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SMOOTH CURVES SPECIALIZE TO EXTREMAL CURVES

ROBIN HARTSHORNE, PAOLO LELLA, AND ENRICO SCHLESINGER

Abstract. Let Hd,g denote the Hilbert scheme of locally Cohen-Macaulay curves of degree d and genus g in
projective three space. We show that, given a smooth irreducible curve C of degree d and genus g, there is a
rational curve {[Ct] : t ∈ A

1} in Hd,g such that Ct for t 6= 0 is projectively equivalent to C, while the special fibre
C0 is an extremal curve. It follows that smooth curves lie in a unique connected component of Hd,g. We also
determine necessary and sufficient conditions for a locally Cohen-Macaulay curve to admit such a specialization
to an extremal curve.

1. Introduction

In this paper we study curves in projective three space P
3 over an algebraically closed field k. While smooth

curves are often the first to be studied, the development of liaison theory in recent years [18] has shown that these
are best understood in the context of the larger class of locally Cohen-Macaulay curves, that is, one-dimensional
closed subschemes of P

3 with no isolated points and no embedded points. For each d and (arithmetic) genus
g, the locally Cohen-Macaulay curves form an open subset Hd,g of the full Hilbert scheme Hilbd,g of all closed
subschemes of P

3 with Hilbert polynomial dn + 1 − g. The smooth curves form an open subset H0
d,g of Hd,g.

It is known from classical examples that H0
d,g may not be connected. On the other hand, the thesis of the

first author [8] showed that for any d, g the full Hilbert scheme Hilbd,g is connected whenever it is nonempty. So
it is natural to ask whether the Hilbert scheme Hd,g of locally Cohen-Macaulay curves is connected, a question
first raised by Martin-Deschamps and Perrin in their paper [20]. Up to now, the connectedness of Hd,g has
been established only for very small degree d, or for very large genus g; more precisely, for d ≤ 4 [22, 25] and
g ≥ 1

2 (d−3)(d−4) − 1 [2, 12, 28]). The method is to identify all the irreducible components of Hd,g and then
to verify that they intersect each other in such a way as to make the whole set connected. It is the problem of
finding all irreducible components of Hd,g that seems to block any further progress in this direction.

Another approach makes use of the so-called extremal curves. Martin-Deschamps and Perrin showed in
two papers [19, 20] that for any curve C of degree d and genus g the dimensions of the cohomology modules
H1(P3, IC(n)) are bounded by explicit functions of d, g (see exact statement below). Those curves that attain
the maximum are called extremal curves, and the family of extremal curves forms a non-empty closed irreducible
component of Hd,g for each d, g. Thus one can ask which curves can be connected, through a chain of irreducible
components of Hd,g to an extremal curve. Various methods have shown for example that this is possible for
smooth rational or elliptic curves, for ACM curves, for any curve whose Rao module is a complete intersection,
or for any curve in the biliaison class of an extremal curve [11, 30, 27].

The purpose of this paper is to give a necessary and sufficient condition for an irreducible component V of
Hd,g to contain an extremal curve. We say that a curve C in P

3 satisfies condition (*) if there is a point p in
P

3 such that:

1) for every line N containing p the degree of C ∩ N is at most two; furthermore, deg(C ∩ N) = 2 for at
most finitely many such lines;

2) if N is a line through p meeting C in a scheme of degree 2, then there is a plane K through N such
that the divisor 2N in K meets C in a scheme of degree ≤ 3.

Note that smooth irreducible curves satisfy condition (*). Our main result shows that an irreducible component
V of Hd,g contains an extremal curve if and only if a general curve C ∈ V satisfies (*). We prove also the
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stronger result that if C satisfies (*), then C specializes to an extremal curve, meaning that there is a flat
family {Ct}t∈A1 such that C = C1, for all t 6= 0, Ct is obtained from C by an automorphism of P

3, and C0

is an extremal curve. In the last section of the paper we give a geometric characterization of curves satisfying
condition (*). From this it follows that in characteristic zero a reduced curve that has embedding dimension
≤ 2 at every point satisfies condition (*).

As a corollary of our theorem, we recover many earlier results, and in particular we show that any smooth
irreducible curve specializes to an extremal curve. So for example we can conclude that the two irreducible
components of H0

9,10, neither of which meets the closure of the other [9, IV,6.4.3], can be connected via extremal
curves in H9,10.

The method we use, which appears already in the earlier paper [17] of the second and third authors, is to
place the curve on a certain surface of the kind called a monoid by Cayley in his early study of space curves [4].
The limit of the curve under a weighted automorphism of P

3 is then a multiple line on the limit surface, which
one shows to be an extremal curve. The essential point, of course, is to show that the limit has no embedded
points, and this is accomplished by a careful control of the degree and genus of the curves involved.

We should mention also that there are curves to which our results do not apply. For d = 4 and genus ≤ −3,
there is a closed irreducible component of Hd,g, made up of the so-called thick 4-lines, that does not meet the
component of extremal curves [25].

Acknowledgments. We thank the American Institute of Mathematics and the organizers of the AIM workshop
Components of Hilbert Schemes Robin Hartshorne, Diane Maclagan, and Gregory Smith [1]. The seeds of this
paper were planted there. The discovery of the results of this paper was accomplished with the help of several
computations performed with Macaulay2 [7] using the package gfanInterface. We would like to thank D. Grayson
and M. Stillman for Macaulay 2 and A. Jenssen for the program Gfan [15]. The first author would like to add that
the method of specialization used here is entirely the discovery of the second and third authors; his contribution
was to help find the best result that could be obtained by that method.

2. Construction of specializations to extremal curves

In this section we establish notation and terminology and review some known results that we will need later.
We work over an algebraically closed field k of arbitrary characteristic. We denote by the symbol IX the
ideal sheaf of a subscheme X ⊂ P

3. Given a coherent sheaf F on P
3, we define hi(F) = dim Hi(P3,F) and

Hi
∗
(F) =

⊕

n∈Z

Hi(P3,F(n)). We write R = k[x, y, z, w] for the homogeneous coordinate ring H0
∗
(OP3) of P

3.

