

‖u(t)‖∞ ≤ C


‖u0‖

2p0
2p0+m−1
p0

t
1

2p0+m−1

+ ‖u0‖p0


 ∀t > 0 (2.4)

holds true.

Proof. Let us consider first the Dirichlet problem (1.1). We start from the Nash inequality
(1.3) corresponding to N = 1. Notice that this is a Gagliardo-Nirenberg inequality of the
form considered in [3]: the parameter q associated to it, as defined in equation (3.1) of [3],
can be readily calculated and is equal to −2. Hence Theorem 3.2 of such paper is applicable
in our situation. As a consequence, the family of Gagliardo-Nirenberg inequalities

‖f‖r ≤ C‖∇f‖ϑ2‖f‖
1−ϑ
s ∀f ∈ W 1,2

0 (Ω) ∩ Ls(Ω) (2.5)

is valid provided 0 < s < r ≤ ∞ and ϑ are related by ϑ
2 = 1−ϑ

s − 1
r . Notice that we adopt

the symbol ‖ · ‖s even in the case s ∈ (0, 1) (here we do not need that such a functional is a
norm). In particular one can choose r = ∞ and get that, for any s ∈ (0,∞), the inequality

‖f‖∞ ≤ C‖∇f‖
2

s+2

2 ‖f‖
s

s+2
s ∀f ∈ W 1,2

0 (Ω) ∩ Ls(Ω) (2.6)

holds true. Equivalently, (2.6) reads

‖∇f‖22 ≥
‖f‖s+2

∞

C ‖f‖ss
∀f ∈ W 1,2

0 (Ω) ∩ Ls(Ω) . (2.7)
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Now take p0 > 1 and u0 ∈ L1(Ω) ∩ L∞(Ω). Fix t > 0. Multiplying (1.1) by up0−1

and formally integrating by parts in Ω × (0, t) (this can be made rigorous by a standard
approximation procedure) we get

4p0(p0 − 1)m

(p0 +m− 1)2

∫ t

0

∫

Ω

∣∣∣∇
(
u(x, τ)

p0+m−1
2

)∣∣∣
2
dx dτ ≤ ‖u0‖

p0
p0 . (2.8)

Using (2.7) applied to the function f = u(·, τ)
p0+m−1

2 yields

4p0(p0 − 1)m

C (p0 +m− 1)2

∫
t

0

∥∥∥u(τ)
p0+m−1

2

∥∥∥
s+2

∞∥∥∥u(τ)
p0+m−1

2

∥∥∥
s

s

dτ ≤ ‖u0‖
p0
p0 . (2.9)

Thanks to the monotonicity in time of any Lp norm (provided s(p0 +m− 1)/2 ≥ 1 – recall
(2.1)), from (2.9) we infer that there holds

t
4p0(p0 − 1)m

C (p0 +m− 1)2
‖u(t)‖

(s+2)(p0+m−1)
2

∞

‖u0‖
s(p0+m−1)

2
s(p0+m−1)

2

≤ ‖u0‖
p0
p0 . (2.10)

Upon choosing s = 2p0
p0+m−1 (2.10) reads

C t
‖u(t)‖2p0+m−1

∞

‖u0‖
p0
p0

≤ ‖u0‖
p0
p0 ,

or equivalently

‖u(t)‖∞ ≤ C
‖u0‖

2p0
2p0+m−1
p0

t
1

2p0+m−1

, (2.11)

which is exactly (2.3). However, recall that for the previous computations to work we needed
to assume p0 > 1 and u0 ∈ L1(Ω) ∩ L∞(Ω). The first condition can be removed as follows.

Write (2.11) in the time interval (t/2, t), use the inequality ‖f‖p0p0 ≤ ‖f‖p0−1
∞ ‖f‖1 and the

fact that ‖u(t)‖1 is nonincreasing to get

‖u(t)‖∞ ≤ C

(
2

t

)α
2

‖u(t/2)‖α(p0−1)
∞ ‖u0‖

α
1 , α =

2

2p0 +m− 1
. (2.12)

Iterating (2.12) k times one arrives at

‖u(t)‖∞ ≤
C

∑k−1
h=0[α(p0−1)]h2

α
2

∑k−1
h=0(h+1)[α(p0−1)]h

t
α
2

∑k−1
h=0[α(p0−1)]h

‖u(t/2k)‖[α(p0−1)]k

∞ ‖u0‖
α
∑k−1

h=0[α(p0−1)]h

1 .

(2.13)
Letting k → ∞ in (2.13) one easily sees that the multiplicative constants above remain
bounded, the exponents to which t−1 and ‖u0‖1 are elevated tend to 1/(m+1) and 2/(m+1)
respectively, while the one to which ‖u(t/2k)‖∞ ≤ ‖u0‖∞ is elevated tends to zero. This
gives (recall, up to relabelling constants)

‖u(t)‖∞ ≤ C
‖u0‖

2
m+1

1

t
1

m+1

, (2.14)

which is (2.11) when p0 = 1. Finally, we are left with removing the hypothesis u0 ∈
L1(Ω)∩L∞(Ω). In order to do so (see also [11, pp. 2270]), take u0 ∈ L1(Ω)∩Lp0(Ω), choose
a sequence {u0n} ⊂ L1(Ω) ∩ L∞(Ω) which converges to u0 in L1(Ω) ∩ Lp0(Ω) and exploit
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the fact that, for the corresponding sequence of solutions {un(·, t)}, one has un(t) → u(t)
in L1(Ω) by the L1 contraction principle (recall (2.2)) but also un(t) → u(t) in the weak∗

topology of L∞(Ω), for any fixed t > 0. Hence, formula (2.3) for the solution associated to
an initial datum u0 ∈ L1(Ω) ∩ Lp0(Ω) follows from the weak∗ lower semicontinuity of the
L∞ norm.

