DIPARTIMENTO DI MATEMATICA "Francesco Brioschi" POLITECNICO DI MILANO

A family of Hardy-Rellich type inequalities involving the L^{2}-norm of the Hessian matrices

Berchio, E.

Collezione dei Quaderni di Dipartimento, numero QDD 140
Inserito negli Archivi Digitali di Dipartimento in data 12-11-2012

Piazza Leonardo da Vinci, 32-20133 Milano (Italy)

A family of Hardy-Rellich type inequalities involving the L^{2}-norm of the Hessian matrices

Elvise BERCHIO *

Abstract

We derive a family of Hardy-Rellich type inequalities in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ involving the scalar product between Hessian matrices. The constants found are optimal and the existence of a boundary remainder term is discussed. Mathematics Subject Classification: 26D10; 46E35; 35J40 Keywords: Hardy-Rellich inequality, optimal constants, biharmonic equation

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a bounded domain (open and connected) with Lipschitz boundary. By combining interpolation inequalities (see [1, Corollary 4.16]) with the classical Poincaré inequality, the Sobolev space $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ becomes a Hilbert space when endowed with the scalar product

$$
\begin{equation*}
(u, v):=\int_{\Omega} D^{2} u \cdot D^{2} v d x=\sum_{i, j=1}^{N} \int_{\Omega} \partial_{i j}^{2} u \partial_{i j}^{2} v d x \quad \text { for all } u, v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \tag{1}
\end{equation*}
$$

which induces the norm $\left\|D^{2} u\right\|_{2}:=\left(\int_{\Omega} D^{2} u \cdot D^{2} u d x\right)^{1 / 2}=\left(\int_{\Omega}\left|D^{2} u\right|^{2} d x\right)^{1 / 2}$.
If, furthermore, Ω satisfies a uniform outer ball condition, see [3 , Definition 1.2], some of the derivatives in (1) may be dropped. Then, the bilinear form

$$
\begin{equation*}
\langle u, v\rangle:=\int_{\Omega} \Delta u \Delta v d x \quad \text { for all } u, v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \tag{2}
\end{equation*}
$$

defines a scalar product on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ with corresponding norm $\|\Delta u\|_{2}:=\left(\int_{\Omega}|\Delta u|^{2} d x\right)^{1 / 2}$. Easily, $\left\|D^{2} u\right\|_{2}^{2} \geq 1 / N\|\Delta u\|_{2}^{2}$, for every $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. The converse inequality follows from [3, Theorem 2.2].

A well-known generalization of the first order Hardy inequality $[15,16]$ to the second order is the so-called Hardy-Rellich inequality [19] which reads

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{2} d x \geq \frac{N^{2}(N-4)^{2}}{16} \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x \quad \text { for all } u \in H_{0}^{2}(\Omega) \tag{3}
\end{equation*}
$$

Here $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ is a bounded domain such that $0 \in \Omega$ and the constant $\frac{N^{2}(N-4)^{2}}{16}$ is optimal, in the sense that it is the largest possible. Further generalizations to (3) have appeared in [9] and in [17]. In [11] the validity of (3) was extended to the space $H^{2} \cap H_{0}^{1}(\Omega)$, see also [12]. One may wonder

[^0]what happens in (3), if we replace the L^{2}-norm of the laplacian with $\left\|D^{2} u\right\|_{2}^{2}$. In $H_{0}^{2}(\Omega)$, a density argument and two integrations by parts yield that $\frac{N^{2}(N-4)^{2}}{16}$ is still the "best" constant. In $H^{2} \cap H_{0}^{1}(\Omega)$ the answer is less obvious and, to our knowledge, the corresponding inequality is not known, not even when Ω is smooth. This regard motivates the present paper.

Let ν be the exterior unit normal at $\partial \Omega$, we set

$$
\begin{equation*}
c_{0}=c_{0}(\Omega):=\inf _{H^{2} \cap H_{0}^{1}(\Omega) \backslash H_{0}^{2}(\Omega)} \frac{\int_{\Omega}\left|D^{2} u\right|^{2} d x}{\int_{\partial \Omega} u_{\nu}^{2} d \sigma} \tag{4}
\end{equation*}
$$

The above definition makes sense as soon as Ω has Lipschitz boundary. Indeed, the normal derivative to a Lipschitz domain is defined almost everywhere on $\partial \Omega$ so that $u_{\nu} \in L^{2}(\partial \Omega)$ for any $u \in H^{2} \cap H_{0}^{1}(\Omega)$. By the compactness of the embedding $H^{2}(\Omega) \subset H^{1}(\partial \Omega)$ (see [18, Chapter 2 - Theorem 6.2]), the infimum in (4) is attained and $c_{0}>0$.
For $c>-c_{0}$, we aim to determine the largest $h(c)>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u\right|^{2} d x+c \int_{\partial \Omega} u_{\nu}^{2} d \sigma \geq h(c) \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(\Omega) \tag{5}
\end{equation*}
$$

In Section 3 , for $\partial \Omega \in C^{2}$, we prove that there exists $C_{N}=C_{N}(\Omega) \in\left(-c_{0},+\infty\right)$ such that:

- $h(c)<\frac{N^{2}(N-4)^{2}}{16}$, for $c \in\left(-c_{0}, C_{N}\right)$ and the equality is achieved in (5).
- $h(c)=\frac{N^{2}(N-4)^{2}}{16}$, for $c \in\left[C_{N},+\infty\right)$ and, if $c>C_{N}(u \not \equiv 0)$, the inequality is strict in (5).

When Ω satisfies a suitable geometrical condition (see (25) in the following) and $C=C_{N}$, we show that the equality cannot be achieved in (5). At last, we derive lower and upper bounds for C_{N} and we discuss its sign, see Theorem 1 and Remark 3.
If $\Omega=B$, the unit ball in $\mathbb{R}^{N}(N \geq 5)$, several computations can be done explicitly. In Section 5 , we show that $c_{0}(B)=1, C_{N}(B)=N-3-\frac{\sqrt{2\left(N^{2}-4 N+8\right)}}{2}$ and we determine the (radial) functions for which the equality holds in (5) (when $c<C_{N}$). In particular, for all $u \in H^{2} \cap H_{0}^{1}(B) \backslash\{0\}$, we show that

$$
\begin{equation*}
\int_{B}\left|D^{2} u\right|^{2} d x+\left(N-3-\frac{\sqrt{2\left(N^{2}-4 N+8\right)}}{2}\right) \int_{\partial B} u_{\nu}^{2} d \sigma>\frac{N^{2}(N-4)^{2}}{16} \int_{B} \frac{u^{2}}{|x|^{4}} d x \tag{6}
\end{equation*}
$$

and the constants are optimal.
It's worth noting that $C_{N}(B)$ is positive when $N \geq 7$, negative when $N=5,6$, see Figure 1 . Hence, in lower dimensions, the following Hardy-Rellich inequality (with a boundary remainder term) holds

$$
\int_{B}\left|D^{2} u\right|^{2} d x>\frac{N^{2}(N-4)^{2}}{16} \int_{B} \frac{u^{2}}{|x|^{4}} d x\left(+\left|C_{N}\right| \int_{\partial B} u_{\nu}^{2} d \sigma\right) \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(B) \backslash\{0\}
$$

where $\left|C_{5}\right|=\sqrt{13 / 2}-2$ and $\left|C_{6}\right|=\sqrt{10}-3$. While, if $N \geq 7$, the "best" constant $h(0)$ is no longer the classical Hardy-Rellich one and we prove

$$
\begin{equation*}
\int_{B}\left|D^{2} u\right|^{2} d x \geq \frac{(N-1)(N-5)(2 N-5)}{4} \int_{B} \frac{u^{2}}{|x|^{4}} d x \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(B) \tag{7}
\end{equation*}
$$

Here, $\frac{(N-1)(N-5)(2 N-5)}{4}<\frac{N^{2}(N-4)^{2}}{16}$ and the equality in (7) is achieved by a unique positive radial function, see Theorem 2 in Section 5.

