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SHARP SHORT AND LONG TIME L
∞ BOUNDS

FOR SOLUTIONS TO POROUS MEDIA EQUATIONS

WITH HOMOGENEOUS NEUMANN BOUNDARY CONDITIONS

GABRIELE GRILLO, MATTEO MURATORI

Abstract. We study a class of nonlinear diffusion equations whose model is the classical
porous media equation on domains Ω ⊆ R

N , N ≥ 3, with homogeneous Neumann boundary
conditions. We improve the known results in such model case, proving sharp L

q0 -L∞ regular-
izing properties of the evolution for short time and sharp long time L

∞ bounds for convergence
of solutions to their mean value. The generality of the discussion allows to consider, almost
at the same time, weighted versions of the above equation provided an appropriate weighted
Sobolev inequality holds. In fact, we show that the validity of such weighted Sobolev inequal-
ity is equivalent to the validity of a suitable L

q0 -L∞ bound for solutions to the associated
weighted porous media equation. The long time asymptotic analysis relies on the assumed
weighted Sobolev inequality only, and allows to prove uniform convergence to the mean value,
with the rate predicted by linearization, in such generality.

1. Introduction

The aim of this note is to provide some new Lq0-L∞ regularity and asymptotic estimates for
solutions to nonlinear diffusion equations whose model is the following Porous Media Equation
with homogeneous Neumann Boundary conditions:





ut = ∆(um) in Ω× (0,∞)
∂(um)
∂n = 0 on ∂Ω× (0,∞)

u(·, 0) = u0(·) in Ω

, (1.1)

where Ω is a bounded regular (say C1) domain of RN , m > 1, N ≥ 3 and, as usual, for y 6= 0 we
define ym := |y|m−1y when dealing with non-necessarily positive solutions. Even in this case, in
which we shall prove results which will turn out to be sharp both for short and long time, such
estimates will improve those obtained in the pioneering paper [1] and, for larger classes of data,
in [5] (see [3, 2] for the Neumann problem in the case in which Ω has infinite measure). Actually,
almost all of these results will also work for the Weighted Porous Media Equation introduced
in [13] (see [17, 18, 11, 12, 26, 27, 16] and references quoted therein for the one-weight case):





ρν ut = div (ρµ∇(um)) in Ω× (0,∞)

ρµ
∂(um)
∂n = 0 on ∂Ω× (0,∞)

u(·, 0) = u0(·) in Ω

. (1.2)

Indeed, the only relevant assumption for our method to work is that the weights ρν , ρµ are
strictly positive in Ω (but may be degenerate or singular at the boundary), sufficiently regular
and such that the Sobolev-type inequality (assuming throughout the paper that ν(Ω) <∞)

‖v − v‖2σ;ν ≤ CS ‖∇v‖2;µ ∀v ∈W 1,2(Ω; ν, µ) (1.3)

holds true for suitable CS > 0, σ > 1, where v is the mean value of v with respect to the
measure dν = ρνdx (we also set dµ = ρµdx) and ‖ · ‖p;λ will denote, for any p ∈ [1,∞), the Lp

norm w.r.t. a given measure λ on Ω. In fact the validity of the weaker inequality

‖v‖2σ;ν ≤ C ′
S

(
‖∇v‖2;µ + ‖v‖1;ν

)
∀v ∈W 1,2(Ω; ν, µ) (1.4)

Key words and phrases. Weighted porous media equation; weighted Sobolev inequalities; nonlinear diffusion
equations; smoothing effect; asymptotics of solutions.
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will be sufficient for most of our purposes, and actually will turn out to be equivalent to the
following bounds for the L∞ norm of solutions that we shall prove (a bound which clearly is
relevant only for short time):

‖u(t)‖∞ ≤ K

(
t
− σ

(σ−1)q0+σ(m−1) ‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)

q0;ν + ‖u0‖q0;ν

)
∀t > 0 ,

K being a constant which depends only on q0 ∈ [1,∞), m, CS , σ and ν(Ω).
We shall discuss these issues in greater detail in Section 5. One should anyway compare these

kind of results with the ones of [13], which involved problems similar to (1.2) under the weaker
requirement that the Poincaré inequality

‖v − v‖2;ν ≤ CP ‖∇v‖2;µ ∀v ∈W 1,2(Ω; ν, µ) (1.5)

holds true, so that min [S (−∆N ) \ {0}] ≥ 1/C2
P > 0, where S (−∆N ) denotes the L2(Ω; ν)

spectrum of (minus) the weighted Laplacian −∆N (v) = −ρ−1
ν div (ρµ∇v) with homogeneous

Neumann boundary conditions. While of course the results of [13] continue to hold in the present
situation, stronger ones will be shown to be valid and, in particular, solutions corresponding to
Lq0 data become instantaneously bounded with quantitative bounds on the L∞ norm, a fact
which need not be true under the sole condition (1.5), as shown in [13].

As for the long time asymptotics, we discuss first the non-weighted case and show uniform
convergence of solutions to the mean value of the initial datum with a sharp rate. Again
this bounds improve on the results of [5]. In the weighted case, we shall prove that uniform
convergence to the (weighted) mean value of the initial datum occurs, for general L1 data, as
a consequence of the sole validity of the Sobolev-type inequality (1.3): the proof of this fact is
completely different from the one known in the non-weighted context and requires a much more
delicate functional argument. In particular, if the weighted mean is not zero, the rate we give
is exactly the one predicted by linearization, namely

‖u(t)− u‖∞ ≤ K e
− m

C2
P

|u|m−1 t
∀t ≥ 1 .

The existing results (see [18, 14, 10]) show, in the explicit class of weights considered there,
only pointwise or local uniform convergence; however we stress that the Sobolev-type inequality
we require need not always hold in their setting. As already mentioned, we comment that
uniform convergence does not necessarily occur if one assumes only the validity of (1.5), as
shown in [13] by explicit counterexamples.

For a thorough study of smoothing and decay properties of solutions to large classes of
nonlinear evolution equations on R

N see the monograph [29], whilst for other work specifically
concerned with the connection between functional inequalities and asymptotic properties of
solutions to weighted porous media equations we refer the reader to [8, 9, 31], remarking however
that Lq0-L∞ regularization properties of the evolutions considered are not addressed there. The
pioneering papers [18], [14] show local uniform convergence of solutions to their mean in some
explicit one dimensional, single weight case but do not deal with rates of convergence. For the
Neumann problem in the case in which Ω has infinite measure (where convergence to zero is
considered) see e.g. [3, 2].

The proofs of existence and uniqueness of weak solutions to problem (1.1) can be found in
[1], [30]. A proof of existence of solutions (and of uniqueness in the class of energy solutions) to
(1.2) has been given in [13], under certain regularity conditions on the weights: in particular the
problem is well-posed provided the weights are sufficiently smooth and locally bounded away
from zero in Ω (while they can be singular or degenerate at the boundary), a fact that we shall
assume hereafter.

Our first main result, Theorem 3.2, gives a bound on the L∞ norm of solutions to (1.1) for
short times and Lq0 (q0 ≥ 1) initial data. This bound improves considerably Theorem 1.1 of
[5] (see the discussion in Remark 3.3) and it is sharp in the sense that it captures the exact
explosion rates of the well-known Barenblatt solutions [30] for short time. Bounds for large
times are given in Theorem 4.1 for zero-mean data, they being sharp (as already noticed by
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[1] for L∞ data) and improving the corresponding results of [5]: in particular, an absolute
bound for the L∞ norm follows. The case of data having non-zero mean is also considered in
Theorem 4.3, where we show that convergence to the mean value occurs with an exponential
rate matching the one predicted by linearization. Once again we improve the results of [5] and
in Proposition 4.5 we show the sharpness of our bounds by producing a class of data for which
a matching lower bound for the rate of convergence holds.

The corresponding results for solutions to (1.2) are given in Section 5, see in particular The-
orems 5.2, 5.7, 5.10 and 5.11. Besides proving such results, which are parallel to those obtained
for the non-weighted case, we show in Theorem 5.3 and in Corollary 5.4 that the validity of
a short time Lq0-L∞ regularizing effect for solutions to (1.2) implies in turn the validity of a
suitable Sobolev-type inequality like (1.4), thus giving a converse to the corresponding regu-
larization theorem and hence showing its optimality, in some sense. Uniform convergence to
the (non-zero) weighted mean of the initial datum is shown in Theorem 5.10, whereas Theorem
5.11 gives an explicit rate of convergence.

Finally, Section 5.1 provides a concise list of explicit classes of weights for which suitable
Sobolev inequalities hold. We remark that almost none of the corresponding nonlinear diffusions
seems to have been studied in the existing literature.

Remark 1.1. All the results given in Section 5 for the weighted Neumann case hold true without
any essential modification in the case in which one considers the porous media equation on a
smooth compact manifold M . Also the lower bound given in Proposition 4.5 holds true in such
setting. In fact our analysis is based only on the validity of chain rule-type arguments and of a
Sobolev inequality of the type (1.3), which in fact does hold on any smooth compact manifold.

2. The concept of solution

For the reader’s convenience we begin recalling from [13] (see also [1] and [30] for the non-
weighted case) the concept of solution we are going to consider. We write it in the weighted
case only, but clearly the definition applies for the non-weighted case as well just by setting
ρν , ρµ ≡ 1. Recall that dν = ρνdx and dµ = ρµdx.

Definition 2.1. A function

u ∈ L2((0, T );L2(Ω; ν)) : ∇(um) ∈ L2((0, T ); [L2(Ω;µ)]N ) ∀T > 0

is a weak solution of (1.2) with initial datum u0 ∈ L2(Ω; ν) if it satisfies
∫ T

0

∫

Ω
u(x, t)ηt(x, t) dν dt = −

∫

Ω
u0(x)η(x, 0) dν +

∫ T

0

∫

Ω
∇(um)(x, t) · ∇η(x, t) dµ dt

∀η ∈W 1,2((0, T );L2(Ω; ν)) : ∇η ∈ L2((0, T ); [L2(Ω;µ)]N ) , η(T ) = 0 .

Uniqueness of solutions does not hold in general in the weighted context, even for bounded
data and solutions, however it does indeed under the additional condition that

u ∈ Lm+1((0, T );Lm+1(Ω; ν)) ,

see [13, Prop. 3.10]. We call such a solution, if any, a weak energy solution of the equation
considered, according to a common terminology. In fact Theorem 3.12 of [13] gives a proof
of existence of the weak energy solution for initial data u0 ∈ Lm+1(Ω; ν), under some further
regularity assumptions on the weights, for example ρν , ρµ > 0 and

ρν ∈ C3,α
loc (Ω) , ρµ ∈ C2,α

loc (Ω) .