Definition 2.1. A curve in P
3 (or more precisely a locally Cohen-Macaulay curve) is a one dimensional sub-

scheme C ⊂ P
3 without zero dimensional associated points; this means that all irreducible components of C

have dimension 1, and that C has no embedded points.

We denote by Hd,g the Hilbert scheme parametrizing curves of degree d and arithmetic genus g in P
3.

This is an open subscheme of the full Hilbert scheme parametrizing all one dimensional subschemes of P
3 with

Hilbert polynomial dn+1−g. Martin-Deschamps and Perrin [19] have found sharp bounds for the Rao function
h1(IC(n)) of a curve in Hd,g. To state these bounds we need to introduce some notation. Let a = 1

2 (d−2)(d−3)−g

and l = d − 2. Then for d ≥ 2 and g ≤ 1
2 (d−2)(d−3) define

ρd,g(n) =























0 if n ≤ −a
n + a if −a ≤ n ≤ 0
a if 0 ≤ n ≤ l
a + l − n if l ≤ n ≤ a + l
0 if n ≥ a + l

Theorem 2.2 ([19, 23]). Let C ⊂ P
3 be a curve of degree d and arithmetic genus g. Then

(1) C is a plane curve if and only if g = 1
2 (d−1)(d−2); in this case h1(IC(n)) = 0 for every n ∈ Z.

(2) If C is not a plane curve, then d ≥ 2, g ≤ 1
2 (d−2)(d−3) and

h1(IC(n)) ≤ ρd,g(n) for all n ∈ Z.
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Remark 2.3. The set of pairs for which Hd,g is non-empty was determined by Hartshorne in [10], see also [26].
The bound in the theorem is proven in [19] in characteristic zero; Nollet in [23] has shown that the same result
is valid in characteristic p as well.

Definition 2.4. A curve E ⊂ P
3 of degree d and genus g is called extremal if either it is a plane curve or it

satisfies h1(IE(n)) = ρd,g(n) for every n ∈ Z.

Remark 2.5. Our definition of extremal curves is equivalent to the one given by Hartshorne [11]. Martin-
Deschamps and Perrin required extremal curves not to be ACM, that is, g < 1

2 (d−2)(d−3).

It is a remarkable discovery of Martin-Deschamps and Perrin that extremal curves exist for every d, g for
which Hd,g is non-empty:

Theorem 2.6 ([10, 19, 20]). If Hd,g is non-empty, then there exist extremal curves of degree d and genus g,
and they form a closed irreducible component Ed,g of Hd,g.

Remark 2.7. In fact in [19] it is shown that, for given d and g, extremal curves in Hd,g have the same Hilbert
function, that is, the functions h0(IE(n)) and h2(IE(n)) are constant on Ed,g; furthermore,

(1) hi(IC(n)) 6 hi(P3, IE(n)) for every n ∈ Z and for i = 0, 1, 2

for every curve C in Hd,g and every extremal curve E ∈ Ed,g. Thus extremal curves have the largest possible
cohomology.

Remark 2.8. Suppose d ≥ 2 and g < 1
2 (d−2)(d−3), that is, a > 0 and l ≥ 0. Martin-Deschamps and Perrin

show that the extremal curves are precisely the minimal curves associated to extremal Koszul modules. These
are the modules of the form R/(l1, l2, F, G) where l1 and l2 are linear forms, F and G are forms of degree a and
a + l respectively, and l1, l2, F,G have no common zeros. A curve is extremal if and only if its Rao module is
an extremal module shifted to the left by a−1.

The following proposition describes extremal curves supported on the line x = y = 0.

Proposition 2.9 ([17] Proposition 2.5). Let (d, g) be a pair of integers satisfying d ≥ 2 and g < 1
2 (d−2)(d−3).

Let F and G be two forms in k[z, w] of degrees a and a + l, respectively, with no common zeros. The surface S
of equation xG − yd−1F = 0 is irreducible and generically smooth along the line L of equations x = y = 0. It
therefore contains a unique curve E of degree d supported on L. The curve E is extremal of degree d and genus
g, and its Rao module is

H1
∗
(IE) ∼= R/(x, y, F,G)(a−1) ∼= k[z, w]/(F,G)(a−1)

The homogeneous ideal of E is generated by x2, xy, yd and xG − yd−1F .

Proof. The surface S is irreducible because F and G have no common zeros, and it is smooth at points of L
where G is different from zero. Therefore the ideal of L in the local ring OS,ξ of the generic point ξ of L is
generated by one function t , and the ideal of a curve of degree d supported on L must be tdOS,ξ. Since a locally
Cohen-Macaulay curve supported on L is determined by its ideal at the generic point of L, we see that there
is a unique curve Dm ⊂ S supported on L of degree m for every m > 1. For m = d − 1, the curve P = Dd−1

is the planar multiple structure of equations x = yd−1 = 0. We note that IP ⊗ OL
∼= OL(−1) ⊕ OL(1 − d)

where the two generators are the images of x and yd−1. The two forms F and G define a surjective map
OL(−1) ⊕OL(1 − d) → OL(a−1); composing this with the natural map IP → IP ⊗OL we obtain a surjection
φ : IP → OL(a−1). We let E be the subscheme of P

3 whose ideal sheaf is the kernel of φ. By construction we
have an exact sequence

(2) 0 → IE → IP → OL(a−1) → 0

This sequence shows that E is a (locally Cohen-Macaulay) curve of degree d and genus g, and that its homo-
geneous ideal is generated by x2,xy,yd and xG − yd−1F . Therefore E = Dd is the unique curve of degree d
contained in S and supported on L. Finally, the long exact cohomology sequence associated to (2) shows that
the Rao module of E is

ME = k[z, w]/(F,G)(a−1) = R/(x, y, F,G)(a−1).

