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Dedicated to Gabriel Mokobodzki

Abstract. In this work we undertake an extension of various as-

pects of the potential theory of Dirichlet forms from locally com-

pact spaces to noncommutative C∗-algebras with trace. In partic-

ular we introduce finite-energy states, potentials and multipliers

of Dirichlet spaces. We prove several results among which the

celebrated Deny’s embedding theorem and the Deny’s inequality,

the fact that the carré du champ of bounded potentials are finite-

energy functionals and the relative supply of multipliers.

1. Introduction and description of the results.

In the present work we develop further the potential theory of Dirich-
let forms on noncommutative C∗-algebras with trace. We introduce and
investigate finite-energy states, potentials and multipliers, objects nat-
urally associated to Dirichlet spaces and which are meant to encode or
reveal the geometric nature of the latter.

In a companion work the results here obtained will be crucial to con-
struct on C∗-algebras endowed with a Dirichlet form, the building
blocks of a metric differential geometry (Dirac operators and Spec-
tral Triples) and topological invariants (summable Fredholm modules
in K-homology) in the framework of the Noncommutative Geometry
developed by A. Connes [Co].

Classical potential theory, studying harmonic functions on Euclidean
spaces R

n, finite-energy measures and their potentials, was based on
the properties of kernel |x − y|−1, the so called Green function, to
understood as the integral kernel of the inverse of the Laplace operator
(see [Bre], [Ca], [Do]).
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du champ, Dirichlet space multiplier.

1



2 FABIO CIPRIANI, JEAN-LUC SAUVAGEOT

In the late fifties, A. Beurling and J. Deny outlined, in two seminal
papers [BeDe1], [BeDe2], the way to develop a kernel-free potential
theory on locally compact Hausdorff spaces X. There, the central role
was no more played by the Green function, but rather by quadratic
forms which posses the fundamental Markovian contraction property

(1.1) E [a ∧ 1] ≤ E [a] ,
generalizing the Dirichlet integral of Euclidean spaces

ERn [a] =

∫

Rn

|∇a|2 dm .

The second fundamental property these quadratic forms are required
to have is lower semicontinuity on the algebra C0(X). Lower semicon-
tinuity is a reminiscence of the fact that Dirichlet forms may represent
energy functionals of physical systems (distributions of electric charges
or quantum spinless particles in the ground state representation, for
example). On the other hand this property allows, by a result of G.
Mokobodzki [Moko], to extend the quadratic form to a lower semicon-
tinuous form on the Hilbert spaces L2(X,m), with respect to a wide
family of Borel measures m on X, giving rise to a positive self-adjoint
generator L of a Markovian semigroup e−tL on L2(X,m)

E [a] = ‖L1/2a‖2L2(X,m)

Semigroups in this class are precisely the symmetric, strongly contin-
uous, contractive, positivity preserving semigroups on L2(X,m) which
extend to weakly∗-continuous, contractive, positivity preserving semi-
groups on L∞(X,m), symmetric with respect to the measure m.
The L2-theory is particularly interesting from at least two points of
view. The first is that, as noticed by A. Beurling and J. Deny, there
exists a one to one correspondence between Dirichlet forms and Mar-
kovian semigroups on L2(X,m). The second is that these objects are
also in one to one correspondence with Hunt’s Markov stochastic pro-
cesses (Ex, ωt) on X, which are symmetric with respect to m

(e−tLf)(x) = Ex(f(ωt)) x ∈ X , t ∈ [0,+∞) .

The third requirement a Dirichlet form E on L2(X,m) has to satisfies
is called regularity, and concerns the existence of a form core which
is also a dense sub-algebra of C0(X). This allows to develop a rich
theory of finite-energy measure and their potentials and, in particular,
the construction of a Choquet capacity on the space X. Sets having
vanishing capacity can be considered to be negligible from the point of
view of Potential Theory and M. Fukushima made a crucial use of them
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to construct the essentially unique Hunt’s process on X associated to
the regular Dirichlet form (see [F1], [F2], [FOT]).