For more general data u0 ∈ L1(Ω; ν) the correct extension of the concept of solution is given
in [13, Sect. 3] (the discussion being similar to the one first introduced in [30, Sect. 6.1] for
the non-weighted problem). Such solutions are called limit solutions, since they are naturally
obtained as limits of energy solutions, that is by approximating u0 with a sequence of data
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u0n ∈ Lm+1(Ω; ν) and exploiting the fundamental L1-comparison principle, namely the fact
that if u and v are the solutions to (1.2) with initial data respectively u0 and v0 then

‖(u(t)− v(t))+‖1;ν ≤ ‖(u0 − v0)+‖1;ν ∀t > 0 . (2.1)

Thanks to (2.1), in particular, the sequence of energy solutions {un} corresponding to {u0n}
is Cauchy in L∞((0,∞);L1(Ω; ν)). For more details about the mentioned existence results of
energy solutions, we refer the reader to [13, Th. 3.12] or to the original [30, Th. 11.2] in the
non-weighted case.

Throughout the whole paper, when referring to “the solution” to the equation at hand, we
shall mean without further comment the unique weak energy or limit solution constructed as
above. Also, we shall often make use of two fundamental properties of such solutions. In first
place, the mean value of the initial datum is preserved along the evolution: see [13, Prop. 3.13]
for a proof. In second place, the inequality ‖u(t)‖p;ν ≤ ‖u(s)‖p;ν holds true for all p ∈ [1,∞] and
all t ≥ s, as a consequence of the energy estimates of [13, Sect. 3]; we shall refer to the latter
property as “non-expansivity” of the norms. For the corresponding results in the non-weighted
case see [30, Th. 11.10].

In the following sections, when dealing with (1.1), Ω will always be a bounded C1 domain of
R
N . As for the weighted case (1.2) regularity of Ω in principle is not needed, although it may

be hidden in the assumed validity of the corresponding weighted Sobolev inequalities.

3. Short time Lq0-L∞ bounds

We start recalling a useful numerical lemma given in [13].

Lemma 3.1. Given α, β ∈ (0, 1), with α > β, there exists a constant c = c(α, β) > 0 such that

x−αy1−α + x−βy1−β + y ≤ c(α, β)(x−αy1−α + y) ∀x, y ∈ R
+ .

Proof. We need to show that

R(x, y) =
x−βy1−β

x−αy1−α + y

is bounded in R
+× R

+ by a constant which depends only on α and β, and in order to do that
one finds explicitly the zeros of Rx(·, y) for any given y. �

Now we prove one of the main results of this paper which, as we shall remark later, is a sharp
improvement of the Lq0-L∞ regularity estimate first provided by Theorem 1.1 of [5].

Theorem 3.2. Let u be the solution of (1.1) corresponding to an initial datum u0 ∈ Lq0(Ω),
with q0 ∈ [1,∞). The following estimate holds:

‖u(t)‖∞ ≤ K

(
t
− N

2q0+N(m−1) ‖u0‖
2q0

2q0+N(m−1)

q0
+ ‖u0‖q0

)
∀t > 0 , (3.1)

where K is a constant which depends on m, CS, N , |Ω| and can be taken to be independent of
q0.

Proof. We shall proceed by means of a classical Moser iterative technique. Firstly we consider
an initial datum u0 ∈ L∞(Ω): the fact that the estimate we shall obtain will not depend on
‖u0‖∞ will allow us to extend it to general Lq0 data thanks to a well-known argument that we
shall recall at the end of this proof.

Given t > 0, let us consider the sequence of time steps tk = t (1− 2−k). Clearly, t0 = 0 and
t∞ = t. Also, let {pk} be an increasing sequence of positive numbers such that p0 = q0 and
p∞ = ∞, which we shall explicitly define later. For the moment, we assume in addition that
q0 ∈ (1,∞) ∩ [m− 1,∞) (afterwards we shall be able to remove this hypothesis). Multiplying
(1.1) by upk−1 and integrating in Ω× (tk, tk+1) (and neglecting ‖u(tk+1)‖

pk
pk) gives

4(pk − 1)pkm

(pk +m− 1)2

∫ tk+1

tk

∫

Ω

∣∣∣∇
(
u

pk+m−1

2

)
(x, s)

∣∣∣
2
dx ds ≤ ‖u(tk)‖

pk
pk
. (3.2)
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With no loss of generality, suppose |Ω| = 1. In order to suitably handle the left hand side of
(3.2), it is convenient to notice that the validity of the Sobolev inequality

‖v − v‖ 2N
N−2

≤ CS ‖∇v‖2 ∀v ∈W 1,2(Ω)

implies the validity of the inequality

1

2C2
S

‖v‖22σ −
1

C2
S

‖v‖21 ≤ ‖∇v‖22 ∀v ∈W 1,2(Ω) , (3.3)

where σ = N/(N − 2). Upon applying (3.3) to the function u(pk+m−1)/2 in (3.2), we get:

2(pk − 1)pkm

C2
S(pk +m− 1)2

∫ tk+1

tk

‖u(s)‖pk+m−1
σ(pk+m−1) ds ≤

≤ ‖u(tk)‖
pk
pk

+
4(pk − 1)pkm

C2
S(pk +m− 1)2

∫ tk+1

tk

‖u(s)‖pk+m−1
pk+m−1

2

ds .

Since q0 ≥ m − 1 and pk is increasing, we can control ‖u‖(pk+m−1)/2 with ‖u‖pk . By that and
by the non-expansivity of the norms, we deduce:

(pk − 1)pkm

C2
S(pk +m− 1)2

2−k t ‖u(tk+1)‖
pk+1

σ

p
k+1

≤ ‖u(tk)‖
pk
pk

+
2(pk − 1)pkm

C2
S(pk +m− 1)2

2−k t ‖u(tk)‖
pk+m−1
pk

,

(3.4)
provided pk+1 = σ(pk +m − 1). Now we assume ‖u0‖∞ = 1. This hypothesis, again together
with the non-expansivity of the norms, ensures that

‖u(tk)‖
pk+m−1
pk

≤ ‖u(tk)‖
pk
pk
,

so that (3.4) reads

‖u(tk+1)‖
pk+1

σ

p
k+1

≤
C2
S(pk +m− 1)2

(pk − 1)pkm
2k t−1 ‖u(tk)‖

pk
pk

+ 2 ‖u(tk)‖
pk
pk
. (3.5)

Clearly there exists a suitable constant D = D(q0,m,CS , N) such that (3.5) simplifies to

‖u(tk+1)‖pk+1
≤ D

k+1
pk+1 (t−1 + 1)

σ
pk+1 ‖u(tk)‖

σ
pk

pk+1

p
k

.

Setting Uk = ‖u(tk)‖pk , it is straightforward to check that the sequence {Uk} satisfies

Uk+1 ≤ D
σk+2−(k+2)σ+k+1

pk+1(σ−1)2 (t−1 + 1)
σk+2−σ

pk+1(σ−1)U0
q0

σk+1

pk+1 . (3.6)

Also, one can verify that pk = (q0 − A)σk + A, with A = σ
σ−1(1 −m) = N

2 (1 −m). Letting

k → ∞ in (3.6), we get (from now on D = D(q0,m,CS , N) will denote a generic constant which
may differ from line to line):

‖u(t)‖∞ = lim
k→∞

‖u(t)‖pk+1
≤ lim inf

k→∞
Uk+1 ≤ D(t−1 + 1)

N
2q0+N(m−1) ‖u0‖

2q0
2q0+N(m−1)

q0
. (3.7)

Actually, (3.7) is not an Lq0-L∞ regularity estimate. Indeed, recall that it has been obtained for
initial data u0 such that ‖u0‖∞ = 1. Through a simple time scaling argument we can deduce
from it an estimate for general L∞ data. That is, given a solution u(·, t) to (1.1) corresponding
to the initial datum u0, it is straightforward to check that û(·, t) = 1

λu(·, λ
1−m t) is the solution

of the same equation corresponding to the initial datum û0 = 1
λu0. Choosing λ = ‖u0‖∞ and

applying (3.7) to û(t) we conclude that

‖u(t)‖∞ = ‖u0‖∞ û(‖u0‖
m−1
∞ t) ≤ D(t−1 + ‖u0‖

m−1
∞ )

N
2q0+N(m−1) ‖u0‖

2q0
2q0+N(m−1)

q0
. (3.8)

Estimate (3.8), as such, is not of great interest. However, it is possible to reduce its dependence
on ‖u0‖∞ in the following way. First, let us rewrite it as

‖u(t)‖∞ ≤ D

(
t
− N

2q0+N(m−1) ‖u0‖
2q0

2q0+N(m−1)

q0
+ ‖u0‖

N(m−1)
2q0+N(m−1)

∞ ‖u0‖
2q0

2q0+N(m−1)

q0

)
,
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that is, setting θ = N(m−1)
2q0+N(m−1) ,

‖u(t)‖∞ ≤ D
(
t−

θ
m−1 ‖u0‖

1−θ
q0

+ ‖u0‖
θ
∞ ‖u0‖

1−θ
q0

)
. (3.9)

Now it is convenient to exploit the semigroup property, by shifting the time origin from 0 to
t/2, and the non-expansivity of the Lq0 norm. This leads us to

‖u(t)‖∞ ≤ D
(
t−

θ
m−1 ‖u0‖

1−θ
q0

+ ‖u(t/2)‖θ∞ ‖u0‖
1−θ
q0

)
;

applying (3.9) to ‖u(t/2)‖∞ we obtain

‖u(t)‖∞ ≤ D

(
t−

θ
m−1 ‖u0‖

1−θ
q0

+ t−
θ2

m−1 ‖u0‖
1−θ2

q0
+ ‖u0‖

θ2

∞ ‖u0‖
1−θ2

q0

)
;

it is then clear that proceeding in this way along n steps one arrives at

‖u(t)‖∞ ≤ D(n, ·)
(
t−

θ
m−1 ‖u0‖

1−θ
q0

+ . . .+ t−
θn

m−1 ‖u0‖
1−θn

q0
+ ‖u0‖

θn

∞ ‖u0‖
1−θn

q0

)
. (3.10)

In order to remove the dependence on the L∞ norm, we need a suitable Lq0-L∞ regularity
estimate. To this end, one can reason in the following way. Suppose ‖u0‖q0 = 1. From (3.4),
setting again Uk = ‖u(tk)‖pk , we have:

Uk+1

pk+1
σ ≤

C2
S(pk +m− 1)2

(pk − 1)pkm
2k t−1Uk

pk + 2Uk
pk+m−1 . (3.11)

Consider a solution to (3.11), namely a sequence {Vk} such that V0 = U0 = 1 and

Vk+1

pk+1
σ =

C2
S(pk +m− 1)2

(pk − 1)pkm
2k t−1Vk

pk + 2Vk
pk+m−1 ;

it is easy to verify (by induction) that Uk ≤ Vk and Vk ≥ 1. Proceeding similarly to the case
‖u0‖∞ = 1 (now the leading term on the right hand side is Vk

pk+m−1) we deduce that for a
suitable constant D = D(q0,m,CS , N) the sequence {Vk} also satisfies the following recursive
inequality:

Vk+1 ≤ D
k+1
pk+1 (t−1 + 1)

σ
pk+1 Vk . (3.12)

Solving (3.12) and exploiting the fact that pk ≥ q0 σ
k one gets (recall that D may vary from

line to line)

Vk+1 ≤ D
(k+2)(1−σ)σ−k−1−σ−k−1+σ

q0(σ−1)2 (t−1 + 1)
σ−σ−k

q0(σ−1) ,

and passing to the limit as k → ∞,

‖u(t)‖∞ = lim
k→∞

‖u(t)‖pk ≤ lim inf
k→∞

Uk ≤ lim inf
k→∞

Vk ≤ D (t−1 + 1)
N
2q0 .