Hence E is an extremal curve. ¤
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Given a weight vector ω ∈ N
N+1, the ω-degree of a monomial x

n = xn0

0 · · ·xnN

N is defined as degω x
n =

n · ω = n0ω0 + . . . + nNωN , and the ω-degree of an arbitrary polynomial P (x) =
∑

n
cnx

n is the maximum
degree of a monomial appearing in P (x). In analogy with the notion of leading term of a polynomial with
respect to a term ordering, one defines the initial form of P (x) with respect to ω as

inω

(

P (x)
)

=
∑

n

deg
ω

x
n=deg

ω
P

cnx
n.

For any ideal I ⊂ k[x0, . . . , xN ] one defines the initial ideal inω(I) of I with respect to ω as the ideal generated
by all initial forms inω(P ) as P varies in I. We will use the following well known fact (see for example [3], [5,
Theorem 15.17] or [16, Theorem 4.3.22]).

Proposition 2.10. Given a subscheme X ⊂ P
N and a weight vector ω ∈ N

N+1, there is a flat family Xt ⊂
P

N × A
1, whose fibres Xt for t 6= 0 are isomorphic to X = X1 via an automorphism of P

N and whose special
fibre X0 is the subscheme of P

N defined by the initial ideal of X with respect to ω.

Our basic remark is that the homogeneous polynomial xG− yd−1F , if F and G are forms in z and w, is also
homogeneous with respect to the weight vector ω = (d, 2, 1, 1). It follows that the ideal of the extremal curve E
of Proposition 2.9 is homogeneous with respect to the grading defined by ω, and so it coincides with its initial
ideal with respect to ω; we can then construct flat families having E as a special fibre by taking the initial ideal
with respect to this particular weight vector.

Proposition 2.11. Let (d, g) be a pair of integers satisfying d ≥ 2 and g < 1
2 (d−2)(d−3). Let ω = (d, 2, 1, 1).

Let S be a surface whose defining equation f satisfies

inω(f) = xG − yd−1F

where F and G be two forms in k[z, w] of degrees a and a + l, respectively, with no common zeros. If C is a
curve of degree d and genus g on S that does not meet the line z = w = 0, then the saturation of the initial ideal
of C with respect to ω is is the ideal generated by x2, xy, yd and xG− yd−1F and therefore defines an extremal
curve.

Proof. Suppose C is a curve that does not meet the line M of equation z = w = 0. We can find a complete
intersection curve D that contains C and does not meet the line M . Let g and h be equations for D, and let
g1 and h1 their reduction modulo z and w in k[x, y] ∼= k[x, y, z, w]/(z, w). Since D ∩ M = ∅, the radical of the
ideal generated by g1 and h1 is the maximal ideal (x, y). Therefore we can find positive integers l and m such
that xl and ym belong to (g1, h1). We can lift these to polynomials that belong to the ideal of D, and a fortiori
to the ideal of C. This shows that xl and ym belong to inω(IC), therefore the curve C0 defined by inω(IC) is
supported on the line L of equation x = y = 0.

Now we add the hypothesis that C is contained in the surface S. Then, since inω(IS) = IS , the scheme C0 is
contained in S. By flatness, the Hilbert polynomial of C0 coincides with that of C, so C0 is a one dimensional
subscheme of P

3 of degree d and genus g. Let E be the largest Cohen-Macaulay curve contained in C0: it is
the curve of degree d obtained from C0 throwing away its embedded points. By Proposition 2.9 E is the unique
curve of degree d contained in S and supported on the line L; it is the extremal curve whose ideal is generated
by x2, xy, yd and xG − yd−1F . Since E ⊂ C0 and the two schemes have the same Hilbert polynomial, we
conclude E = C0, and the statement is proven. ¤

3. Specialization of curves satisfying condition (*)

Now we come to our main result. We denote by X ∩ Y the scheme theoretic intersection of two closed
subschemes of an ambient scheme V . If Z is a zero dimensional scheme of finite type over k and p is a
closed point in the support of Z, we denote by multp(Z) = length(OZ,p) the multiplicity of Z at p, and by

deg(Z) =
∑

p∈Supp(Z)

multp(Z) the degree of Z. For a curve C in P
3 we consider a condition (*) that expresses

the idea that C behaves in some ways like a smooth curve:
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Condition (*)
We say that a curve C in P

3 satisfies condition (*) if there is a point p in P
3 such that:

1) for every line N containing p the degree of C ∩ N is at most two; furthermore, deg(C ∩ N) = 2 for at
most finitely many such lines;

2) if N is a line through p meeting C in a scheme of degree 2, then there is a plane K through N such
that the divisor 2N in K meets C in a scheme of degree ≤ 3.

Remark 3.1. The set of points p with respect to which C satisfies condition (*) is open in P
3. If 2) holds, then,

for a general plane K in the pencil of planes through N , the divisor 2N in K meets C in a scheme of degree
≤ 3, and therefore, for at most finitely many planes K in the pencil, the divisor 2N in K meets C in a scheme
of degree ≥ 4.

Proposition 3.2. Condition (*) is an open condition on the Hilbert scheme.

Proof. Suppose that C0 is a curve satisfying (*). It will be sufficient to show that for any flat family C = {Ct}t∈T

of curves, parametrized by an irreducible curve T , with Ct0 = C0, a general curve Ct in the family also satisfies
(*). Choose p ∈ P

3 that satisfies condition (*) for C0. If a general curve in the family C does not satisfy (*),
then either a) for a general Ct all lines from p to a point of Ct meet Ct at least twice, or b) for a general Ct there
is a line N through p meeting Ct at least 3 times, or c) there is a line N through p such that all planar double
lines 2N containing N intersect Ct with multiplicity at least 4. In each case, then, one can choose families of
lines Nt for each Ct (possibly after a base extension T ′ → T of the family) whose limits N0 by semicontinuity
will contradict the property (*) that holds for C0. Hence a general Ct in C must satisfy (*). ¤

Theorem 3.3.

a) An irreducible component V of Hd,g contains an extremal curve if and only if a general curve C in V satisfies
condition (*).

b) If C is a curve satisfying (*), then there is a flat family C = {Ct}t∈A1 such that C1 = C, for t 6= 0, Ct is
obtained from C by an automorphism of P

3, and C0 is an extremal curve (In this case we say C specializes
to an extremal curve).