The plan of the paper is the following: in Section 2 we prove existence and positivity of solutions to a suitable biharmonic linear problem. The boundary conditions considered arise from (5). In Section 3 we state our statement about the family of inequalities (5) while, in Section 4, we put its proof. At last, in Section 5 , we focus on the case $\Omega=B$ and we prove (6) and (7). The Appendix contains the proof of some estimates we need in Section 3.

Figure 1: The plot of the map $\left(-c_{0},+\infty\right) \in c \mapsto h(c)$ when $\Omega=B, N=5$ or $N=8$ (right). H_{5} and H_{8} denote the Hardy-Rellich constants, $c_{0}(B)=1$.

2 Preliminaries

Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a Lipschitz bounded domain which satisfies a uniform outer ball condition. We recall the definition of the first Steklov eigenvalue

$$
\begin{equation*}
d_{0}=d_{0}(\Omega):=\inf _{H^{2} \cap H_{0}^{1}(\Omega) \backslash H_{0}^{2}(\Omega)} \frac{\int_{\Omega}|\Delta u|^{2} d x}{\int_{\partial \Omega} u_{\nu}^{2} d \sigma} . \tag{8}
\end{equation*}
$$

From the compactness of the embedding $H^{2}(\Omega) \subset H^{1}(\partial \Omega)$, the infimum in (8) is attained. Furthermore, due to [6], we know that the corresponding minimizer is unique, positive in Ω and solves the equation $\Delta^{2} u=0$ in Ω, subject the conditions $u=0=\Delta u-d_{0} u_{\nu}$ on $\partial \Omega$.
Next, we assume that $\partial \Omega \in C^{2}$ and we denote with $|\Omega|$ and $|\partial \Omega|$ the Lebesgue measures of Ω and $\partial \Omega$. There holds

$$
d_{0}(\Omega) \leq \frac{|\partial \Omega|}{|\Omega|}
$$

see, for instance, [10, Theorem 1.8]. Let $K(x)$ denote the mean curvature of $\partial \Omega$ at x,

$$
\begin{equation*}
\underline{K}:=\min _{\partial \Omega} K(x) \quad \text { and } \quad \bar{K}:=\max _{\partial \Omega} K(x) . \tag{9}
\end{equation*}
$$

If Ω is convex, it was proved in [10, Theorem 1.7] that

$$
\begin{equation*}
d_{0}(\Omega) \geq N \underline{K} . \tag{10}
\end{equation*}
$$

Notice that we adopt the convention that K is positive where the domain is convex.
Finally, from [14, Theorem 3.1.1.1] we recall

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{2} d x=\int_{\Omega}\left|D^{2} u\right|^{2} d x+(N-1) \int_{\partial \Omega} K(x) u_{\nu}^{2} d \sigma \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(\Omega) \tag{11}
\end{equation*}
$$

Identity (11) is the basic ingredient to prove
Proposition 1. Let Ω be a bounded domain with C^{2} boundary, let c_{0} and d_{0} be as in (4) and (8), \bar{K} and \underline{K} as in (9). There holds

$$
\begin{equation*}
\max \left\{d_{0}(\Omega)-(N-1) \bar{K} ; \frac{d_{0}(\Omega)}{N}\right\} \leq c_{0}(\Omega) \leq d_{0}(\Omega)-(N-1) \underline{K} . \tag{12}
\end{equation*}
$$

Furthermore, if Ω is convex, then
(i) $c_{0} \geq \underline{K}$ and the equality holds if and only if Ω is a ball;
(ii) the minimizer u_{0} of (4) is unique (up to a multiplicative constant) and, if $u_{0}\left(x_{0}\right)>0$ for some $x_{0} \in \Omega$, then $u_{0}>0,-\Delta u_{0} \geq 0$ in Ω and $\left(u_{0}\right)_{\nu}<0$ on $\partial \Omega$.

If $\Omega=B$, the unit ball in \mathbb{R}^{N}, since $K(x) \equiv 1$, Proposition 1-(i) yields $c_{0}(B)=1$.
Proof. The estimates in (12) follow by combining (11) with (4) and (8). For the lower bound $d_{0}(\Omega) / N$, we exploit the fact that $\left\|D^{2} u\right\|_{2}^{2} \geq 1 / N\|\Delta u\|_{2}^{2}$, for every $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
Let Ω be convex, by (10) and (12), $c_{0} \geq \underline{K}$. If $c_{0}=\underline{K}$, by (10) and (12), we deduce that $d_{0}=N \underline{K}$ and, by [10, Theorem 1.7], Ω must be a ball. On the other hand, if Ω is a ball, then $\underline{K}=\bar{K}$ and, by (12), we get $c_{0}=d_{0}-(N-1) \underline{K}$. Since, from [10], $d_{0}=N \underline{K}$, statement (i) follows at once.

To prove statement (ii), by (11), we write (12) as

$$
\begin{equation*}
c_{0}=\inf _{H^{2} \cap H_{0}^{1}(\Omega) \backslash H_{0}^{2}(\Omega)} \frac{\int_{\Omega}|\Delta u|^{2} d x-(N-1) \int_{\partial \Omega} K(x) u_{\nu}^{2} d \sigma}{\int_{\partial \Omega} u_{\nu}^{2} d \sigma} . \tag{13}
\end{equation*}
$$

Let u_{0} be a minimizer to c_{0}. As in [6], we define $\bar{u}_{0} \in H^{2} \cap H_{0}^{1}(\Omega)$ as the unique (weak) solution to

$$
\begin{cases}-\Delta \bar{u}_{0}=\left|\Delta u_{0}\right| & \text { in } \Omega \\ \bar{u}_{0}=0 & \text { on } \partial \Omega .\end{cases}
$$

By the maximum principle for superharmonic functions,

$$
\left|u_{0}\right| \leq \bar{u}_{0} \quad \text { in } \Omega \quad \text { and } \quad\left|\left(u_{0}\right)_{\nu}\right| \leq\left|\left(\bar{u}_{0}\right)_{\nu}\right| \quad \text { on } \partial \Omega .
$$

If Δu_{0} changes sign, then the above inequalities are strict and, since K is positive, by (13), we infer

$$
c_{0}=\frac{\int_{\Omega}\left|\Delta u_{0}\right|^{2} d x-(N-1) \int_{\partial \Omega} K(x)\left(u_{0}\right)_{\nu}^{2} d \sigma}{\int_{\partial \Omega}\left(u_{0}\right)_{\nu}^{2} d \sigma}>\frac{\int_{\Omega}\left|\Delta \bar{u}_{0}\right|^{2} d x-(N-1) \int_{\partial \Omega} K(x)\left(\bar{u}_{0}\right)_{\nu}^{2} d \sigma}{\int_{\partial \Omega}\left(\bar{u}_{0}\right)_{\nu}^{2} d \sigma},
$$

a contradiction. This noticed, a further application of the maximum principle yields the positivity issue. Uniqueness follows by standard arguments. That is, by exploiting the fact that a (positive) minimizer to (4) solves the linear problem (15), here below, for $f \equiv 0$ and $c=-c_{0}$.

