DIPARTIMENTO DI MATEMATICA "Francesco Brioschi" POLITECNICO DI MILANO

A family of Hardy-Rellich type inequalities involving the L^2 -norm of the Hessian matrices

Berchio, E.

Collezione dei *Quaderni di Dipartimento*, numero **QDD 140** Inserito negli *Archivi Digitali di Dipartimento* in data 12-11-2012

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)

A family of Hardy-Rellich type inequalities involving the L^2 -norm of the Hessian matrices

Elvise BERCHIO *

Abstract

We derive a family of Hardy-Rellich type inequalities in $H^2(\Omega) \cap H^1_0(\Omega)$ involving the scalar product between Hessian matrices. The constants found are optimal and the existence of a boundary remainder term is discussed.

Mathematics Subject Classification: 26D10; 46E35; 35J40 Keywords: Hardy-Rellich inequality, optimal constants, biharmonic equation

1 Introduction

Let $\Omega \subset \mathbb{R}^N (N \geq 2)$ be a bounded domain (open and connected) with Lipschitz boundary. By combining interpolation inequalities (see [1, Corollary 4.16]) with the classical Poincaré inequality, the Sobolev space $H^2(\Omega) \cap H^1_0(\Omega)$ becomes a Hilbert space when endowed with the scalar product

$$(u,v) := \int_{\Omega} D^2 u \cdot D^2 v \, dx = \sum_{i,j=1}^N \int_{\Omega} \partial_{ij}^2 u \, \partial_{ij}^2 v \, dx \quad \text{for all } u, v \in H^2(\Omega) \cap H^1_0(\Omega) \,, \tag{1}$$

which induces the norm $||D^2u||_2 := (\int_{\Omega} D^2u \cdot D^2u \, dx)^{1/2} = (\int_{\Omega} |D^2u|^2 \, dx)^{1/2}$.

If, furthermore, Ω satisfies a uniform outer ball condition, see [3, Definition 1.2], some of the derivatives in (1) may be dropped. Then, the bilinear form

$$\langle u, v \rangle := \int_{\Omega} \Delta u \, \Delta v \, dx \quad \text{for all } u, v \in H^2(\Omega) \cap H^1_0(\Omega)$$
 (2)

defines a scalar product on $H^2(\Omega) \cap H^1_0(\Omega)$ with corresponding norm $\|\Delta u\|_2 := (\int_{\Omega} |\Delta u|^2 dx)^{1/2}$. Easily, $\|D^2 u\|_2^2 \ge 1/N \|\Delta u\|_2^2$, for every $u \in H^2(\Omega) \cap H^1_0(\Omega)$. The converse inequality follows from [3, Theorem 2.2].

A well-known generalization of the first order Hardy inequality [15, 16] to the second order is the so-called Hardy-Rellich inequality [19] which reads

$$\int_{\Omega} |\Delta u|^2 \, dx \ge \frac{N^2 (N-4)^2}{16} \int_{\Omega} \frac{u^2}{|x|^4} \, dx \qquad \text{for all } u \in H^2_0(\Omega) \,. \tag{3}$$

Here $\Omega \subset \mathbb{R}^N$ $(N \ge 5)$ is a bounded domain such that $0 \in \Omega$ and the constant $\frac{N^2(N-4)^2}{16}$ is optimal, in the sense that it is the largest possible. Further generalizations to (3) have appeared in [9] and in [17]. In [11] the validity of (3) was extended to the space $H^2 \cap H_0^1(\Omega)$, see also [12]. One may wonder

^{*}Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32 - 20133 Milano (Italy)

what happens in (3), if we replace the L^2 -norm of the laplacian with $||D^2u||_2^2$. In $H_0^2(\Omega)$, a density argument and two integrations by parts yield that $\frac{N^2(N-4)^2}{16}$ is still the "best" constant. In $H^2 \cap H_0^1(\Omega)$ the answer is less obvious and, to our knowledge, the corresponding inequality is not known, not even when Ω is smooth. This regard motivates the present paper.

Let ν be the exterior unit normal at $\partial\Omega$, we set

$$c_0 = c_0(\Omega) := \inf_{H^2 \cap H^1_0(\Omega) \setminus H^2_0(\Omega)} \frac{\int_{\Omega} |D^2 u|^2 \, dx}{\int_{\partial \Omega} u_{\nu}^2 \, d\sigma} \,. \tag{4}$$

The above definition makes sense as soon as Ω has Lipschitz boundary. Indeed, the normal derivative to a Lipschitz domain is defined almost everywhere on $\partial\Omega$ so that $u_{\nu} \in L^2(\partial\Omega)$ for any $u \in H^2 \cap H^1_0(\Omega)$. By the compactness of the embedding $H^2(\Omega) \subset H^1(\partial\Omega)$ (see [18, Chapter 2 - Theorem 6.2]), the infimum in (4) is attained and $c_0 > 0$.

For $c > -c_0$, we aim to determine the largest h(c) > 0 such that

$$\int_{\Omega} |D^2 u|^2 dx + c \int_{\partial \Omega} u_{\nu}^2 d\sigma \ge h(c) \int_{\Omega} \frac{u^2}{|x|^4} dx \quad \text{for all } u \in H^2 \cap H^1_0(\Omega) \,. \tag{5}$$

In Section 3, for $\partial \Omega \in C^2$, we prove that there exists $C_N = C_N(\Omega) \in (-c_0, +\infty)$ such that:

h(c) < ^{N²(N-4)²}/₁₆, for c ∈ (-c₀, C_N) and the equality is achieved in (5).
 h(c) = ^{N²(N-4)²}/₁₆, for c ∈ [C_N, +∞) and, if c > C_N (u ≠ 0), the inequality is strict in (5).

When Ω satisfies a suitable geometrical condition (see (25) in the following) and $C = C_N$, we show that the equality cannot be achieved in (5). At last, we derive lower and upper bounds for C_N and we discuss its sign, see Theorem 1 and Remark 3.

If $\Omega = B$, the unit ball in $\mathbb{R}^N (N \ge 5)$, several computations can be done explicitly. In Section 5, we show that $c_0(B) = 1$, $C_N(B) = N - 3 - \frac{\sqrt{2(N^2 - 4N + 8)}}{2}$ and we determine the (radial) functions for which the equality holds in (5) (when $c < C_N$). In particular, for all $u \in H^2 \cap H_0^1(B) \setminus \{0\}$, we show that

$$\int_{B} |D^{2}u|^{2} dx + \left(N - 3 - \frac{\sqrt{2(N^{2} - 4N + 8)}}{2}\right) \int_{\partial B} u_{\nu}^{2} d\sigma > \frac{N^{2}(N - 4)^{2}}{16} \int_{B} \frac{u^{2}}{|x|^{4}} dx \tag{6}$$

and the constants are optimal.