We now consider the Neumann problem (1.2). For simplicity we shall assume that |Ω| = 1:
this constraint can be easily removed by a standard scaling argument identical to the one
given in [11, pp. 2270]. To begin with, we claim that the inequality

‖f‖∞ ≤ C (‖∇f‖2 + ‖f‖1)
2

s+2 ‖f‖
s

s+2
s ∀f ∈ W 1,2(Ω) (2.15)

holds true for all s ∈ (0,∞). In fact, this can be proved starting from (2.6) (with Ω = R)
as follows. Given f ∈ W 1,2(Ω), consider the extension operator P : W 1,2(Ω) −→ W 1,2(R).
As it is well-known, there exists a positive constant C such that ‖f‖Ls(Ω) ≤ ‖Pf‖Ls(R) ≤
C‖f‖Ls(Ω) for all given s ∈ (0,∞] and ‖Pf‖W 1,2(R) ≤ C‖f‖W 1,2(Ω). Applying (2.6) (with
Ω = R) to Pf and using the above properties of the operator P , we get:

‖f‖L∞(Ω) ≤ C‖f‖
2

s+2

W 1,2(Ω)
‖f‖

s
s+2

Ls(Ω).

In order to prove (2.15), just notice that the usual norm on W 1,2(Ω) is equivalent to the
norm given by ‖∇f‖2 + ‖f‖1, since Ω is bounded: this is an immediate consequence of
the validity of the Poincaré inequality in W 1,2(Ω). It is convenient to rewrite (2.15) (upon
relabelling C) as

‖∇f‖22 ≥
‖f‖s+2

∞

C ‖f‖ss
− ‖f‖21 ∀f ∈ W 1,2(Ω) . (2.16)

Let t > 0. Inequality (2.8) can be proved to hold exactly as in the Dirichlet case. Given

p0 ∈ (1,∞)∩ [m− 1,∞) and u0 ∈ L∞(Ω), we can apply (2.16) to f = u(·, τ)
p0+m−1

2 in (2.8)
to get

‖u0‖
p0
p0 ≥

4p0(p0 − 1)m

(p0 +m− 1)2




∫
t

0

∥∥∥u(τ)
p0+m−1

2

∥∥∥
s+2

∞

C
∥∥∥u(τ)

p0+m−1
2

∥∥∥
s

s

dτ −

∫ t

0

∥∥∥u(τ)
p0+m−1

2

∥∥∥
2

1
dτ




≥
4p0(p0 − 1)m

(p0 +m− 1)2




∫
t

0

‖u(τ)‖
(p0+m−1)(s+2)

2
∞

C‖u(τ)‖
s(p0+m−1)

2
s(p0+m−1)

2

dτ −

∫ t

0
‖u(τ)‖p0+m−1

p0+m−1
2

dτ




≥
4p0(p0 − 1)m

(p0 +m− 1)2


t

‖u(t)‖
(p0+m−1)(s+2)

2
∞

C‖u0‖
s(p0+m−1)

2
s(p0+m−1)

2

−

∫ t

0
‖u(τ)‖p0+m−1

p0 dτ




≥ t
4p0(p0 − 1)m

(p0 +m− 1)2



‖u(t)‖

(p0+m−1)(s+2)
2

∞

C‖u0‖
s(p0+m−1)

2
s(p0+m−1)

2

− ‖u0‖
p0+m−1
p0


 ,

where we also exploited (2.1) and used the fact that |Ω| = 1 and p0 ≥ m − 1 to bound
‖u(τ)‖(p0+m−1)/2 with ‖u(τ)‖p0 . If we set s = 2p0/(p0 + m − 1) the previous inequality
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becomes

‖u0‖
p0
p0 ≥ t

4p0(p0 − 1)m

(p0 +m− 1)2

(
‖u(t)‖2p0+m−1

∞

C‖u0‖
p0
p0

− ‖u0‖
p0+m−1
p0

)
,

or equivalently (upon relabelling C)

‖u(t)‖∞ ≤ C

(
‖u0‖

2p0
p0

t
+ ‖u0‖

2p0+m−1
p0

) 1
2p0+m−1

≤ C


‖u0‖

2p0
2p0+m−1
p0

t
1

2p0+m−1

+ ‖u0‖p0


 ,

which is our claim. To extend such result to general values of p0 (other than p0 ∈ (1,∞) ∩
[m− 1,∞)) one can proceed similarly to the Dirichlet case, when we proved the validity of
(2.3) down to p0 = 1. We omit details and we limit ourselves to pointing out that, with
respect to the Dirichlet case, there are slight technical difficulties that can be dealt with
following closely the procedure given in [11, pp. 2268-2269].

Finally, the methods to remove the hypothesis u0 ∈ L∞(Ω) are identical to the ones we
exploited for the Dirichlet problem. �

Theorem 2.2 (N=2). Assume that Ω is a domain of R
2. Let u be the solution to the

Dirichlet problem (1.1) corresponding to an initial datum u0 ∈ Lp0(Ω), with p0 ≥ 1. Then
the bound

‖u(t)‖∞ ≤ C
‖u0‖

p0
p0+m−1
p0

t
1

p0+m−1

∀t > 0 (2.17)

holds true.
Assume that Ω is a bounded regular domain of R2. Let u be the solution to the Neumann

problem (1.2) corresponding to an initial datum u0 ∈ Lp0(Ω), with p0 ≥ 1. Then the bound

‖u(t)‖∞ ≤ C


‖u0‖

p0
p0+m−1
p0

t
1

p0+m−1

+ ‖u0‖p0


 ∀t > 0 (2.18)

holds true.

Proof. Let us consider first the Dirichlet problem (1.1). Again, we start from the Nash
inequality (1.3). In the case N = 2, thanks to Theorem 3.4 of [3] (here the parameter q
defined in equation (3.1) of [3] is equal to ∞), (1.1) implies the validity of the following
family of Gagliardo-Nirenberg inequalities:

‖f‖r ≤ Cr ‖∇f‖
1− s

r

2 ‖f‖
s
r
s ∀f ∈ W 1,2

0 (Ω) ∩ Ls(Ω) (2.19)

for all s, r such that 0 < s < r, where Cr is a positive constant depending continuously on
r. Since in the sequel the parameter r will be constrained to lie inside a bounded interval,
we can assume Cr ≤ C for a given C independent of r.

