
DIPARTIMENTO DI MATEMATICA
“Francesco Brioschi”

POLITECNICO DI MILANO

Weighted dispersive estimates for

two-dimensional Schroedinger

operators with Aharonov-Bohm

magnetic field

Grillo, G.; Kovarik, H.

Collezione dei Quaderni di Dipartimento, numero QDD 137

Inserito negli Archivi Digitali di Dipartimento in data 30-10-2012

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)



WEIGHTED DISPERSIVE ESTIMATES FOR TWO-DIMENSIONAL

SCHRÖDINGER OPERATORS WITH AHARONOV-BOHM MAGNETIC FIELD

GABRIELE GRILLO AND HYNEK KOVAŘÍK

Abstract. We consider two-dimensional Schrödinger operators H with Aharonov-Bohm magnetic

field and an additional electric potential. We obtain an explicit leading term of the asymptotic

expansion of the unitary group e
−itH for t → ∞ in weighted L

2 spaces. In particular, we show

that the magnetic field improves the decay of e−itH with respect to the unitary group generated by

non-magnetic Schrödinger operators, and that the decay rate in time is determined by the magnetic

flux.

1. Introduction

Long time behavior of propagators of Schrödinger operators is known to be closely related to the

spectral properties of their generator near the threshold of the continuous spectrum. For example, if

zero is a regular point of a Schrödinger operator −∆ + V in L2(Rn) in the sense of [JK], then in a

suitable operator topology

e−it(−∆+V )Pac = O(t−n/2) t → ∞, (1.1)

provided the electric potential V : Rn → R decays fast enough. Here Pac denotes the projection onto

the absolutely continuous spectral subspace of −∆ + V . For n = 3 such dispersive estimates were

established in [Ra, Je, JK] in weighted L2 spaces. For corresponding L1 → L∞ bounds we refer to

[JSS, GS, Wed] in the case n = 1, 3, and to [Sch1] in the case n = 2. Situations in which zero is not

a regular point of −∆+ V are studied in great generality in [JK], see also [ES1, ES2].

On the other hand, very little is known about estimates of type (1.1) for magnetic Schrödinger

operators, where −∆+ V is replaced by (i∇ + A)2 + V with a vector potential A. Recently it was

shown in [KK] that for n = 3 equation (1.1) can be extended to magnetic Schrödinger operators, in

suitable weighted L2 spaces, under certain decay and regularity conditions on A and V . As for the

case n = 2, it was proved, see [FFFP], that (1.1) holds true when V = 0 and A = Aab is the vector

potential generating the so-called Aharonov-Bohm magnetic field, see equation (2.1) below.

The aim of this paper is to point out the diamagnetic effect on the dispersive estimates (1.1) in the

case n = 2. More precisely, we want to show that the magnetic field improves the decay rate of the

propagator in dimension two. This is partially motivated by the following fact [Mu, Sch2, Go, EG]:

if a Schrödinger operator −∆+ V in L2(Rn) with n = 1, 2 does not have a resonance at zero energy,

then the time decay of e−it(−∆+V ), considered in suitable topology, is faster than the one predicted by

(1.1). Since a magnetic field in R
2 generically removes the resonance at zero energy, see [LW, W], it

is natural to expect a faster time decay for propagators generated by magnetic Schrödinger operators

with respect to the non-magnetic ones.

We will prove this conjecture in the case of the Aharonov-Bohm magnetic field, that is for operators

of the type (i∇ + Aab)
2 + V . In particular, we will show, under suitable assumptions on V , that in

certain weighted L2 spaces the associated propagator decays as

t−1−mink∈Z |k−α| , t → ∞, (1.2)
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where α is the total flux of the Aharonov-Bohm field, see Theorem 3.6 for details. This is to be

compared with the t−1 decay rate of non-magnetic Schrödinger propagators, see (1.1). In the special

case V = 0 we obtain a stronger result which provides a point wise upper bound on the integral

kernel of e−it(i∇+Aab)
2

, see Theorem 3.1 and Corollary 3.3.

Note that the decay rate of the unitary group generated by (i∇ + Aab)
2 + V is proportional to

the distance between the magnetic flux and the set of integers, see (1.2). This is expected since

an Aharonov-Bohm field with an integer flux can be gauged away and therefore does not affect the

spectral properties of the corresponding generator. Our main results, Theorem 3.1 and Theorem 3.6

are presented in section 3. The proofs of the main results are given in section 6.

Although our paper deals only with the case of the Aharonov-Bohm field, we believe that a similar

improved time decay should occur for a much wider class of magnetic fields, see Remark 3.9 for

further discussion.

2. Preliminaries

The vector potential

Aab(x) = (A1(x), A2(x)) =
α

|x|2 (−x2 , x1) on R
2 \ {0}, (2.1)

generates the Aharonov-Bohm magnetic field which is fully characterized by its constant flux α. It

is well-known, see e.g. [AT], that the operator

(i∇+Aab)
2 on C∞

0 (R2 \ {0}) (2.2)

is not essentially self-adjoint and has deficiency indices (2, 2). Consequently, it admits infinitely many

self-adjoint extensions. In this paper we will work with the Friedrichs extension of (2.2) which we

denote by Hα. In order to define the latter we introduce a function space W 1,2
α (R2) given by the

closure of C∞
0 (R2 \ {0}) with respect to the norm

‖u‖L2(R2) + ‖(i∇+Aab)u‖L2(R2).

The quadratic form

Qα[u] = ‖(i∇+Aab)u‖2L2(R2) (2.3)

with the form domain W 1,2
α (R2) is then closed and generates a unique non-negative self-adjoint

operator Hα in L2(R2). Next we introduce an additional electric potential V : R2 → R and consider

the Schrödinger operator

H = Hα + V in L2(R2). (2.4)

The operators Hα + V and Hm+α + V are unitarily equivalent for any m ∈ Z. We may therefore

assume without loss of generality that

0 < |α| ≤ 1

2
, which implies min

k∈Z

|k − α| = |α|.