It's worth noting that $C_N(B)$ is positive when $N \ge 7$, negative when N = 5, 6, see Figure 1. Hence, in lower dimensions, the following Hardy-Rellich inequality (with a boundary remainder term) holds

$$\int_{B} |D^{2}u|^{2} dx > \frac{N^{2}(N-4)^{2}}{16} \int_{B} \frac{u^{2}}{|x|^{4}} dx \left(+|C_{N}| \int_{\partial B} u_{\nu}^{2} d\sigma \right) \quad \text{for all } u \in H^{2} \cap H_{0}^{1}(B) \setminus \{0\},$$

where $|C_5| = \sqrt{13/2} - 2$ and $|C_6| = \sqrt{10} - 3$. While, if $N \ge 7$, the "best" constant h(0) is no longer the classical Hardy-Rellich one and we prove

$$\int_{B} |D^{2}u|^{2} dx \ge \frac{(N-1)(N-5)(2N-5)}{4} \int_{B} \frac{u^{2}}{|x|^{4}} dx \quad \text{for all } u \in H^{2} \cap H^{1}_{0}(B).$$
(7)

Here, $\frac{(N-1)(N-5)(2N-5)}{4} < \frac{N^2(N-4)^2}{16}$ and the equality in (7) is achieved by a unique positive radial function, see Theorem 2 in Section 5.

The plan of the paper is the following: in Section 2 we prove existence and positivity of solutions to a suitable biharmonic linear problem. The boundary conditions considered arise from (5). In Section 3 we state our statement about the family of inequalities (5) while, in Section 4, we put its proof. At last, in Section 5, we focus on the case $\Omega = B$ and we prove (6) and (7). The Appendix contains the proof of some estimates we need in Section 3.

Figure 1: The plot of the map $(-c_0, +\infty) \in c \mapsto h(c)$ when $\Omega = B$, N = 5 or N = 8 (right). H_5 and H_8 denote the Hardy-Rellich constants, $c_0(B) = 1$.

2 Preliminaries

Let $\Omega \subset \mathbb{R}^N (N \ge 2)$ be a Lipschitz bounded domain which satisfies a uniform outer ball condition. We recall the definition of the first *Steklov* eigenvalue

$$d_0 = d_0(\Omega) := \inf_{H^2 \cap H_0^1(\Omega) \setminus H_0^2(\Omega)} \frac{\int_{\Omega} |\Delta u|^2 \, dx}{\int_{\partial \Omega} \, u_{\nu}^2 \, d\sigma} \,. \tag{8}$$

From the compactness of the embedding $H^2(\Omega) \subset H^1(\partial\Omega)$, the infimum in (8) is attained. Furthermore, due to [6], we know that the corresponding minimizer is unique, positive in Ω and solves the equation $\Delta^2 u = 0$ in Ω , subject the conditions $u = 0 = \Delta u - d_0 u_{\nu}$ on $\partial\Omega$.

Next, we assume that $\partial \Omega \in C^2$ and we denote with $|\Omega|$ and $|\partial \Omega|$ the Lebesgue measures of Ω and $\partial \Omega$. There holds

$$d_0(\Omega) \le \frac{|\partial \Omega|}{|\Omega|} \,,$$

see, for instance, [10, Theorem 1.8]. Let K(x) denote the mean curvature of $\partial \Omega$ at x,

$$\underline{K} := \min_{\partial \Omega} K(x) \quad \text{and} \quad \overline{K} := \max_{\partial \Omega} K(x) \,. \tag{9}$$

If Ω is convex, it was proved in [10, Theorem 1.7] that

$$d_0(\Omega) \ge N\underline{K} \,. \tag{10}$$

Notice that we adopt the convention that K is positive where the domain is convex. Finally, from [14, Theorem 3.1.1.1] we recall

$$\int_{\Omega} |\Delta u|^2 dx = \int_{\Omega} |D^2 u|^2 dx + (N-1) \int_{\partial \Omega} K(x) u_{\nu}^2 d\sigma \quad \text{for all } u \in H^2 \cap H^1_0(\Omega).$$
(11)

Identity (11) is the basic ingredient to prove

Proposition 1. Let Ω be a bounded domain with C^2 boundary, let c_0 and d_0 be as in (4) and (8), \overline{K} and \underline{K} as in (9). There holds

$$\max\left\{d_0(\Omega) - (N-1)\overline{K}; \frac{d_0(\Omega)}{N}\right\} \le c_0(\Omega) \le d_0(\Omega) - (N-1)\underline{K}.$$
(12)

Furthermore, if Ω is convex, then

- (i) $c_0 \geq \underline{K}$ and the equality holds if and only if Ω is a ball;
- (ii) the minimizer u_0 of (4) is unique (up to a multiplicative constant) and, if $u_0(x_0) > 0$ for some $x_0 \in \Omega$, then $u_0 > 0$, $-\Delta u_0 \ge 0$ in Ω and $(u_0)_{\nu} < 0$ on $\partial \Omega$.

If $\Omega = B$, the unit ball in \mathbb{R}^N , since $K(x) \equiv 1$, Proposition 1-(i) yields $c_0(B) = 1$.

Proof. The estimates in (12) follow by combining (11) with (4) and (8). For the lower bound $d_0(\Omega)/N$, we exploit the fact that $\|D^2 u\|_2^2 \ge 1/N \|\Delta u\|_2^2$, for every $u \in H^2(\Omega) \cap H_0^1(\Omega)$. Let Ω be convex, by (10) and (12), $c_0 \ge \underline{K}$. If $c_0 = \underline{K}$, by (10) and (12), we deduce that $d_0 = N\underline{K}$ and, by [10, Theorem 1.7], Ω must be a ball. On the other hand, if Ω is a ball, then $\underline{K} = \overline{K}$ and, by (12), we get $c_0 = d_0 - (N-1)\underline{K}$. Since, from [10], $d_0 = N\underline{K}$, statement (*i*) follows at once. To prove statement (*ii*), by (11), we write (12) as

$$c_0 = \inf_{H^2 \cap H_0^1(\Omega) \setminus H_0^2(\Omega)} \frac{\int_{\Omega} |\Delta u|^2 \, dx - (N-1) \int_{\partial \Omega} K(x) \, u_\nu^2 \, d\sigma}{\int_{\partial \Omega} \, u_\nu^2 \, d\sigma} \,. \tag{13}$$

Let u_0 be a minimizer to c_0 . As in [6], we define $\bar{u}_0 \in H^2 \cap H^1_0(\Omega)$ as the unique (weak) solution to

$$\begin{cases} -\Delta \bar{u}_0 = |\Delta u_0| & \text{ in } \Omega\\ \bar{u}_0 = 0 & \text{ on } \partial \Omega. \end{cases}$$

By the maximum principle for superharmonic functions,

 $|u_0| \leq \overline{u}_0$ in Ω and $|(u_0)_{\nu}| \leq |(\overline{u}_0)_{\nu}|$ on $\partial \Omega$.