Take p0 > 1 and u0 ∈ L1(Ω) ∩ L∞(Ω). Fix t > 0. In order to obtain (2.17), we shall
proceed by a Moser iteration technique (see also [1]). Given two increasing sequences of
positive numbers {pk} and {tk}, to be defined later, let us multiply by upk−1 the equation
(1.1) satisfied by u and formally integrate by parts in Ω× (tk, tk+1). We obtain:

4pk(pk − 1)m

(pk +m− 1)2

∫ tk+1

tk

∫

Ω

∣∣∣∇
(
u(x, τ)

pk+m−1

2

)∣∣∣
2
dx dτ ≤ ‖u(tk)‖

pk
pk

. (2.20)
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Writing (2.19) in the form

‖f‖
2r
r−s
r

C ‖f‖
2s
r−s
s

≤ ‖∇f‖22 ∀f ∈ W 1,2
0 (Ω) ∩ Ls(Ω) (2.21)

and applying it to f = u(·, τ)
p0+m−1

2 in order to bound the l.h.s. of (2.20), one gets

4pk(pk − 1)m

(pk +m− 1)2C

∫
tk+1

tk

∥∥∥u(τ)
pk+m−1

2

∥∥∥
2r
r−s

r∥∥∥u(τ)
pk+m−1

2

∥∥∥
2s
r−s

s

dτ ≤ ‖u(tk)‖
pk
pk
. (2.22)

Let us set tk = (1−2−k) t, so that t0 = 0, tk+1− tk = t/2k+1 and limk→∞ tk = t. Exploiting
(2.1), we have that (2.22) implies

t
4pk(pk − 1)m

(pk +m− 1)2 2k+1C

‖u(tk+1)‖
r

r−s
(pk+m−1)

r
2
(pk+m−1)

‖u(tk)‖
s

r−s
(pk+m−1)

s
2
(pk+m−1)

≤ ‖u(tk)‖
pk
pk
. (2.23)

If we choose s = sk = 2pk
pk+m−1 , so that s

2(pk +m− 1) = pk, from (2.23) we deduce that,

upon relabelling C (notice that by construction {sk} is a bounded sequence), the bound

‖u(tk+1)‖
r

r−sk
(pk+m−1)

r
2
(pk+m−1) ≤

2k C

t
‖u(tk)‖

pk+
sk

r−sk
(pk+m−1)

pk (2.24)

holds. From now on it will be convenient to set r = rk = sk + 2. By that, {rk} is also
a bounded sequence. Moreover, we require {pk} to satisfy the recursive relation pk+1 =
2pk +m− 1. We can therefore rewrite (2.24) as

‖u(tk+1)‖pk+1
≤

2
k

pk+1 C
1

pk+1

t
1

pk+1

‖u(tk)‖

2pk
pk+1
pk . (2.25)

Iterating (2.25) and using the fact that pk+1 = (p0 +m− 1)2k+1 + 1−m, we get:

‖u(tk+1)‖pk+1
≤ 2

1
pk+1

∑k
h=0 2

h(k−h)
(
C

t

) 1
pk+1

∑k
h=0 2

h

‖u0‖

2k+1p0
pk+1

p0

≤ 2

∑k
h=0 2h(k−h)

(p0+m−1)2k+1+1−m

(
C

t

) 2k+1
−1

(p0+m−1)2k+1+1−m

‖u0‖

2k+1p0
(p0+m−1)2k+1+1−m

p0

≤ C
‖u0‖

2k+1p0
(p0+m−1)2k+1+1−m

p0

t
2k+1

−1

(p0+m−1)2k+1+1−m

,

where C is again a suitable positive constant which can be taken to be independent of k.
Noticing that pk ↑ ∞ and tk ↑ t as k → +∞ and exploiting the monotonicity of the Lp

norms (2.1), in the limit k → ∞ we obtain

‖u(t)‖∞ = lim
k→+∞

‖u(t)‖pk+1
≤ lim inf

k→+∞
‖u(tk+1)‖pk+1

≤ C
‖u0‖

p0
p0+m−1
p0

t
1

p0+m−1

, (2.26)

that is (2.17). However, recall that the proof above is valid only for p0 strictly larger than
1. Nonetheless, in order to extend (2.26) to the case p0 = 1 as well, we can proceed exactly
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as in the proof of the bound (2.3), namely by using interpolation inequalities and exploiting
(2.26) recursively. Also the relaxation of the assumption u0 ∈ L1(Ω)∩L∞(Ω) works just as
in the mentioned proof.

Let us now consider the Neumann problem. As in the corresponding one-dimensional
context we shall assume, with no loss of generality, that |Ω| = 1. First of all we claim that
the inequality

‖f‖r ≤ Cr (‖∇f‖2 + ‖f‖1)
1− s

r ‖f‖
s
r
s ∀f ∈ W 1,2(Ω) (2.27)

holds true for all s, r such that 0 < s < r. This fact can be proved similarly to the case
N = 1, that is applying (2.19) (with Ω = R

2) to the extended function Pf and exploiting
the properties of the extension operator.

Afterwards we start an iterative procedure which is similar to the one outlined in the
Dirichlet case. Fixed t > 0, given p0 ∈ (1,∞) ∩ [m− 1,∞), u0 ∈ L∞(Ω) and two increasing
sequences {pk} (to be defined later) and {tk} = {(1 − 2−k) t}, multiply equation (1.1) by
upk−1 and formally integrate by parts to obtain again (2.20). Writing (2.27) in the form (let
us relabel C)

‖∇f‖22 ≥
‖f‖

2r
r−s
r

C ‖f‖
2s
r−s
s

− ‖f‖21 ∀f ∈ W 1,2(Ω) (2.28)

and applying it to the function f = u(·, τ)
pk+m−1

2 in (2.20), we get:

4pk(pk − 1)m

(pk +m− 1)2

∫
tk+1

tk




∥∥∥u(τ)
pk+m−1

2

∥∥∥
2r
r−s

r

C
∥∥∥u(τ)

pk+m−1

2

∥∥∥
2s
r−s

s

−
∥∥∥u(τ)

pk+m−1

2

∥∥∥
2

1


 dτ ≤ ‖u(tk)‖

pk
pk

,

that is

4pk(pk − 1)m

(pk +m− 1)2

∫
tk+1

tk




‖u(τ)‖
r

r−s
(pk+m−1)

r
2
(pk+m−1)