2.1. Notation. Given s ∈ R we denote

L2
s(R

2) = {u : ‖wsu‖L2(R2) < ∞}, ‖u‖0,s := ‖wsu‖L2(R2),

where w(x) = (1 + |x|2)1/2. For x = (x1, x2) ∈ R
2 and y = (y1, y2) ∈ R

2 we will often use the polar

coordinates representation

x1 + ix2 = reiθ, y1 + iy2 = r′eiθ
′

, r, r′ ≥ 0, θ, θ′ ∈ [0, 2π). (2.5)

Given R > 0 and a point x ∈ R
2 we denote by B(x,R) ⊂ R

2 the open ball with radius R centered

in x. By ‖K‖B(s,s′) respectively ‖K‖B(ρ,ρ−1) we denote the norm of a bounded linear operator K in

B(s, s′) respectively B(ρ, ρ−1). The scalar product in a Hilbert space H will be denoted by 〈· , ·〉H .

Finally, we denote R+ = (0,∞) and C+ = {z ∈ C : Im z > 0}.
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3. Main results

3.1. Time decay for e−itHα . We say that e−itHα(x, y), x, y ∈ R
2 is an integral kernel of the operator

e−itHα if
(

e−itHα u
)

(x) =

∫

R2

e−itHα(x, y)u(y) dy (3.1)

holds for any u ∈ L2(R2) with compact support.

Theorem 3.1. Let |α| ≤ 1/2. There exists a kernel e−itHα(x, y) of e−itHα such that for all x, y ∈ R
2

it holds

lim
t→∞

(it)1+|α| e−itHα(x, y) =
1

4πΓ(1 + |α|)
(rr′

4

)|α|

if |α| < 1/2, (3.2)

lim
t→∞

(it)
3
2 e−itHα(x, y) =

1

4πΓ(3/2)

(rr′

4

)
1
2

(1 + e∓i(θ−θ′)) if α = ±1/2. (3.3)

Moreover, there is a constant C such that for all t > 0 and all x, y ∈ R
2

| e−i tHα(x, y) | ≤ C min
{

t−1, (rr′)|α| t−1−|α|
}

. (3.4)

Remark 3.2. In [FFFP, Thm.1.3 & Cor.1.7] it was shown that

sup
x,y∈R2

| e−i tHα(x, y) | ≤ const t−1.

This obviously yields the first part of (3.4). Moreover, the decay rate t−1 in the above estimate is

sharp. However, the second term on the right hand side of (3.4) shows that for fixed x and y the the

kernel e−i tHα(x, y) decays faster than t−1.

Inequality (3.4) implies

Corollary 3.3. There exists C > 0 such that for all t > 0 we have

‖e−i tHα u‖0,−s ≤ C t−1−|α| ‖u‖0,s ∀ u ∈ L2
s(R

2), s > 1 + |α|,
‖w−se−i tHα u‖∞ ≤ C t−1−|α| ‖ws u‖L1(R2) ∀ u ∈ L1

s(R
2), s ≥ |α|,

where L1
s(R

2) = {u : ‖ws u‖L1(R2) < ∞}.

Remark 3.4. Improved time decay of semi-groups generated by two-dimensional magnetic Schrödinger

operators was recently studied in [Ko, Kr].

3.2. Time decay for e−it(Hα+V ). In this case we will introduce another operator norm associated

to the weight function ρ : R2 → R given by ρ(x) = ρ(|x|) = e|x|
4

. Let

L2(R2, ρ) = {u : ‖ρ1/2 u‖L2(R2) < ∞}, ‖u‖ρ := ‖ρ1/2 u‖L2(R2).

We denote by B(ρ, ρ−1) the space of bounded linear operators from L2(R2, ρ) to L2(R2, ρ−1). Denote

by G0 ∈ B(ρ, ρ−1) the integral operator with the kernel

G0(x, y) =
1

4π

∑

m∈Z

eim(θ−θ′)

|α+m|
(

min
{ r

r′
,
r′

r

})|α+m|

. (3.5)

Note that the series on the right hand side of (3.5) converges for all x 6= y. Moreover, from equation

(5.4) below it easily follows that G0 ∈ B(ρ, ρ−1). As for the potential V , we suppose that it satisfies

the following
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Assumption 3.5. The function V : R2 → R is bounded and compactly supported. Moreover, for

any u ∈ L2(R2, ρ−1) it holds

u+G0V u = 0 ⇒ u = 0. (3.6)

The motivation for the assumption that V has compact support is twofold. On one hand, it guarantees

that V ∈ B(ρ−1, ρ) which is needed in (3.6). On the other hand, the compactness of the support of

V will play an important role in the proof of absence of positive eigenvalues of the operator Hα + V ,

see Proposition 5.12.

To proceed we note that since V is bounded, the operator H = Hα + V is self-adjoint on the

domain of Hα, by Rellich theorem. Let Pc = Pc(H) denote the projection onto the continuous

spectral subspace of H. We have

Theorem 3.6. Let 0 < |α| ≤ 1/2 and let V satisfy assumption 3.5. Denote by Gj ∈ B(ρ, ρ−1), j =

1, 2, the operators with integral kernels

G1(x, y) =
1

4πΓ(1 + |α|)
(rr′

4

)|α|

G2(x, y) = ei(θ
′−θ) signα Γ(1 + |α|)

4πΓ2(1 + |α− signα|)
(rr′

4

)|α−signα|

.