The idea to generalize the notion of Markovian semigroup to C∗-algebras
A more general than the commutative ones, which are necessarily of
type C0(X), arose in Quantum Field Theory when L. Gross [G1], [G2]
approached the problem of the existence and uniqueness of the ground
state of an assembly of 1

2
spin particles, in terms of certain hypercontrac-

tivity properties of the Markovian semigroup on the Clifford C∗-algebra
of an infinite dimensional (one-particle) Hilbert space, generated by the
Hamiltonian operator.
Later, S. Albeverio and R. Hoegh-Krhon [AHK1] introduced Dirich-
let forms on C∗-algebras with trace (A, τ) as closed, quadratic forms
on the G.N.S. Hilbert space L2(A, τ), satisfying a suitable contraction
property generalizing (1.1) and having a form core which is a dense
sub-algebra of A. They also generalized the Beurling-Deny correspon-
dence between Dirichlet forms and Markovian semigroups on L2(A, τ).
This theory was subsequently developed by J.-L. Sauvageot [S2], E.B.
Davies and M. Lindsay [DL]. Applications were found in Riemannian
Geometry by E. B. Davies and O. Rothaus [DR1,2] to spectral bounds
for the Bochner Laplacian and in Noncommutative Geometry by J.-L.
Sauvageot [S3,4] to the transverse heat semigroup on the C∗-algebra of
a Riemannian foliation.

The discovery of the differential calculus underlying the structure of
Dirichlet forms [S2], [CS1], allows to represent them as

E [a] = ‖∂a‖2H
in terms of an essentially unique derivation ∂ on A taking its values in
a Hilbert A-bimodule H. The derivation thus appears as a differential
square root of the generator

L = ∂∗ ◦ ∂ .
This differential calculus allowed a potential theoretic characterization
of Riemannian manifolds having a positive curvature operator as those
for which the semigroup generated by the Dirac Laplacian on the Clif-
ford C∗-algebra is Markovian [CS3].

Among the others applications of Dirichlet forms and their differential
calculus on a C∗-algebra with trace, we mention the use made by D.
Voiculescu [V1], [V2] and Ph. Biane [Bi] in Free Probability Theory to
define and investigate Free Entropy and the recent appearance in K-
theory of Banach algebras [V3] and in K-homology of fractals [CGIS1],
[CGIS2].
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Derivations and their associated Markovian semigroups and resolvent
has been used by J. Peterson to approach L2-rigidity in von Neumann
algebras [Pe1], [Pe2] to characterize von Neumann algebras having the
property T (a generalization of the Kazhdan property T for groups)
and by Y. Dabrowski to prove the property non-Γ of von Neumann
algebras generated by noncommuting self-adjoint generators under fi-
nite nonmicrostates free Fisher information, still in the framework of D.
Voiculescu Free Entropy theory [Da]. Markov semigroups and Dirichlet
forms appear in connection with Lévy’s processes on Compact Quan-
tum Groups [CFK].

The paper is organized as follows. In Section 2 we recall the basic
definitions and properties of Dirichlet forms E , their Dirichlet spaces
F , Markovian semigroups and resolvents on C∗-algebras with traces.
In Section 3 we introduce finite-energy functionals and potentials as-
sociated to Dirichlet spaces. We prove a correspondence between these
classes of objects, the positivity of potentials and a version of a ”non-
commutative maximum principle”. As an important tool, we introduce
the fine C∗-algebra C, intermediate among the C∗-algebra A and the
von Neumann algebra M, to which finite-energy functionals automati-
cally extend. The section contains also a detailed discussions of a class
of examples on the reduced C∗-algebra C∗

red(G) of a locally compact
group associated to negative definite functions on them. In Section 4
we provide a version, in our noncommutative framework, of a Deny’s
embedding theorem by which the Dirichlet space F can be continu-
ously embedded in the G.N.S. space L2(A, ω) of any finite-energy state
ω whose potential is bounded. We prove also a version of the Deny’s in-
equality. In Section 5, making use of the canonical differential calculus
associated to Dirichlet spaces, we recall the definition of energy func-
tionals or carré du champ {Γ[a] ∈ A∗

+ : a ∈ F} associated to a Dirichlet
space and we show that the energy functional Γ[G] of bounded poten-
tial G ∈ P+ is a finite-energy functional. In the last Section 6, we
introduce multipliers of a Dirichlet space and show that bounded po-
tentials g ∈ P+ whose energy functional Γ[g] has a bounded potential
G(Γ[g]) ∈ P+ is a multiplier. This show a relative abundance of multi-
pliers and, in particular, that bounded potentials can be approximated
by potentials that are also multipliers.

The content of this work has been the subject of the following talks:
Workshop ”Noncommutative Potential Theory” Besançon January 2011,
GDRE-GREFI-GENCO Meeting Institut H. Poincaré Paris June 2012,
INDAM Meeting ”Noncommutative Geometry, Index Theory and Ap-
plications” Cortona-Italy, June 11-15 2012.
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2. Dirichlet forms on C∗-algebras

In this section we summarize the main definitions and some fun-
damental results of the theory of noncommutative Dirichlet forms on
C∗-algebras with trace, for which one may refer to [AHK], [C2], [CS1],
[DL].