C ‖u(τ)‖
s

r−s
(pk+m−1)

s
2
(pk+m−1)

− ‖u(τ)‖pk+m−1
pk+m−1

2


 dτ ≤ ‖u(tk)‖

pk
pk

. (2.29)

Since (pk +m− 1)/2 ≤ pk (recall that p0 ≥ m− 1 and {pk} is increasing) and (2.1) holds,
(2.29) implies

t
4pk(pk − 1)m

(pk +m− 1)2 2k+1



‖u(tk+1)‖

r
r−s

(pk+m−1)
r
2
(pk+m−1)

C‖u(tk)‖
s

r−s
(pk+m−1)

s
2
(pk+m−1)

− ‖u(tk)‖
pk+m−1
pk


 ≤ ‖u(tk)‖

pk
pk
. (2.30)

Choosing s = sk = 2pk
pk+m−1 , r = rk = sk + 2 and letting pk+1 = 2pk +m− 1 we have that,

for another positive constant C, there holds

‖u(tk+1)‖
rk

rk−sk
(pk+m−1)

rk
2
(pk+m−1)

≤C

(
2k

t
‖u(tk)‖

pk+
sk

rk−sk
(pk+m−1)

pk +‖u(tk)‖
pk+

sk
rk−sk

(pk+m−1)+m−1

pk

)
,

which reads

‖u(tk+1)‖
pk+1
pk+1 ≤ C

(
2k

t
‖u(tk)‖

2pk
pk

+ ‖u(tk)‖
2pk+m−1
pk

)
. (2.31)

In order to handle (2.31) we assume the additional constraint ‖u0‖∞ ≤ 1, so that ‖u(tk)‖pk ≤

1 (recall (2.1) and that |Ω| = 1), which in turn implies ‖u(tk)‖
2pk+m−1
pk ≤ ‖u(tk)‖

2pk
pk . This
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allows to deduce from (2.31) the following inequality:

‖u(tk+1)‖pk+1
≤ 2

k
pk+1 C

1
pk+1

(
t−1 + 1

) 1
pk+1 ‖u(tk)‖

2pk
pk+1
pk . (2.32)

Notice that (2.32) is the same as (2.25) provided one replaces t−1 with t−1+1. So, proceeding
exactly as in the proof of the Dirichlet estimate (2.17), we get

‖u(t)‖∞ ≤ C
(
t−1 + 1

) 1
p0+m−1 ‖u0‖

p0
p0+m−1
p0 . (2.33)

However, recall that (2.33) has been obtained under the hypothesis ‖u0‖∞ ≤ 1. In order
to deduce from it an estimate that works for any (bounded) initial datum, it is enough to
apply (2.33) itself to the rescaled solution û(·, t) = ‖u0‖

−1
∞ u(·, ‖u0‖

1−m
∞ t), which starts from

the initial datum u0/‖u0‖∞, whose L∞(Ω) norm is equal to 1:

‖û(t)‖∞ ≤ C
(
t−1 + 1

) 1
p0+m−1 ‖û0‖

p0
p0+m−1
p0 . (2.34)

Evaluating (2.34) at time t‖u0‖
m−1
∞ in place of t yields

‖u(t)‖∞ ≤ C
(
t−1 + ‖u0‖

m−1
∞

) 1
p0+m−1 ‖u0‖

p0
p0+m−1
p0 , (2.35)

which holds for any u0 ∈ L∞(Ω). Of course (2.35) is not a regularizing estimate any longer,
since on its r.h.s. there appears ‖u0‖∞. Our technique to remove the dependence on ‖u0‖∞
is not particularly complicated, but it involves long and tedious computations. The idea is
to use (2.35) in the time interval (t/2n+1, t/2n), that is

‖u(t/2n)‖∞ ≤C
(
(t/2n+1)−1 + ‖u(t/2n+1)‖m−1

∞

) 1
p0+m−1 ‖u(t/2n+1)‖

p0
p0+m−1
p0

≤C(n)
(
t−1 + ‖u(t/2n+1)‖m−1

∞

) 1
p0+m−1 ‖u0‖

p0
p0+m−1
p0 ,

and apply it recursively. This allows to reduce the dependence of (2.35) on ‖u0‖∞, in the
sense that it will appear as ‖u0‖

θ
∞, where θ = θ(n) gets smaller as n gets larger. Then it can

be shown that starting from data whose Lp0 norm is larger than 1, one can obtain a true
regularity estimate similar to (2.33), but with different powers. Combining such regularity
estimate with the improved (2.35) (through the recursive procedure sketched above), one
infers that (2.18) holds for any u0 ∈ L∞(Ω) (provided p0 ∈ (1,∞)∩[m−1,∞)). We omit the
technical details and refer the reader to [11, pp. 2267-2268], where thorough computations
are given in an similar context.

Finally, as concerns the methods to remove the hypotheses u0 ∈ L∞(Ω) and p0 ∈ (1,∞)∩
[m− 1,∞), the same comments of the one-dimensional Neumann case apply. �

2.1. Long-time estimates. The aim of this section is to improve the results of Theorems
2.1 and 2.2 for t → ∞. In particular, we shall see that, at least when |Ω| < ∞, the rates of
decay of solutions to the Dirichlet problem (1.1) given by (2.3) or (2.17) can be sharpened.
However, the most important improvements will be made for the Neumann problem (from
which we therefore start this section): indeed, either (2.4) or (2.18) give no information for
t large. As shown first in [2], and later improved in [4, 11], as t → ∞ solutions to (1.2)
converge to the mean value u0 of the initial datum, which is conserved along the evolution.
The time rate of such convergence is polynomial when u0 = 0, exponential otherwise. In
[2], as concerns the case u0 6= 0, this was proved for N = 1 only, whereas a similar result in
higher dimensions was shown to hold for data which are strictly bounded away from zero.
The latter assumption was later removed in [4], while sharp rates of convergence have been
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recently established in [11]. Moreover, the results given in [4, 11] also hold when N = 1, 2
with an identical proof, and read as follows.