Again, by means of a time scaling argument (now with λ = ‖u0‖q0), we have that the final
Lq0-L∞ regularity estimate is

‖u(t)‖∞ ≤ D (t−1 + ‖u0‖
m−1
q0

)
N
2q0 ‖u0‖

1−N(m−1)
2q0

q0
,

which reads, upon setting δ = N(m− 1)/2q0,

‖u(t)‖∞ ≤ D
(
t−

δ
m−1 ‖u0‖

1−δ
q0

+ ‖u0‖q0

)
. (3.13)

Of course the exponents involved in (3.13) are not very satisfactory, in particular when q0 is
small with respect to N . However, combining this estimate together with (3.10) one can obtain
a much better Lq0-L∞ regularity result. Indeed, by means of the usual shift of the time origin
to t/2 in (3.10) and thanks to (3.13) evaluated at time t/2, we have:

‖u(t)‖∞ ≤ D(·, n)
(
t−

θ
m−1 ‖u0‖

1−θ
q0

+ . . .+ t−
θn

m−1 ‖u0‖
1−θn

q0
+ t−

δθn

m−1 ‖u0‖
1−δθn

q0
+ ‖u0‖q0

)
;
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now we pick n great enough so that δθn < θ, and apply iteratively Lemma 3.1 with x = t1/(m−1),
y = ‖u0‖q0 , α = θ and β = δθn at the first step and then β = θj along j = n . . . 2. We thus get

‖u(t)‖∞ ≤ D

(
t
− N

2q0+N(m−1) ‖u0‖
2q0

2q0+N(m−1)

q0
+ ‖u0‖q0

)
, (3.14)

which is valid, as stated at the beginning of the proof, for q0 ∈ (1,∞) ∩ [m− 1,∞).
We now extend the above estimates to the case of a general q0 ≥ 1. In fact, for notational

simplicity, we shall give the complete proof only for q0 = 1. We shall exploit a technique similar
to the one used in the proof of Corollary 8.1 from [24]. That is, first of all consider the analogue
of estimate (3.14) in the time interval [t/2, t], for q0 = m:

‖u(t)‖∞ ≤ D

((
t

2

)− N
2m+N(m−1)

‖u(t/2)‖
2m

2m+N(m−1)

m + ‖u(t/2)‖m

)
;

using the inequality ‖ · ‖m ≤ ‖ · ‖
(m−1)/m
∞ ‖ · ‖

1/m
1 and the non-expansivity of the L1 norm we

obtain

‖u(t)‖∞ ≤ D

(
2

γ
m−1 t−

γ
m−1 ‖u(t/2)‖

(m−1)(1−γ)
m

∞ ‖u0‖
1−γ
m

1 + ‖u(t/2)‖
m−1
m

∞ ‖u0‖
1
m
1

)
, (3.15)

where

γ =
N(m− 1)

2m+N(m− 1)
.

In order to handle (3.15), we can argue as in the previous part of this proof. That is, consider
first an initial datum u0 such that ‖u0‖∞ ≤ 1. This, in particular, implies that ‖u(t/2)‖∞ ≤ 1
and ‖u0‖1 ≤ 1, so that (3.15) becomes

‖u(t)‖∞ ≤ D
(
t−

γ
m−1 + 1

)
‖u(t/2)‖

(m−1)(1−γ)
m

∞ ‖u0‖
1−γ
m

1 , (3.16)

up to absorbing 2γ/(m−1) into D. It is apparent that iterating estimate (3.16) along k steps one
gets

‖u(t)‖∞ ≤2
γ

m−1

∑h=k−1
h=0 h

(

(m−1)(1−γ)
m

)h [
D
(
t−

γ
m−1 + 1

)]∑h=k−1
h=0

(

(m−1)(1−γ)
m

)h

×

×
∥∥∥u
(
t/2k

)∥∥∥
(

(m−1)(1−γ)
m

)k

∞
‖u0‖

1−γ
m

∑h=k−1
h=0

(

(m−1)(1−γ)
m

)h

1 .

(3.17)

Passing to the limit in (3.17) as k → ∞ we end up with

‖u(t)‖∞ ≤ D

(
t
− 1

m−1
mγ

1+(m−1)γ ‖u0‖
1−γ

1+(m−1)γ

1 + ‖u0‖
1−γ

1+(m−1)γ

1

)
(3.18)

for another suitable constant D. Estimate (3.18) is analogous to (3.7). By reasoning likewise
we can obtain again (3.10), now with q0 = 1 and θ = mγ

1+(m−1)γ :

‖u(t)‖∞ ≤ D(n, ·)
(
t−

θ
m−1 ‖u0‖

1−θ
1 + . . .+ t−

θn

m−1 ‖u0‖
1−θn

1 + ‖u0‖
θn

∞ ‖u0‖
1−θn

1

)
. (3.19)

In order to remove the dependence of the right hand side of (3.19) on ‖u0‖∞, it is convenient
to suppose first that ‖u0‖1 ≥ 1 and look for a suitable L1-L∞ regularity estimate. Indeed,
considering again (3.15), it is easy to check that the worst possible case occurs when ‖u(s)‖∞ ≥ 1

for all s < t: assuming that, clearly ‖u(t/2)‖
(m−1)(1−γ)/m
∞ ≤ ‖u(t/2)‖

(m−1)/m
∞ , and since also

‖u0‖
(1−γ)/m
1 ≤ ‖u0‖

1/m
1 we have that (3.15) reads

‖u(t)‖∞ ≤ D
(
t−

γ
m−1 + 1

)
‖u(t/2)‖

m−1
m

∞ ‖u0‖
1
m
1 . (3.20)

From (3.20), through analogous computations as above we easily get

‖u(t)‖∞ ≤ D
(
t−

mγ
m−1 ‖u0‖1 + ‖u0‖1

)
, (3.21)
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which holds provided ‖u0‖1 ≥ 1. By means of a time scaling argument (recall how we obtained
(3.13)) (3.21) becomes

‖u(t)‖∞ ≤ D
(
t−

mγ
m−1 ‖u0‖

1−mγ
1 + ‖u0‖1

)
, (3.22)

which is valid for all u0 ∈ L1(Ω). By choosing n in (3.19) great enough so that mγθn < θ and
then combining (3.19) with (3.22) through the usual t/2-shift argument, we obtain:

‖u(t)‖∞ ≤ D

(
t
− 1

m−1
mγ

1+(m−1)γ ‖u0‖
1−γ

1+(m−1)γ

1 + ‖u0‖1

)
, (3.23)

which is exactly (3.14) with q0 replaced by 1. As previously stated, a similar strategy also works
when q0 ∈ (1,m− 1], provided this latter interval is not empty. Following the above proof it is
easy to realize that the constant D in the inequality corresponding to (3.23) when ‖ ·‖q0 instead
of ‖ · ‖1 is considered, is bounded as a function of q0 ∈ [1,m − 1]. Moreover, one can notice
that the constant D in (3.14) is locally bounded as a function of q0 ∈ (1,∞) ∩ [m− 1,∞) and
it remains bounded as q0 → ∞. Hence (3.1) holds for all q0 ≥ 1, with a multiplicative constant
K independent of q0.

Finally, we are left with removing the hypotheses |Ω| = 1 and u0 ∈ L∞(Ω). For the first
one it is enough to proceed through a spatial scaling argument exactly as explained in the end
of the proof of Theorem 5.4 of [13]. Namely, if u(x, t) is a solution of (1.1) in a domain Ω of
measure |Ω| with initial datum u0(x) then

ũ(x̃, t) = |Ω|
− 2

N(m−1)u
(
|Ω|

1
N x̃, t

)
(3.24)

is also a solution of (1.1) in the domain Ω̃ = Ω/|Ω|
1
N of measure 1 with initial datum

ũ0(x̃) = |Ω|
− 2

N(m−1)u0

(
|Ω|

1
N x̃

)
.

Noticed that, one applies (3.1) to ũ and goes back to the original solution u by means of (3.24)
and the relations

‖ũ‖p = |Ω|
− 2

N(m−1)
− 1

p ‖u‖p , CS(Ω̃) = |Ω|
1
2
− 1

2σ
− 1

N CS(Ω) .

In consequence of that, it all amounts to admit the dependence of the multiplicative constant
appearing in (3.1) on |Ω| too.

The extension to general Lq0 data is handled by means of a standard argument. That is,
given u0 ∈ Lq0(Ω), consider a sequence {u0n} ⊂ L∞(Ω) which converges to u0 in Lq0(Ω) and
the corresponding solutions to (1.1) {un} and u. From the L1-comparison principle we deduce
that, for any given t > 0, un(t) → u(t) in L1(Ω); moreover from (3.1) we also learn that, up
to subsequences, {un(t)} converges in the weak∗ topology of L∞(Ω) to an element w ∈ L∞(Ω).
The identification between u(t) and w is straightforward, and estimate (3.1) is preserved to the
limit thanks to the weak∗ lower semicontinuity of the L∞ norm. �

Remark 3.3. We stress that estimate (3.1) in fact improves, with respect to the dependence
on the time variable and on the parameters q0, m, N , the one first provided by Theorem 1.1 of
[5] (obtained by means of a Gross differential method), which reads

‖u(t)‖∞ ≤ C t−
α

m−1 ‖u0‖
1−α
q0

e
E0‖u0‖

m−1
1∨(m−1)

t
, (3.25)

where C,E0 are suitable constants that depend only on q0, m, CS , N , |Ω| and

α =

[
1−

(
q0

q0 +m− 1

)N
2

]
. (3.26)

Indeed, it is plain that

α >
N(m− 1)

2q0 +N(m− 1)
∀m > 1 , ∀N > 2 , ∀q0 ≥ 1 .
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Also, note that (3.25) blows up as t→ ∞. Moreover, it only holds for initial data belonging to
Lq0(Ω), with q0 ≥ 1∨ (m− 1). Instead, estimate (3.1) does not blow up and holds for all initial
data which lie in Lq0(Ω) for any q0 ≥ 1.