If Δu_0 changes sign, then the above inequalities are strict and, since K is positive, by (13), we infer

$$c_{0} = \frac{\int_{\Omega} |\Delta u_{0}|^{2} dx - (N-1) \int_{\partial \Omega} K(x) (u_{0})_{\nu}^{2} d\sigma}{\int_{\partial \Omega} (u_{0})_{\nu}^{2} d\sigma} > \frac{\int_{\Omega} |\Delta \bar{u}_{0}|^{2} dx - (N-1) \int_{\partial \Omega} K(x) (\bar{u}_{0})_{\nu}^{2} d\sigma}{\int_{\partial \Omega} (\bar{u}_{0})_{\nu}^{2} d\sigma},$$

a contradiction. This noticed, a further application of the maximum principle yields the positivity issue. Uniqueness follows by standard arguments. That is, by exploiting the fact that a (positive) minimizer to (4) solves the linear problem (15), here below, for $f \equiv 0$ and $c = -c_0$.

Remark 1. The problem of dealing with domains having a nonsmooth boundary goes beyond the purposes of the present paper. We limit ourselves to make a couple of remarks on the topic.

If we drop the regularity assumption on $\partial\Omega$, identity (11) is, in general, no longer true. Hence, the previous proof cannot be carried out. Assume that $\Omega \subset \mathbb{R}^N (N \geq 2)$ is a bounded domain with Lipschitz boundary which satisfies an outer ball condition. Due to [3], we know that there exist a sequence of smooth domains $\Omega_m \nearrow \Omega$, with $\partial\Omega_m \in C^{\infty}$, and a real constant C such that the mean curvatures satisfy $K_m(x) \geq C$, for every $x \in \partial\Omega$ and $m \geq 1$. Next, for $u \in H^2 \cap H_0^1(\Omega)$ fixed, define the sequence of functions $\{u_m\}_{m\geq 1}$ such that $u_m \in H^2 \cap H_0^1(\Omega)$ solves

$$\begin{cases} -\Delta u_m = -\Delta u & \text{ in } \Omega_m \\ u_m = 0 & \text{ on } \partial \Omega_m \end{cases}$$

When $C \geq 0$, from (11), it is readily deduced that

$$\int_{\Omega_m} |D^2 u_m|^2 \, dx \le \int_{\Omega} |\Delta u|^2 \, dx$$

while, if C < 0, we get

$$\int_{\Omega_m} |D^2 u_m|^2 \, dx \le \int_{\Omega} |\Delta u|^2 \, dx - (N-1)C \int_{\partial \Omega_m} (u_m)_{\nu}^2 \, d\sigma \le \left(1 + \frac{(N-1)|C|}{d_0(\Omega)}\right) \int_{\Omega} |\Delta u|^2 \, dx \, ,$$

where d_0 is as in (8). Then, by a standard weak convergence argument, see [14, Theorem 3.2.1.2], one concludes that

$$\int_{\Omega} |D^2 u|^2 dx \le (1 + \gamma(\Omega)) \int_{\Omega} |\Delta u|^2 dx \qquad \text{for all } u \in H^2 \cap H^1_0(\Omega) \,, \tag{14}$$

where $\gamma(\Omega) = 0$, if $C \ge 0$, and $\gamma(\Omega) = ((N-1)|C|)/d_0(\Omega)$, otherwise.

Obviously, (14) does not replace (11). However, it can be exploited to obtain the first part of Proposition 1 for domains satisfying the above mentioned (weaker) regularity assumptions.

For every $c > -c_0$ and for $f \in L^2(\Omega)$, we will consider the linear problem

$$\begin{cases} \Delta^2 u = f(x) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega\\ u_{\nu\nu} + cu_{\nu} = 0 & \text{on } \partial\Omega. \end{cases}$$
(15)

This choice of boundary conditions will be convenient in the next Section.

By solutions to (15) we mean weak solutions, that is functions $u \in H^2 \cap H^1_0(\Omega)$ such that

$$\int_{\Omega} D^2 u \cdot D^2 v \, dx + c \int_{\partial \Omega} u_{\nu} \, v_{\nu} \, d\sigma = \int_{\Omega} f \, v \, dx \qquad \text{for all } v \in H^2 \cap H^1_0(\Omega). \tag{16}$$

Indeed, formally, two integrations by parts give

$$\int_{\Omega} D^2 u \cdot D^2 v \, dx = \int_{\Omega} \Delta^2 u \, v \, dx + \int_{\partial \Omega} u_{\nu\nu} \, v_{\nu} \, d\sigma \qquad \text{for all } v \in H^2 \cap H^1_0(\Omega) \,, \tag{17}$$

see [7, formula (36)]. Then, plugging (17) into (16), by standard density arguments, we infer that u solves (15) pointwise. Since the boundary conditions in (15) have the same principal part of Navier boundary conditions ($u = 0 = \Delta u$ on $\partial\Omega$), they must satisfy the so-called *complementing conditions* [4]. See also [13, formula (2.22)]. Hence, standard elliptic regularity theory applies. Therefore, if $\partial\Omega \in C^4$ and $f \in L^2(\Omega)$, then $u \in H^4(\Omega)$ and (17) makes sense.

Solutions to (16) correspond to critical points of the functional

$$I_c(u) := \frac{1}{2} \left(\int_{\Omega} |D^2 u|^2 \, dx + c \int_{\partial \Omega} u_{\nu}^2 \, d\sigma \right) - \int_{\Omega} f u \, dx \qquad \text{for } u \in H^2 \cap H^1_0(\Omega) \, .$$

For $c > -c_0$, I_c turns to be coercive. Since it is also strictly convex, there exists a unique critical point u_c which is the global minimum of I_c . When $\partial \Omega \in C^2$, thanks to (11), I_c writes

$$I_c(u) = \frac{1}{2} \left(\int_{\Omega} |\Delta u|^2 \, dx - \int_{\partial \Omega} \alpha_c(x) \, u_{\nu}^2 \, d\sigma \right) - \int_{\Omega} f u \, dx \qquad \text{for } u \in H^2 \cap H^1_0(\Omega) \,,$$

where $\alpha_c(x) := (N-1)K(x) - c$, for every $x \in \partial \Omega$. Then, the minimizer u_c to I_c also satisfies

$$\int_{\Omega} \Delta u_c \,\Delta v \,dx - \int_{\partial\Omega} \alpha_c(x) \,(u_c)_{\nu} \,v_{\nu} \,d\sigma = \int_{\Omega} f \,v \,dx \qquad \text{for all } v \in H^2 \cap H^1_0(\Omega) \,. \tag{18}$$

From [13, Definition 5.21], we know that (18) is the definition of weak solutions to the equation $\Delta^2 u = f$ in Ω , subject to Steklov boundary conditions (with nonconstant parameter α_c). Namely, $u = 0 = \Delta u - \alpha_c(x) u_{\nu}$ on $\partial\Omega$. Arguing as in the proof of [13, Theorem 5.22], if $\alpha_c \ge 0$ and $0 \ne f \ge 0$, we infer that the minimizer u_c to I_c is positive. Furthermore, $-\Delta u_c \ge 0$ in Ω and $(u_c)_{\nu} < 0$ on $\partial\Omega$. We conclude that Δ^2 , subject to the boundary conditions in (15), satisfies the positivity preserving property (p.p.p. in the following) if

$$-c_0 < c \le (N-1)K(x)$$
 for every $x \in \partial\Omega$.