Proof of Theorem 3.3 (first part).
Step 1. First we deal with two special cases. If g = 1

2 (d−1)(d−2), then Hd,g is irreducible and consists of the

plane curves of degree d. These obviously satisfy (*). If g = 1
2 (d−2)(d−3), again Hd,g is irreducible, and consists

of ACM extremal curves. These have been described in [10, 3.5]. The general such curve is a nonsingular twisted
cubic for d = 3, a nonsingular elliptic quartic for d = 4, and for d ≥ 5 consists of a plane curve of degree d−1
with a line attached at one point. These general curves clearly satisfy (*), so part a) of the theorem is true in
these two cases. For part b) we can take the trivial family Ct = C for all t. Thus for the remainder of this proof
we may assume g < 1

2 (d−2)(d−3) since these are the only remaining values where Hd,g is non-empty. (For

g = 1
2 (d−2)(d−3) it is not true that every extremal curve satisfies (*): consider for example the curve defined

by the ideal (x2, xy, yd−1) for d ≥ 3).
Step 2. We will show next that every extremal curve C with g < 1

2 (d−2)(d−3) satisfies (*). We will use the
classification of extremal curves of [20, Proposition 0.6]. If the curve C is the disjoint union of a line and a
plane curve, then C obviously satisfies (*). The ideal of any other extremal curve can be brought with a change
of variables into the form

IC = (x2, xy, Pyb+2, xG + yb+1FP )

where F,G are forms in z, w of degrees a, a + l respectively, with no common zeros, while P is a form in y, z, w
of degree l − b that is not a multiple of y. Here a = 1

2 (d−2)(d−3) − g ≥ 1, l = d − 2 ≥ 1, and b ≥ 0. The

curve C is contained in the double plane 2H = V (x2), and, except at points of the line L = V (x, y), the curve
is contained in the reduced plane H = V (x) [20, loc. cit.].

We claim that C satisfies (*) with respect to the point p = (1, 0, 0, 0). Since C is contained in the double
plane 2H, the intersection of C with any line N through p has at most of degree 2 in any case. If N is a line
joining p with a point q of C \ L, then C ∩ N has degree one because it is contained in C ∩ H. Thus we need
to worry only about lines N = pq where q = (0, 0, z0, w0) is a point of L. The ideal of the intersection C ∩N is
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the saturation of

IC + IN = (x2, y, xG, w0z − z0w).

Thus, if G(z0, w0) 6= 0, then C∩N consists of the reduced point q. Since G has finitely many zeros, corresponding
to finitely many points qi of L, there are finitely lines Ni = pqi that meets C in a scheme of degree 2. To finish,
it suffices to show that for each of these lines Ni there is a plane K such that the intersection of C with the
divisor 2Ni on K has degree at most three. We claim that, if qi = (0, 0, z0, w0), the plane K = V (w0z − z0w)
will do. To show this, observe that w0z − z0w divides G, hence the ideal of C ∩ (2Ni)K is the saturation of

(x2, xy, y2, w0z − z0w, yb+1FP ).

This shows C ∩ (2Ni)K is a fat point of degree at most 3, and completes the proof that the extremal curves
with g < 1

2 (d−2)(d−3) all satisfy (*).

This together with Proposition 3.2 proves half of statemenent a) of the theorem: if an irreducible component
V of Hd,g contains an extremal curve then by the openness property, a general curve C in V must also satisfy
(*). Thus it remains only to prove b), since that statement implies the other half of a).

Step 3. We will choose coordinates in P
3 adapted to C. Let p be a point of P

3 for which C satisfies (*). Then
for every line N containing p, the degree of C ∩N is at most two, and deg C ∩N = 2 for at most finitely many
lines Ni through p. For each Ni, let Kij be the (at most) finitely many planes for which the divisor 2Ni in Kij

meets C in a scheme of degree ≥ 4. Finally, choose a line M through p such that a) M does not meet C, b) M
is not contained in any plane containing two or more of the Ni, and c) M is not contained in any of the planes
Kij . Choose coordinates x, y, z, w in P

3 so that p = (1, 0, 0, 0) and M is the line z = w = 0.
Let H be the plane x = 0 and consider the projection π of the curve from p to H. The image will be a plane

curve C0 ⊂ H of degree d. On the other hand, if we consider the flat family obtained by projecting away from
p, as in [9, III, 9.8.3], or by applying Proposition 2.10 with weight vector (1, 0, 0, 0), the limit is a scheme C ′

supported on C0, and having nilpotent elements at points where the line N from p meets C twice. Note that
the scheme C ′ is contained in the double plane 2H defined by x2 = 0, since no line N meets C more than twice.

In general, when a scheme has embedded points there is no natural scheme structure on the set of embedded
points. In our case, however, we can define a scheme Z representing the embedded points by taking the residual
of the intersection C0 of C ′ with H [13]. Since C ′ is contained in 2H, the scheme Z will be contained in H
and will have degree equal to the difference of the genus of C (which equals that of C ′) and of C0, namely
deg Z = 1

2 (d − 1)(d − 2) − g. One can also obtain the structure sheaf OZ as the quotient of OC′ by OC0
or the

quotient of π∗OC by OC0
.

Note that lines N through p meeting C twice correspond to points of Z, also in the scheme sense: if z0 is a
point of Z of multiplicity r, then the cone from p over z0 is an r-fold line N meeting C in 2r points. ¤

Before proceeding, we need a lemma.

Lemma 3.4. Suppose g ≤ 1
2 (d−2)(d−3) and let ν = 1

2 (d−1)(d−2)− g. For any choice of coordinates x, y, z, w

on P
3 and for any curve C in P

3, the ideal of C contains a nonzero form f of degree ν + 1 of type

(3) f(x, y, z, w) = xGν(z, w) −
d−1
∑

j=0

yjFν+1−j(z, w).

Here subscripts denote degree.