Remark 3.4. Consider the well-known Barenblatt solutions (recall that we work for N ≥ 3)

uB(x, t) = t−λ

(
C − k

|x|2

t2γ

) 1
m−1

+

, λ =
N

N(m− 1) + 2
, γ =

λ

N
, k =

λ(m− 1)

2mN
,

which solve the Neumann problem (1.1) for sufficiently short times, provided x = 0 belongs
to Ω (else one just translates them). By a scaling invariant estimate for solutions to (1.1) we
mean a bound of the type

‖u(t)‖∞ ≤ S(t, ‖u0‖1) ∀t > 0 , ∀u0 ∈ L1(Ω)

with S(·, ·) such that

S(t, ‖u0‖1) = ‖u0‖1 S(‖u0‖
m−1
1 t, 1) ∀t > 0 , ∀u0 ∈ L1(Ω) .

So S(·, ·) is completely determined by the one-variable function S(y, 1). Estimate (3.1) is clearly
scaling invariant. Moreover, it is a simple calculation to check that the left and right hand sides
of (3.1), when evaluated on the Barenblatt solutions and considered e.g. in the time interval
[t, 2t], have the same rate of divergence as t ↓ 0, and that the L1 norm of uB(·, t) is preserved
along the evolution. This means that (3.1) (for q0 = 1) is sharp in the sense that there cannot
hold another scaling invariant estimate with a better rate for S(y, 1) as y ↓ 0. Also, we shall
see in section 5 that, should the bound

‖u(t)‖∞ ≤ K
(
t−

θ
m−1 ‖u0‖

1−θ
q0

+ ‖u0‖q0

)
∀t > 0 , ∀u0 ∈ Lq0(Ω) (3.27)

be valid for some θ < N(m−1)
2q0+N(m−1) and for all q0 ≥ 1 (in fact, q0 ∈ [m,m+1) would suffice), then

an embedding of W 1,2(Ω) into Lq(Ω) with q > 2N/(N − 2) would be true as a consequence, a
fact which is clearly false since N ≥ 3.

Remark 3.5. We point out that we have stated our estimates for all t > 0 rather than for
almost every t > 0. This remains correct since in [30, Ths. 11.2, 11.3] continuity of solutions
to (1.1) in C([0, T ];L1(Ω)) (for all T > 0) was proved, while in [13] (see Section 3) the same
was shown to hold for solutions to (1.2) at least when ν(Ω) <∞ (which here will be the case),
of course upon replacing L1(Ω) with L1(Ω; ν). This comment also applies to the results of the
forthcoming sections.

4. L∞ bounds for large time

In this section we shall prove some sharp improvements to the asymptotic estimates provided
by Corollaries 1.3 and 1.4 of [5]. We remark that both the Lq0-L∞ regularity estimates (3.1)
and (3.25) give no significant information about the behaviour of the solution u(·, t) as t→ ∞.
So in order to obtain such informations one has to proceed through different techniques, whose
starting point is the distinction between zero mean and non-zero mean solutions.

4.1. The case u = 0. The following result, as we shall discuss in greater detail later, provides
an improvement of the asymptotic estimates given by [5, Cor. 1.3] for zero-mean solutions.

Theorem 4.1. Let u0 ∈ Lq0(Ω), with q0 ∈ [1,∞) and u0 = 0. For the solution u of (1.1) with
initial datum u0 the following estimate holds:

‖u(t)‖∞ ≤ Q1 t
− N

2q0+N(m−1)
1

(
Q2 t+ ‖u0‖

1−m
q0

) 2q0
(m−1)(2q0+N(m−1))

∀t > 0 , (4.1)

where Q1 and Q2 are constants depending on q0, m, Ω. In particular, the absolute bound

‖u(t)‖∞ ≤ Q3 t
− 1

m−1 ∀t > 0 (4.2)

holds true.
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Proof. We start proving the assertion for q0 > 1. In this case, the bound

‖u(t)‖q0 ≤
1

(
B t+ ‖u0‖

1−m
q0

) 1
m−1

(4.3)

(B = B(q0,m,Ω)) was already established in the proof of Corollary 1.3 of [5]. Actually, this
was done only for q0 ≥ 2, however one sees easily that the same result can be obtained also for
q0 ∈ (1, 2).

Now, let us consider estimate (3.1) with the time origin shifted to t/2:

‖u(t)‖∞ ≤ K

((
t

2

)− N
2q0+N(m−1)

‖u(t/2)‖
2q0

2q0+N(m−1)

q0 + ‖u(t/2)‖q0

)
.

Exploiting (4.3) evaluated at time t/2 we remain with

‖u(t)‖∞ ≤ K



(
t

2

)− N
2q0+N(m−1) 1

(
B t

2 + ‖u0‖
1−m
q0

) 2q0
(m−1)(2q0+N(m−1))

+
1

(
B t

2 + ‖u0‖
1−m
q0

) 1
m−1


 ,

from which (4.1) follows immediately. The absolute bound (4.2) is a straightforward conse-
quence of (4.1). Notice that performing the above calculations in full detail one gets that
Q1 → ∞ and Q2 → 0 as q0 ↓ 1, thus making it impossible to perform a limit to handle the case
q0 = 1. So in order to prove (4.1) for q0 = 1 we need a different argument. First we notice that
the validity of such inequality for q0 = 2 implies that

‖u(t)‖∞ ≤ Q1 t
−

γ0
m−1 ‖u0‖

1−γ0
2 , γ0 =

N(m− 1)

4 +N(m− 1)
;

hence we have also

‖u(t)‖∞ ≤ Q1

(
t

2

)−
γ0

m−1

‖u(t/2)‖
1−γ0

2
∞ ‖u0‖

1−γ0
2

1 . (4.4)

Using the strategy outlined in the proof of Theorem 3.2, see in particular the calculations
following (3.16), one can show that the validity of (4.4) implies in turn the validity of

‖u(t)‖∞ ≤ Q3 t
−

ω0
m−1 ‖u0‖

1−ω0
1 , ω0 =

N(m− 1)

2 +N(m− 1)
.

Therefore it follows that

‖u(t)‖2 ≤ ‖u(t)‖
1
2
∞ ‖u0‖

1
2
1 ≤ Q

1
2
3 t

− 1
m−1

ω0
2 ‖u0‖

1−
ω0
2

1 . (4.5)

Exploiting (4.1) on the time interval [t/2, t] with the choice q0 = 2 and (4.5) at time t/2 yields

‖u(t)‖∞ ≤ Q1

(
t

2

)−
γ0

m−1 1
(
Q2

t
2 + ‖u (t/2)‖1−m

2

) 1−γ0
m−1

≤

≤ Q1

(
t

2

)−
γ0

m−1 1
(
Q2

t
2 +Q

1−m
2

3

(
t
2

)ω0
2 ‖u0‖

(1−m)(1−ω0
2 )

1

) 1−γ0
m−1

=

= Q1

(
t

2

)−
ω0

m−1 1

(
t
2

) γ0−ω0
m−1

(
Q2

t
2 +Q

1−m
2

3

(
t
2

)ω0
2 ‖u0‖

(1−m)(1−ω0
2 )

1

) 1−γ0
m−1

=

= Q1

(
t

2

)−
ω0

m−1 1
(
Q2

(
t
2

)1−ω0
2 +Q

1−m
2

3 ‖u0‖
(1−m)(1−ω0

2 )
1

) 1−γ0
m−1

.
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Hence (4.1) follows also for q0 = 1 upon redefining the multiplicative constants and using the
fact that for any given δ ∈ (0, 1) one has 2δ−1

(
aδ + bδ

)
≤ (a + b)δ ≤ aδ + bδ for all a, b > 0

(δ = 1− ω0/2 to our purposes). �

Remark 4.2. In [5, Cor. 1.3] the following estimate was proved:

‖u(t)‖∞ ≤
C

(
B(t− 1) + ‖u0‖

1−m
q0

) 1−α
m−1

∀t > 1 , (4.6)

for suitable constants B,C > 0, where α ∈ (0, 1) is defined as in (3.26). Clearly (4.6) is weaker
than (4.1), since it provides us with a slower decay rate for ‖u(t)‖∞ as t → ∞. Actually, a

rate of order t−1/(m−1) for t large was already known to hold for bounded initial data since the
pioneering work [1] (see Theorems 3.1 and 4.1 there), even though the estimate given there still
depended in a nontrivial way on the L∞ norm of the initial datum and in particular was not
extendible to data not belonging to L∞(Ω). The sharpness of such rate follows by considering
the separable variable solutions constructed in [1, Sect. 2].

Finally, notice that (4.1) for small t is equivalent to (3.1).

In the statement of Theorem 4.1 we pointed out that the constants Q1, Q2 depend on the
whole Ω (in which we then absorb their dependence on N and CS as well). The reason traces
back to the constant appearing in Lemma 3.2 of [1] (exploited in the proof of [5, Cor. 1.3]),
from which B in (4.3) depends, whose existence is established by means of an argument by
contradiction and so whose relation with significant features of the domain (such as its Poincaré
constant) is completely unknown. We recall that Lemma 3.2 of [1] states that there exists a
constant C0 > 0 depending on r > 1 and Ω such that for all integrable functions ξ such that
ξ = 0 and ξr ∈W 1,2(Ω) the following inequality holds:

‖ξr‖2 ≤ C0 ‖∇(ξr)‖2 .

In fact, the result is also true for r ≥ 1/2. In [13, Lem. 5.8] a generalization of the above lemma
is given, although still obtained through an argument by contradiction.

4.2. The case u 6= 0. We now show an improvement of the asymptotic estimate provided by
[5, Cor. 1.4] for solutions with non-zero mean. When making use of the Poincaré inequality
(1.5) we shall implicitly assume that the constant CP is the best one for which such inequality
holds: in other words 1/C2

P = λ1, where λ1 is the first non-zero eigenvalue of (minus) the
Laplacian operator with Neumann boundary conditions.