Then, as t → ∞
e−itH Pc = (it)−1−|α| (1 +G0V )−1 G1 (1 + V G0)

−1 + o(t−1−|α|) if |α| < 1/2, (3.7)

e−itH Pc = (it)−1−|α| (1 +G0V )−1 (G1 + G2) (1 + V G0)
−1 + o(t−1−|α|) if |α| = 1/2 (3.8)

in B(ρ, ρ−1). In particular, there exists a constant C such that for all t > 0 and all u ∈ L2(R2, ρ)

we have

‖ e−i tH Pc u‖ρ−1 ≤ C t−1−α ‖u‖ρ. (3.9)

Remark 3.7. The reason why we work with the weighted spaces L2(R2, ρ) and not with L2
s(R

2) is

technical. Our goal is to keep track of the diamagnetic effect on e−i tH , i.e. of the improved time decay

caused by the magnetic field, observed in the case V = 0. Therefore we employ the perturbation

approach with Hα as the free operator. This requires a precise knowledge of the behavior of the

resolvent of Hα near the threshold of the spectrum. Since we don’t have a simple formula for its

integral kernel, contrary to the situation without a magnetic field, we work with the power-series

(5.2) below. To make sure that this series converges absolutely in B(ρ, ρ−1) we have to require a

very fast grow of the weight function ρ. Note that super-polynomially growing weight functions were

used to study decay estimates of non-magnetic Schrödinger operators already in [Ra].

Nonetheless, it is reasonable to expect that the claim of Theorem 3.6 remains true also if L2(R2, ρ)

and L2(R2, ρ−1) are replaced throughout by L2
s(R

2) and L2
−s(R

2) with s large enough.

Remark 3.8. Assumption 3.5 ensures that the operators 1 + G0V and 1 + V G0 are invertible in

B(ρ−1, ρ−1) and B(ρ, ρ) respectively, see the proof of Lemma 5.3 and Remark 5.4 for details. Hence

(1 + G0V )−1 Gj (1 + V G0)
−1 are well defined and belong to B(ρ, ρ−1). Note also that in the case

V = 0 equations (3.7) and (3.8) agree with the asymptotic (3.2) and (3.3).

Remark 3.9. Our method does not enable us to extend the above results to a more general class

of magnetic fields. On the other hand, decay estimates on the magnetic heat semi-group obtained

recently in [Ko, Kr] suggest that for a sufficiently smooth magnetic field B = rotA with a finite total

flux α one should be able to observe, in a suitable operator topology, that as t → ∞
e−it(i∇+A)2 = O(t−1−mink∈Z |k−α|)) if α /∈ Z,

e−it(i∇+A)2 = O
(

t−1 log−2 t
)

if α ∈ Z.
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This question remains open.

4. Partial wave decomposition

The quadratic form associated to Hα in polar coordinates (r, θ) reads as follows:

Qα[u] =

∫ ∞

0

∫ 2π

0

(

|∂ru|2 + r−2|i ∂θu+ αu|2
)

r drdθ, u ∈ W 1,2
α (R2). (4.1)

By expanding a given function u ∈ L2(R+ × (0, 2π)) into a Fourier series with respect to the basis

{eimθ}m∈Z of L2((0, 2π)), we obtain a direct sum decomposition

Hα =
∑

m∈Z

⊕
(

hm ⊗ id
)

Πm, (4.2)

where hm are operators generated by the closures, in L2(R+, rdr), of the quadratic forms

Qm[f ] =

∫ ∞

0

(

|f ′|2 + (α+m)2

r2
|f |2

)

r dr (4.3)

defined initially on C∞
0 (R+), and Πm is the projector acting as

(Πm u)(r, θ) =
1

2π

∫ 2π

0

eim(θ−θ′) u(r, θ′) dθ′.

5. Resolvent estimates

In order to prove Theorem 3.6 we will follow the strategy developed in [JK]. This requires precise

estimates on the resolvent of (H − z)−1 and its derivatives with respect to z. Such estimates are the

main objects of our interest in this section.

5.1. Low energy behavior. Let us denote by R0(α, z) = (Hα − z)−1 the resolvent of the free

operator Hα. In order to study the behavior of R0(α, λ) for λ → 0, λ ∈ (0,∞), we first consider the

resolvent kernels of the one-dimensional operators hm associated with quadratic form (4.3). From

[Ko, Sect.5] it follows that for λ ∈ (0,∞) and r < r′

(hm − λ)−1(r, r′) =
πi

2
J|m+α|(r

√
λ )

(

J|m+α|(r
′
√
λ ) + i Y|m+α|(r

′
√
λ )

)

,

where Jµ and Yµ are the Bessel functions of the first and second kind respectively. When r′ ≤ r, then

we switch r′ and r in the above formula. In the sequel we will assume for definiteness that r < r′.

By (4.2) and (2.5) we get

R0(α, λ, x, y) =
i

4

∑

m∈Z

J|α+m|(r
√
λ )

(

J|α+m|(r
′
√
λ ) + i Y|α+m|(r

′
√
λ )

)

eim(θ−θ′) (5.1)

Using [AS, Eqs. 9.1.2, 9.1.10] and the well-known properties of the Gamma function, namely

Γ(z + 1) = z Γ(z), Γ(z) Γ(1− z) =
π

sin(πz)
,
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we can further rewrite (5.1) in the power-series in λ as follows:

R0(α, λ, x, y) = G0(x, y) +G1(x, y)λ
|α| +G2(x, y)λ

|α−signα| (5.2)

+
1

4π

∑

m∈Z

eim(θ−θ′)
( r

r′

)|α+m| ∑

k,n≥0,k+n>0

( 14 r
′2)k (− 1

4 r
2)n λk+n

n! k! (n+ |α+m|) · · · |α+m| · · · (|α+m| − k)

+
i− cot(π|α|)

41+|α|

∑

k,n≥0,k+n>0

(− 1
4 r

′2)k (− 1
4 r

2)n (rr′)|α| λk+n+|α|

Γ(n+ |α|+ 1)Γ(k + |α|+ 1)

+
∑

m 6=0

eim(θ−θ′) i− cot(π|α+m|)
41+|α+m|

∑

k,n≥0,k+n>0

(− 1
4 r

′2)k (− 1
4 r

2)n (rr′)|α+m| λk+n+|α+m|

Γ(n+ |α+m|+ 1)Γ(k + |α+m|+ 1)
,

where G0(x, y) is given by (3.5) and

G1(x, y) =
i− cot(π|α|)
4 Γ2(1 + |α|)

(rr′

4

)|α|

,

G2(x, y) = ei(θ
′−θ) signα i− cot(π|α− signα|)

4 Γ2(1 + |α− signα|)
(rr′

4

)|α−signα|

.