Theorem 2.3. Let u be the solution to the Neumann problem (1.2) corresponding to an
initial datum u0 ∈ L1(Ω), with u0 6= 0. There exists a positive constant C such that the
following estimate holds:

‖u(t)− u0‖∞ ≤ C e
− m

C2
P

|u0|m−1 t
∀t ≥ 1 , (2.36)

where CP is the best constant appearing in the Poincaré inequality

‖f − f‖2 ≤ CP ‖∇f‖2 ∀f ∈ W 1,2(Ω) , f =

∫
Ω f(x) dx

|Ω|
. (2.37)

Proof. One just replicates the proof of [11, Th. 4.3]. Indeed, in order to do that, one only
needs the validity of the Sobolev inequality ‖f − f‖q ≤ C‖∇f‖2 for some q > 2, which here
readily follows from (1.3) and (2.37). �

Notice that (2.36) is sharp in any dimension, as shown in [11, Prop 4.5]: there always
exist initial data for which a matching lower bound holds. As for solutions corresponding
to data such that u0 = 0 we have the following result.

Theorem 2.4. Let u be the solution to the Neumann problem (1.2) corresponding to an
initial datum u0 ∈ Lp0(Ω), with p0 ≥ 1 and u0 = 0. Assume that N = 1. Then for some
positive constants C1, C2 the following estimate holds:

‖u(t)‖∞ ≤ C1 t
− 1

2p0+m−1
1

(
C2 t+ ‖u0‖

1−m
p0

) 2p0
(m−1)(2p0+m−1)

∀t > 0 . (2.38)

Assume instead that N = 2. Then for another positive constants C1, C2 the following esti-
mate holds:

‖u(t)‖∞ ≤ C1 t
− 1

p0+m−1
1

(
C2 t+ ‖u0‖

1−m
p0

) p0
(m−1)(p0+m−1)

∀t > 0 . (2.39)

In particular, in both cases the absolute bound

‖u(t)‖∞ ≤ C3 t
− 1

m−1 ∀t > 0 (2.40)

holds true for some C3 > 0 (independent of u0).

Proof. The proof proceeds along the lines of the one given in [11, Th. 4.1], exploiting both
the Poincaré inequality (2.37) and the regularizing estimates (2.4) when N = 1 and (2.18)
when N = 2. �

The absolute bound (2.40) is sharp, in the sense that in [2] the authors also prove, for

solutions corresponding to u0 ∈ L∞(Ω) with u0 = 0, a lower bound of order t−1/(m−1).
The results of Theorems 2.1 and 2.2, for t large, can be improved for the Dirichlet problem

too provided |Ω| < ∞. Notice that the bounds contained in the following result also recover
the short-time behaviour of the solutions.
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Theorem 2.5. Let u be the solution to the Dirichlet problem (1.1) corresponding to an
initial datum u0 ∈ Lp0(Ω), with p0 ≥ 1. Assume that |Ω| < ∞. If N = 1, for some positive
constants C1, C2 there holds

‖u(t)‖∞ ≤ C1 t
− 1

2p0+m−1
1

(
C2 t+ ‖u0‖

1−m
p0

) 2p0
(m−1)(2p0+m−1)

∀t > 0 . (2.41)

If instead N = 2, for another positive constants C1, C2 there holds

‖u(t)‖∞ ≤ C1 t
− 1

p0+m−1
1

(
C2 t+ ‖u0‖

1−m
p0

) p0
(m−1)(p0+m−1)

∀t > 0 . (2.42)

In particular, in both cases the absolute bound

‖u(t)‖∞ ≤ C3 t
− 1

m−1 ∀t > 0 (2.43)

holds true for some C3 > 0 (independent of u0).

Proof. The proof is not very different from the one of the Neumann case when u0 = 0, but
it is simpler. Hence, we sketch it. Exploiting the fact that |Ω| < ∞ and the consequent

validity of the gap inequality ‖f‖2 ≤ CG‖∇f‖2 for all f ∈ W 1,2
0 (Ω), from (1.1) one easily

gets (let p0 > 1)

d

ds
‖u(s)‖p0p0 = −

(
2

p0 +m− 1

)2

mp0(p0 − 1)
∥∥∥∇
(
u(s)

p0+m−1
2

)∥∥∥
2

2

≤ −

(
2

p0 +m− 1

)2 mp0(p0 − 1)

C2
G

‖u(s)‖p0+m−1
p0+m−1

≤ −

(
2

p0 +m− 1

)2 mp0(p0 − 1)

C2
G |Ω|

m−1
p0

‖u(s)‖p0+m−1
p0

= −C
(
‖u(s)‖p0p0

) p0+m−1
p0 .

The claims follow by integrating the above differential inequality in the time interval (t/2, t)
and using the regularizing estimates (2.3) (when N = 1) or (2.17) (when N = 2) in the time
interval (0, t/2). The limiting case p0 = 1 can be recovered in a standard way. We omit
details and again refer the reader to [11, Th. 4.1]. �

The sharpness of estimates (2.41)-(2.43) is a consequence of the fact that, for t small, the
well-known Barenblatt solutions behave like the r.h.s. of (2.41) or (2.42), whereas for t large
the time behaviour predicted by (2.43) coincides with the one of separable solutions to (1.1)
(see the monographs [24, 25]).

3. The weighted case

We shall briefly consider here the weighted problems (1.4) and (1.5), for which suitable
analogues of Theorems 2.1, 2.2, 2.3, 2.4 and 2.5 can be established providing that the weights
̺ν , ̺µ involved satisfy certain functional requirements.

In the sequel, it is understood that the measures ν and µ are defined as dν = ̺ν(x)dx
and dµ = ̺µ(x)dx, respectively.