Theorem 4.3. Let u be the solution of (1.1) corresponding to an initial datum u0 ∈ L1(Ω)
with u0 = u 6= 0. There exists a constant G = G(m,CS , N, |Ω|, u) > 0 such that the following
estimate holds:

‖u(t)− u‖∞ ≤ Ge
− m

C2
P

|u|m−1 t
∀t ≥ 1 . (4.7)

Proof. We start considering data in L2(Ω). From the uniform convergence to the mean value
proved in [5, Cor. 1.4], we deduce in particular that there exists a time τ0 = τ0(u) such that

inf
x∈Ω

|u(x, t)| ≥
|u|

2
∀t ≥ τ0 . (4.8)

Using (4.8) in the differential inequality solved by ‖u(s)− u‖̺̺ (for a fixed ̺ > 1), one gets

d

ds
‖u(s)− u‖̺̺ ≤ −4

̺− 1

̺
m

[
|u|

2

]m−1 ∥∥∥∇
(
|u(s)− u|

̺
2

)∥∥∥
2

2
∀s ≥ τ0 . (4.9)

In the case ̺ = 2, (4.9) immediately leads to

‖u(t)− u‖2 ≤ e
− m

C2
P

[

|u|
2

]m−1
(t−τ0)

‖u(τ0)− u‖2 ∀t ≥ τ0 , (4.10)

upon applying (1.5) to the right hand side. Now we observe that, setting tk = τ0+(t−τ0)(1−2−k)
and pk+1 = N

N−2pk (let p0 = 2), integrating inequality (4.9) between tk and tk+1 with ̺ = pk
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and proceeding with similar (but easier) computations as in the proof of Theorem 3.2 one arrives
at the following estimate:

‖u(t)− u‖∞ ≤ D



([

|u|

2

]m−1

(t− τ0)

)−1

+ 1




N
4

‖u(τ0)− u‖2 ∀t > τ0 , (4.11)

for a suitable constant D = D(m,CS , N, |Ω|). By replacing τ0 with t+τ0
2 in (4.11), exploiting

(4.10) at time t+τ0
2 (instead of t) and using the non-expansivity of ‖u(s)− u‖2 (consequence of

(4.9)) we obtain

‖u(t)− u‖∞ ≤ Ge−Mt ‖u0 − u‖2 ∀t ≥ τ0 + 1 , (4.12)

for another suitable positive constants G = G(m,CS , N, |Ω|, u) and M = M(m,CP , |u|). Let
us take τ1 ≥ τ0 + 1 such that

1

2
|u| ≤ |u| −Ge−Mt ‖u0 − u‖2 ∀t ≥ τ1 . (4.13)

Since

|u(x, s)| ≥ |u| − |u(x, s)− u| ≥ |u| −Ge−Ms ‖u0 − u‖2 ∀s ≥ τ1 , for a.e. x ∈ Ω ,

we have:
d

ds
‖u(s)− u‖22 = −2m

∫

Ω
|u(x, s)|m−1 |∇u(x, s)|2 dx ≤

≤ −2m
(
|u| −Ge−Ms ‖u0 − u‖2

)m−1
‖∇u(s)‖22 ≤

≤ −
2m

C2
P

(
|u| −Ge−Ms ‖u0 − u‖2

)m−1
‖u(s)− u‖22 ∀s ≥ τ1 .

(4.14)

By integrating (4.14) from τ1 to t (and again exploiting the non-expansivity of ‖u(s)− u‖2) we
get:

‖u(t)− u‖22 ≤ ‖u0 − u‖22 e
− 2m

C2
P

∫ t
τ1
(|u|−Ge−Ms‖u0−u‖2)

m−1
ds
. (4.15)

Setting ǫ = Ge−Ms ‖u0 − u‖2, thanks to the elementary inequalities (recall (4.13))

(|u| − ǫ)m−1 ≥ |u|m−1 − (m− 1)|u|m−2ǫ ∀m ≥ 2 ,

(|u| − ǫ)m−1 ≥ |u|m−1 − (m− 1)(|u| − ǫ)m−2ǫ ≥ |u|m−1 − 22−m(m− 1)|u|m−2ǫ ∀m ∈ (1, 2) ,

and to a straightforward computation of the time integral, estimate (4.15) reads

‖u(t)− u‖2 ≤ Ge
− m

C2
P

|u|m−1 t
∀t ≥ τ1 , (4.16)

being G another suitable constant, different from the one above but depending on the same
quantities (we can absorb the Poincaré constant CP into CS). Combining (4.12) with the time
origin shifted to t − τ0 − 1 and (4.16) evaluated at time t − τ0 − 1 (in place of t) and setting
τ = τ0 + τ1 + 1 we finally arrive at

‖u(t)− u‖∞ ≤ Ge
− m

C2
P

|u|m−1 t
∀t ≥ τ , (4.17)

again for some G = G(m,CS , N, |Ω|, u). The passage to general L1 data and the fact that one
can take, up to a different constant G, τ = 1 (or any other fixed τ > 0) in (4.17) follow from
the L1-L∞ regularizing effect. �

Remark 4.4. Estimate (4.7) improves the one given in [5, Cor. 1.4] with respect to time
dependence. Indeed in [5] the authors provided a decay rate of order

Ge
− (1−α)m

C2
P

2m−1 |u|
m−1t

for ‖u(t) − u0‖∞ (α is still defined by (3.26)), which is clearly slower than the one obtained
here. However, we remark that an exponential rate of the type

Gε e
−ε m

C2
P

|u|m−1t
∀ε ∈ (0, 1)
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could have also been obtained by exploiting the uniform convergence to the mean value proved
in [5] together with [1, Th. 3.3], although the constant Gε would diverge as ε ↑ 1. The new
contribution of our Theorem 4.3 lies in the fact that one can actually choose ε = 1. Notice that
writing u(t) = u + f(t) and linearizing (1.1) around the constant solution u one formally gets
the equation ft = m|u|m−1∆f , so that the rate given in Theorem 4.3 coincides with the one
predicted by linearization.

In the following we shall prove that estimate (4.7) is sharp by providing data for which a
lower bound matching the upper bound in (4.7) holds. The result we shall give depends on the
well-known fact that, under our assumptions, the operator −∆N (non-weighted) possesses a
sequence of eigenvalues {λn} (possibly repeated) and a corresponding sequence of eigenfunctions
{φn} which form an orthonormal basis for L2(Ω).

Proposition 4.5. Let Ω be a bounded C∞ domain. Consider the first non-zero eigenvalue λ1 of
(minus) the Laplacian with homogeneous Neumann boundary conditions, and the corresponding
set of eigenfunctions (possibly consisting of one single element) normalized in L2(Ω). Choose
any of such eigenfunctions and denote it by ψ1. Given u0 6= 0, let u be the solution of (1.1)
corresponding to the initial datum u0 = u0+ c1ψ1, with |c1| sufficiently small. Then there exists
a constant H = H(m,Ω, c1) > 0 such that the following estimate holds:

‖u(t)− u‖∞ ≥ H e
− m

C2
P

|u|m−1 t
∀t > 0 . (4.18)

Proof. Let us consider first the solution to (1.1) corresponding to a regular initial datum u0
such that u0 = 1 and ‖u0 − 1‖∞ ≤ δ < 1, with δ to be chosen sufficiently small afterwards.
Since ‖u(t) − 1‖∞ is non-increasing (indeed ‖u(t) − 1‖̺ is non-increasing for all ̺ ≥ 1, and so
for ̺ = ∞ as well) we have that |u(x, t)| ≥ 1 − δ for all x ∈ Ω and t > 0. Hence by inserting
such bound into the first line of (4.14) and solving similarly the resulting differential inequality
we obtain the following estimate:

‖f(t)‖2 ≤ ‖f0‖2 e
−λ1m(1−δ)m−1t ∀t > 0 , (4.19)

where we set f(x, t) = u(x, t) − 1 and f0(x) = u0(x) − 1. From standard quasilinear theory
(see [22]) we have that f ∈ C∞(Ω × (0,∞)). Also, straightforward computations show that f
solves the following differential equation:

ft = m∆f + F , (4.20)

up to defining F as

F = m(m− 1)(1 + f)m−2|∇f |2 +m
[
(1 + f)m−1 − 1

]
∆f .

If we choose as initial datum f0(x) = c1 ψ1(x), under the condition

|c1| ≤
δ

‖ψ1‖∞
, (4.21)

we see that (4.19) becomes

‖f(t)‖2 ≤ |c1| e
−λ1m(1−δ)m−1t ∀t > 0 . (4.22)

Define as usual |f |C0(Ω) := ‖f‖∞ and, for any multi-index η = (η1, . . . , ηN ), the quantity

|η| = η1 + . . .+ ηN and the seminorms

|f |Ck(Ω) := max
|η|=k

‖∂ηf‖∞ , k ∈ N .

From the uniform parabolicity of the equation at hand we infer the existence of a constant
Q = Q(δ) > 0 such that

|f(t)|Ck(Ω) ≤ Q ∀t > 0 , ∀k ∈ N , (4.23)

where Q can be taken to be independent of c1 subject to (4.21). We now recall the generalized
interpolation inequalities

|g|
Cj(Ω)

≤ Cj,k,p |g|
N+jp
N+kp

Ck(Ω)
‖g‖

p(k−j)
N+kp

p , (4.24)
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valid for all integers k > j ≥ 0 and real p ≥ 1 (see [23, p. 130] or, for a short review, [6, App.
3]). Combining (4.22), (4.23) and (4.24) we deduce that the following bounds hold:

|f(t)|Cl(Ω) ≤ Q′|c1|
1−ǫ e−λ1m(1−δ)m−1(1−ǫ)t for l = 0, 1, 2 , ∀t > 0 , ∀ǫ ∈ (0, 1) ,

being Q′(δ, ǫ) > 0 another constant independent of c1 subject to (4.21). From the very definition
of F and from the fact that the L∞ norm of f(t, ·) is non-increasing we have that, for suitable
constants Q0 = Q0(δ), Q

′′ = Q′′(δ, ǫ),

‖F (t)‖∞ ≤ Q0

(
|f(t)|2C1(Ω) + ‖f(t)‖∞ |f(t)|C2(Ω)

)
≤

≤ Q′′|c1|
2(1−ǫ) e−2λ1m(1−δ)m−1(1−ǫ)t ∀t > 0 , ∀ǫ ∈ (0, 1) .

(4.25)

We want to study the asymptotic behaviour of α1(t) = 〈f(t), ψ1〉L2(Ω), that is the first Fourier
coefficient of f along the evolution. In order to do that, let us multiply equation (4.20) by ψ1

and integrate on Ω, so as to obtain the following differential equation for α1(t):

α̇1(t) = −λ1mα1(t) + 〈F (t), ψ1〉L2(Ω) .