Remark 1. The problem of dealing with domains having a nonsmooth boundary goes beyond the purposes of the present paper. We limit ourselves to make a couple of remarks on the topic.
If we drop the regularity assumption on $\partial \Omega$, identity (11) is, in general, no longer true. Hence, the previous proof cannot be carried out. Assume that $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ is a bounded domain with Lipschitz boundary which satisfies an outer ball condition. Due to [3], we know that there exist a sequence of smooth domains $\Omega_{m} \nearrow \Omega$, with $\partial \Omega_{m} \in C^{\infty}$, and a real constant C such that the mean curvatures satisfy $K_{m}(x) \geq C$, for every $x \in \partial \Omega$ and $m \geq 1$. Next, for $u \in H^{2} \cap H_{0}^{1}(\Omega)$ fixed, define the sequence of functions $\left\{u_{m}\right\}_{m \geq 1}$ such that $u_{m} \in H^{2} \cap H_{0}^{1}(\Omega)$ solves

$$
\begin{cases}-\Delta u_{m}=-\Delta u & \text { in } \Omega_{m} \\ u_{m}=0 & \text { on } \partial \Omega_{m}\end{cases}
$$

When $C \geq 0$, from (11), it is readily deduced that

$$
\int_{\Omega_{m}}\left|D^{2} u_{m}\right|^{2} d x \leq \int_{\Omega}|\Delta u|^{2} d x
$$

while, if $C<0$, we get

$$
\int_{\Omega_{m}}\left|D^{2} u_{m}\right|^{2} d x \leq \int_{\Omega}|\Delta u|^{2} d x-(N-1) C \int_{\partial \Omega_{m}}\left(u_{m}\right)_{\nu}^{2} d \sigma \leq\left(1+\frac{(N-1)|C|}{d_{0}(\Omega)}\right) \int_{\Omega}|\Delta u|^{2} d x
$$

where d_{0} is as in (8). Then, by a standard weak convergence argument, see [14, Theorem 3.2.1.2], one concludes that

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u\right|^{2} d x \leq(1+\gamma(\Omega)) \int_{\Omega}|\Delta u|^{2} d x \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(\Omega) \tag{14}
\end{equation*}
$$

where $\gamma(\Omega)=0$, if $C \geq 0$, and $\gamma(\Omega)=((N-1)|C|) / d_{0}(\Omega)$, otherwise.
Obviously, (14) does not replace (11). However, it can be exploited to obtain the first part of Proposition 1 for domains satisfying the above mentioned (weaker) regularity assumptions.

For every $c>-c_{0}$ and for $f \in L^{2}(\Omega)$, we will consider the linear problem

$$
\begin{cases}\Delta^{2} u=f(x) & \text { in } \Omega \tag{15}\\ u=0 & \text { on } \partial \Omega \\ u_{\nu \nu}+c u_{\nu}=0 & \text { on } \partial \Omega\end{cases}
$$

This choice of boundary conditions will be convenient in the next Section.
By solutions to (15) we mean weak solutions, that is functions $u \in H^{2} \cap H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} D^{2} u \cdot D^{2} v d x+c \int_{\partial \Omega} u_{\nu} v_{\nu} d \sigma=\int_{\Omega} f v d x \quad \text { for all } v \in H^{2} \cap H_{0}^{1}(\Omega) . \tag{16}
\end{equation*}
$$

Indeed, formally, two integrations by parts give

$$
\begin{equation*}
\int_{\Omega} D^{2} u \cdot D^{2} v d x=\int_{\Omega} \Delta^{2} u v d x+\int_{\partial \Omega} u_{\nu \nu} v_{\nu} d \sigma \quad \text { for all } v \in H^{2} \cap H_{0}^{1}(\Omega), \tag{17}
\end{equation*}
$$

see [7, formula (36)]. Then, plugging (17) into (16), by standard density arguments, we infer that u solves (15) pointwise. Since the boundary conditions in (15) have the same principal part of Navier boundary conditions ($u=0=\Delta u$ on $\partial \Omega$), they must satisfy the so-called complementing conditions [4]. See also [13, formula (2.22)]. Hence, standard elliptic regularity theory applies. Therefore, if $\partial \Omega \in C^{4}$ and $f \in L^{2}(\Omega)$, then $u \in H^{4}(\Omega)$ and (17) makes sense.
Solutions to (16) correspond to critical points of the functional

$$
I_{c}(u):=\frac{1}{2}\left(\int_{\Omega}\left|D^{2} u\right|^{2} d x+c \int_{\partial \Omega} u_{\nu}^{2} d \sigma\right)-\int_{\Omega} f u d x \quad \text { for } u \in H^{2} \cap H_{0}^{1}(\Omega) .
$$

For $c>-c_{0}, I_{c}$ turns to be coercive. Since it is also strictly convex, there exists a unique critical point u_{c} which is the global minimum of I_{c}. When $\partial \Omega \in C^{2}$, thanks to (11), I_{c} writes

$$
I_{c}(u)=\frac{1}{2}\left(\int_{\Omega}|\Delta u|^{2} d x-\int_{\partial \Omega} \alpha_{c}(x) u_{\nu}^{2} d \sigma\right)-\int_{\Omega} f u d x \quad \text { for } u \in H^{2} \cap H_{0}^{1}(\Omega),
$$

where $\alpha_{c}(x):=(N-1) K(x)-c$, for every $x \in \partial \Omega$. Then, the minimizer u_{c} to I_{c} also satisfies

$$
\begin{equation*}
\int_{\Omega} \Delta u_{c} \Delta v d x-\int_{\partial \Omega} \alpha_{c}(x)\left(u_{c}\right)_{\nu} v_{\nu} d \sigma=\int_{\Omega} f v d x \quad \text { for all } v \in H^{2} \cap H_{0}^{1}(\Omega) . \tag{18}
\end{equation*}
$$

From [13, Definition 5.21], we know that (18) is the definition of weak solutions to the equation $\Delta^{2} u=f$ in Ω, subject to Steklov boundary conditions (with nonconstant parameter α_{c}). Namely, $u=0=\Delta u-\alpha_{c}(x) u_{\nu}$ on $\partial \Omega$. Arguing as in the proof of [13, Theorem 5.22], if $\alpha_{c} \geq 0$ and $0 \neq f \geq 0$, we infer that the minimizer u_{c} to I_{c} is positive. Furthermore, $-\Delta u_{c} \geq 0$ in Ω and $\left(u_{c}\right)_{\nu}<0$ on $\partial \Omega$. We conclude that Δ^{2}, subject to the boundary conditions in (15), satisfies the positivity preserving property (p.p.p. in the following) if

$$
-c_{0}<c \leq(N-1) K(x) \quad \text { for every } x \in \partial \Omega .
$$

Notice that, if only the positivity of u is concerned, the lower bound for p.p.p. $\left(\alpha_{c} \geq 0\right)$ can be weakened, see [13, Theorem 5.22].
We collect the conclusions so far drawn in the following
Proposition 2. Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a Lipschitz bounded domain and c_{0} be as in (4). For every $c>-c_{0}$, we have
(i) for every $f \in L^{2}(\Omega)$, problem (15) admits a unique solution $u \in H^{2} \cap H_{0}^{1}(\Omega)$. Moreover, if $f \in H^{k}(\Omega)$ and $\partial \Omega \in C^{k+4}$ for some $k \geq 0$, then $u \in H^{k+4}(\Omega)$.
(ii) Assume, furthermore, that Ω is convex, $\partial \Omega \in C^{2}$ and \underline{K} is as in (9). Then, for every $c \in$ $\left(-c_{0},(N-1) \underline{K}\right]$, if $f \geq 0(f \not \equiv 0)$ in Ω, the solution u of (15) satisfies $u>0,-\Delta u \geq 0$ in Ω and $u_{\nu}<0$ on $\partial \Omega$.