Proof. The proof is an easy dimension count. Inside H0(P3,OP3(ν + 1)), the subspace T of forms as in (3) has
dimension

dimT = ν + 1 +

d−1
∑

j=0

(ν + 2 − j) = ν + 1 + d(ν + 2) −

(

d

2

)

= (ν + 1)(d + 1) + 1 −
1

2
(d−1)(d−2)

We consider the natural map from H0
(

OP3(ν + 1)
)

to H0
(

OC(ν + 1)
)

. It is well known – and easy to show

– that h1(OC(n)) = 0 if n ≥ d − 2: this is proven in characteristic zero in [19, Corollaire 2.4.(1)], and in any
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characteristic for example in [29, Proposition 3.2]. Now ν ≥ d − 3 because g ≤ 1
2 (d−2)(d−3), hence we can

conclude that h1(OC(ν + 1)) = 0. Therefore by Riemann-Roch

h0
(

OC(ν + 1)
)

= (ν + 1)d + 1 − g.

Now we observe that the dimension of T is greater than this number:

dimT − h0
(

OC(ν + 1)
)

= ν + 1 −
1

2
(d − 1)(d − 2) + g = 1.

Hence there is a non zero form f ∈ T whose image is zero in H0
(

OC(ν + 1)
)

, that is, which is contained in

H0
(

IC(ν + 1)
)

. ¤

Proof of Theorem 3.3 (second part). Step 4. Using the coordinates chosen for C in Step 3, we apply Lemma
3.4 and conclude that C is contained in a surface S whose equation has the form (3) above. We will be using
the surface S for the remainder of the proof. First we will show that Gν is not identically zero.

Suppose by way of contradiction Gν = 0. We can find a plane K with the following properties: it contains
the line M , it does not contain any of the lines Ni and it is not a component of the surface S. We may assume
K is the plane of equation w = 0. Then the curve S ∩ K has equation

d−1
∑

j=0

yjFν+1−j(z, 0) = zν+2−d

d−1
∑

j=0

cj yjzd−1−j = 0.

Thus, as a divisor in K, the intersection S ∩ K is a cone consisting of M with multiplicity at least ν + 2 − d,
plus a divisor D of degree at most d−1. Since C is contained in S, the scheme C∩K is contained in S∩K, and
since C does not meet M , this scheme C ∩ K, which is of degree d, must be contained in D. Since K contains
none of the Ni, every line through p in K meets C ∩K at most once, so the divisor D must have degree at least
d, which is a contradiction.
Step 5. Now we relate the equation of S to the scheme of embedded points Z from Step 3. Let q be the point
M ∩ H and let Z ′ be the projection of Z from q to the line L defined by x = y = 0. Since M was chosen not
to belong to any of the planes Kij , it follows that each line through q in H meets Z at most once. Hence the
projection from Z to Z ′ is a closed immersion and Z ′ is a subscheme of L of degree ν.

On the other hand, the sheaf π∗OC is generated over OH by the local images of the variable x, because we
projected away from p = (1, 0, 0, 0). The equation of S shows that

xGν ≡
d−1
∑

j=0

yjFν+1−j(z, w) mod IS .

Thus Gν maps the local generator of π∗OC into OC0
and we conclude that Gν annihilates Z. Since Gν and Z ′

both have the same degree ν, we conclude that Gν(z, w) is precisely the annihilator of the scheme Z ′ in L.
Step 6. Now we will show that Gν and Fν+d−2 are forms in z, w with no common zeros. Let (z0, w0) be a zero
of Gν . By a linear change of variables we may assume that (z0, w0) = (1, 0). Let K be the plane w = 0. Since
K contains the line M , we conclude from the choices above that K contains at most one of the lines Ni, and
that the divisor 2Ni in K meets C in a scheme of degree ≤ 3. The plane K is not a component of S: otherwise,
we would have S = K + S1 where S1 has an equation of the form

(4) f1(x, y, z, w) = xG′(z, w) −
d−1
∑

j=0

yjF ′

ν−j(z, w)

where G′ is not identically zero, and deg G′ = deg Gν − 1 = ν − 1. As the curve C meets properly every plane
through M , it must be contained in S1. Then, as in Step 5, we prove that G′ kills Z ′ which is impossible since
Z ′ has degree ν.

Consider the curve S ∩ K which has equation

(5) f = f(x, y, z, 0) = −
d−1
∑

j=0

yjFν+1−j(z, w) = −zν+2−d

d−1
∑

j=0

cjy
jzd−1−j
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since Gν(z, 0) = 0. Now x does not appear in this equation so S ∩ K is a divisor in K supported on lines
through p. In particular, f has a factor zν+2−d, so the line M appears in S ∩ K with multiplicity ≥ ν + 2 − d.
We will show that this multiplicity is exactly ν + 2− d, in other words that cd−1 6= 0, hence Fν+2−d(z, 0) is not
zero, hence that (z, 0) is not a common zero of Gν and Fν+2−d, as desired.

Since C does not meet the line M , the plane K does not contain any component of C. Let W be the zero
dimensional scheme C ∩ K. Since C ⊂ S, we find W ⊂ S ∩ K. So the curve S ∩ K contains the least divisor
D of (possibly multiple) lines through p containing W . By construction, most of the reduced lines N through
p meet W with degree 1; at most one Ni meets W in degree 2, and for that one, the divisor 2Ni in K meets
W with degree ≤ 3. We will show that this divisor D has degree ≥ d − 1, hence M can appear in S ∩ K with
multiplicity at most (ν + 1) − (d − 1) = ν + 2 − d as required.