Notice that, if only the positivity of u is concerned, the lower bound for p.p.p. $(\alpha_c \ge 0)$ can be weakened, see [13, Theorem 5.22].

We collect the conclusions so far drawn in the following

Proposition 2. Let $\Omega \subset \mathbb{R}^N (N \ge 2)$ be a Lipschitz bounded domain and c_0 be as in (4). For every $c > -c_0$, we have

- (i) for every $f \in L^2(\Omega)$, problem (15) admits a unique solution $u \in H^2 \cap H^1_0(\Omega)$. Moreover, if $f \in H^k(\Omega)$ and $\partial \Omega \in C^{k+4}$ for some $k \ge 0$, then $u \in H^{k+4}(\Omega)$.
- (ii) Assume, furthermore, that Ω is convex, $\partial \Omega \in C^2$ and \underline{K} is as in (9). Then, for every $c \in (-c_0, (N-1)\underline{K}]$, if $f \ge 0$ ($f \ne 0$) in Ω , the solution u of (15) satisfies u > 0, $-\Delta u \ge 0$ in Ω and $u_{\nu} < 0$ on $\partial \Omega$.

Remark 2. The convexity assumption in Proposition 2-(*ii*) is only needed to assure the non-emptiness of the interval $(-c_0, (N-1)\underline{K}]$ in which p.p.p. holds. If Ω is not convex, by (12), the same goal can be achieved by assuming that Ω satisfies one of the following inequalities

$$N(N-1)|\underline{K}| < d_0(\Omega) \quad or \quad (N-1)(\overline{K}+|\underline{K}|) < d_0(\Omega).$$

$$\tag{19}$$

Compare with Proposition 3 in the Appendix.

3 Hardy-Rellich type inequalities with a boundary term

Before stating our results, we recall some facts from [5]. Set $H_N := \frac{N^2(N-4)^2}{16}$. For every bounded domain Ω such that $0 \in \Omega$ and for every $h \in [0, H_N]$, we know that

$$\int_{\Omega} |\Delta u|^2 \, dx \ge h \int_{\Omega} \frac{u^2}{|x|^4} \, dx + d_1(h) \int_{\partial \Omega} u_{\nu}^2 \, d\sigma \qquad \text{for all } u \in H^2 \cap H^1_0(\Omega) \,. \tag{20}$$

The optimal constant $d_1(h)$ is achieved, if and only if $h < H_N$, by a unique positive function $u_h \in H^2 \cap H_0^1(\Omega)$. Furthermore, $0 \le d_1(h) < d_1(0) = d_0$, with d_0 as in (8). When $d_1(H_N) > 0$ (this was established only for strictly starshaped domains, namely such that $\min_{\partial\Omega} (x \cdot \nu) > 0$), (20) readily gives the Hardy-Rellich inequality (3) (for $u \in H^2 \cap H_0^1(\Omega)$) plus a boundary remainder term. See also the Appendix.

Let c_0 be as in (4). To obtain (5), for $c > -c_0$, we consider the minimization problem

$$h(c) := \inf_{H^2 \cap H^1_0(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |D^2 u|^2 \, dx + c \int_{\partial \Omega} (u_{\nu})^2 \, d\sigma}{\int_{\Omega} \frac{u^2}{|x|^4} \, dx} \,.$$
(21)

Clearly, $h(c) \ge 0$ and $h(-c_0) = 0$. On the other hand, since $\int_{\Omega} |D^2 u|^2 dx = \int_{\Omega} |\Delta u|^2 dx$, for all $u \in H_0^2(\Omega)$, (3) yields $h(c) \le H_N$.

Formally, for every $c > -c_0$ fixed, the Euler equation corresponding to (21) is the eigenvalue problem

$$\begin{cases} \Delta^2 u = h \frac{u}{|x|^4} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega\\ u_{\nu\nu} + cu_{\nu} = 0 & \text{on } \partial\Omega. \end{cases}$$
(22)

Indeed, by solutions to (22) we mean functions $u \in H^2 \cap H^1_0(\Omega)$ such that

$$\int_{\Omega} D^2 u \, D^2 v \, dx + c \int_{\partial \Omega} u_{\nu} \, v_{\nu} \, d\sigma = h \int_{\Omega} \frac{uv}{|x|^4} \, dx \qquad \text{for all } v \in H^2 \cap H^1_0(\Omega) \,, \tag{23}$$

see Section 2. By elliptic regularity, any solution to (22) belongs to $C^{\infty}(\Omega \setminus \{0\})$, whereas, up to the boundary, the solution is smooth as the boundary, see again Section 2. We prove

Theorem 1. Let $\Omega \subset \mathbb{R}^N$ $(N \ge 5)$ be a bounded domain such that $0 \in \Omega$ and $\partial \Omega \in C^2$. Let c_0 be as in (4) and h(c) be as in (21). If $c > -c_0$, then h(c) > 0 and

$$\int_{\Omega} \left| D^2 u \right|^2 dx + c \int_{\partial \Omega} u_{\nu}^2 dS \ge h(c) \int_{\Omega} \frac{u^2}{|x|^4} dx \qquad \text{for all } u \in H^2 \cap H^1_0(\Omega) \,. \tag{24}$$

Furthermore, there exists $C_N = C_N(\Omega) \in (-c_0, (N-1)\overline{K} - d_1(H_N)]$, where \overline{K} is as in (9) and $d_1(h)$ is as in (20), such that

(i) h(c) is increasing, concave and continuous with respect to $c \in (-c_0, C_N]$;

(ii) $h(c) = H_N$ for every $c \ge C_N$.

Moreover, the infimum in (21) is not achieved if $c > C_N$, achieved if $-c_0 < c < C_N$ and the minimizer $u_c \in H^2 \cap H^1_0(\Omega)$ solves (22) with h = h(c).

Let now Ω be such that the following inequality is satisfied

$$(N-1)(\overline{K}-\underline{K}) \le d_1(H_N) \quad for \ every \ N \ge 5,$$
(25)

where <u>K</u> is as in (9). Then, $h(C_N)(=H_N)$ is not achieved. Furthermore, for every $-c_0 < c < C_N$, the minimizer u_c of h(c) is unique, strictly positive, superharmonic in Ω and $(u_c)_{\nu} < 0$ on $\partial\Omega$.