Remark 2. The convexity assumption in Proposition 2-(ii) is only needed to assure the non-emptiness of the interval $\left(-c_{0},(N-1) \underline{K}\right]$ in which p.p.p. holds. If Ω is not convex, by (12), the same goal can be achieved by assuming that Ω satisfies one of the following inequalities

$$
\begin{equation*}
N(N-1)|\underline{K}|<d_{0}(\Omega) \quad \text { or } \quad(N-1)(\bar{K}+|\underline{K}|)<d_{0}(\Omega) . \tag{19}
\end{equation*}
$$

Compare with Proposition 3 in the Appendix.

3 Hardy-Rellich type inequalities with a boundary term

Before stating our results, we recall some facts from [5]. Set $H_{N}:=\frac{N^{2}(N-4)^{2}}{16}$. For every bounded domain Ω such that $0 \in \Omega$ and for every $h \in\left[0, H_{N}\right]$, we know that

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{2} d x \geq h \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+d_{1}(h) \int_{\partial \Omega} u_{\nu}^{2} d \sigma \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(\Omega) \tag{20}
\end{equation*}
$$

The optimal constant $d_{1}(h)$ is achieved, if and only if $h<H_{N}$, by a unique positive function $u_{h} \in$ $H^{2} \cap H_{0}^{1}(\Omega)$. Furthermore, $0 \leq d_{1}(h)<d_{1}(0)=d_{0}$, with d_{0} as in (8). When $d_{1}\left(H_{N}\right)>0$ (this was established only for strictly starshaped domains, namely such that $\left.\min _{\partial \Omega}(x \cdot \nu)>0\right),(20)$ readily gives the Hardy-Rellich inequality (3) (for $u \in H^{2} \cap H_{0}^{1}(\Omega)$) plus a boundary remainder term. See also the Appendix.

Let c_{0} be as in (4). To obtain (5), for $c>-c_{0}$, we consider the minimization problem

$$
\begin{equation*}
h(c):=\inf _{H^{2} \cap H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}\left|D^{2} u\right|^{2} d x+c \int_{\partial \Omega}\left(u_{\nu}\right)^{2} d \sigma}{\int_{\Omega} \frac{u^{2}}{|x|^{4}} d x} . \tag{21}
\end{equation*}
$$

Clearly, $h(c) \geq 0$ and $h\left(-c_{0}\right)=0$. On the other hand, since $\int_{\Omega}\left|D^{2} u\right|^{2} d x=\int_{\Omega}|\Delta u|^{2} d x$, for all $u \in H_{0}^{2}(\Omega),(3)$ yields $h(c) \leq H_{N}$.

Formally, for every $c>-c_{0}$ fixed, the Euler equation corresponding to (21) is the eigenvalue problem

$$
\begin{cases}\Delta^{2} u=h \frac{u}{|x|^{4}} & \text { in } \Omega \tag{22}\\ u=0 & \text { on } \partial \Omega \\ u_{\nu \nu}+c u_{\nu}=0 & \text { on } \partial \Omega .\end{cases}
$$

Indeed, by solutions to (22) we mean functions $u \in H^{2} \cap H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} D^{2} u D^{2} v d x+c \int_{\partial \Omega} u_{\nu} v_{\nu} d \sigma=h \int_{\Omega} \frac{u v}{|x|^{4}} d x \quad \text { for all } v \in H^{2} \cap H_{0}^{1}(\Omega), \tag{23}
\end{equation*}
$$

see Section 2. By elliptic regularity, any solution to (22) belongs to $C^{\infty}(\Omega \backslash\{0\})$, whereas, up to the boundary, the solution is smooth as the boundary, see again Section 2. We prove

Theorem 1. Let $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ be a bounded domain such that $0 \in \Omega$ and $\partial \Omega \in C^{2}$. Let c_{0} be as in (4) and $h(c)$ be as in (21). If $c>-c_{0}$, then $h(c)>0$ and

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u\right|^{2} d x+c \int_{\partial \Omega} u_{\nu}^{2} d S \geq h(c) \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(\Omega) . \tag{24}
\end{equation*}
$$

Furthermore, there exists $C_{N}=C_{N}(\Omega) \in\left(-c_{0},(N-1) \bar{K}-d_{1}\left(H_{N}\right)\right.$], where \bar{K} is as in (9) and $d_{1}(h)$ is as in (20), such that
(i) $h(c)$ is increasing, concave and continuous with respect to $c \in\left(-c_{0}, C_{N}\right]$;
(ii) $h(c)=H_{N}$ for every $c \geq C_{N}$.

Moreover, the infimum in (21) is not achieved if $c>C_{N}$, achieved if $-c_{0}<c<C_{N}$ and the minimizer $u_{c} \in H^{2} \cap H_{0}^{1}(\Omega)$ solves (22) with $h=h(c)$.
Let now Ω be such that the following inequality is satisfied

$$
\begin{equation*}
(N-1)(\bar{K}-\underline{K}) \leq d_{1}\left(H_{N}\right) \quad \text { for every } N \geq 5 \tag{25}
\end{equation*}
$$

where \underline{K} is as in (9). Then, $h\left(C_{N}\right)\left(=H_{N}\right)$ is not achieved. Furthermore, for every $-c_{0}<c<C_{N}$, the minimizer u_{c} of $h(c)$ is unique, strictly positive, superharmonic in Ω and $\left(u_{c}\right)_{\nu}<0$ on $\partial \Omega$.
Condition (25) excludes domains for which the curvature of the boundary has wide oscillations. This requirement is trivially satisfied if Ω is a ball ($\bar{K}=\underline{K}$). On the other hand, if Ω is not a ball, (25) yields $d_{1}\left(H_{N}\right)>0$. To our knowledge, this issue has only been proved for strictly starshaped domains, see [5]. In the Appendix, by slightly modifying the proof of [5, Theorem 1], we provide an explicit constant $D_{N}=D_{N}(\Omega)>0$ such that $d_{1}\left(H_{N}\right) \geq m D_{N}$, where $m:=\min _{\partial \Omega}(x \cdot \nu)>0$. Hence, when Ω is strictly starshaped, in stead of (25), one may check that

$$
(N-1)(\bar{K}-\underline{K}) \leq m D_{N} \quad \text { for every } \quad N \geq 5,
$$

where D_{N} comes from (42) with $h=H_{N}$.
Theorem 1 as the following
Corollary 1. Let $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ be a bounded domain such that $0 \in \Omega$ and $\partial \Omega \in C^{2}$. There exists an optimal constant $C_{N} \in\left(-c_{0},(N-1) \bar{K}-d_{1}\left(H_{N}\right)\right]$ such that

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u\right|^{2} d x+C_{N} \int_{\partial \Omega} u_{\nu}^{2} d S \geq \frac{N^{2}(N-4)^{2}}{16} \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x \quad \forall u \in H^{2} \cap H_{0}^{1}(\Omega) \tag{26}
\end{equation*}
$$

Furthermore, if Ω satisfies (25), the inequality in (26) is strict (for $u \not \equiv 0$).