To verify the assertion that deg D ≥ d− 1 we argue as follows. If q ∈ W is a point for which the line N = pq
meets W with multiplicity one, then the scheme W is curvilinear at that point, transverse to N , so that if its
multiplicity at q is r, we need N to appear with multiplicity r in D for D to contain W . If N is a line through
p meeting W with multiplicity 2, and if N meets W in two distinct points q1,q2, then, since 2N meets W with
multiplicity ≤ 3, one of these points must be a reduced point of W , the other is curvilinear transversal to N
as above, so that if the multiplicity of the second point is r, we need N to appear with multiplicity r in D for
D to contain W at the points q1, q2. Finally, if N meets W with multiplicity 2 at a single point q, and 2N
meets it with multiplicity 2 also, then deg W = 2 at q, with tangent direction N . The last case is if N meets
W at q with multiplicity 2, and 2N meets W at q with multiplicity 3. This is the only case that requires some
calculation, and Lemma 3.5 below shows in this case that if the multiplicity of W at q is r, then we need N to
appear with multiplicity r−1 in D for D to contain W at q. The conclusion is that since deg W = d, we need
a divisor D of degree degree d − 1 or d to contain W , as claimed. ¤

Lemma 3.5. Let A = k[[x, y]] with maximal ideal m = (x, y). Let I be an m-primary ideal such that length A/I+
(y) = 2 and length A/I + (y2) = 3. Then, replacing if necessary x with another element of m \ m

2, linearly
independent of y modulo m

2, we can put the ideal I in one of the following forms:

• I = (y − x2, x3), of colength 3;
• I = (x2, xy, ys), with s ≥ 2, of colength s + 1
• I = (x2 − ys, xy, ys+1) with s ≥ 2, of colength s + 2

In all three cases, the least power of y contained in I is one less than the colength.

Proof. Suppose I contains an element beginning with a linear form. Since A/I + (y) has length 2 (not 1), that
form must be y. Thus I + (y) = (y, x2), and I contains elements y + f , x2 + gy with f ∈ m

2 and g ∈ A. Hence
I contains also x2 − fg ∈ m

2. If this element is non-zero, then I + (y2) = (y, x2) would have colength only 2
(not 3). Hence g is a unit and f is a unit times x2. We can absorbe the unit into x, and obtain the first case
I = (y − x2, x3) above.

Suppose now I ⊆ m
2. Then length A/I + (y2) = 3 implies m

2 = I + (y2). Then xy − by2 ∈ I and replacing
x with x − by we may assume xy ∈ I. Since x2 ∈ I + (y2), we can find a ∈ A such that x2 − ay2 belong to I.
As xy ∈ I, we can choose such an a in k[[y]]. If a = 0, then I = (x2, xy, ys) for some s ≥ 2. This is the second
case above.

If a 6= 0, then ay2 = uys with u a unit and s ≥ 2. Then

ys+1 = −u−1y(x − uys) + u−1xy ∈ I

In particular we can assume u is a nonzero element in k, and rescaling we can reduce to the case u = 1. This
gives the third case above (or the second case again if yt ∈ I for some t ≤ s). ¤

Proof of Theorem 3.3 (third part). Step 7. We can now complete the proof of part b) of the theorem. Let C
be a curve satisfying (*). Choose coordinates as in Step 3 and a surface S containing C as in Step 4 above.
We have shown in Step 6 that Gν and Fν+d−2 have no common zeros. Thus C and S satisfy the hypotheses
of Proposition 2.11, and we conclude that the flat family constructed there has for its limit an extremal curve.
Thus C specializes to an extremal curve, as required. ¤

Corollary 3.6. Every smooth irreducible curve can be specialized to an extremal curve.
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Proof. Any smooth irreducible curve satisfies (*). Just choose a point p ∈ P
3 that lies on no trisecant line and

no tangent line [9, IV 3.10]. ¤

Corollary 3.7. Suppose C0 is a curve satisfying condition (*) that is minimal in its biliaison class. Then every
curve of degree d and genus g in the biliaison class of C0 is in the connected component of Hd,g that contains
the extremal curves of degree d and genus g.

Proof. The statement follows from Theorem 3.3.b and [30, Theorem 2.3]. ¤

4. Geometric characterization of curves satisfying condition (*)

The main result of this section is Theorem 4.5 that, at least in characteristic zero, gives a clear geometric
characterization of curves that satisfy condition (*).

Lemma 4.1. Suppose C satisfies condition (*). Then C has embedding dimension ≤ 2 at all but finitely many
points.

Proof. If C has embedding dimension 3 at a point q, then every line through q meets C with multiplicity at
least 2. Since C satisfies (*), this can happen only at finitely many points. ¤

Lemma 4.2. Suppose C is a curve that satisfies condition (*) and has embedding dimension 3 at a point q. Let
T denote the tangent cone to C at q: it is naturally embedded in the affine tangent space A

3 of C at q. Then
one of the following possibilities occurs:

(1) the cone T is the union of two curves T1 and T2, where T1 is contained in a plane H ⊂ A
3, and T2 is

a line transversal to the tangent plane to C1;
(2) there is a plane H containing the support of T , and the residual curve to T ∩ H in T is a reduced line;
(3) the curve T is contained in the complete intersection of two quadric cones in A

3, and therefore has
multiplicity at most 4 at q.

Proof. Let p be a point with respect to which C satisfies condition (*). Since C has embedding dimension 3 at
q, the line N = pq meets C at q with multiplicity 2, and for a general plane K through N the divisor 2N in K
meets C at q with multiplicity 3. Fix such a plane K. Then near q the plane section C ∩K has one of the forms
listed in Lemma 3.5. In the first case C ∩ K has embedding dimension 1 at q, so C has at most embedding
dimension 2 at q, a contradiction. So either the second case or the third case occur. In both cases, the ideal of
C ∩ K in OK,q is contained in m2

K,q, and its image in m2/m3 has dimension at least 2. Thus the ideal of C at

q also has image of dimension at least 2 in m2
P3,q

/m3
P3,q

, and so the tangent cone is contained in two distinct

quadric cones. The statement then follows immediately. ¤

Lemma 4.3. Suppose C satisfies condition (*). Then all non-reduced components of C have support in a single
plane.