2.1. C∗-algebras, traces and their standard forms. Let us denote
by (A, τ) a separable C∗-algebra A and a densely defined, faithful,
semifinite, lower semicontinuous, positive trace on it.
We denote by L2(A, τ) the Hilbert space of the Gelfand–Naimark–Segal
(G.N.S.) representation πτ associated to τ , and by M or L∞(A, τ) the
von Neumann algebra πτ (A)

′′ in B(L2(A, τ)) generated by A through
the G.N.S. representation.
When unnecessary, we shall not distinguish between τ and its canonical
normal extension on M, between elements of A and their representa-
tion in M as a bounded operator in L2(A, τ), nor between elements a
of A or M which are square integrable, in the sense that τ(a∗a) < +∞,
and their canonical image in L2(A, τ).
Then ‖a‖ stands for the uniform norm of a in A or in M, ‖ξ‖2 or
‖ξ‖L2(A,τ) for the norm of ξ ∈ L2(A, τ) and 1M for the unit of M.

As usual A+, M+ or L∞
+ (A, τ) and L2

+(A, τ) will denote the positive
part of A, M and L2(A, τ) respectively.
Recall that (M, L2(A, τ), L2

+(A, τ)) is a standard form of the von Neu-
mann algebra M (see [Ara]). In particular L2

+(A, τ) is a self-polar,
closed convex cone in L2(A, τ), inducing an anti-linear isometry (the
modular conjugation) J on L2(A, τ) which is an extension of the in-
volution a 7→ a∗ of M. The subspace of J-invariant elements (called
real) will be denoted by L2

h(A, τ) (cf. [Dix]). Any element ξ ∈ L2(A, τ)
can written uniquely as ξ = ξr + iξi for real elements ξr, ξi ∈ L2

h(A, τ)
and any real element ξ ∈ L2

h(A, τ) can written uniquely as ξ = ξ+ − ξ−
for orthogonal positive elements ξ± ∈ L2

+(A, τ), called the positive and
negative parts. Recall that ξ+ is the Hilbert projection of ξ ∈ L2

h(A, τ)
onto the closed convex set L2

+(A, τ). For a real element ξ ∈ L2
h(A, τ),

the positive element |ξ| := ξ+ + ξ− ∈ L2
+(A, τ) will be called the mod-

ulus of ξ.
Whenever ξ ∈ L2

h(A, τ) is real, the symbol ξ ∧ 1 will denote its Hilbert
projection onto the closed and convex subset C of L2

h(A, τ) obtained
as the L2–closure of {a ∈ A ∩ L2(A, τ) : a ≤ 1M}.

2.2. C∗–Dirichlet forms, Dirichlet spaces and Dirichlet alge-
bras. Let Mn(C) be, for n ≥ 1, the C∗–algebra of n×n matrices with
complex entries, 1n its unit, In its identity automorphism and trn its
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normalized trace. For every n ≥ 1, we will indicate by τn the trace
τ ⊗ trn of the C∗–algebra Mn(A) = A ⊗Mn(C) of n × n with entries
in A.

The main object of our investigation is the class of C∗–Dirichlet forms
on L2(A, τ) whose definition we recall here (cf. [AHK], [DL], [C1],
[CS1]).

Definition 2.1 (C∗-Dirichlet forms). A closed, densely defined, non-
negative quadratic form (E ,F) on L2(A, τ) is said to be:

i) real if

(2.1) J(ξ) ∈ F , E [J(ξ)] = E [ξ] ξ ∈ F ,

ii) a Dirichlet form if it is real and Markovian in the sense that

(2.2) ξ ∧ 1 ∈ F , E [ξ ∧ 1] ≤ E [ξ] ξ ∈ F ∩ L2
h(A, τ) ,

iii) a completely Dirichlet form if the canonical extension (En,Fn)) to
L2(Mn(A), τn)

(2.3) En[[ξi,j]ni,j=1)] :=
n∑

i,j=1

E [ξi,j] [ξi,j]
n
i,j=1 ∈ Fn := Mn(F) ,

is a Dirichlet form for all n ≥ 1 ,
iv) a C∗-Dirichlet form if it is a completely Dirichlet form which is
regular in the sense that the subspace B := A ∩ F is dense in the
C∗–algebra A and is a form core for (E ,F).

Notice that, in general, the property

|ξ| ∈ F , E [ |ξ| ] ≤ E [ξ] ξ ∈ F ∩ L2
h(A, τ)

is a consequence of the property (2.2) and that it is actually equivalent
to it when τ is finite, the cyclic and separating vector ξτ representing
τ belongs to F and E [ξτ ] = 0 (see [C1]).

Remark 2.2. Even if in this paper we formulate the results in the setting
of the G.N.S. standard form of (A, τ), they can be equivalently stated
and proved in a general standard form of (A, τ) (see [C1]). This may
be an important advantage when considering specific examples where
an ad hoc standard form can be more manageable that the G.N.S. one.