Remark 3. When $\Omega=B$, the unit ball in $\mathbb{R}^{N}(N \geq 5), C_{N}$ can be computed explicitly and we get

$$
C_{N}(B)=N-1-d_{1}\left(H_{N}\right)=N-3-\frac{\sqrt{2\left(N^{2}-4 N+8\right)}}{2},
$$

see Section 5 for the details. Hence, in this case, the upper bound for C_{N} (given in Corollary 1) is sharp. As already remarked in the Introduction, $C_{N}(B)>0$ if and only if $N \geq 7$. In the next Section (see, Lemma 2) we show that, if Ω is such that the following inequality is satisfied

$$
\begin{equation*}
(N-1)(\bar{K}-\underline{K})<d_{0}-d_{1}\left(H_{N}-\delta\right) \quad \text { for every } N \geq 5 \text { and for some } \delta>0, \tag{27}
\end{equation*}
$$

then $C_{N} \geq(N-1) \underline{K}-d_{1}\left(H_{N}\right)$. When Ω is convex, this estimate supports the conjecture

$$
\text { there exists } \bar{N}=\bar{N}(\Omega) \geq 5: C_{N}(\Omega)>0, \quad \text { for } N \geq \bar{N} .
$$

This issue could be proved by providing a suitable upper bound for $d_{1}\left(H_{N}\right)$. Notice that, in view of (10), the estimate $d_{1}\left(H_{N}\right)<d_{0}(\Omega)$ does not suffices to deduce the sign of C_{N}.

On the other hand, if (25) holds and $\underline{K}<0$ (Ω is not convex), the upper bound for C_{N} in Corollary 1 yields $C_{N}<0$, for every $N \geq 5$.

4 Proof of Theorem 1 and Corollary 1

We use the same notations of the previous section. First we prove
Lemma 1. Let $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ be a Lipschitz bounded domain which satisfies a uniform outer ball condition and such that $0 \in \Omega$. If $h(c)<H_{N}$ for some $c>-c_{0}$, then the infimum in (21) is attained. Moreover, a minimizer weakly solves problem (22) for $h=h(c)$.

Proof. Let $\left\{u_{m}\right\} \subset H^{2} \cap H_{0}^{1}(\Omega)$ be a minimizing sequence for $h(c)$ such that

$$
\begin{equation*}
\int_{\Omega} \frac{u_{m}^{2}}{|x|^{4}} d x=1 \tag{28}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u_{m}\right|^{2} d x+c \int_{\partial \Omega}\left(u_{m}\right)_{\nu}^{2} d \sigma=h(c)+o(1) \quad \text { as } m \rightarrow+\infty . \tag{29}
\end{equation*}
$$

For $c>-c_{0}$, this shows that $\left\{u_{m}\right\}$ is bounded in $H^{2} \cap H_{0}^{1}(\Omega)$. Exploiting the compactness of the trace map $H^{2}(\Omega) \rightarrow H^{1}(\partial \Omega)$, we conclude that there exists $u \in H^{2} \cap H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
u_{m} \rightharpoonup u \quad \text { in } H^{2} \cap H_{0}^{1}(\Omega), \quad\left(u_{m}\right)_{\nu} \rightarrow u_{\nu} \quad \text { in } L^{2}(\partial \Omega), \quad \frac{u_{m}}{|x|^{2}} \rightarrow \frac{u}{|x|^{2}} \quad \text { in } L^{2}(\Omega), \tag{30}
\end{equation*}
$$

up to a subsequence.
Now, from [10] we know that the space $H^{2} \cap H_{0}^{1}(\Omega)$, endowed with (2), admits the following orthogonal decomposition

$$
\begin{equation*}
H^{2} \cap H_{0}^{1}(\Omega)=W \oplus H_{0}^{2}(\Omega), \tag{31}
\end{equation*}
$$

where W is the completion of

$$
V=\left\{v \in C^{\infty}(\bar{\Omega}): \Delta^{2} v=0, v=0 \text { on } \partial \Omega\right\}
$$

with respect to the norm induced by (2). Furthermore, if $u \in H^{2} \cap H_{0}^{1}(\Omega)$ and if $u=w+z$ is the corresponding orthogonal decomposition with $w \in W$ and $z \in H_{0}^{2}(\Omega)$, then w and z are weak solutions to

$$
\left\{\begin{array} { l l }
{ \Delta ^ { 2 } w = 0 } & { \text { in } \Omega } \\
{ w = 0 } & { \text { on } \partial \Omega } \\
{ (w) _ { \nu } = u _ { \nu } } & { \text { on } \partial \Omega }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\Delta^{2} z=\Delta^{2} u & \text { in } \Omega \\
z=0 & \text { on } \partial \Omega \\
(z)_{\nu}=0 & \text { on } \partial \Omega
\end{array}\right.\right.
$$

By this, the functions u_{m}, as given at the beginning, may be written as $u_{m}=w_{m}+z_{m}$, where $w_{m} \in W$ and $z_{m} \in H_{0}^{2}(\Omega)$. Assume now that (30) holds with $u \equiv 0$. By the first of the above Dirichlet problems, we deduce that $w_{m} \rightarrow 0$ in $H^{2} \cap H_{0}^{1}(\Omega)$ and, in particular, that $\frac{w_{m}}{|x|^{2}} \rightarrow 0$ in $L^{2}(\Omega)$. This yields

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u_{m}\right|^{2} d x=\int_{\Omega}\left|D^{2} z_{m}\right|^{2} d x+o(1)=\int_{\Omega}\left|\Delta z_{m}\right|^{2} d x+o(1) \tag{32}
\end{equation*}
$$

and

$$
\int_{\Omega} \frac{u_{m}^{2}}{|x|^{4}} d x=\int_{\Omega} \frac{z_{m}^{2}}{|x|^{4}} d x+o(1)
$$

Then, by (3), (28)-(29)-(30) and the fact that $h(c)<H_{N}$, we infer that

$$
H_{N}>h(c)+o(1)=\int_{\Omega}\left|D^{2} u_{m}\right|^{2} d x+o(1)=\int_{\Omega}\left|\Delta z_{m}\right|^{2} d x+o(1) \geq H_{N}+o(1)
$$

a contradiction. Hence, $u \neq 0$. If we set $v_{m}:=u_{m}-u$, from (30) we obtain

$$
\begin{equation*}
v_{m} \rightharpoonup 0 \quad \text { in } H^{2} \cap H_{0}^{1}(\Omega), \quad\left(v_{m}\right)_{\nu} \rightarrow 0 \quad \text { in } L^{2}(\partial \Omega), \quad \frac{v_{m}}{|x|^{2}} \rightarrow 0 \quad \text { in } L^{2}(\Omega) \tag{33}
\end{equation*}
$$