For suitable concepts of weak solution to (1.4) and (1.5) we refer the reader to [12, Sect.
3]. Here we limit ourselves to commenting that the standard running assumptions on the
weights will be inner positivity and regularity. More precisely, we shall ask:

̺ν ∈ C3,α
loc (Ω) , ̺µ ∈ C2,α

loc (Ω), ̺ν(x), ̺µ(x) > 0 ∀x ∈ Ω ,
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so that possible degeneracies or singularities of ̺ν(x), ̺µ(x) on ∂Ω are allowed.
As it is well-known, non-uniqueness issues can occur for the problems (1.4), (1.5). Refer-

ring to [12] again for details, we point out that in the Dirichlet case uniqueness is restored,
for example, by requiring that

um ∈ L
m+1
m ((0, T );V

m+1
m

0 (Ω; ν, µ)) , ∇(um) ∈ L2((0, T ); [L2(Ω;µ)]N ) ∀T > 0 , (3.1)

where V p
0 (Ω; ν, µ) is defined as the closure of C∞

c (Ω) with respect to the norm

‖f‖p,2;ν,µ := ‖f‖p;ν + ‖∇f‖2;µ , (3.2)

where ‖·‖p;ν and ‖·‖2;µ are the norms of the weighted Lebesgue spaces Lp(Ω; ν) and L2(Ω;µ),
respectively. In the Neumann case, uniqueness is restored by imposing that

u ∈ Lm+1((0, T );Lm+1(Ω; ν)) (3.3)

(however, unlike the Dirichlet case, stronger requirements are asked directly in the definition
of weak solution). Existence results under such conditions are also proved in [12].

As concerns regularizing and long-time estimates, the methods of proof of the results of
Section 2 can be readily extended to the weighted case provided appropriate Gagliardo-
Nirenberg (and, for long times, Poincaré) inequalities hold true in the weighted Sobolev

spaces W 1,2
0 (Ω; ν, µ) := V 2

0 (Ω; ν, µ) or W 1,2(Ω; ν, µ), the latter being the space of functions
f for which ‖f‖2,2;ν,µ < ∞. Notice that the weighted analogues of formulas (2.1) and (2.2)

hold true in the present context as well. They are used in the proofs given in [11], which we
generalize below.

The following is an extension of the results valid, in the unweighted context, for N = 1.

Theorem 3.1 (One-dimensional-like cases). Assume that Ω is a domain of RN . Suppose
that, for some s > 0 and q ≤ −2, the functional inequality

‖f‖∞ ≤ C ‖∇f‖
−q

s−q

2;µ ‖f‖
s

s−q

s;ν ∀f ∈ W 1,2
0 (Ω; ν, µ) ∩ Ls(Ω; ν) (3.4)

is valid. Let u be the solution to the Dirichlet problem (1.4) satisfying condition (3.1) and
starting from an initial datum u0 ∈ L1(Ω; ν) ∩ Lp0(Ω; ν), with p0 ≥ 1. Then the bound

‖u(t)‖∞ ≤ C
‖u0‖

(q−2)p0
(q−2)p0+q(m−1)

p0;ν

t
q

(q−2)p0+q(m−1)

∀t > 0 (3.5)

holds true.
Suppose instead that, for some s > 0 and q ≤ −2, the functional inequality

‖f‖∞ ≤ C (‖∇f‖2;µ + ‖f‖1;ν)
−q

s−q ‖f‖
s

s−q

s;ν ∀f ∈ W 1,2(Ω; ν, µ) (3.6)

is valid and that ν(Ω) < ∞. Let u be the solution to the Neumann problem (1.5) satisfying
condition (3.3) and starting from an initial datum u0 ∈ Lp0(Ω; ν), with p0 ≥ 1. Then the
bound

‖u(t)‖∞ ≤ C



‖u0‖

(q−2)p0
(q−2)p0+q(m−1)

p0;ν

t
q

(q−2)p0+q(m−1)

+ ‖u0‖p0;ν


 ∀t > 0 (3.7)

holds true.
Conversely, assume that ν(Ω) < ∞. Suppose that the bound (3.5) holds, with p0 = m,

for any solution u to the Dirichlet problem (1.4) starting from u0 ∈ Lm(Ω; ν). Then the
functional inequality (3.4) is valid. If instead the bound (3.7) holds, with p0 = m, for any
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solution u to the Neumann problem (1.5) starting from u0 ∈ Lm(Ω; ν), then the functional
inequality (3.6) is valid.

Proof. Estimates (3.5) and (3.7) can be proved using exactly the same arguments given in
the proof of Theorem 2.1. As for the converse one can proceed, both in the Dirichlet and
the Neumann case, along the lines of the proof of [11, Th. 5.3] (one puts formally σ = q/2
there). Notice that the finiteness of the measure is used there to ensure the validity of the
crucial inequality (5.7) of that paper (which is proved in [12, Ths. 4.3, 5.6]). �

Remark 3.2. The results of Theorem 2.1 here correspond to the case N = 1, ̺ν = ̺µ = 1
and q = −2.

Similarly, one can generalize the results valid, in the unweighted context, for N = 2.

Theorem 3.3 (Two-dimensional-like cases). Assume that Ω is a domain of RN . Suppose
that, for all 0 < s < r, the functional inequality

‖f‖r;ν ≤ Cr‖∇f‖
1− s

r

2;µ ‖f‖
s
r
s;ν ∀f ∈ W 1,2

0 (Ω; ν, µ) ∩ Ls(Ω; ν) (3.8)

is valid for a positive constant Cr depending continuously on r. Let u be the solution to
the Dirichlet problem (1.4) satisfying condition (3.1) and starting from an initial datum
u0 ∈ L1(Ω; ν) ∩ Lp0(Ω; ν), with p0 ≥ 1. Then the bound (2.17) holds true upon replacing
‖u0‖p0 with ‖u0‖p0;ν .

Suppose instead that, for all 0 < s < r, the functional inequality

‖f‖r;ν ≤ Cr (‖∇f‖2;µ + ‖f‖1;ν)
1− s

r ‖f‖
s
r
s;ν ∀f ∈ W 1,2(Ω; ν, µ) (3.9)

is valid for a positive constant Cr depending continuously on r, and assume that ν(Ω) < ∞.
Let u be the solution to the Neumann problem (1.5) satisfying condition (3.3) and starting
from an initial datum u0 ∈ Lp0(Ω; ν), with p0 ≥ 1. Then the bound (2.18) holds true upon
replacing ‖u0‖p0 with ‖u0‖p0;ν .

Conversely, assume that ν(Ω) < ∞. Suppose that the bound (2.17) holds, with p0 = m and
‖u0‖m replaced by ‖u0‖m;ν , for any solution u to the Dirichlet problem (1.4) starting from
u0 ∈ Lm(Ω; ν). Then the functional inequality (3.8) is valid. If instead the bound (2.18)
holds, with p0 = m and ‖u0‖m replaced by ‖u0‖m;ν , for any solution u to the Neumann
problem (1.5) starting from u0 ∈ Lm(Ω; ν), then the functional inequality (3.9) is valid.