Condition (25) excludes domains for which the curvature of the boundary has wide oscillations. This requirement is trivially satisfied if Ω is a ball ($\overline{K} = \underline{K}$). On the other hand, if Ω is not a ball, (25) yields $d_1(H_N) > 0$. To our knowledge, this issue has only been proved for strictly starshaped domains, see [5]. In the Appendix, by slightly modifying the proof of [5, Theorem 1], we provide an explicit constant $D_N = D_N(\Omega) > 0$ such that $d_1(H_N) \ge m D_N$, where $m := \min_{\partial \Omega} (x \cdot \nu) > 0$. Hence, when Ω is strictly starshaped, in stead of (25), one may check that

$$(N-1)(\overline{K}-\underline{K}) \le m D_N \text{ for every } N \ge 5,$$

where D_N comes from (42) with $h = H_N$. Theorem 1 as the following

Corollary 1. Let $\Omega \subset \mathbb{R}^N$ $(N \geq 5)$ be a bounded domain such that $0 \in \Omega$ and $\partial \Omega \in C^2$. There exists an optimal constant $C_N \in (-c_0, (N-1)\overline{K} - d_1(H_N)]$ such that

$$\int_{\Omega} \left| D^2 u \right|^2 \, dx + C_N \int_{\partial \Omega} \, u_{\nu}^2 \, dS \ge \frac{N^2 (N-4)^2}{16} \int_{\Omega} \frac{u^2}{|x|^4} \, dx \quad \forall \, u \in H^2 \cap H^1_0(\Omega) \,. \tag{26}$$

Furthermore, if Ω satisfies (25), the inequality in (26) is strict (for $u \neq 0$).

Remark 3. When $\Omega = B$, the unit ball in $\mathbb{R}^N (N \ge 5)$, C_N can be computed explicitly and we get

$$C_N(B) = N - 1 - d_1(H_N) = N - 3 - \frac{\sqrt{2(N^2 - 4N + 8)}}{2},$$

see Section 5 for the details. Hence, in this case, the upper bound for C_N (given in Corollary 1) is sharp. As already remarked in the Introduction, $C_N(B) > 0$ if and only if $N \ge 7$. In the next Section (see, Lemma 2) we show that, if Ω is such that the following inequality is satisfied

$$(N-1)(\overline{K}-\underline{K}) < d_0 - d_1(H_N - \delta) \quad \text{for every } N \ge 5 \text{ and for some } \delta > 0, \qquad (27)$$

then $C_N \ge (N-1)\underline{K} - d_1(H_N)$. When Ω is convex, this estimate supports the conjecture

there exists
$$\overline{N} = \overline{N}(\Omega) \ge 5$$
: $C_N(\Omega) > 0$, for $N \ge \overline{N}$.

This issue could be proved by providing a suitable upper bound for $d_1(H_N)$. Notice that, in view of (10), the estimate $d_1(H_N) < d_0(\Omega)$ does not suffices to deduce the sign of C_N .

On the other hand, if (25) holds and $\underline{K} < 0$ (Ω is not convex), the upper bound for C_N in Corollary 1 yields $C_N < 0$, for every $N \ge 5$.

4 Proof of Theorem 1 and Corollary 1

We use the same notations of the previous section. First we prove

Lemma 1. Let $\Omega \subset \mathbb{R}^N$ $(N \ge 5)$ be a Lipschitz bounded domain which satisfies a uniform outer ball condition and such that $0 \in \Omega$. If $h(c) < H_N$ for some $c > -c_0$, then the infimum in (21) is attained. Moreover, a minimizer weakly solves problem (22) for h = h(c).

Proof. Let $\{u_m\} \subset H^2 \cap H^1_0(\Omega)$ be a minimizing sequence for h(c) such that

$$\int_{\Omega} \frac{u_m^2}{|x|^4} \, dx = 1. \tag{28}$$

Then,

$$\int_{\Omega} |D^2 u_m|^2 dx + c \int_{\partial \Omega} (u_m)_{\nu}^2 d\sigma = h(c) + o(1) \quad \text{as } m \to +\infty.$$
⁽²⁹⁾

For $c > -c_0$, this shows that $\{u_m\}$ is bounded in $H^2 \cap H^1_0(\Omega)$. Exploiting the compactness of the trace map $H^2(\Omega) \to H^1(\partial\Omega)$, we conclude that there exists $u \in H^2 \cap H^1_0(\Omega)$ such that

$$u_m \rightharpoonup u \quad \text{in } H^2 \cap H^1_0(\Omega), \qquad (u_m)_\nu \to u_\nu \quad \text{in } L^2(\partial\Omega), \qquad \frac{u_m}{|x|^2} \to \frac{u}{|x|^2} \quad \text{in } L^2(\Omega),$$
(30)

up to a subsequence.

Now, from [10] we know that the space $H^2 \cap H^1_0(\Omega)$, endowed with (2), admits the following orthogonal decomposition

$$H^2 \cap H^1_0(\Omega) = W \oplus H^2_0(\Omega), \qquad (31)$$

where W is the completion of

$$V = \left\{ v \in C^{\infty}(\overline{\Omega}) : \Delta^2 v = 0, \ v = 0 \text{ on } \partial\Omega \right\}$$

with respect to the norm induced by (2). Furthermore, if $u \in H^2 \cap H^1_0(\Omega)$ and if u = w + z is the corresponding orthogonal decomposition with $w \in W$ and $z \in H^2_0(\Omega)$, then w and z are weak solutions

$$\begin{cases} \Delta^2 w = 0 & \text{in } \Omega \\ w = 0 & \text{on } \partial \Omega \\ (w)_{\nu} = u_{\nu} & \text{on } \partial \Omega \end{cases} \quad \text{and} \quad \begin{cases} \Delta^2 z = \Delta^2 u & \text{in } \Omega \\ z = 0 & \text{on } \partial \Omega \\ (z)_{\nu} = 0 & \text{on } \partial \Omega \\ \end{cases}$$

By this, the functions u_m , as given at the beginning, may be written as $u_m = w_m + z_m$, where $w_m \in W$ and $z_m \in H^2_0(\Omega)$. Assume now that (30) holds with $u \equiv 0$. By the first of the above Dirichlet problems, we deduce that $w_m \to 0$ in $H^2 \cap H^1_0(\Omega)$ and, in particular, that $\frac{w_m}{|x|^2} \to 0$ in $L^2(\Omega)$. This yields

$$\int_{\Omega} |D^2 u_m|^2 dx = \int_{\Omega} |D^2 z_m|^2 dx + o(1) = \int_{\Omega} |\Delta z_m|^2 dx + o(1)$$
(32)

and

$$\int_{\Omega} \frac{u_m^2}{|x|^4} \, dx = \int_{\Omega} \frac{z_m^2}{|x|^4} \, dx + o(1) \, dx$$

Then, by (3), (28)-(29)-(30) and the fact that $h(c) < H_N$, we infer that

$$H_N > h(c) + o(1) = \int_{\Omega} |D^2 u_m|^2 \, dx + o(1) = \int_{\Omega} |\Delta z_m|^2 \, dx + o(1) \ge H_N + o(1) \,,$$

a contradiction. Hence, $u \neq 0$. If we set $v_m := u_m - u$, from (30) we obtain

$$v_m \to 0 \quad \text{in } H^2 \cap H^1_0(\Omega), \qquad (v_m)_\nu \to 0 \quad \text{in } L^2(\partial\Omega), \qquad \frac{v_m}{|x|^2} \to 0 \quad \text{in } L^2(\Omega),$$
(33)