Duhamel principle entails that α1 must satisfy the following nonlinear integral equation (recall
that by construction α1(0) = c1):

α1(t) = e−λ1mt

[
c1 +

∫ t

0
eλ1ms 〈F (s), ψ1〉L2(Ω) ds

]
. (4.26)

If we choose δ and ǫ sufficiently small, namely such that 2(1 − δ)m−1(1 − ǫ) > 1, thanks to
(4.25) we easily see that the time integral in (4.26) can be bounded in the following way:

∣∣∣∣
∫ t

0
eλ1ms 〈F (s), ψ1〉L2(Ω) ds

∣∣∣∣ ≤ B |c1|
2(1−ǫ) ,

where B is a suitable constant independent of c1 and t ≥ 0. Pick now |c1| small enough so that

|c1| > B |c1|
2(1−ǫ), this being possible since 2(1 − ǫ) > 1. Under such bound on |c1| we then

deduce from (4.26) that the exact decay rate of α1(t) is e−λ1mt, in the sense that |α1(t)| ∼ e−λ1mt

as t→ ∞. Hence (4.18) holds true since there exists a suitable constant K̃ > 0 such that

‖u(t)− 1‖∞ = ‖f(t)‖∞ ≥ |Ω|−
1
2 ‖f(t)‖2 ≥ |Ω|−

1
2 |α1(t)| ≥ K̃ e−λ1mt ∀t > 0 .

The case of initial data with non-zero mean value u0 6= 1 can be brought back to the case u0 = 1
by means of a standard time scaling argument. �

5. The weighted case

As already mentioned, the main results provided in the previous sections can be extended to
the case of the weighted porous media equation with Neumann boundary conditions (1.2), dealt
with in detail in [13], under the sole hypotheses that the weights ρν , ρµ satisfy Sobolev-type
inequalities like (1.3) or the weaker (1.4). Since the proofs of the corresponding theorems basi-
cally would be the same as for the non-weighted case, we shall only give statements with short
comments, except in the cases of Theorem 5.3, Theorem 5.10 and related lemmas, which re-
quire new arguments. Before doing that, we briefly recall some notation and essential definitions
concerning weighted Sobolev spaces.

Let Ω ⊂ R
N be a domain and let ν and µ be two measures defined on it, both absolutely

continuous with respect to the Lebesgue measure. We indicate as ρν and ρµ the corresponding
weights (or densities), which will always be assumed to be strictly positive almost everywhere.
For all p ∈ [1,∞) we introduce the Banach space Lp(Ω; ν) of equivalence classes of Lebesgue
measurable functions f such that

‖f‖pp;ν =

∫

Ω
|f |p dν =

∫

Ω
|f |p ρνdx <∞ .
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The same applies for the measure µ. According to [20], we define the weighted Sobolev space

W 1,p(Ω; ν, µ) as the space of all (equivalence classes of) functions v ∈W 1,1
loc (Ω) such that

‖v‖pp;ν,µ = ‖v‖pp;ν + ‖∇v‖pp;µ <∞ .

Without further assumptions on ρν and ρµ in general W 1,p(Ω; ν, µ) would not be complete.

Definition 5.1. For all p ∈ (1,∞) we denote as Bp(Ω) the class of all measurable functions g
such that g > 0 a.e. and

f
1

1−p ∈ L1
loc(Ω) .

One can prove [20, Th. 2.1] that if p ∈ (1,∞) and ρµ ∈ Bp(Ω) then W 1,p(Ω; ν, µ) is indeed
complete. If p = 1 the same result holds true providing that the condition ρµ ∈ Bp(Ω) is
replaced by ρ−1

µ ∈ L∞
loc(Ω).

The fact that for any ϕ ∈ C∞
c (Ω) the quantity ‖ϕ‖p;ν,µ is finite is equivalent (see [20, Lem.

4.4]) to the local finiteness of ν and µ, that is

ρν , ρµ ∈ L1
loc(Ω) . (5.1)

Assuming (5.1), one can define the space W 1,p
0 (Ω; ν, µ) as the closure of C∞

c (Ω) in W 1,p(Ω; ν, µ).
Now we are ready to state the weighted counterpart of the Lq0-L∞ regularity Theorem 3.2.

Hereafter, the assumptions on the weights (inner regularity and boundedness away from zero)
and the concepts of solution will always be the ones given in Section 2.

Theorem 5.2. Let ν(Ω) < ∞ and let inequality (1.4) hold true for some σ > 1. Then for
the solution u of (1.2) corresponding to an initial datum u0 ∈ Lq0(Ω; ν) with q0 ∈ [1,∞) the
following estimate holds:

‖u(t)‖∞ ≤ K

(
t
− σ

(σ−1)q0+σ(m−1) ‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)

q0;ν + ‖u0‖q0;ν

)
∀t > 0 , (5.2)

where K is a constant which depends only on m, CS, σ and ν(Ω).

The proof of Theorem 5.2 is exactly the same as the one of Theorem 3.2: indeed, going back
to the latter, one easily sees that in order to repeat it the only relevant assumption is the fact
that the weaker inequality (1.4) holds (with σ = N/(N − 2) in that case).

Now we show that the Lq0-L∞ regularity estimate (5.2) is in fact the correct one, namely its
validity implies in turn the validity of a Sobolev embedding for W 1,2(Ω; ν, µ).

Theorem 5.3. Let ν(Ω) < ∞ and suppose that there exist a constant K > 0 and two given
numbers σ > 1 and q0 ∈ [m,m + 1) such that, for all u0 ∈ Lq0(Ω; ν), the solution u of (1.2)
corresponding to the initial datum u0 satisfies the following estimate:

‖u(t)‖∞ ≤ K

(
t
− σ

(σ−1)q0+σ(m−1) ‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)

q0;ν + ‖u0‖q0;ν

)
∀t > 0 . (5.3)

Then there exists a constant C ′ > 0 such that the functional inequality

‖v‖2σ;ν ≤ C ′
(
‖∇v‖2;µ + ‖v‖ q0

m
;ν

)
∀v ∈W 1,2(Ω; ν, µ) (5.4)

holds as well.

Proof. We proceed along the lines of the proofs of Theorems 4.3 and 5.6 of [13]. First of
all, consider a non-negative initial datum u0 ∈ L∞(Ω) ∩W 1,2(Ω; ν, µ) and its corresponding
solution to (1.2) u. Exploiting the classical interpolation inequality between the exponents
q0 ∈ [m,m + 1), m + 1, ∞ and the non-expansivity of the Lq0(Ω; ν) norm, one easily obtains
that

‖u(t)‖m+1;ν ≤ ‖u(t)‖
m+1−q0

m+1
∞ ‖u0‖

q0
m+1
q0;ν ∀t > 0 ; (5.5)
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combining (5.5) with estimate (5.3) one gets, up to a multiplicative constant that for the sake
of simplicity from now on we shall always denote as K,

‖u(t)‖m+1
m+1;ν ≤ K

[
t
−

σ(m+1−q0)
(σ−1)q0+σ(m−1) ‖u0‖

q0(2σm−m−1)
(σ−1)q0+σ(m−1)

q0;ν + ‖u0‖
m+1
q0;ν

]
∀t > 0 . (5.6)

Now we need to use the following fundamental inequality:

‖u(t)‖m+1
m+1;ν − ‖u0‖

m+1
m+1;ν ≥ −(m+ 1) t ‖∇(um0 )‖22;µ ∀t > 0 , (5.7)

which was proved in [13] (see again Theorems 4.3 and 5.6). From (5.6) and (5.7) we deduce
that

‖u0‖
m+1
m+1;ν ≤

≤ K

[
t
−

σ(m+1−q0)
(σ−1)q0+σ(m−1) ‖u0‖

q0(2σm−m−1)
(σ−1)q0+σ(m−1)

q0;ν + (m+ 1)t ‖∇(um0 )‖22;µ + ‖u0‖
m+1
q0;ν

]
∀t > 0 .

(5.8)

Minimizing the right hand side of (5.8) with respect to t > 0 one arrives at

‖u0‖
m+1
m+1;ν ≤ K

[
‖u0‖

q0(2σm−m−1)
2σm−q0

q0;ν ‖∇(um0 )‖
2σ(m+1−q0)

2σm−q0
2;µ + ‖u0‖

m+1
q0;ν

]
. (5.9)

Proceeding exactly as explained in the proof of Theorem 5.6 of [13], that is by approximating

u
1/m
0 with a sequence of regular functions, one can show that (5.9) is equivalent to the following

inequality:

‖v‖r;ν ≤ K

[(
‖∇v‖2;µ + ‖v‖ q0

m
;ν

)ϑ
‖v‖1−ϑ

s;ν

]
∀v ≥ 0 ∈ L∞(Ω) ∩W 1,2(Ω; ν, µ),

1

r
=
ϑ

q
+

1− ϑ

s
,

(5.10)
where it is understood that

r =
m+ 1

m
, q = 2σ , s =

q0
m
, ϑ =

2σm(m+ 1− q0)

(m+ 1)(2σm− q0)
.

The fundamental result [4, Th. 3.1] ensures that (up to a different multiplicative constant) one
can put ϑ = 1 and thus r = 2σ in (5.10), this leading to the claimed inequality (5.4) at least for
regular positive functions; the fact that such inequality holds in the whole space W 1,2(Ω; ν, µ)
then follows by means of a density argument and by writing v = v+ − v−. �

A straightforward consequence of the above Theorems 5.2 and 5.3 is the following, which is
one of the main results of the paper.

Corollary 5.4. Let ν(Ω) < ∞. The validity of inequality (1.4) for some σ > 1 is equivalent
to the validity of the family of estimates (5.2) for all q0 ∈ [1,∞).

Remark 5.5. We shall provide a specific example in which the bound (5.2) (for q0 = 1) is
sharp in the sense that no better scaling invariant estimate can hold, as in the non-weighted
case discussed in Remark 3.4.

The setting is one-dimensional, in particular we choose Ω = (0, 1). We consider the weights
ρν(x) = 1, ρµ(x) = xβ . The Sobolev inequality (1.3) associated to such weights is known to hold
with σ = 1

β−1 if β ∈ (1, 2) (see Section 5.1 for appropriate references). An explicit calculation

shows that the Barenblatt-type functions

uB,β(x, t) = t−ζ

(
C − k

xω

tωζ

) 1
m−1

+

, (5.11)

where C > 0 is a free (mass) paramenter, ζ = 1
m+1−β , ω = 2 − β and k = m−1

m(2−β)(m+1−β) ,

are solutions to the corresponding weighted equation for any t > 0. We consider them for t
small enough to ensure that the support of uB,β(·, t) is bounded away from the point x = 1.
It is straightforward to prove that the mass of uB,β(·, t) is preserved in time, so that also the
Neumann boundary condition at x = 0 is satisfied. One then checks directly that such solutions
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belong to the appropriate functional spaces, so that they are energy solutions (for t > 0) in the
sense of Definition 2.1.

We notice that (minus) the power of time appearing in the bound (5.3) coincides, for q0 = 1
and σ = 1

β−1 , with 1
m+1−β , namely with the power of time ζ appearing in (5.11). The fact

that there cannot hold another scaling invariant estimate with a better rate then follows as in
Remark 3.4.