Denote by Gj , j = 1, 2, the respective integral operators generated by the kernels Gj(x, y).

Lemma 5.1. The series of integral operators (5.2) converges absolutely in B(ρ, ρ−1) and uniformly

in λ on compacts of [0,∞). In particular, we have

R0(α, λ) = G0 +G1 λ
|α| +G2 λ

|α−signα| + o(λ|α−signα|) in B(ρ, ρ−1). (5.3)

as λ → 0. Moreover, the operator R0(α, λ) generated by the integral kernel (5.2) can be differentiated

in λ on (0, 1) any number of times in the norm of B(ρ, ρ−1).

Proof. If K is an integral operator from L2(R2, ρ) to L2(R2, ρ−1) with an integral kernel k(x, y), then

‖K‖B(ρ,ρ−1) ≤ ‖K‖HS =
(

∫

R2

∫

R2

|k(x, y)|2 ρ−1(x) ρ−1(y) dxdy
)1/2

, (5.4)

where ‖·‖HS denotes the Hilbert-Schmidt norm. It is thus easily verified that the series of operators on

the right hand side of (5.2) converges absolutely in B(ρ, ρ−1) for any λ ≥ 0 and that the convergence

is uniform in λ on any compact interval of [0,∞). The same argument applies to dr

dλrR0(α, λ) for any

r ∈ N. �

Corollary 5.2. Let R′
0(α, λ) and R′′

0 (α, λ) denote first and second derivative of R0(α, λ) with respect

to λ in the norm of B(ρ, ρ−1). Then, as λ → 0, we have

R′
0(α, λ) = |α|G1 λ

|α|−1 + o(λ|α|−1), R′′
0 (α, λ) = |α|(|α| − 1)G1 λ

|α|−2 + o(λ|α|−2). (5.5)

in B(ρ, ρ−1).

Proof. This follows from Lemma 5.1. �

The perturbed resolvent. Next we consider the full resolvent R(α, z) = (H−z)−1 of the operator

H = Hα + V in L2(R2).

Lemma 5.3. Under Assumption 3.5 we have

(1 +R0(α, λ)V )−1 = (1 +G0V )−1 − (1 +G0V )−1 G1 V (1 +G0V )−1 λ|α| + o(λ|α|) (5.6)

as λ → 0 in B(ρ−1, ρ−1).
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Proof. Both operators G0V and G1V are Hilbert-Schmidt, and therefore compact, from L2(R2, ρ−1)

to L2(R2, ρ−1). Hence by (3.6) the operator 1 + G0V is invertible in B(ρ−1, ρ−1). On the other

hand, in view of (5.3) we have

1 +R0(α, λ)V = 1 +G0V +G1V λ|α| + o(λ|α|) (5.7)

in B(ρ−1, ρ−1). Here we have used the fact that V ∈ B(ρ−1, ρ). It follows that for λ small enough

the operator 1 +R0(α, λ)V can be inverted, and with the help of the Neumann series and we arrive

at (5.6). �

Remark 5.4. The operator V G0 is compact from L2(R2, ρ) to L2(R2, ρ). Hence by equation (3.6)

and duality 1 + V G0 is invertible in B(ρ, ρ).

Lemma 5.5. Under Assumption 3.5 we have

R(α, λ) = T0 + T1 λ
|α| + o(λ|α|) (5.8)

as λ → 0 in B(ρ, ρ−1), where

T0 = (1 +G0V )−1 G0, T1 = (1 +G0V )−1 G1 (1 + V G0)
−1. (5.9)

Proof. Since 1 + R0(α, λ)V is invertible in B(ρ−1, ρ−1) for λ small enough, the resolvent equation

yields

R(α, λ) = (1 +R0(α, λ)V )−1 R0(α, λ), (5.10)

which in combination with (5.3) and (5.6) gives equation (5.8) with

T1 = (1 +G0V )−1 G1 − (1 +G0V )−1 G1V (1 +G0V )−1 G0

in B(ρ, ρ−1). To simplify the above expression for T1 let us consider u ∈ L2(R2, ρ) and denote f =

G0 u ∈ L2(R2, ρ−1). Since (1+G0V )−1 f = g if and only if f = g+G0V g, and (1+V G0)
−1 V f = V g

if an only if V f = V g + V G0V g, we find out that V (1 +G0V )−1 G0u = (1 + V G0)
−1 V G0u. Hence

the identity

V (1 +G0V )−1 G0 = (1 + V G0)
−1 V G0 (5.11)

holds on L2(R2, ρ), which implies that

T1 = (1 +G0V )−1 G1 (1 + V G0)
−1.

�

Corollary 5.6. As λ → 0,

R′′(α, λ) = |α|(|α| − 1)(1− T0V )G1 (1− T0V )λ|α|−2 + o(λ|α|−2) in B(ρ, ρ−1). (5.12)

Proof. We use the identities

R′(α, λ) = (1−R(α, λ)V )R′
0(α, λ) (1− V R(α, λ)) (5.13)

R′′(α, λ) = (1−R(α, λ)V )R′′
0 (α, λ) (1− V R(α, λ))− 2R′(α, λ)V R′

0(α, λ)(1− V R(α, λ)), (5.14)

which hold in B(ρ, ρ−1) in view of the resolvent equation R = R0 − R0 V R. The claim now follows

from Corollary 5.2 and Lemma 5.5. �
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5.2. High energy behavior. Here we will use the operator norms in the weighted spaces L2
s(R

2).