In view of (33), we may rewrite (29) as

$$\int_{\Omega} |D^2 u|^2 \, dx + \int_{\Omega} |D^2 v_m|^2 \, dx + c \int_{\partial \Omega} u_{\nu}^2 \, d\sigma = h(c) + o(1). \tag{34}$$

Moreover, by (28), (33) and the Brezis-Lieb Lemma [8], we have

$$\begin{split} 1 &= \int_{\Omega} \frac{u_m^2}{|x|^4} \, dx = \int_{\Omega} \frac{u^2}{|x|^4} \, dx + \int_{\Omega} \frac{v_m^2}{|x|^4} \, dx + o(1) \le \int_{\Omega} \frac{u^2}{|x|^4} \, dx + \frac{1}{H_N} \, \int_{\Omega} |\Delta v_m|^2 \, dx + o(1) \\ &= \int_{\Omega} \frac{u^2}{|x|^4} \, dx + \frac{1}{H_N} \, \int_{\Omega} |D^2 v_m|^2 \, dx + o(1) \,, \end{split}$$

where the last equality is achieved by exploiting the decomposition (31), as explained above. Since $h(c) \ge 0$, the just proved inequality gives

$$h(c) \le h(c) \int_{\Omega} \frac{u^2}{|x|^4} dx + \frac{h(c)}{H_N} \int_{\Omega} |D^2 v_m|^2 dx + o(1).$$

By combining this with (34), we obtain

$$\int_{\Omega} |D^2 u|^2 \, dx + c \int_{\partial \Omega} u_{\nu}^2 \, d\sigma$$

$$\leq h(c) \int_{\Omega} \frac{u^2}{|x|^4} \, dx + \left(\frac{h(c)}{H_N} - 1\right) \int_{\Omega} |D^2 v_m|^2 \, dx + o(1) \leq h(c) \int_{\Omega} \frac{u^2}{|x|^4} \, dx + o(1)$$

which shows that $u \neq 0$ is a minimizer.

Remark 4. If $\partial \Omega \in C^2$, to deduce (32), one may exploit (11) instead of the decomposition (31). We leave here this (longer) proof since it highlights that the regularity assumption on $\partial \Omega$ (in the statement of Theorem 1) is not due to the existence issue.

Next, we show

Lemma 2. Let $\Omega \subset \mathbb{R}^N$ $(N \ge 5)$ be a bounded domain, with $\partial \Omega \in C^2$ and such that $0 \in \Omega$. The map $(-c_0, +\infty) \ni c \mapsto h(c)$ is nondecreasing (increasing when achieved), concave, hence, continuous and

$$h(c) = H_N$$
 for every $c \ge (N-1)\overline{K} - d_1(H_N)$.

Moreover, if Ω satisfies (27) and $H_N - \delta < h < H_N$, then

$$h(c) \le h$$
 for every $-c_0 < c \le (N-1)\underline{K} - d_1(h)$.

Proof. The properties of h(c) follow from its definition, we only need to prove the estimates. By (11), the infimum in (21) may be rewritten as

$$h(c) = \inf_{u \in H^2 \cap H^1_0(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\Delta u|^2 \, dx - \int_{\partial \Omega} \alpha_c(x) (u_{\nu})^2 \, d\sigma}{\int_{\Omega} \frac{u^2}{|x|^4} \, dx},$$
(35)

where $\alpha_c(x) = (N-1)K(x) - c$, as defined in Section 2. Then, if $\alpha_c(x) \leq d_1(H_N)$ for every $x \in \partial \Omega$, by (20), $h(c) \equiv H_N$ and the first estimate follows. Similarly, if $\alpha_c(x) \geq d_1(h)$ for every $x \in \partial \Omega$, by (20), we get the second estimate. Notice that assumption (27), suitably combined with (12), ensures that $(N-1)\underline{K} - d_1(h) > -c_0$, for every $H_N - \delta < h < H_N$.

By Lemma 2, the number

$$C_N := \inf\{c > -c_0 : h(c) = H_N\}$$
(36)

is well-defined. Furthermore, we have

$$(N-1)\underline{K} - d_1(H_N) \le C_N \le (N-1)\overline{K} - d_1(H_N), \qquad (37)$$

where the lower bound has been proved for Ω satisfying (27). Then, we show

Lemma 3. Let $\Omega \subset \mathbb{R}^N$ $(N \geq 5)$ be a bounded domain such that $0 \in \Omega$ and $\partial \Omega \in C^2$. Let C_N be as in (36), then the infimum in (21) is not achieved if $c > C_N$, achieved if $-c_0 < c < C_N$ and the minimizer (weakly) solves problem (22) for h = h(c).

Assume, furthermore, that Ω satisfies (25). Then, for every $-c_0 < c < C_N$, h(c) is achieved by a unique positive function u_c which satisfies $-\Delta u_c \ge 0$ in Ω and $(u_c)_{\nu} < 0$ on $\partial\Omega$ while, $h(C_N)$ is not achieved.

Proof. The first part of the statement comes from the definition of C_N combined with the previous lemmata. To prove the second part, we write (21) as in (35). From (25), combined with (37), we have that $C_N \leq (N-1)\underline{K}$. Then, $\alpha_c(x) \geq 0$ for every $x \in \partial\Omega$ and for every $-c_0 < c < C_N$. Hence, we may argue as in the proof of Proposition 1-(*ii*), to deduce the positivity of a minimizer u_c , together with the fact that $-\Delta u_c \geq 0$ in Ω and $(u_c)_{\nu} < 0$ on $\partial\Omega$. Since problem (22) is linear, once the positivity of a minimizer is known, the proof of its uniqueness is standard.

It remains to show that h(c) is not achieved for $c = C_N$. If a minimizer of $h(C_N)$ exists, it would be a positive and superharmonic solution, vanishing on $\partial\Omega$, to the equation in (22) with $h = H_N$. Then, the same argument of [2, Theorem 2.2- (*ii*)] gives a contradiction.

The proofs of Theorem 1 and Corollary 1 follow by combining the statements of the above lemmata.

5 Radial setting

When $\Omega = B$, the unit ball in $\mathbb{R}^N (N \ge 5)$, the mean curvature $K \equiv 1$. Then, for what remarked in Section 2, problems (20) and (21) become almost equivalent. Indeed, let u_h be the function achieving the equality in (20), for some $0 \le h < H_N$. Then, by (35), u_h is also the minimizer of h(c) for $c = c_h = N - 1 - d_1(h)$ and $h(c_h) = h$ (or, equivalently, u_h achieves the equality in (5)). Furthermore, the map $[0, H_N) \ni h \mapsto c_h$ is increasing, $c_0 = -1$ and $c_{H_N} = C_N$, where C_N is as in (37).