We want to stress that Corollary 5.4 has a natural counterpart for the Dirichlet problem




ut = ρ−1
ν div (ρµ∇(um)) in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞)

u(·, 0) = u0(·) in Ω

, (5.12)

whose well-posedness was also analysed in [13] and whose correct Lq0-L∞ regularity estimates
basically had already been proved in [5, Th. 1.5] (there is no difficulty in extending the proof
provided therein to our context). Here is the statement:

Corollary 5.6. Let ν(Ω) <∞. The validity of the Sobolev inequality

‖v‖2σ;ν ≤ CS ‖∇v‖2;µ ∀v ∈W 1,2
0 (Ω; ν, µ) (5.13)

for some σ > 1 and some constant CS > 0 is equivalent to the validity of the family of estimates

‖u(t)‖∞ ≤ K t
− σ

(σ−1)q0+σ(m−1) ‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)

q0;ν ∀t > 0 , ∀q0 ∈ [1,∞) , (5.14)

where u is the solution of (5.12) corresponding to a generic initial datum u0 ∈ Lq0(Ω; ν) and
K > 0 is a suitable constant independent of u0.

The finiteness of the measure, in this case, is necessary only in order to prove the converse
(i.e. the fact that (5.14) implies (5.13), see [13, Th. 4.3]).

As for the asymptotic behaviour of solutions, we begin with an analogue of Theorem 4.1.

Theorem 5.7. Let ν(Ω) <∞ and let the Sobolev-type inequality (1.3) hold true for some σ > 1.
Then if u0 ∈ Lq0(Ω; ν), with q0 ∈ [1,∞), u0 = 0 and u is the solution of (1.2) corresponding to
the initial datum u0, the following estimate holds:

‖u(t)‖∞ ≤ Q1 t
− σ

(σ−1)q0+σ(m−1)
1

(
Q2t+ ‖u0‖

1−m
q0;ν

) (σ−1)q0
(m−1)[(σ−1)q0+σ(m−1)]

∀t > 0 ,

where Q1 and Q2 are constants depending on q0, m, Ω, ν, µ.

Again, the proof of this result is similar to the one of Theorem 4.1. Actually, in order to be
able to exploit Lemma 3.2 of [1], a priori one should require that the embedding W 1,2(Ω; ν, µ) →֒
L2(Ω; ν) is compact. In principle this is not a major restriction since it is quite common that,
at least on bounded domains, the validity of a Sobolev-type inequality comes together with
the compactness of such embedding (see the examples of Section 6 of [13]). Nonetheless, as
previously mentioned, in [13, Lem. 5.8] a generalized version of that lemma is provided, which
does not require compactness.

As concerns solutions to (1.2) with non-zero mean, in order to obtain the weighted version
of the asymptotic estimate given in Theorem 4.3 first we have to prove uniform convergence of
such solutions to their mean value. Since the proof of [5, Cor. 1.4] (which takes advantage of
the uniform spatial Hölder continuity of solutions to (1.1)) in the generality of present context
does not work, we shall provide a different (functional) argument, which basically only uses the
assumed validity of the Sobolev-type inequality (1.3). To this end, we need two preliminary
lemmas.

Lemma 5.8. Given r ≥ 1/2, m > 1 and a fixed constant R > 1, let

Φr,m(x) =

∫ x

0
|y|r−1|y + 1|

m−1
2 dy ∀x ∈ [−R,R] .
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Then there exist two positive constants C1 = C1(m) and C2 = C2(m,R) such that

C1

r1+1∨[m−1
2 ]

|x|r ≤ |Φr,m(x)| ≤
C2

r
|x|r ∀x ∈ [−R,R] . (5.15)

Proof. One has to study the ratio |Φr,m(x)|/|x|r. The bound from above is easily obtainable,
since

|Φr,m(x)| ≤ (R+ 1)
m−1

2

∣∣∣∣
∫ x

0
|y|r−1 dy

∣∣∣∣ =
(R+ 1)

m−1
2

r
|x|r ∀x ∈ [−R,R] .

In order to get a lower bound, we begin with the easier case m = 3. Recall that, when x 6= 0,
we use the convention xr := |x|r−1x. First of all note that

Φr,m(x)/xr ≥

∫ x
0 x

r−1 dy

xr
=

1

r
∀x ∈ (0, R] ; (5.16)

also,

Φr,3(x)/x
r =

∫ |x|
0 yr−1(1− y) dy

|x|r
=

1

r
−

|x|

r + 1
≥

1

r(r + 1)
∀x ∈ [−1, 0) . (5.17)

So we are left to study the minimum of Φr,3(x)/x
r as x varies in [−R,−1). We have:

fr(x) = Φr,3(x)/x
r =

∫ |x|
0 yr−1|y − 1| dy

|x|r
=

∫ 1
0 y

r−1(1− y) dy +
∫ |x|
1 yr−1(y − 1) dy

|x|r
=

=

2
r(r+1) +

|x|r+1

r+1 − |x|r

r

|x|r
=

2

r(r + 1)
|x|−r +

|x|

r + 1
−

1

r
∀x ∈ [−R,−1) .

Notice that
d

ds

(
2

r(r + 1)
s−r +

s

r + 1
−

1

r

)
= −

2

r + 1
s−r−1 +

1

r + 1
,

whose zero is attained at s0 = 2
1

r+1 , so that

fr(x) ≥
1

r

(
2

1
r+1 − 1

)
∀x ∈ [−R,−1) . (5.18)

We finally observe that
1

r

(
2

1
r+1 − 1

)
≥

log 2

r(r + 1)
. (5.19)

By collecting together (5.16), (5.17), (5.18) and (5.19) one gets the lower bound in (5.15) for
m = 3.

Now, let us consider the case m > 3. Since the function g(s) = |s|(m−1)/2 is convex, from
Jensen’s inequality we have:

|Φr,m(x)|

|x|r
=

1

r

∫ |x|
0 yr−1|y − 1|

m−1
2 dy

∫ |x|
0 yr−1dy

≥ r
m−3

2

(∫ |x|
0 yr−1|y − 1| dy

|x|r

)m−1
2

∀x ∈ [−R, 0) ,

and we can bound the right hand side from below just by applying to it the above estimates
for m = 3, so as to obtain

|Φr,m(x)|

|x|r
≥

C1

r1+
m−1

2

∀x ∈ [−R, 0)

for some constant C1 = C1(m), which together with (5.16) gives the claimed lower bound in
(5.15). We remain to deal with the case m ∈ (1, 3), that is when the function g(s) is no more
convex. Again, since (5.16) holds for all m > 1, we can restrict ourselves to analyse the ratio
|Φr,m(x)|/|x|r for x ∈ [−R, 0). Since (m− 1)/2 = α ∈ (0, 1), straightforward calculations show
that

|y − 1|α ≥ |yα − 1| ∀y ∈ [0, R] ;
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therefore,

|Φr,m(x)|

|x|r
=

∫ |x|
0 yr−1|y − 1|

m−1
2 dy

|x|r
≥

∫ |x|
0 yr−1|y

m−1
2 − 1| dy

|x|r
∀x ∈ [−R, 0) . (5.20)

From now on, thanks to (5.20), by means of computations analogous to the ones developed in
the case m = 3 one can prove that also the right hand side of (5.20) is bounded from below by
a constant times 1/r2. �

The next lemma is a crucial one. Basically it is a refinement of the already mentioned Lemma
5.8 of [13] in the particular case of the functions Φr,m(·), and so its proof is similar to the one
of the latter.

Lemma 5.9. Suppose that there exists a constant CPS such that the Poincaré-Sobolev inequality

‖v − v‖2σ;ν ≤ CPS ‖∇v‖2;µ ∀v ∈W 1,2(Ω; ν, µ) (5.21)

holds for some σ ≥ 1. Then for any m > 1 and R > 1 there exists a constant C∗ =
C∗(m,Ω, ν, µ,R) such that

‖Φr,m(ξ)‖2σ;ν ≤ C∗ ‖∇Φr,m(ξ)‖2;µ (5.22)

∀r ≥ 1/2 , ∀ξ : ‖ξ‖∞ ≤ R , ξ = 0 , Φr,m(ξ) ∈W 1,2(Ω; ν, µ) .

Proof. As in [13, Lem. 5.8] we proceed by contradiction. That is, if such a constant C∗ did
not exist then there would be a sequence of numbers rn ≥ 1/2 and a corresponding sequence
of non-identically-zero functions {ξn} such that rn → ∞, ‖ξn‖∞ ≤ R, ξn = 0, Φrn,m(ξn) ∈
W 1,2(Ω; ν, µ) and

‖∇Φrn,m(ξn)‖2;µ ≤
1

n
‖Φrn,m(ξn)‖2σ;ν . (5.23)

The fact that the sequence {rn} cannot accumulate at some fixed r and therefore has to go to
infinity is a straightforward consequence of the method of proof of [13, Lem. 5.8]. Now, let us
set

an = ‖Φrn,m(ξn)‖2σ;ν

and

Ψn =
Φrn,m(ξn)

an
.

From (5.23) we get that

‖Ψn‖2σ;ν = 1 , ‖∇Ψn‖2;µ ≤
1

n
.

Applying the Poincaré-Sobolev inequality (5.21) to Ψn we obtain

∥∥Ψn −Ψn

∥∥
2σ;ν

≤ CPS
1

n
; (5.24)

in particular, since ‖Ψn‖2σ;ν = 1, the sequence of real numbers
{
Ψn

}
is bounded and therefore

convergent to some constant c0 (up to a subsequence which we do not relabel). Hence by (5.24)
also {Ψn} converges in L2σ(Ω; ν) to such constant c0: in particular c0 6= 0 since ‖Ψn‖2σ;ν = 1.
Consider the sequence of functions

Zn =
ξn

a
1
rn
n

.

First of all, we want to prove that {Zn} converges at least pointwise to a non-zero constant.
Indeed, again up to subsequences, we know that {Ψn} converges pointwise to the non-zero
constant c0. Let us rewrite Zn in the following way:

Zn(x) =

[
|ξn(x)|

rn

|Φrn,m(ξn(x))|
Ψn(x)

] 1
rn

.



20 GABRIELE GRILLO, MATTEO MURATORI

Thanks to estimate (5.15) and to the fact that |ξn(x)| ≤ R, we have:

[
rn
C2

] 1
rn

|Ψn(x)|
1
rn ≤ |Zn(x)| ≤


r

1+1∨[m−1
2 ]

n

C1




1
rn

|Ψn(x)|
1
rn .