Proof. The regularizing estimates can be proved using the same arguments given in the
proof of Theorem 2.2. As for the converse one can proceed, both in the Dirichlet and the
Neumann case, again along the lines of the proof of [11, Th. 5.3] (one puts formally σ = ∞
there). �

3.1. Long-time estimates. Similarly to what we did in Section 2.1, here we aim at im-
proving the results of Theorems 3.1 and 3.3 for t → ∞. As for the Neumann problem (1.5)
we shall see below that, under the additional hypothesis that the weights ̺ν , ̺µ satisfy the
Poincaré inequality

‖f − f‖2;ν ≤ CP ‖∇f‖2;µ ∀f ∈ W 1,2(Ω; ν, µ) , f =

∫
Ω f(x) ̺ν(x)dx

ν(Ω)
, (3.10)

the long-time estimates of Section 2.1 work in the weighted context too.

Theorem 3.4. Let u be the solution to the Neumann problem (1.5) satisfying condition
(3.3) and starting from an initial datum u0 ∈ L1(Ω; ν), with u0 6= 0. Suppose that either
of the Gagliardo-Nirenberg inequalities (3.6) or (3.9) is valid. Moreover, assume that the
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weights ̺ν , ̺µ satisfy the weighted Poincaré inequality (3.10), with best constant CP . Then
there exists a positive constant C > 0 such that (2.36) holds true.

Proof. It suffices to notice that the validity of either of the Gagliardo-Nirenberg inequalities
(3.6) or (3.9) and of the Poincaré inequality (3.10), which together imply the validity of the
Sobolev inequality ‖f − f‖∞ ≤ C‖∇f‖2;µ, is exactly what one needs in order to reproduce
the proof of [11, Th. 4.3]. �

Theorem 3.5. Let u be the solution to the Neumann problem (1.5) satisfying condition (3.3)
and starting from an initial datum u0 ∈ Lp0(Ω; ν), with p0 ≥ 1 and u0 = 0. Assume that
the weights ̺ν , ̺µ satisfy the weighted Poincaré inequality (3.10). If the family of Gagliardo-
Nirenberg inequalities (3.6) is valid for some q ≤ −2, then for some positive constants C1, C2

the following estimate holds:

‖u(t)‖∞ ≤ C1 t
− q

(q−2)p0+q(m−1)
1

(
C2 t+ ‖u0‖

1−m
p0;ν

) (q−2)p0
(m−1)[(q−2)p0+q(m−1)]

∀t > 0 . (3.11)

If instead the family of Gagliardo-Nirenberg inequalities (3.9) is valid, then for another
positive constants C1, C2 the following estimate holds:

‖u(t)‖∞ ≤ C1 t
− 1

p0+m−1
1

(
C2 t+ ‖u0‖

1−m
p0;ν

) p0
(m−1)(p0+m−1)

∀t > 0 . (3.12)

In particular, in both cases the absolute bound

‖u(t)‖∞ ≤ C3 t
− 1

m−1 ∀t > 0 (3.13)

holds true for some C3 > 0 (independent of u0).

Proof. Just notice that the validity of the regularizing estimates of Theorems 3.1, 3.3 and
of the Poincaré inequality (3.10) allow to reproduce the proofs of [4, Cor. 1.3] and [11, Th.
4.1]. �

Regarding the Dirichlet problem (1.4), the analogue of Theorem 2.5 can be established
upon requiring ν(Ω) < ∞.

Theorem 3.6. Let u be the solution to the Dirichlet problem (1.4) satisfying condition (3.1)
and starting from an initial datum u0 ∈ Lp0(Ω; ν), with p0 ≥ 1. Assume that ν(Ω) < ∞. If
the family of Gagliardo-Nirenberg inequalities (3.4) is valid for some q ≤ −2, then for some
positive constants C1, C2 there holds

‖u(t)‖∞ ≤ C1 t
− q

(q−2)p0+q(m−1)
1

(
C2 t+ ‖u0‖

1−m
p0;ν

) (q−2)p0
(m−1)[(q−2)p0+q(m−1)]

∀t > 0 . (3.14)

If instead the family of Gagliardo-Nirenberg inequalities (3.8) is valid, then for another
positive constants C1, C2 there holds

‖u(t)‖∞ ≤ C1 t
− 1

p0+m−1
1

(
C2 t+ ‖u0‖

1−m
p0;ν

) p0
(m−1)(p0+m−1)

∀t > 0 . (3.15)

In particular, in both cases the absolute bound

‖u(t)‖∞ ≤ C3 t
− 1

m−1 ∀t > 0 (3.16)

holds true for some C3 > 0 (independent of u0).
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Proof. Upon noticing that the Gagliardo-Nirenberg inequalities plus the finiteness of the
measure ensure the validity of the L2-gap inequality ‖f‖2;ν ≤ CG‖∇f‖2;µ ∀f ∈ W 1,2

0 (Ω; ν, µ),
the same arguments of the proof of Theorem 2.5 apply. �

4. Examples of weighted Gagliardo-Nirenberg inequalities

In what follows, we show explicit examples of weights for which one-dimensional-like
(Section 4.1) or two-dimensional-like (Section 4.2) Gagliardo-Nirenberg inequalities hold. We
shall make use of the well-known Caffarelli-Kohn-Nirenberg inequalities [6], and for simplicity
we restrict ourselves to examples on real intervals, which can anyway be constructed so that
also what we called two-dimensional-like weighted Gagliardo-Nirenberg inequalities hold.

4.1. One-dimensional-like inequalities. Below we list choices of explicit weights (on real
intervals) for which the 1-dimensional-like inequalities (3.4) and (3.6) are valid, so that the
conclusions of Theorem 3.1 hold true.