When s = 0 we write ‖u‖0 instead of ‖u‖0,0. We denote by B(s, s′) the set of bounded operators

from L2
s(R

2) to L2
s′(R

2). Obviously, for any K ∈ B(s, s′) we have

p′ ≤ s′ ≤ s ≤ p ⇒ ‖K‖B(p,p′) ≤ ‖K‖B(s,s′). (5.15)

According to [IT, Prop. 7.3], the operator R0(α, λ) belongs to B(s,−s) for any s > 1/2, and the

limit

lim
ε→0+

R0(α, λ+ iε) = R0(α, λ), in B(s,−s) (5.16)

is attained locally uniformly in λ on (0,∞).

Lemma 5.7. If s > 1/2, then R0(α, λ) is continuous in λ on (0,∞) in the norm of B(s,−s).

Proof. First we show that for any s with s ≤ 1 and any z ∈ C with Im z 6= 0 we have R0(α, z) ∈
B(s, s). Given u ∈ L2

s(R
2), we have

‖R0(α, z)u‖0,s ≤ ‖ R0(α, z)w
s u‖0 + ‖[R0(α, z), w

s]u‖0
= ‖R0(α, z)w

s u‖0 + ‖[R0(α, z) [Hα, w
s]R0(α, z)u‖0. (5.17)

In the polar coordinates Hα acts as

Hα = −∂2
r − 1

r
∂r +

1

r2
(i∂θ + α)2.

Hence when calculated on functions from C∞
0 (R2 \ {0}) the commutator [Hα, w

s] reads as

[Hα, w
s] = −sw(r)s−2 (sr2 + 2)− 2s r w(r)s−2 ∂r,

where r = |x|. Since s ≤ 1, the first term on the right hand side is bounded. Moreover, from (4.1) it

follows that for for every f ∈ L2(R2)

‖∂r R0(α, z) f‖2L2(R2) ≤ |
〈

f, R0(α, z) f
〉

L2(R2)
|+ |z| ‖R0(α, z) f‖2L2(R2).

This in combination with (5.17) and the fact that

‖R0(α, z)‖B(0,0) ≤ 1

|Im z| (5.18)

gives

‖R0(α, z)u‖0,s ≤ C
( 1

|Im z| +
|z|

|Im z|2
)

‖u‖0,s. (5.19)

Now, let λ, λ′ ∈ R and let ε > 0. Then by the resolvent equation

‖(R0(α, λ+ iε)−R0(α, λ
′ + iε))u‖0,s = |λ− λ′| ‖R0(α, λ+ iε)R0(α, λ

′ + iε)u‖0,s . (5.20)

Hence in view of (5.19), for ε small enough

‖(R0(α, λ)−R0(α, λ
′))u‖0,−s ≤ ‖R0(α, λ)−R0(α, λ+ iε)‖B(s,−s)‖u‖0,s

+ ‖R0(α, λ
′)−R0(α, λ

′ + iε)‖B(s,−s)‖u‖0,s +O(ε−4) |λ− λ′|(1 + |λ|)(1 + |λ′|) ‖u‖0,s
Since the first two terms on the right hand side converge to zero as ε → 0 locally uniformly in λ

respectively λ′, see (5.16), this proves the continuity of R0(α, λ) in λ ∈ (0,∞) for s ∈ (1/2, 1]. By

(5.15) the claim holds for all s > 1/2. �

Lemma 5.8. For any ε > 0 there exists Cε such that for all s, s′ ≥ 1/2 + ε it holds

‖R0(α, λ)‖B(s,−s′) ≤ Cε λ
− 1

2+ε ∀ λ ≥ 1. (5.21)
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Proof. Let s = 1/2 + ε and let u ∈ L2
s(R

2). We define uλ(x) = u(x/
√
λ). Since R0(α, λ, x, y) =

R0(α, 1,
√
λx,

√
λ y), see equation (5.1), a simple change of variables gives

‖R0(α, λ)u‖20,−s ≤ λ−3+s ‖R0(α, 1)‖2B(s,−s) ‖uλ‖20,s.

On the other hand, ‖uλ‖20,s ≤ λ1+s ‖u‖20,s. Hence

‖R0(α, λ)u‖20,−s ≤ λ−1+2ε ‖R0(α, 1)‖2B(s,−s) ‖u‖20,s.
In view of (5.15) this completes the proof. �

In order to obtain suitable estimates on the derivatives of R0(α, λ), we need the following technical

result.

Lemma 5.9. Let T = (i∇+Aab) · x. Assume that s, s′ > 5/2. Then for any ε > 0 we have

[ iT, R0(α, λ)] = O(λε) in B(s,−s′) as λ → ∞.

Proof. We introduce the notation Dj = −∂j + iAj , j = 1, 2 so that iT = D1x1 +D2x2. We observe

that [Dj , xj ] = −1. Hence in view of Lemma 5.8 in order to show that ‖T R0(α, λ)‖B(s,−s′) = O(λε),

it suffices to prove that for any p > 1/2 and any u ∈ L2
p(R

2)

‖w− s
′

2 (x1 D1 + x2 D2)R0(α, λ)u‖20 ≤ 2 ‖w1− s
′

2 D1R0(α, λ)u‖20 + 2 ‖w1− s
′

2 D2R0(α, λ)u‖20
=: 2X2

1 (λ) + 2X2
2 (λ) = O(λ2ε) ‖u‖20,p (5.22)

as λ → ∞. Note that w
s
′

2 −1 [Dj , w
1− s

′

2 ] = −w
s
′

2 −1 ∂jw
1− s

′

2 is a bounded function for j = 1, 2. Hence

by the Cauchy-Schwarz inequality and (5.21) we get

X2
j (λ) =

〈

w1− s
′

2 R0(α, λ)u, [D
∗
j , w

1− s
′

2 ]DjR0(α, λ)u
〉

L2(R2)
+

+
〈

[w1− s
′

2 , Dj ]R0(α, λ)u,w
1− s

′

2 DjR0(α, λ)u
〉

L2(R2)
+
〈

w1− s
′

2 R0(α, λ)u, w
1− s

′

2 D∗
jDjR0(α, λ)u

〉

L2(R2)

≤ 2Cε λ
− 1

2+ε Xj(λ) ‖u‖0,p +
〈

w1− s
′

2 R0(α, λ)u, w
1− s

′

2 D∗
jDjR0(α, λ)u

〉

L2(R2)
.