We briefly sketch the computations to determine (explicitly) the minimizer of h(c). As in [5, Section 5], we introduce an auxiliary parameter $0 \le \alpha \le N - 4$ and we set

$$H(\alpha) := \frac{\alpha(\alpha+4)(\alpha+4-2N)(\alpha+8-2N)}{16}.$$
(38)

The map $\alpha \mapsto H(\alpha)$ is increasing, H(0) = 0 and $H(N-4) = H_N$ so that $0 \leq H(\alpha) \leq H_N$ for all $\alpha \in [0, N-4]$. For $\alpha < N-4$, let $\gamma_N(\alpha) := \sqrt{N^2 - \alpha^2 + 2\alpha(N-4)}$ and

$$\overline{u}_{\alpha}(x) := |x|^{-\frac{\alpha}{2}} - |x|^{\frac{4-N+\gamma_N(\alpha)}{2}} \in H^2 \cap H^1_0(B) \,.$$

The function \overline{u}_{α} is a *positive* solution to problem (22) with $h = H(\alpha) < H_N$ and $c = c(\alpha)$, where

$$c(\alpha) := \frac{\alpha^2 - \alpha(N-5) - N^2 + 3N - 4 + (N-3)\gamma_N(\alpha)}{\alpha + 4 - N + \gamma_N(\alpha)}.$$
(39)

The map $[0, N-4] \ni \alpha \mapsto c(\alpha)$ is increasing, c(0) = -1 and

$$C_N = c(N-4) = N - 3 - \frac{\sqrt{2(N^2 - 4N + 8)}}{2}$$

Since the first eigenfunction $u_{h(c)}$ of problem (22) is unique (by Lemma 3), when $\Omega = B$, it must be a radial function. Furthermore, $u_{h(c)}$ turns to be the only positive eigenfunction. To see this, let $v_{\bar{h}(c)}$ be another positive eigenfunction, corresponding to some $\bar{h}(c) > h(c)$. Write (23), first with $u_{h(c)}$ and test with $v_{\bar{h}(c)}$, then with $v_{\bar{h}(c)}$ and test with $u_{h(c)}$. Subtracting, we get

$$h(c) \int_B \frac{u_{h(c)} v_{\bar{h}(c)}}{|x|^4} \, dx = \bar{h}(c) \int_B \frac{u_{h(c)} v_{\bar{h}(c)}}{|x|^4} \, dx \,,$$

a contradiction. By this, we conclude that $u_{h(c)} = \overline{u}_{\alpha}$, where $c = c(\alpha)$. Namely, \overline{u}_{α} is the minimizer of $h(c(\alpha)) = H(\alpha)$ for every $\alpha \in [0, N-4)$. In turn, this shows

Theorem 2. For every $0 \le \alpha \le N - 4$, there holds

$$\int_{B} |D^{2}u|^{2} dx + c(\alpha) \int_{\partial B} u_{\nu}^{2} d\sigma \geq H(\alpha) \int_{B} \frac{u^{2}}{|x|^{4}} dx \quad \text{ for all } u \in H^{2} \cap H^{1}_{0}(B) \,,$$

where $H(\alpha)$ and $c(\alpha)$ are defined in (38) and (39). Furthermore, the best constant $H(\alpha)$ is attained if and only if $0 \le \alpha < N - 4$, by multiples of the function

$$\overline{u}_{\alpha}(x) = |x|^{-\frac{\alpha}{2}} - |x|^{\frac{4-N+\sqrt{N^2 - \alpha^2 + 2\alpha(N-4)}}{2}}.$$

As a Corollary of Theorem 2, we readily get (6) and (7). We just remark that, to get (7), one has to determine the unique solution α_N to the equation

$$c(\alpha) = 0$$
 for $\alpha \in (0, N-4)$ and $N \ge 7$.

By (39), we have that

$$c(\alpha) = 0 \quad \Leftrightarrow \quad \alpha^4 - 2(N-5)\alpha^3 - 2(5N-13)\alpha^2 + 4(N^2 - 7N + 8) + 8(N^2 - 3N + 2) = 0$$

and the above polynomial can be factorized as follows

$$(\alpha + 1 - \sqrt{2N - 1})(\alpha + 1 + \sqrt{2N - 1})(\alpha - N + 4 - \sqrt{N^2 - 4N + 8})(\alpha - N + 4 + \sqrt{N^2 - 4N + 8}).$$

Then, since $\alpha \in (0, N - 4)$ and $N \geq 7$, we obtain the unique solution $\alpha_N = \sqrt{2N - 1} - 1$. Finally, $H(\alpha_N)$, with $H(\alpha)$ as in (38), is the optimal constant in (7). See also Figure 1 for the trace of the curve $(0, N - 4) \ni \alpha \mapsto (c(\alpha), H(\alpha))$ (or, equivalently, the plot of the map $(-c_0, +\infty) \ni c \mapsto h(c)$), when N = 5 and N = 8.

Appendix

Let $\Omega \subset \mathbb{R}^N (N \geq 5)$ be a bounded domain such that $0 \in \Omega$ and $\partial \Omega \in C^2$. Denote by $|\Omega|$ its *N*-dimensional Lebesgue measure and by $\omega_N = |B|$, where *B* is the unit ball. Finally, set $\gamma = j_0^2 \approx 2.4^2$, where j_0 is the first positive zero of the Bessel function J_0 , and

$$A_N = A_N(\Omega) := \frac{N(N-4)}{2} \gamma \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} .$$
(40)

Let $H_N := \frac{N^2(N-4)^2}{16}$. From [11, Theorem 2], we know that

$$\int_{\Omega} |\Delta u|^2 \, dx \ge H_N \int_{\Omega} \frac{u^2}{|x|^4} \, dx + A_N \int_{\Omega} \frac{u^2}{|x|^2} \, dx \quad \text{for all } u \in H^2 \cap H^1_0(\Omega) \,. \tag{41}$$

Next we prove

Proposition 3. Let $0 < h \le H_N$ and $d_1(h)$ be the optimal constant in (20). If Ω is strictly starshaped with respect to the origin, then

$$d_0 > d_1(h) \ge \frac{2A_N m}{MA_N + h + 4},$$
(42)

where d_0 is as in (8), A_N is as in (40), $M := \max_{\partial \Omega} |x|^2$ and $m := \min_{\partial \Omega} (x \cdot \nu)$.