In view of (33), we may rewrite (29) as

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u\right|^{2} d x+\int_{\Omega}\left|D^{2} v_{m}\right|^{2} d x+c \int_{\partial \Omega} u_{\nu}^{2} d \sigma=h(c)+o(1) \tag{34}
\end{equation*}
$$

Moreover, by (28), (33) and the Brezis-Lieb Lemma [8], we have

$$
\begin{gathered}
1=\int_{\Omega} \frac{u_{m}^{2}}{|x|^{4}} d x=\int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+\int_{\Omega} \frac{v_{m}^{2}}{|x|^{4}} d x+o(1) \leq \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+\frac{1}{H_{N}} \int_{\Omega}\left|\Delta v_{m}\right|^{2} d x+o(1) \\
=\int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+\frac{1}{H_{N}} \int_{\Omega}\left|D^{2} v_{m}\right|^{2} d x+o(1)
\end{gathered}
$$

where the last equality is achieved by exploiting the decomposition (31), as explained above. Since $h(c) \geq 0$, the just proved inequality gives

$$
h(c) \leq h(c) \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+\frac{h(c)}{H_{N}} \int_{\Omega}\left|D^{2} v_{m}\right|^{2} d x+o(1)
$$

By combining this with (34), we obtain

$$
\begin{gathered}
\int_{\Omega}\left|D^{2} u\right|^{2} d x+c \int_{\partial \Omega} u_{\nu}^{2} d \sigma \\
\leq h(c) \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+\left(\frac{h(c)}{H_{N}}-1\right) \int_{\Omega}\left|D^{2} v_{m}\right|^{2} d x+o(1) \leq h(c) \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+o(1)
\end{gathered}
$$

which shows that $u \neq 0$ is a minimizer.

Remark 4. If $\partial \Omega \in C^{2}$, to deduce (32), one may exploit (11) instead of the decomposition (31). We leave here this (longer) proof since it highlights that the regularity assumption on $\partial \Omega$ (in the statement of Theorem 1) is not due to the existence issue.
Next, we show
Lemma 2. Let $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ be a bounded domain, with $\partial \Omega \in C^{2}$ and such that $0 \in \Omega$. The map $\left(-c_{0},+\infty\right) \ni c \mapsto h(c)$ is nondecreasing (increasing when achieved), concave, hence, continuous and

$$
h(c)=H_{N} \quad \text { for every } \quad c \geq(N-1) \bar{K}-d_{1}\left(H_{N}\right)
$$

Moreover, if Ω satisfies (27) and $H_{N}-\delta<h<H_{N}$, then

$$
h(c) \leq h \quad \text { for every } \quad-c_{0}<c \leq(N-1) \underline{K}-d_{1}(h) .
$$

Proof. The properties of $h(c)$ follow from its definition, we only need to prove the estimates. By (11), the infimum in (21) may be rewritten as

$$
\begin{equation*}
h(c)=\inf _{u \in H^{2} \cap H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\Delta u|^{2} d x-\int_{\partial \Omega} \alpha_{c}(x)\left(u_{\nu}\right)^{2} d \sigma}{\int_{\Omega} \frac{u^{2}}{|x|^{4}} d x} \tag{35}
\end{equation*}
$$

where $\alpha_{c}(x)=(N-1) K(x)-c$, as defined in Section 2. Then, if $\alpha_{c}(x) \leq d_{1}\left(H_{N}\right)$ for every $x \in \partial \Omega$, by (20), $h(c) \equiv H_{N}$ and the first estimate follows. Similarly, if $\alpha_{c}(x) \geq d_{1}(h)$ for every $x \in \partial \Omega$, by (20), we get the second estimate. Notice that assumption (27), suitably combined with (12), ensures that $(N-1) \underline{K}-d_{1}(h)>-c_{0}$, for every $H_{N}-\delta<h<H_{N}$.

By Lemma 2, the number

$$
\begin{equation*}
C_{N}:=\inf \left\{c>-c_{0}: h(c)=H_{N}\right\} \tag{36}
\end{equation*}
$$

is well-defined. Furthermore, we have

$$
\begin{equation*}
(N-1) \underline{K}-d_{1}\left(H_{N}\right) \leq C_{N} \leq(N-1) \bar{K}-d_{1}\left(H_{N}\right), \tag{37}
\end{equation*}
$$

where the lower bound has been proved for Ω satisfying (27). Then, we show
Lemma 3. Let $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ be a bounded domain such that $0 \in \Omega$ and $\partial \Omega \in C^{2}$. Let C_{N} be as in (36), then the infimum in (21) is not achieved if $c>C_{N}$, achieved if $-c_{0}<c<C_{N}$ and the minimizer (weakly) solves problem (22) for $h=h(c)$.
Assume, furthermore, that Ω satisfies (25). Then, for every $-c_{0}<c<C_{N}$, $h(c)$ is achieved by a unique positive function u_{c} which satisfies $-\Delta u_{c} \geq 0$ in Ω and $\left(u_{c}\right)_{\nu}<0$ on $\partial \Omega$ while, $h\left(C_{N}\right)$ is not achieved.

Proof. The first part of the statement comes from the definition of C_{N} combined with the previous lemmata. To prove the second part, we write (21) as in (35). From (25), combined with (37), we have that $C_{N} \leq(N-1) \underline{K}$. Then, $\alpha_{c}(x) \geq 0$ for every $x \in \partial \Omega$ and for every $-c_{0}<c<C_{N}$. Hence, we may argue as in the proof of Proposition 1-(ii), to deduce the positivity of a minimizer u_{c}, together with the fact that $-\Delta u_{c} \geq 0$ in Ω and $\left(u_{c}\right)_{\nu}<0$ on $\partial \Omega$. Since problem (22) is linear, once the positivity of a minimizer is known, the proof of its uniqueness is standard.
It remains to show that $h(c)$ is not achieved for $c=C_{N}$. If a minimizer of $h\left(C_{N}\right)$ exists, it would be a positive and superharmonic solution, vanishing on $\partial \Omega$, to the equation in (22) with $h=H_{N}$. Then, the same argument of [2, Theorem 2.2-(ii)] gives a contradiction.

The proofs of Theorem 1 and Corollary 1 follow by combining the statements of the above lemmata.