In the application of (5.21) we used the assumption s′ − 2 > 1/2. Now from the identity

2
∑

j=1

D∗
jDj R0(α, λ) = Hα R0(α, λ) = 1 + λR0(α, λ)

and equation (5.21) we obtain

X2
1 (λ) +X2

2 (λ) ≤ 4Cε λ
− 1

2+ε (X1(λ) +X2(λ)) ‖u‖0,p + Cε λ
− 1

2+ε ‖u‖20,p + C2
ε λ

2ε ‖u‖20,p.

This implies (5.22). To prove that ‖R0(α, λ)T‖B(s,−s′) = O(λε), let u ∈ C∞
0 (R2 \ {0}) and write

vj = xju. From (5.22) applied to vj with p = s− 2 we deduce that

‖w− s
′

2 (D1 R0(α, λ) v1 +D2 R0(α, λ) v2)‖20 ≤ 2

2
∑

j=1

‖w− s
′

2 DjR0(α, λ)vj‖20 = O(λ2ε) ‖u‖20,s (5.23)

as λ → ∞. Since the operators Dj commute with R0(α, λ) on C∞
0 (R2 \{0}), inequality (5.23) implies

that

‖R0(α, λ)T u‖2−s′ = O(λ2ε) ‖u‖20,s as λ → ∞
for all u ∈ C∞

0 (R2 \ {0}). By density we conclude that ‖R0(α, λ)T‖B(s,−s′) = O(λε). �

Lemma 5.10. Let s, s′ > 5/2. Let R
(k)
0 (α, λ) denote the k−th derivative of R0(α, λ) with respect to

λ in B(s,−s′). Then for any ε > 0 there exists Cε,k such that

‖R(k)
0 (α, λ)‖B(s,−s′) ≤ Cε,k λ− k+1

2 +ε ∀ λ ≥ 1, k = 1, 2. (5.24)
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Proof. Let T = (i∇+A) ·x be the operator introduced in Lemma 5.9. Then the commutator [ iT,Hα]

calculated on C∞
0 (R2 \ {0}) gives

[ iT, Hα] = 2Hα.

This together with the first resolvent equation R0(α, z)− R0(α, ζ) = (z − ζ)R0(α, z)R0(α, ζ), z, ζ ∈
C+, implies the identity

[ iT, R0(α, z)] = R0(α, z) [ iT, Hα]R0(α, z) = 2R0(α, z) + 2z R′
0(α, z). (5.25)

On the other hand, from Lemma 5.9 it follows that [ iT, R0(α, λ)] ∈ B(s,−s′) for λ ≥ 1. Equation

(5.25), considered in B(s,−s′), thus can be thus extended to z = λ ∈ R, λ ≥ 1. This shows that

R′
0(α, λ) is continuous in λ on (1,∞) with respect to the norm of B(s,−s′) and in view of Lemma

5.9

R′
0(α, λ) = O(|λ|−1+ε) in B(s,−s′), λ → ∞. (5.26)

Hence equation (5.24) is proven for k = 1. To prove it for k = 2 we consider the double commutator

[

x, [x,R0(α, z)]
]

= |x|2 R0(α, z)− 2

2
∑

j=1

xjR0(α, z)xj +R0(α, z) |x|2

and use the identity

z R′′
0 (α, z) = −3R′

0(α, z)−
1

4

[

x, [x,R0(α, z)]
]

, (5.27)

which follows by a direct calculation in the same way as equation (5.25). By using the fact that

x ∈ B(s, s− 1) ∀ s ∈ R, (5.28)

we extend equation (5.27), considered in B(s,−s′), to z = λ ∈ R, λ ≥ 1. From (5.24) for k = 1,

(5.26), and (5.21) we thus arrive at

R′′
0 (α, λ) = O(|λ|− 3

2+ε) in B(s,−s′), λ → ∞.

The claim now follows. �

Corollary 5.11. For any ε > 0 and any k = 0, 1, 2 there exist constants Cε,k such that

‖R(k)
0 (α, λ)‖B(ρ,ρ−1) ≤ Cε,k λ− k+1

2 +ε ∀ λ ≥ 1. (5.29)

Proof. Since for any S > 0 there exists Cs such that

‖R0(α, λ)‖B(ρ,ρ−1) ≤ Cs ‖R0(α, λ)‖B(s,−s),

the claim follows from Lemmata 5.8, 5.10. �

Proposition 5.12. Suppose that Assumption 3.5 is satisfied. Then, for any k = 0, 1, 2 we have

R(k)(α, λ) ∈ B(ρ, ρ−1) and

‖R(k)(α, λ)‖B(ρ,ρ−1) = O(λ− k+1
2 +0) λ → ∞. (5.30)

Proof. Let us first show that the operator H = Hα + V has no positive eigenvalues. To this end

assume that there exists λ > 0 such that H u = λu. Since V is compactly supported, there exists

R > 0 such that V = 0 outside the ball B(0, R). We can thus use decomposition (4.2) to obtain

hm fm(r) = λ fm(r) ∀ m ∈ Z, ∀ r > R, (5.31)

where

fm(r) =
1

2π

〈

eimθ, u(r, θ)
〉

L2(0,2π)

and hm is the operator associated with quadratic form Qm given by (4.3). A direct calculation now

shows that fm is a linear combination of the Bessel functions J|m+α|(r
√
λ) and Y|m+α|(r

√
λ). Since
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any non-trivial linear combination of these functions lies outside L2((R,∞), rdr), see [AS, Eqs.9.2.1-

2], we conclude that fm = 0 on (R,∞). By the unique continuation principle we then have fm = 0

on R+ for all m and therefore u = 0. Hence λ is not an eigenvalue.