Proof. Step 1. Suppose C is a non-reduced irreducible curve such that Cred is not a plane curve. We claim
that C does not satisfy (*). Since Cred is not a plane curve, the secant variety of Cred, that is the closure of
the union of lines meeting Cred in at least two distinct points, is the whole of P

3. Thus a general point p of P
3

lies on a line N = qr where q and r are distint points of Cred. Since C is non-reduced, any plane H through N
will intersect C at q in a scheme of length at least two, and therefore the divisor 2N on H will intersect C with
multiplicity at least 2 at q. For the same reason, 2N will intersect C with multiplicity at least 2 at r. Thus 2N
will meet C at least in a scheme of degree 4, and C does not satisfy (*).
Step 2. Suppose C and D are non-reduced irreducible curves that Cred ∪Dred is not a plane curve. The C ∪D
does not satisfy (*). Consider the join J of Cred and Dred, that is, the closure of the set of points lying on lines
joining a point of Cred \ Dred with a point of Dred \ Cred. Since Cred ∪ Dred is not a plane curve, the join J is
the whole space P

3. Thus a general point p of P
3 lies on a line N = qr with q ∈ Cred and r ∈ Dred \ Cred. We

may also assume p lies on no plane containing either Cred or Dred. Then an argument similar to the one above
shows that C ∪ D does not satisfy (*).
Step 3. Now suppose C is any curve, and that C1, C2, . . . Cr are the non-reduced components of C. If C
satisfies condition (*), then the support of each Ci is contained in a plane Hi by Step 1. If one of the Ci, say
C1, is not a line, then H1 is the unique plane containing the support of C1, and H1 contains the support of the



10 R. HARTSHORNE, P. LELLA, AND E. SCHLESINGER

other non-reduced components by Step 2. Suppose finally that for every i the support of Ci is a line Li. By Step
2 there is a plane H containing L1 and L2, and L1 and L2 meet in a point q. Suppose by way of contradiction
that there is an i, say i = 3, such that Li is not contained in H. By Step 2, the line L3 meets both L1 and L2,
and this can happen only at q. In particular, at q the curve C has embedding dimension 3. The tangent cone
to C at q then contains at least three (planar) double lines supported on L1, L2 and L3; but this contradicts
Lemma 4.3. Therefore the support of C is contained in the plane H and the statement is proven. ¤

Lemma 4.4. Suppose C is a non-reduced, irreducible curve that satisfies (*). Then either C has multiplicity
≤ 3 along its length, or else its underlying multiplicity 2 structure is planar.

Proof. Let D = Cred. The conormal sheaf ID/I2
D is generically locally free of rank 2. Since C has generically

embedding dimension 2, it does not contain the first infinitesimal neighborhood D(1) of D, that is, IC is not
contained in I2

D. Therefore (I2
D +IC)/I2

D is generically a rank one locally free sheaf on D, and there is a unique

locally Cohen-Macaulay curve D2 ⊂ D(1) whose ideal in D(1) coincides with (I2
D +IC)/I2

D at the generic point.
This curve D2 is the multiplicity 2 structure underlying C. At most points q of D, the embedding dimension
of D2 is 2, and there is a well defined tangent plane Hq to D2. This gives a rational map from D to the
dual projective space. If this map is not constant, then a general point p of P

3 is contained is some plane
Hq. If N = pq, the divisor 2N in any plane K containing N meets C with multiplicity µ at q, where µ is the
multiplicity of C along D. If µ ≥ 4, we thus get a contradiction to condition (*); thus, if µ ≥ 4, Hq is a fixed
plane H for every q, and D2 is contained in H. ¤

Theorem 4.5. A curve C ⊂ P
3 satisfies condition (*) if and only if it has the following properties:

i) there are at most finitely points q at which the embedding dimension of C is 3; at each of these points
the embedded tangent cone is contained in a pencil of two dimensional quadratic cones;

ii) all non-reduced components of C have support in a single plane;
iii) if C0 is a non-reduced component of C, then either C0 has multiplicity ≤ 3 along its length, or else its

underlying multiplicity 2 structure is planar;
iv) suppose C0 is a non-reduced component of C that has multiplicity 3 along its length and whose embedded

tangent space at a general point q ∈ C0 is a plane Hq; if Hq varies with q, then we require that all but
finitely many lines N in Hq meet C0 at q with multiplicity ≤ 2;

v) let Z ⊂ P
3 denote the union of the lines that meet C in three or more distinct points; we require the

closure of Z not to be the whole of P
3.

Remark 4.6. If char k = 0, conditions iv) and v) are automatically satisfied; indeed, [6, Corollary 4.6.17] implies
condition v), and iv) follows from [10, Theorem 2.1]. On the other hand, if k has positive characteristic,
condition iv) may fail for curves that satisfy i)-iii). The paper [10] by the first author contains an example.
Take any prime p, and let q be either p if p ≤ 3 or 4 if p = 2. Then consider the surface X of equation
xwq + y3wq−2 + yzq = 0. Let L be the line x = y = 0, which is contained in the smooth locus of X. Take
C = 3L on X. Then one verifies that the tangent plane of C varies along the line L, and at every point any
line in the tangent plane meets the curve 3 times. As for condition v), we asked Joel Roberts about strange
curves, and he gave us an example of a curve in characteristic p > 2 that is integral, but whose trisecants fill

up the whole space. For p ≥ 3, take the curve given by affine parametric equation (t, tp, tp
2

). Any secant line
meets the curve in p distinct points; thus the p-secant lines fill up the whole space. This curve does not satisfy
condition i) because it has a bad singularity at infinity. We do not know if there is a curve that does satisfy
i)-iii) but not v).

Proof. Suppose C satisfies condition (*) with respect to a general point p. Then there are at most finitely lines
N through p such that deg(C ∩ N) > 1. Together with the previous lemmas this property implies i)-v).