5 Radial setting

When $\Omega=B$, the unit ball in $\mathbb{R}^{N}(N \geq 5)$, the mean curvature $K \equiv 1$. Then, for what remarked in Section 2, problems (20) and (21) become almost equivalent. Indeed, let u_{h} be the function achieving the equality in (20), for some $0 \leq h<H_{N}$. Then, by (35), u_{h} is also the minimizer of $h(c)$ for $c=c_{h}=N-1-d_{1}(h)$ and $h\left(c_{h}\right)=h$ (or, equivalently, u_{h} achieves the equality in (5)). Furthermore, the map $\left[0, H_{N}\right) \ni h \mapsto c_{h}$ is increasing, $c_{0}=-1$ and $c_{H_{N}}=C_{N}$, where C_{N} is as in (37).
We briefly sketch the computations to determine (explicitly) the minimizer of $h(c)$. As in [5, Section 5], we introduce an auxiliary parameter $0 \leq \alpha \leq N-4$ and we set

$$
\begin{equation*}
H(\alpha):=\frac{\alpha(\alpha+4)(\alpha+4-2 N)(\alpha+8-2 N)}{16} . \tag{38}
\end{equation*}
$$

The map $\alpha \mapsto H(\alpha)$ is increasing, $H(0)=0$ and $H(N-4)=H_{N}$ so that $0 \leq H(\alpha) \leq H_{N}$ for all $\alpha \in[0, N-4]$. For $\alpha<N-4$, let $\gamma_{N}(\alpha):=\sqrt{N^{2}-\alpha^{2}+2 \alpha(N-4)}$ and

$$
\bar{u}_{\alpha}(x):=|x|^{-\frac{\alpha}{2}}-|x|^{\frac{4-N+\gamma_{N}(\alpha)}{2}} \in H^{2} \cap H_{0}^{1}(B) .
$$

The function \bar{u}_{α} is a positive solution to problem (22) with $h=H(\alpha)<H_{N}$ and $c=c(\alpha)$, where

$$
\begin{equation*}
c(\alpha):=\frac{\alpha^{2}-\alpha(N-5)-N^{2}+3 N-4+(N-3) \gamma_{N}(\alpha)}{\alpha+4-N+\gamma_{N}(\alpha)} . \tag{39}
\end{equation*}
$$

The map $[0, N-4] \ni \alpha \mapsto c(\alpha)$ is increasing, $c(0)=-1$ and

$$
C_{N}=c(N-4)=N-3-\frac{\sqrt{2\left(N^{2}-4 N+8\right)}}{2}
$$

Since the first eigenfunction $u_{h(c)}$ of problem (22) is unique (by Lemma 3), when $\Omega=B$, it must be a radial function. Furthermore, $u_{h(c)}$ turns to be the only positive eigenfunction. To see this, let $v_{\bar{h}(c)}$ be another positive eigenfunction, corresponding to some $\bar{h}(c)>h(c)$. Write (23), first with $u_{h(c)}$ and test with $v_{\bar{h}(c)}$, then with $v_{\bar{h}(c)}$ and test with $u_{h(c)}$. Subtracting, we get

$$
h(c) \int_{B} \frac{u_{h(c)} v_{\bar{h}(c)}}{|x|^{4}} d x=\bar{h}(c) \int_{B} \frac{u_{h(c)} v_{\bar{h}(c)}}{|x|^{4}} d x,
$$

a contradiction. By this, we conclude that $u_{h(c)}=\bar{u}_{\alpha}$, where $c=c(\alpha)$. Namely, \bar{u}_{α} is the minimizer of $h(c(\alpha))=H(\alpha)$ for every $\alpha \in[0, N-4)$. In turn, this shows

Theorem 2. For every $0 \leq \alpha \leq N-4$, there holds

$$
\int_{B}\left|D^{2} u\right|^{2} d x+c(\alpha) \int_{\partial B} u_{\nu}^{2} d \sigma \geq H(\alpha) \int_{B} \frac{u^{2}}{|x|^{4}} d x \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(B),
$$

where $H(\alpha)$ and $c(\alpha)$ are defined in (38) and (39). Furthermore, the best constant $H(\alpha)$ is attained if and only if $0 \leq \alpha<N-4$, by multiples of the function

$$
\bar{u}_{\alpha}(x)=|x|^{-\frac{\alpha}{2}}-|x|^{\frac{4-N+\sqrt{N^{2}-\alpha^{2}+2 \alpha(N-4)}}{2}} .
$$

As a Corollary of Theorem 2, we readily get (6) and (7). We just remark that, to get (7), one has to determine the unique solution α_{N} to the equation

$$
c(\alpha)=0 \quad \text { for } \quad \alpha \in(0, N-4) \quad \text { and } \quad N \geq 7 .
$$

By (39), we have that

$$
c(\alpha)=0 \quad \Leftrightarrow \quad \alpha^{4}-2(N-5) \alpha^{3}-2(5 N-13) \alpha^{2}+4\left(N^{2}-7 N+8\right)+8\left(N^{2}-3 N+2\right)=0
$$

and the above polynomial can be factorized as follows

$$
(\alpha+1-\sqrt{2 N-1})(\alpha+1+\sqrt{2 N-1})\left(\alpha-N+4-\sqrt{N^{2}-4 N+8}\right)\left(\alpha-N+4+\sqrt{N^{2}-4 N+8}\right) .
$$

Then, since $\alpha \in(0, N-4)$ and $N \geq 7$, we obtain the unique solution $\alpha_{N}=\sqrt{2 N-1}-1$. Finally, $H\left(\alpha_{N}\right)$, with $H(\alpha)$ as in (38), is the optimal constant in (7). See also Figure 1 for the trace of the curve $(0, N-4) \ni \alpha \mapsto(c(\alpha), H(\alpha))$ (or, equivalently, the plot of the map $\left(-c_{0},+\infty\right) \ni c \mapsto h(c)$), when $N=5$ and $N=8$.

Appendix

Let $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ be a bounded domain such that $0 \in \Omega$ and $\partial \Omega \in C^{2}$. Denote by $|\Omega|$ its N-dimensional Lebesgue measure and by $\omega_{N}=|B|$, where B is the unit ball. Finally, set $\gamma=j_{0}^{2} \approx$ 2.4^{2}, where j_{0} is the first positive zero of the Bessel function J_{0}, and

$$
\begin{equation*}
A_{N}=A_{N}(\Omega):=\frac{N(N-4)}{2} \gamma\left(\frac{\omega_{N}}{|\Omega|}\right)^{2 / N} \tag{40}
\end{equation*}
$$

Let $H_{N}:=\frac{N^{2}(N-4)^{2}}{16}$. From [11, Theorem 2], we know that

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{2} d x \geq H_{N} \int_{\Omega} \frac{u^{2}}{|x|^{4}} d x+A_{N} \int_{\Omega} \frac{u^{2}}{|x|^{2}} d x \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(\Omega) \tag{41}
\end{equation*}
$$

Next we prove
Proposition 3. Let $0<h \leq H_{N}$ and $d_{1}(h)$ be the optimal constant in (20). If Ω is strictly starshaped with respect to the origin, then

$$
\begin{equation*}
d_{0}>d_{1}(h) \geq \frac{2 A_{N} m}{M A_{N}+h+4}, \tag{42}
\end{equation*}
$$

where d_{0} is as in (8), A_{N} is as in (40), $M:=\max _{\partial \Omega}|x|^{2}$ and $m:=\min _{\partial \Omega}(x \cdot \nu)$.
Proof. For $0<h<H_{N}$, let $u_{h} \in H^{2} \cap H_{0}^{1}(\Omega)$ be the (positive and superharmonic) function which achieves the equality in (20). Notice that u_{h} solves the equation in (22) subject the conditions $u_{h}=0=\Delta u_{h}=d_{1}(h)\left(u_{h}\right)_{\nu}$ on $\partial \Omega$. By (41), we get

$$
\begin{equation*}
d_{1}(h) \int_{\partial \Omega}\left(u_{h}\right)_{\nu}^{2} d \sigma=\int_{\Omega}\left|\Delta u_{h}\right|^{2} d x-h \int_{\Omega} \frac{u_{h}^{2}}{|x|^{4}} d x \geq\left(H_{N}-h\right) \int_{\Omega} \frac{u_{h}^{2}}{|x|^{4}} d x+A_{N} \int_{\Omega} \frac{u_{h}^{2}}{|x|^{2}} d x \tag{43}
\end{equation*}
$$