Therefore by letting n → ∞ we deduce that {|Zn|} converges pointwise to 1, and so {Zn}
converges pointwise to 1 if c0 > 0 or to −1 if c0 < 0, in any case to a non-zero constant. Finally
we prove that {Zn} also converges in L1(Ω; ν) to such non-zero constant. In order to do that,
thanks to Egoroff’s Theorem it is enough to show that

∫
E |Zn| dν goes to zero as n → ∞ and

|E| → 0. In fact,

∫

E
|Zn|dν =

∫

E

|ξn|

a
1
rn
n

dν ≤


r

1+1∨[m−1
2 ]

n

C1




1
rn ∫

E
|Ψn|

1
rn dν ≤ |E|1−

1
rn


r

1+1∨[m−1
2 ]

n

C1




1
rn

‖Ψn‖
1
rn
1;ν ,

and the assertion follows since {Ψn} converges in L2σ(Ω; ν), so in particular is bounded in
L1(Ω; ν). Thus {Zn} is a sequence of zero-mean functions which converge in L1(Ω; ν) to a non-
zero constant, and this is clearly absurd. Therefore the constant C∗ in (5.22) must exist. �

A crucial point in Lemma 5.9 lies in the fact that the constant C∗ does not depend on r, and
this is necessary in order to prove the following theorem, which improves considerably the main
result of [18], at least in all the cases dealt with therein for which a weighted Sobolev inequality
holds. Indeed, in [18] local uniform convergence is shown for the specific weights considered
in the one-dimensional setting. For such weights a Sobolev-type inequality may or may not
hold, and hence one does not expect uniform convergence in general. Our contribution is the
identification of the role of a weighted Sobolev inequality in this connection and the functional
analytic setting in which we prove our results.

Theorem 5.10. Let ν(Ω) < ∞ and let the Sobolev-type inequality (1.3) hold true for some
σ > 1. Then any solution u of (1.2) corresponding to an initial datum u0 ∈ Lq0(Ω; ν), with
q0 ∈ [1,∞) and u0 = u 6= 0, converges uniformly to its mean value u.

Proof. We shall proceed through a Moser iterative technique. Indeed, for a given ̺ > 1, after
multiplying equation (1.2) by (u − u)̺−1 and (formally) integrating by parts, straightforward
computations lead to the following differential equation for the quantity ‖w(s)‖̺̺;ν , where we
set w to be the relative error w(·, s) = u(·, s)/u− 1:

d

ds
‖w(s)‖̺̺;ν = −̺(̺− 1)m|u|m−1

∥∥∥∇Φ ̺
2
,m(w(s))

∥∥∥
2

2;µ
. (5.25)

Since u(τ) ∈ L∞(Ω) for any given τ > 0 (recall the regularizing effect from Theorem 5.2) and
‖w(s)‖∞ is non-increasing (consequence of (5.25) itself), of course there exists a suitable R > 1
such that |w(·, s)| ≤ R for all s ≥ τ ; notice that the constant C∗ in Lemma 5.9 will then depend
on the solution u only through ‖w(τ)‖∞. Also, by definition, w(s) = 0. Therefore we can apply
to the right hand side of (5.25) the functional inequality (5.22) (with r = ̺/2), which entails

d

ds
‖w(s)‖̺̺;ν ≤ −

̺(̺− 1)m|u|m−1

C2
∗

∥∥∥Φ ̺
2
,m(w(s))

∥∥∥
2

2σ;ν
. (5.26)

Thanks to the estimate (5.15) (again with r = ̺/2), from (5.26) we get

d

ds
‖w(s)‖̺̺;ν ≤ −

̺(̺− 1)m|u|m−1

C2
∗

C2
1(̺

2

)2+2∨(m−1)

∥∥∥w(s)
̺
2

∥∥∥
2

2σ;ν
≤ −

Q

̺2∨(m−1)
‖w(s)‖̺σ̺;ν ,

(5.27)
where Q > 0 is a suitable constant depending on m, C1, C∗, |u|, but independent of ̺. Now,
for a given t > τ , let us set tn = τ + (1 − 2−n)(t − τ) and pn+1 = σ pn. Clearly, pn = σnp0
(let p0 be any real number belonging to [1,∞)), so that we have tn → t and pn → ∞ as
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n→ ∞. Integrating (5.27) between tn and tn+1 with ̺ = pn and exploiting the non-expansivity
of ‖w(s)‖pn+1;ν we obtain:

−‖w(tn)‖
pn
pn;ν

≤ −
Q

p
2∨(m−1)
n

(tn+1 − tn) ‖w(tn+1)‖
pn
pn+1;ν

,

which reads

‖w(tn+1)‖pn+1;ν
≤

(
p
2∨(m−1)
n 2n+1

Q

) 1
pn

t
− 1

pn ‖w(tn)‖pn;ν . (5.28)

Since pn = σnp0, for a suitable constant K = K(p0,m, σ,Q) we can rewrite (5.28) as

‖w(tn+1)‖pn+1;ν
≤ K

n+1
pn t

− 1
pn ‖w(tn)‖pn;ν ,

that is

‖w(tn+1)‖pn+1;ν
≤ K

∑n
k=0

k+1
pk t

−
∑n

k=0
1
pk ‖w(τ)‖p0;ν .

Hence,

‖w(t)‖∞ = lim
n→∞

‖w(t)‖pn+1;ν
≤ lim inf

n→∞
‖w(tn+1)‖pn+1;ν

≤ K ′ t
− σ

p0(σ−1) ‖w(τ)‖p0;ν , (5.29)

being K ′ another suitable constant depending K, p0, σ and therefore on p0, m, Ω, ν, µ, u,
‖w(τ)‖∞. The assertion then follows by letting t→ ∞ in (5.29). �

The above result can be refined by showing the following analogue of Theorem 4.3.

Theorem 5.11. Let ν(Ω) < ∞ and let the Sobolev-type inequality (1.3) hold true for some
σ > 1. For any solution u of (1.2) corresponding to an initial datum u0 ∈ L1(Ω; ν) with
u0 = u 6= 0 there exists a constant G = G(m,Ω, ν, µ, u, ‖u0‖1;ν) > 0 such that the following
estimate holds:

‖u(t)− u‖∞ ≤ Ge
− m

C2
P

|u|m−1 t
∀t ≥ 1 ,

being CP the smallest constant such that (1.5) holds.

Proof. One can proceed along the lines of the proof of Theorem 4.3. In order to get the expected
exponential decay of the quantity ‖u(t)− u‖2;ν , one first uses estimate (5.29) instead of (4.12).
Indeed, note that the only relevant point of (4.12) is that its right hand side goes to zero and it
is integrable as t→ ∞: both of these properties can be achieved by the right hand side of (5.29)
upon choosing p0 sufficiently next to 1 (or even p0 = 1). Finally, the decay rate of the L∞

norm is the same as for the L2 norm thanks again to (5.29) evaluated (for example) between t
and τ = t − 1/2 with p0 = 2. The dependence of the multiplicative constant G on the stated
quantities follows from the constant K ′ in (5.29) and from the regularity estimate (5.2). �

We remark that, obviously, Theorem 5.11 also applies to the non-weighted case. In fact the
conclusion is the same as the one of Theorem 4.3 in terms of time decay rate. Nonetheless, in
Theorem 4.3 the multiplicative constant G depends in a nontrivial way on the solution itself,
while the proof of Theorem 5.11 shows that, basically, it depends on the solution only in terms
of the initial datum (though through the constant C∗ of Lemma 5.9, which is unknown).

We conclude giving an immediate corollary of Theorem 5.10 concerning the evolution of the
support of (non-zero mean) solutions to (1.2). This topic has been widely investigated in the
literature, see e.g. [15, 25, 14, 19, 28].

Corollary 5.12. Let ν(Ω) < ∞ and let the Sobolev-type inequality (1.3) hold true for some
σ > 1. Then the support of any solution u(·, t) of (1.2) corresponding to a compactly supported
initial datum u0 having non-zero mean becomes the whole Ω for all t great enough.

We recall that in [13], where the weighted equation (1.2) was analysed assuming only the va-
lidity of the Poincaré inequality (1.5), the authors provided weights for which the corresponding
solutions to (1.2) do not converge uniformly to their mean value (but they do in L̺(Ω; ν) for
all ̺ ∈ [1,∞) as a consequence of (1.5) itself). This should indicate that uniform convergence
is strongly linked with the validity of (1.3).
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5.1. Examples of weighted Sobolev inequalities. In the following we list some basic ex-
amples of domains Ω and couples of weights (ρν , ρµ) for which the Sobolev-type inequality (1.3)
holds for appropriate values of the parameter σ > 1, given below.

• Intervals :

◦ (xα, xβ) on (0, b) (b > 0): β ≤ 1, α > −1 and all σ > 1 OR β > 1, α > β − 2 and

σ ∈
(
1, α+1

β−1

]
;

◦ (xα, xβ) on (a,+∞) (a > 0): β ≥ 1, α < −1 and all σ > 1 OR β < 1, α < β − 2

and σ ∈
(
1, α+1

β−1

]
;

◦
(
1
x | log x|

α, x| log x|β
)

on (0, c) (c ∈ (0, 1)): β ≥ 1, α < −1 and all σ > 1 OR β < 1,

α < β − 2 and σ ∈
(
1, α+1

β−1

]
;

◦ (eα|x|, eβ|x|) on R: β ≥ 0, α < 0 and all σ > 1 OR β < 0, α < β and σ ∈
(
1, αβ

]
.

• Bounded Lipschitz domains (N > 2):

◦ (δα, δβ): β ≤ 1, α > −1 and σ ∈
(
1,min

(
N

N−2 ,
α+N
N−1

)]
OR β > 1, α > β − 2 and

σ ∈
(
1,min

(
N

N−2 ,
α+N

β+N−2

)]
(δ denotes the distance function from ∂Ω).

• The Euclidean space R
N (N > 2):

◦ ((1 + |x|)α, (1 + |x|)β): β ≥ 2 − N , α < −N and σ ∈
(
1, N

N−2

]
OR β < 2 − N ,

α < β − 2 and σ ∈
(
1,min

(
N

N−2 ,
α+N

β+N−2

)]
;

◦ (eα|x|, eβ|x|): β ≥ 0, α < 0 and σ ∈
(
1, N

N−2

]
OR β < 0, α < β and σ ∈

(
1,min

(
N

N−2 ,
α
β

)]
.

The above examples can be obtained by applying Theorem 1.4 of [7] (which gives necessary
and sufficient conditions on the weights so that (1.3) holds) in the one-dimensional case and
by exploiting the results of [21] in the N -dimensional case, see in particular Chapter 19 for
bounded Lipschitz domains and Chapters 20, 21 for unbounded domains (the validity of (1.3)
here is a consequence of the compact embeddings discussed therein).
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