If C satisfies i)-v), then the set of points p that satisfy the following conditions is open and non-empty:

(1) p does not lie on any line that meets C in three or more distinct points;
(2) p lies on at most finitely many lines meeting C in two distinct points;
(3) if q is a singular point of Cred, then the line pq meets C only at q (there are at most finitely many such

points q); furthermore, if C has embedding dimension two at q ∈ Csing
red , then p does not belong to the

tangent plane to C at q;
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(4) p does not lie on any tangent line to C at a smooth point;
(5) if q is one of the at most finitely many points at which C has embedding dimension three, then (a) the

line pq meets C only at q, (b) p does not belong to the embedded tangent cone Cq to C at q, (c)if the
pencil of quadratic cones through Cq has a plane H as a common component, then p /∈ H, and (d) if
Cq is the complete intersection of two quadratic cones, there is a plane K containing N = pq such that
deg(C ∩ (2N)K) ≤ 3 (in case (d), if K is a plane meeting Cq properly at q, then for all but finitely lines
N ⊂ K through q one has deg(C ∩ (2N)K) ≤ 3 because Cq ∩K is a complete intersection of two conics);

(6) if C has a non-reduced component C0, there are at most finitely many lines through p meeting C at
a point q1 ∈ C0 and at a distinct point q2 ∈ C; C has embedding dimension 2 at q1, and the line pq1

does not belong to the tangent plane to C at q1; q2 is a smooth point of C (for the support of the
non-reduced components of C is contained in a single plane);

(7) if q is a point at which C has embedding dimension two and the tangent plane Hq to C at q contains a
non-reduced sub-curve of C, then p does not belong Hq (usually Hq will be the single plane H containing
the support of the non-reduced components of C; let C0 be a non-reduced component of C, and let
D ⊂ H be the support of C0; if D is not a line, then we must have Hq = H; on the other hand, if D
is a line, then it is possible that Hq be different from H, but it will be the only plane containing the
planar multiplicity two structure underlying C0, and so it is uniquely determined by C0, and there are
at most finitely many such planes);

(8) suppose C0 is a non-reduced component of C that has multiplicity ≤ 3 along its length; let U be as in
iv); then, if the tangent plane Hq is independent of q ∈ U , p /∈ Tq C0; otherwise, for every q ∈ U the
point p does not belong to any line N through q in Hq meeting C0 at q with multiplicity ≥ 3.

Choose a point p that satisfies all of the conditions above. We claim that C satisfies condition (*) with respect
to p. In the following we denote by N a line through p. We have to show: (a) no such line N meets C in a
scheme of degree ≥ 3; (b) there are at most finitely such lines N that meet C in a scheme of degree 2, and for
each of these lines N there is a plane K containing N such that deg(C ∩ (2N)K) ≤ 3.

By (1) any line N through p meets C in at most two distinct points, and by (2) at most finitely many of such
lines N meet C in two distinct points. Suppose N meets C at two distinct points q1 and q2. If q1 and q2 are
smooth points of C, then N is not tangent to C at these points, and so deg(C ∩N) = 2; furthermore, if K is a
plane through N that does not contain the tangent line to C neither at q1 nor at q2, then deg(C ∩ (2N)K) = 2.
Otherwise, we are in the situation of (6): q1 is a point of a non-reduced component C0, C has embedding
dimension 2 at q1, the line N = pq1 does not belong to the tangent plane to C at q1, and q2 is a smooth point
of C. Then deg(C ∩ N) = 2, and, if K is a plane through N that does not contain the tangent line to C at q2,
the degree of C ∩ (2N)K is at most 3. Thus we have checked the required properties for lines meeting C in two
distinct points.

Suppose now N meets C at a unique point q. If q is a smooth point of C or a singular point of C at which
C has embedding dimension 2 and N is not contained in the tangent plane Hq to C at q, then deg(C ∩N) = 1.
Thus we are left to examine lines N = pq where q is either a point such that C has embedding dimension 2 at
q and p belongs to the tangent plane Hq, or a point at which C has embedding dimension 3. In the first case,
by (3) q is a smooth point of Cred, and by (7) it is contained in a unique non-reduced component C0 whose
underlying multiplicity 2 structure is not planar, so that C0 has multiplicity ≤ 3 along its length by iii); by (8)
the tangent plane Hq varies with q, so there are finitely many such q ∈ C0 for which p ∈ Hq; furthermore, by
(8) the line N = pq meets C with multiplicity 2 at q, and for every plane K through N , C ∩ (2N)K has degree
at most 3 because has multiplicity ≤ 3 along its length. Finally, suppose q is a point at which C has embedding
dimension 3. If the tangent cone Cq is contained in H ∪ L, where H is a plane and L is a line transversal to
N , then p /∈ H by (5), the line N = pq meets C with multiplicity 2 at q, and, if K is a plane through N that
does not contain L, then (2N)K meets Cq with multiplicity at most 3 at q, hence deg(C ∩ (2N)K) ≤ 3. If the
tangent cone Cq is contained in a plane H plus an embedded line L , that is, the ideal of Cq contains x2 and xy
up to a choice of coordinates, then p /∈ H by (5), the line N = pq meets C with multiplicity 2 at q, and, if K is
a plane through N that does not contain L, (2N)K meets C with multiplicity at most 3 at q. Finally, the case
in which the tangent cone Cq is the complete intersection of two quadratic cones is taken care by (5.d)

¤
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Example 4.7. Every smooth irreducible curve satisfies condition (*) cf. 3.6. The same holds for a smooth non
connected curve whose trisecants do not fill the whole space: this latter condition is always satisfied if the curve
lies on a quadric surface, or if char k = 0. In particular, we obtain a stronger version of the main result of [17]:
every smooth divisor on a smooth quadric surface specializes in a flat family to an extremal curve.

Example 4.8. Assume char k = 0. Let C be a reduced curve that has embedding dimension at most 2 at every
point. Then C satisfies condition (*). This applies for example to general ACM curves: see [14, Theorem 7.21].

Example 4.9. Assume char k = 0. Suppose we are given curves Ci for i = 0, . . . , r that are disjoint, satisfy
condition (*) and are reduced except possibly for C0. Then their disjoint union C is a curve that satisfies
condition (*).

Example 4.10. Assume char k = 0. Suppose C satisfies condition (*) and D is a smooth irreducible curve
meeting C at a single point p in such a way that the tangent line to D at p is not contained in the tangent
space to C at p. Then C ∪ D satisfies condition (*).
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