Proof. For $0 < h < H_N$, let $u_h \in H^2 \cap H^1_0(\Omega)$ be the (positive and superharmonic) function which achieves the equality in (20). Notice that u_h solves the equation in (22) subject the conditions $u_h = 0 = \Delta u_h = d_1(h)(u_h)_{\nu}$ on $\partial\Omega$. By (41), we get

$$d_1(h) \int_{\partial\Omega} (u_h)_{\nu}^2 \, d\sigma = \int_{\Omega} |\Delta u_h|^2 \, dx - h \, \int_{\Omega} \frac{u_h^2}{|x|^4} \, dx \ge (H_N - h) \int_{\Omega} \frac{u_h^2}{|x|^4} \, dx + A_N \int_{\Omega} \frac{u_h^2}{|x|^2} \, dx \,. \tag{43}$$

Next, in the spirit of the computations performed in [5, Theorem 1], we deduce

$$\begin{aligned} \int_{\Omega} \frac{u_h^2}{|x|^2} \, dx &= \int_{\Omega} (|x|^2 u_h) \, \frac{u_h}{|x|^4} \, dx = \frac{1}{h} \int_{\Omega} (|x|^2 u_h) \, \Delta^2 u_h \, dx \\ &= \frac{1}{h} \int_{\Omega} \Delta (|x|^2 u_h) \, \Delta u_h \, dx - \frac{1}{h} \int_{\partial \Omega} |x|^2 \Delta u_h (u_h)_{\nu} \, d\sigma \\ &= \frac{1}{h} \int_{\Omega} \Delta u_h \left(2Nu_h + 4x \cdot \nabla u_h + |x|^2 \Delta u_h \right) \, dx - \frac{d_1(h)}{h} \int_{\partial \Omega} |x|^2 (u_h)_{\nu}^2 \, d\sigma \, . \end{aligned}$$

From [17, formula (1.3)], we have

$$\int_{\Omega} \Delta u_h \left(x \cdot \nabla u_h \right) dx = \frac{N-2}{2} \int_{\Omega} |\nabla u_h|^2 dx + \frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) (u_h)_{\nu}^2 d\sigma$$
$$= -\frac{N-2}{2} \int_{\Omega} u_h \Delta u_h dx + \frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) (u_h)_{\nu}^2 d\sigma$$

and we conclude

$$\int_{\Omega} \frac{u_h^2}{|x|^2} dx = \frac{1}{h} \int_{\Omega} (4 u_h \Delta u_h + |x|^2 |\Delta u_h|^2) dx + \frac{1}{h} \int_{\partial \Omega} (2 (x \cdot \nu) - d_1(h) |x|^2) (u_h)_{\nu}^2 d\sigma.$$

Finally, by exploiting the Young's inequality

$$\left|\int_{\Omega} u_h \Delta u_h \, dx\right| \leq \frac{1}{4} \int_{\Omega} |x|^2 |\Delta u_h|^2 \, dx + \int_{\Omega} \frac{u_h^2}{|x|^2} \, dx \,,$$

we deduce

$$\left(1+\frac{4}{h}\right)\int_{\Omega}\frac{u_h^2}{|x|^2}\,dx \ge \frac{2m-Md_1(h)}{h}\int_{\partial\Omega}(u_h)_{\nu}^2\,d\sigma\,,$$

where *m* and *M* are defined in the statement. Plugging this into (43), (42) follows for $h < H_N$. The estimate for $d_1(H_N)$ comes by letting $h \to H_N$ in (42). Indeed, by definition of $d_1(H_N)$, we know that for all $\varepsilon > 0$ there exists $u_{\varepsilon} \in H^2 \cap H_0^1(\Omega) \setminus H_0^2(\Omega)$ such that

$$\frac{\int_{\Omega} |\Delta u_{\varepsilon}|^2 \, dx - H_N \int_{\Omega} \frac{u_{\varepsilon}^2}{|x|^4} \, dx}{\int_{\partial \Omega} (u_{\varepsilon})_{\nu}^2 \, dS} < d_1(H_N) + \varepsilon.$$

Then, for all $h < H_N$ we have

$$d_{1}(H_{N}) \leq d_{1}(h) \leq \frac{\int_{\Omega} |\Delta u_{\varepsilon}|^{2} dx - H_{N} \int_{\Omega} \frac{u_{\varepsilon}^{2}}{|x|^{4}} dx}{\int_{\partial \Omega} (u_{\varepsilon})_{\nu}^{2} d\sigma} + (H_{N} - h) \frac{\int_{\Omega} \frac{u_{\varepsilon}^{2}}{|x|^{4}} dx}{\int_{\partial \Omega} (u_{\varepsilon})_{\nu}^{2} d\sigma} \\ < d_{1}(H_{N}) + \varepsilon + C_{\varepsilon}(H_{N} - h).$$

Hence,

$$\lim_{h \to H_N} d_1(h) = d_1(H_N)$$

References

and we conclude.

- R.A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.
- [2] Adimurthi, M. Grossi, S. Santra, Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem, J. Funct. Anal. 240 (2006), 36-83.
- [3] V. Adolfsson, L^2 -integrability of second-order derivatives for Poisson's equation in nonsmooth domains, Math. Scand. **70** (1992), no. 1, 146-160.
- [4] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92.

- [5] E. Berchio, D. Cassani, F. Gazzola, Hardy-Rellich inequalities with boundary remainder terms and applications, Manuscripta Math. **131** (2010), no. 3-4, 427-458.
- [6] E. Berchio, F. Gazzola, E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Diff. Eq. 229 (2006), 1-23.
- [7] E. Berchio, F. Gazzola, Best constants and minimizers for embeddings of second order Sobolev spaces, J. Math. Anal. Appl. **320** (2006), no. 2, 718-735.
- [8] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
- [9] E.B. Davies, A.M. Hinz, Explicit constants for Rellich inequalities in $L_p(\Omega)$, Math. Z **227** (1998), 522-523.
- [10] A. Ferrero, F. Gazzola, T. Weth, On a fourth order Steklov eigenvalue problem, Analysis (Munich) 25 (2005), no. 4, 315-332.
- [11] F. Gazzola, H.-Ch. Grunau, E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149-2168.
- [12] F. Gazzola, H.-Ch. Grunau, G. Sweers, Optimal Sobolev and Hardy-Rellich constants under Navier boundary condition, Ann. Mat. Pura Appl. (4) 189 (2010), no. 3, 475-486.
- [13] F. Gazzola, H.-Ch. Grunau, G. Sweers, Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics, 1991. Springer-Verlag, Berlin, 2010.
- [14] P. Grisvard, *Elliptic problems in nonsmooth domains*, Pitman Publishing, 1985.
- [15] G.H. Hardy, Notes on some points in the integral calculus, Messenger Math. 48 (1919), 107–112.
- [16] G.H. Hardy, J.E. Littlewood, G. Pólya, *Inequalities*, Cambridge, University Press, 1934.
- [17] E. Mitidieri, A simple approach to Hardy's inequalities, Math. Notes 67 (2000), 479-486.
- [18] J. Necas, Les méthodes directes en théorie des équations elliptiques (French), Masson et Cie Éditeurs, Paris, 1967.
- [19] F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, (J. C. H. Gerretsen et al. (eds.), Groningen: Nordhoff, 1956), Proceedings of the International Congress of Mathematicians Amsterdam III, (1954) 243-250.