Next, in the spirit of the computations performed in [5, Theorem 1], we deduce

$$
\begin{aligned}
\int_{\Omega} \frac{u_{h}^{2}}{|x|^{2}} d x & =\int_{\Omega}\left(|x|^{2} u_{h}\right) \frac{u_{h}}{|x|^{4}} d x=\frac{1}{h} \int_{\Omega}\left(|x|^{2} u_{h}\right) \Delta^{2} u_{h} d x \\
& =\frac{1}{h} \int_{\Omega} \Delta\left(|x|^{2} u_{h}\right) \Delta u_{h} d x-\frac{1}{h} \int_{\partial \Omega}|x|^{2} \Delta u_{h}\left(u_{h}\right)_{\nu} d \sigma \\
& =\frac{1}{h} \int_{\Omega} \Delta u_{h}\left(2 N u_{h}+4 x \cdot \nabla u_{h}+|x|^{2} \Delta u_{h}\right) d x-\frac{d_{1}(h)}{h} \int_{\partial \Omega}|x|^{2}\left(u_{h}\right)_{\nu}^{2} d \sigma
\end{aligned}
$$

From [17, formula (1.3)], we have

$$
\begin{aligned}
\int_{\Omega} \Delta u_{h}\left(x \cdot \nabla u_{h}\right) d x & =\frac{N-2}{2} \int_{\Omega}\left|\nabla u_{h}\right|^{2} d x+\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)\left(u_{h}\right)_{\nu}^{2} d \sigma \\
& =-\frac{N-2}{2} \int_{\Omega} u_{h} \Delta u_{h} d x+\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)\left(u_{h}\right)_{\nu}^{2} d \sigma
\end{aligned}
$$

and we conclude

$$
\int_{\Omega} \frac{u_{h}^{2}}{|x|^{2}} d x=\frac{1}{h} \int_{\Omega}\left(4 u_{h} \Delta u_{h}+|x|^{2}\left|\Delta u_{h}\right|^{2}\right) d x+\frac{1}{h} \int_{\partial \Omega}\left(2(x \cdot \nu)-d_{1}(h)|x|^{2}\right)\left(u_{h}\right)_{\nu}^{2} d \sigma .
$$

Finally, by exploiting the Young's inequality

$$
\left|\int_{\Omega} u_{h} \Delta u_{h} d x\right| \leq \frac{1}{4} \int_{\Omega}|x|^{2}\left|\Delta u_{h}\right|^{2} d x+\int_{\Omega} \frac{u_{h}^{2}}{|x|^{2}} d x
$$

we deduce

$$
\left(1+\frac{4}{h}\right) \int_{\Omega} \frac{u_{h}^{2}}{|x|^{2}} d x \geq \frac{2 m-M d_{1}(h)}{h} \int_{\partial \Omega}\left(u_{h}\right)_{\nu}^{2} d \sigma,
$$

where m and M are defined in the statement. Plugging this into (43), (42) follows for $h<H_{N}$.
The estimate for $d_{1}\left(H_{N}\right)$ comes by letting $h \rightarrow H_{N}$ in (42). Indeed, by definition of $d_{1}\left(H_{N}\right)$, we know that for all $\varepsilon>0$ there exists $u_{\varepsilon} \in H^{2} \cap H_{0}^{1}(\Omega) \backslash H_{0}^{2}(\Omega)$ such that

$$
\frac{\int_{\Omega}\left|\Delta u_{\varepsilon}\right|^{2} d x-H_{N} \int_{\Omega} \frac{u_{\varepsilon}^{2}}{|x|^{4}} d x}{\int_{\partial \Omega}\left(u_{\varepsilon}\right)_{\nu}^{2} d S}<d_{1}\left(H_{N}\right)+\varepsilon
$$

Then, for all $h<H_{N}$ we have

$$
\begin{aligned}
d_{1}\left(H_{N}\right) \leq d_{1}(h) & \leq \frac{\int_{\Omega}\left|\Delta u_{\varepsilon}\right|^{2} d x-H_{N} \int_{\Omega} \frac{u_{\varepsilon}^{2}}{|x|^{4}} d x}{\int_{\partial \Omega}\left(u_{\varepsilon}\right)_{\nu}^{2} d \sigma}+\left(H_{N}-h\right) \frac{\int_{\Omega} \frac{u_{\varepsilon}^{2}}{|x|^{4}} d x}{\int_{\partial \Omega}\left(u_{\varepsilon}\right)_{\nu}^{2} d \sigma} \\
& <d_{1}\left(H_{N}\right)+\varepsilon+C_{\varepsilon}\left(H_{N}-h\right)
\end{aligned}
$$

Hence,

$$
\lim _{h \rightarrow H_{N}} d_{1}(h)=d_{1}\left(H_{N}\right)
$$

and we conclude.

References

[1] R.A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.
[2] Adimurthi, M. Grossi, S. Santra, Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem, J. Funct. Anal. 240 (2006), 36-83.
[3] V. Adolfsson, L^{2}-integrability of second-order derivatives for Poisson's equation in nonsmooth domains, Math. Scand. 70 (1992), no. 1, 146-160.
[4] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92.
[5] E. Berchio, D. Cassani, F. Gazzola, Hardy-Rellich inequalities with boundary remainder terms and applications, Manuscripta Math. 131 (2010), no. 3-4, 427-458.
[6] E. Berchio, F. Gazzola, E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Diff. Eq. 229 (2006), 1-23.
[7] E. Berchio, F. Gazzola, Best constants and minimizers for embeddings of second order Sobolev spaces, J. Math. Anal. Appl. 320 (2006), no. 2, 718-735.
[8] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
[9] E.B. Davies, A.M. Hinz, Explicit constants for Rellich inequalities in $L_{p}(\Omega)$, Math. Z 227 (1998), 522-523.
[10] A. Ferrero, F. Gazzola, T. Weth, On a fourth order Steklov eigenvalue problem, Analysis (Munich) 25 (2005), no. 4, 315-332.
[11] F. Gazzola, H.-Ch. Grunau, E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149-2168.
[12] F. Gazzola, H.-Ch. Grunau, G. Sweers, Optimal Sobolev and Hardy-Rellich constants under Navier boundary condition, Ann. Mat. Pura Appl. (4) 189 (2010), no. 3, 475-486.
[13] F. Gazzola, H.-Ch. Grunau, G. Sweers, Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics, 1991. Springer-Verlag, Berlin, 2010.
[14] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Publishing, 1985.
[15] G.H. Hardy, Notes on some points in the integral calculus, Messenger Math. 48 (1919), 107-112.
[16] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge, University Press, 1934.
[17] E. Mitidieri, A simple approach to Hardy's inequalities, Math. Notes 67 (2000), 479-486.
[18] J. Necas, Les méthodes directes en théorie des équations elliptiques (French), Masson et Cie Éditeurs, Paris, 1967.
[19] F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, (J. C. H. Gerretsen et al. (eds.), Groningen: Nordhoff, 1956), Proceedings of the International Congress of Mathematicians Amsterdam III, (1954) 243-250.

[^0]: *Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32-20133 Milano (Italy)