The Dirichlet case. Let q ≤ −2, β ∈ (−1, 1) and s, r such that 0 < s < r. The inequalities

(∫

R

|f(x)|r

|x|
q

2
(1−β)+1

dx

) 1
r

≤ C

(∫

R

|f ′(x)|2|x|β dx

)−
q(r−s)
2r(s−q)

(∫

R

|f(x)|s

|x|
q

2
(1−β)+1

dx

) r−q

r(s−q)

, (4.1)

valid e.g. for any f ∈ C∞
c (R), are special cases of the aforementioned Caffarelli-Kohn-

Nirenberg inequalities, at least for s ≥ 1. If instead s ∈ (0, 1) their validity follows e.g.

using once again the results of [3]. Let us set ̺ν(x) = |x|−
q

2
(1−β)−1 and ̺µ(x) = |x|β . Since

identical inequalities hold trivially also for any f ∈ C∞
c ((0,∞)), (4.1) implies that

‖f‖r;ν ≤ C ‖∇f‖ϑ2;µ‖f‖
1−ϑ
s;ν ∀f ∈ W 1,2

0 ((0,∞); ν, µ) ∩ Ls((0,∞); ν) , (4.2)

having set ϑ = − q(r−s)
r(s−q) . By the results of [3] we infer the validity of the functional inequality

(3.4). Hence (3.5) holds true for the solution u to the Dirichlet problem (1.4) associated

to the weights ̺ν(x), ̺µ(x) given above. Moreover, since ̺ν(x) = |x|−
q

2
(1−β)−1 is locally

integrable in [0,∞), also estimate (3.14) holds if we restrict, for instance, to the interval
(0, 1).

The Neumann case. Consider again (4.1) but restricted to the space X of functions
belonging to C∞([0, 1 + ε]) and vanishing at 1 + ε, ε > 0 being a fixed parameter. As

above let q ≤ −2, β ∈ (−1, 1) and s, r such that 0 < s < r. Set ̺ν(x) = |x|−
q

2
(1−β)−1 and

̺µ(x) = |x|β . It is easy to prove, for example considering appropriate cut-off functions, that
X is dense in the space Y of functions in W 1,2((0, 1+ε); ν, µ) vanishing at 1+ε. This ensures
that (4.2) is valid for any f ∈ Y . Let P be the extension operator P : W 1,2((0, 1); ν, µ) → Y .
Following considerations analogous to the ones we made along the proof of Theorem 2.1 (after
formula (2.15)), we conclude that there holds (ϑ is as above)

‖f‖r;ν ≤ C ‖f‖ϑ2,2;ν,µ‖f‖
1−ϑ
s;ν ∀f ∈ W 1,2((0, 1); ν, µ) . (4.3)

It is now necessary to show that

‖f‖r;ν ≤ C (‖∇f‖2;µ + ‖f‖1;ν)
ϑ ‖f‖1−ϑ

s;ν ∀f ∈ W 1,2((0, 1); ν, µ) .

To this end, notice that the Poincaré inequality (3.10) here does hold. In fact, this can
be proved through a standard argument by contradiction, using the compactness of the
embedding of W 1,2((0, 1); ν, µ) into L2((0, 1); ν) (for these special choices of weights), which
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is shown for instance in [17, Sect. 7.10, ii)]. In this regard, see also the examples listed in
[11, Sect. 5.1], where we used the results of [5].

Hence the functional inequality (3.6) holds as a consequence of the results of [3]. Thanks
to the validity of the Poincaré inequality as well, we have that for the choices of weights
above the solution u to the Neumann problem (1.5) satisfies estimates (3.7), (2.36) or (3.11).

4.2. Two-dimensional-like inequalities. Below we list choices of explicit weights (on real
intervals) for which the 2-dimensional-like inequalities (3.8) and (3.9) are valid, so that the
conclusions of Theorem 3.3 hold true.

The Dirichlet case. Let α > −1 and s, r such that 0 < s < r. The validity of the
inequalities

(∫

R

|f(x)|r |x|α dx

) 1
r

≤ Cr

(∫

R

|f ′(x)|2|x| dx

) 1
2(1−

s
r )
(∫

R

|f(x)|s |x|α dx

) 1
r

(4.4)

for any f ∈ C∞
c (R) is again a consequence of the Caffarelli-Kohn-Nirenberg inequalities

and the results of [3]. Notice that this corresponds to choosing q = ∞ in (4.1). Let us set
̺ν(x) = |x|α and ̺µ(x) = |x|. Reasoning as in Section 4.1, we deduce that (4.4) yields the
validity of

‖f‖r;ν ≤ Cr ‖∇f‖
1− s

r

2;µ ‖f‖
s
r
s;ν ∀f ∈ W 1,2

0 ((0,∞); ν, µ) ∩ Ls((0,∞); ν) , (4.5)

that is (3.8). Hence (2.17) holds true (with ‖u0‖p0 replaced by ‖u0‖p0;ν) for the solution u
to the Dirichlet problem (1.4) associated to the weights ̺ν(x), ̺µ(x) given above. Moreover,
since ̺ν(x) = |x|α, for α > −1, is locally integrable in [0,∞), also estimate (3.15) holds if
we restrict, for instance, to the interval (0, 1).

The Neumann case. Let α > −1 and s, r such that 0 < s < r. Set, as above, ̺ν(x) := |x|α

and ̺µ(x) = |x|. Proceeding exactly as in Section 4.1, one can show that there holds

‖f‖r;ν ≤ Cr ‖f‖
1− s

r

2,2;ν,µ‖f‖
s
r
s;ν ∀f ∈ W 1,2((0, 1); ν, µ) .

To prove that also

‖f‖r;ν ≤ Cr (‖∇f‖2;µ + ‖f‖1,ν)
1− s

r ‖f‖
s
r
s;ν ∀f ∈ W 1,2((0, 1); ν, µ)

is valid, we use again the fact that the Poincaré inequality (3.10) holds for the present choices
of weights. However this cannot be shown through compactness, since for such weights the
compact embedding of W 1,2((0, 1); ν, µ) into L2((0, 1); ν) fails (see again [17, Sect. 7.10]).
Nevertheless we can use [5, Th. 1.4], which gives the required Poincaré inequality (actually
more – see also the examples of [11, Sect. 5.1]).

Hence, for the choices of weights above, the solution u to the Neumann problem (1.5)
satisfies estimates (2.18) (with ‖u0‖p0 replaced by ‖u0‖p0;ν), (2.36) or (3.12).
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