Next, since R0(α, λ) is Hilbert-Schmidt, and therefore compact, from L2(R2, ρ) to L2(R2, ρ−1),

and V ∈ B(ρ−1, ρ), we observe that V R0(α, λ) is compact from L2(R2, ρ) to L2(R2, ρ). Moreover

the fact that H has no positive eigenvalues implies that −1 is not an eigenvalue of V R0(α, λ) in

B(ρ, ρ) for any λ ∈ (0,∞). Hence the operator 1 + V R0(α, λ) is invertible in B(ρ, ρ) and its inverse

is continuous with respect to λ in the norm of B(ρ, ρ). The latter follows from the continuity of

V R0(α, λ) in B(ρ, ρ). Now equation (5.10) implies that R(α, λ) ∈ B(ρ, ρ−1) and that R(α, λ) is

continuous in λ ∈ (0,∞).

Finally, since ‖V R0(α, λ)‖B(ρ,ρ) → 0 as λ → ∞, by Corollary 5.11, we conclude that (1 +

V R0(α, λ))
−1 is uniformly bounded for λ → ∞ in the norm of B(ρ, ρ). In view of (5.10) and

Corollary 5.11 we thus get

‖R(α, λ)‖B(ρ,ρ−1) = O(λ− 1
2+0) λ → ∞.

This proves (5.30) for k = 0. The proof for k = 1 and k = 2 now follows from (5.30) with k = 0,

identities (5.13), (5.14) and Corollary 5.11. �

6. Time decay

6.1. Proof of Theorem 3.6. For the sake of brevity we will prove the statements of Theorem 3.6

only for |α| < 1/2. The proof in the case |α| = 1/2 is completely analogous. By the spectral theorem

and the Stone formula we have

e−itH Pc =

∫ ∞

0

e−itλ E(α, λ) dλ, (6.1)

where

E(α, λ) =
1

π
ImR(α, λ). (6.2)

Let χ ∈ C∞(0,∞) be such that χ(x) = 0 for all x large enough and χ(x) = 1 in a neighborhood of 0.

Since E′′(α, λ) ∈ L1((δ,∞);B(ρ, ρ−1)) for any δ > 0 in view of Proposition 5.12, we can apply [JK,

Lemma 10.1], see Lemma A.1 in Appendix A, to obtain
∫ ∞

0

e−itλ (1− χ(λ))E(α, λ) dλ = o(t−2) as t → ∞ (6.3)

in B(ρ, ρ−1). On the other hand, for λ → 0 we have by (6.2) and Lemma 5.5

E(α, λ) = E1 λ
|α| + E2(α, λ), E2(α, λ) = o(λ|α|),

where

E1 =
1

Γ(1 + |α|) (1 +G0V )−1 G1 (1 + V G0)
−1.

Moreover, by Corollary 5.6 we know that E′′
2 (α, λ) = o(λ|α|−2) as λ → 0. Hence from [JK, Lemma

10.2], see Lemma A.1 in Appendix A, applied to χ(λ)E2(α, λ) it follows that
∫ ∞

0

e−itλ χ(λ)E2(α, λ) dλ = o(t−1−|α|) t → ∞.

Finally, since χ(λ) = 1 in a vicinity of zero, the Erdelyi’s lemma about asymptotic expansion of

Fourier integrals, see [Erd2] or [Z, p. 639], gives
∫ ∞

0

e−itλ λ|α| χ(λ) dλ = (it)−1−|α| Γ(1 + |α|) + o(t−1−|α|) t → ∞.

Summing up, we have

e−itH Pc = (it)−1−|α| Γ(1 + |α|)E1 + o(t−1−|α|)
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in B(ρ, ρ−1). This completes the proof of (3.7). Equation (3.8) follows in the same way with E1

replaced by
1

Γ(1 + |α|) (1 +G0V )−1 (G1 + G2) (1 + V G0)
−1.

Estimate (3.9) is now immediate since ‖ e−i tH Pc u‖ρ−1 ≤ ‖u‖ρ for all t > 0.

Remark 6.1. In principle it would be possible to extend the above analysis and obtain higher order

terms in the asymptotic expansion for e−itH Pc as t → ∞.

6.2. Proof of Theorem 3.1. We first establish an explicit formula for e−i tHα(x, y). This has been

done already in [FFFP]. For the sake of completeness we provide an alternative derivation. To start

with we consider the one-dimensional operators hm in L2(R+, rdr) associated with the closure of the

quadratic form Qm given by equation (4.3).

Lemma 6.2. Let f ∈ L2(R+, rdr) be compactly supported. Then for all t > 0 we have

(

e−it hmf
)

(r) =
1

2it

∫ ∞

0

I|m+α|

(

rr′

2it

)

e−
r
2+r

′2

4it f(r′) r′ dr′. (6.4)

where I|m+α| is the modified Bessel function of the first kind.

Proof. Recall the integral representation

Iν(z) =
zν

2ν Γ(ν + 1
2 )Γ(

1
2 )

∫ 1

−1

(1− s2)ν−
1
2 ezs ds, z ∈ C, (6.5)

see [AS, eq.9.6.18]. Consider now the operator

Lm = U hm U−1 in L2(R+, dr), (6.6)

where U : L2(R+, r dr) → L2(R+, dr) is the unitary mapping acting as (Uf)(r) = r1/2f(r). Note

that Lm is subject to Dirichlet boundary condition at zero and that it coincides with the Friedrichs

extension of the differential operator

− d2

dr2
+

µ2 − 1
4

r2

defined on C∞
0 (R+). From [Ko, Sect. 5] we know that

Wm Lm W−1
m ϕ(p) = pϕ(p), ϕ ∈ Wm(D(Lm)), (6.7)

where the mappings Wm, W−1
m : L2(R+) → L2(R+) given by

(Wm u)(p) =

∫ ∞

0

u(r)
√
r J|m+α|(r

√
p) dr, (W−1

m ϕ)(r) =
1

2

∫ ∞

0

ϕ(p)
√
r J|m+α|(r

√
p) dp, (6.8)

and defined initially on C∞
0 (R+) extend to unitary operators on L2(R+). By [T, Thm.3.1]

e−itLm g = lim
ε→0+

e−(ε+it)Lm g, g = Uf. (6.9)

In view of (6.7) we thus get

lim
ε→0+

(

e−(ε+it)Lm g
)

(r) =
(

W−1
m e−(ε+it)p Wm g

)

(r)

= lim
ε→0+

1

2

∫ ∞

0

√
rr′

∫ ∞

0

e−(ε+it)pJ|m+α|(r
√
p)J|m+α|(r

′√p) dp g(r′) dr′

= lim
ε→0+

1

2(ε+ it)

∫ ∞

0

√
rr′ I|m+α|

( rr′

2(ε+ it)

)

e−
r
2+r

′2

4(ε+it) g(r′) dr′. (6.10)

where we have used [Erd1, Eq.4.14(39)] to evaluate the p−integral. Moreover, from (6.5) it follows

that
∣

∣

∣
I|m+α|

( rr′

2(ε+ it)

)

e−
r
2+r

′2

4(ε+it)

∣

∣

∣
≤ C

∣

∣

∣

rr′

t

∣

∣

∣

|m+α|

(6.11)
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for some constant C > 0. On the other hand, by assumptions on f we have (r′)
1
2+|m+α|g(r′) =

(r′)1+|m+α|f(r′) ∈ L1(R+). Hence using the Lebesgue dominated theorem and (6.11) we can inter-

change the limit with the integral in (6.10) and use (6.9) to get

(

e−itLm g
)

(r) =
1

2it

∫ ∞

0

√
rr′ I|m+α|

(

rr′

2it

)

e−
r
2+r

′2

4it g(r′) dr′.

Equation (6.4) now follows in view of (6.6) and the identity g(r′) =
√
r′ f(r′). �

Now let u ∈ L2(R2) have compact support. Since the projector Πm commutes with hm ⊗ id, see

section 4, from (4.2) and (6.4) we obtain

(

e−i tHα u
)

(r, θ) =
1

4πit

∑

m∈Z

∫ ∞

0

∫ 2π

0

I|m+α|

(

rr′

2it

)

eim(θ−θ′) e−
r
2+r

′2

4it u(r′, θ′) r′ dr′ dθ′. (6.12)

Moreover, in view of the integral representation (6.5) the series
∑

m∈Z
I|m+α|

(

r r′

2it

)

eim(θ−θ′) con-

verges, for a fixed r, uniformly in r′ on compacts of R+. We can thus interchange the sum and the

integral in (6.12) to conclude that (3.1) holds true with

e−i tHα(x, y) =
1

4πi t
e−

r
2+r

′2

4it

∑

m∈Z

I|m+α|

(

rr′

2it

)

eim(θ−θ′) . (6.13)

Assume now that |α| < 1/2. With the help of (6.5) it is easily seen that

lim
t→∞

t|α| e−
r
2+r

′2

4it

∑

m 6=0

I|m+α|

(

rr′

2it

)

eim(θ−θ′) = 0.

Equation (3.2) now follows from the identity

lim
z→0

z−ν Iν(z) =
1

2ν Γ(1 + ν)
,

see [AS, eq. 9.6.10]. The proof for |α| = 1/2 follows the same line. To prove (3.4) we recall that by

[FFFP, Corollary 1.7] there exists a constant C0 such that

sup
x,y∈R2

|e−i tHα(x, y)| ≤ C0

t
∀ t > 0. (6.14)

Let us define

Ω1 := {(x, y) ∈ R
4 : |x| |y| < t}, Ω2 := {(x, y) ∈ R

4 : |x| |y| ≥ t}, z :=
|x| |y|

t
.

Since |α| ≤ 1/2, from (6.14), (6.13) and (6.5) we deduce that

sup
(x,y)∈R4

( t

|x| |y|
)|α|

| e−i tHα(x, y)|

= max
{

sup
(x,y)∈Ω1

( t

|x| |y|
)|α|

|e−i tHα(x, y)| , sup
(x,y)∈Ω2

( t

|x| |y|
)|α|

|e−i tHα(x, y)|
}

≤ t−1 max
{

C1 sup
0<z<1

∑

m∈Z

z|m+α|−|α|

2|m+α| Γ(|m+ α|+ 1/2)
, C0

}

= C2 t
−1,

where C1 and C2 are positive constants. This implies (3.4) and completes the proof of Theorem 3.1.

Remark 6.3. By using the relation Iν(z) = e−
1
2 iπz Jν(iz), see [AS, eq.9.6.3], it is easily seen that

equation (6.13) agrees with the expression for the Aharonov-Bohm propagator found in [FFFP, Thm.

1.3].
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Appendix A

For reader’s convenience we recall below the results obtained in [JK, Lemma 10.1] and [JK, Lemma

10.2] regarding a function F : R+ → B, where B is an arbitrary Banach space.

Lemma A.1 (Jensen-Kato). Suppose that F (λ) = 0 in a neighborhood of zero and that F ′′ ∈
L1(R+;B). Then

∫ ∞

0

e−itλ F (λ) dλ = o(t−2) as t → ∞ in B.

Lemma A.2 (Jensen-Kato). Suppose that F (0) = 0, F (λ) = 0 for λ large enough and that F ′′ ∈
L1((δ,∞);B) for any δ > 0. Assume moreover that F ′′(λ) = o(λβ−2) as λ → 0 for some β ∈ (0, 1) .

Then
∫ ∞

0

e−itλ F (λ) dλ = o(t−1−β) as t → ∞ in B.

Remark A.3. [JK] provides more general versions of the above results. Here we limit ourselves to

particular situations which suit our purposes.
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Ann. Henri Poincaré 2 (2001) 309–359.

[Je] A. Jensen: Local decay in time of solutions to Schrödingers equation with a dilation-analytic interaction.
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