To simplify notations, in the rest of the paper
”Dirichlet form” will always mean C∗-Dirichlet form.

We will denote by (L,D(L) the densely defined, self-adjoint, nonneg-
ative operator on L2(A, τ) associated with the closed quadratic form
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(E ,F)

(2.4) E [ξ] = ||L1/2ξ||2 ξ ∈ F = D(L1/2) .

This operator is the generator of the strongly continuous, contractive
semigroup {e−tL : t ≥ 0} on the Hilbert space L2(A, τ). This semigroup
is Markovian in the sense that it is positivity preserving and extends to
a weakly∗-continuous semigroup of contractions on the von Neumann
algebra M. By duality and interpolation this semigroup extends also
as a strongly continuous, positivity preserving, contractive semigroup
on the noncommutative Lp-space Lp(A, τ) for each p ∈ [1,+∞].

As practice, several aspects of potential theory are more easily managed
working with the resolvent family {(I + εL)−1 : ε ≥ 0} than using the
semigroup itself. in particular, we will make use of the following obvious
properties.

Lemma 2.3. For ε > 0, the resolvent (I + εL)−1 is a symmetric con-
traction in L2(A, τ) which operates as a σ-weakly continuous, com-
pletely positive, contraction of the von Neumann algebra M and con-
verges strongly to the identity on F .

Definition 2.4 (Dirichlet spaces, Dirichlet algebras and their fine
C∗-algebras). The domain F of the Dirichlet form will called Dirichlet
space when considered as a Hilbert space endowed with its graph norm

(2.5) ||ξ||F :=
(
E [ξ] + ||ξ||2L2(A,τ)

)1/2
ξ ∈ F

and the scalar product

(2.6) 〈ξ, η〉F := E(ξ, η) + (ξ, η)L2(A,τ) ξ, η ∈ F .

The subspace B := F∩A is in fact an involutive, sub-algebra of A called
the Dirichlet algebra (see [DL], [C2]). By the regularity assumption,
it is dense in the Dirichlet space F as well in the C∗-algebra A, with
respect to their own topologies.

The subspace B̃ := F ∩M is an involutive sub-algebra of M called the
extended Dirichlet algebra. It is dense in the Dirichlet space F as well
in the von Neumann algebra M with respect to its σ-weak topology.

In our approach to potential theory on noncommutative C∗algebras, a
distinguished role will be played by the fine C∗-algebra C ⊇ A, closure

of the extended Dirichlet algebra B̃ in the norm topology of the von
Neumann algebra M. In particular, we will make use of the fact that
the Dirichlet form (E ,F), originally assumed to be regular with respect
to the C∗-algebra A, is still regular with respect to the larger fine C∗-
algebra C (see Section 5 below).
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We conclude this section with three examples of Dirichlet space. In
the first we recall the classical Beurling-Deny theory on locally compact
spaces X, where the C∗-algebra A is the commutative algebra C0(X)
of continuous functions vanishing at infinity endowed with its uniform
norm. The second one deals with typical situations in harmonic analy-
sis where the (reduced) group C∗-algebra C∗

red(G) of a locally compact
group G is most of the time noncommutative. The third illustrates the
standard Dirichlet form on noncommutative tori.

Example 2.5 (Dirichlet spaces on commutative C∗-algebras). By a
fundamental result of I.M. Gelfand (see [Dix]), commutative C∗-algebras
are of type C0(X) for a suitable locally compact, Hausdorff space X. In
this case, positive maps are automatically completely positive so that
positive or Markovian semigroup are automatically completely posi-
tive or Markovian and all Dirichlet forms are automatically completely
Dirichlet forms. In the commutative case our framework thus coincides
with that introduced by A. Beurling and J. Deny [BeDe2] to develop
potential theories on locally compact Hausdorff spaces.
The model Dirichlet form on the Euclidean space R

n or, more gener-
ally, on any Riemmannian manifold M endowed with its Riemannian
measure m, is the Dirichlet integral

E [a] =
∫

M

|∇a|2 dm a ∈ L2(M,m) .

In this case the trace on C0(M) is given by the integral with respect to
the measure m and the Dirichlet space is the Sobolev space H1(M) ⊂
L2(M,m).
Much of the potential theory of Dirichlet forms on locally compact
spaces, relies on a notion of smallness for subsets of X called polarity.
This can be expresses in terms of a set function called capacity (see
[FOT]). In the present noncommutative setting, it will be the fine C∗-
algebra C ⊆ M to play the role of the Choquet capacity (see Lemma
5.4 below).

Example 2.6 (Dirichlet spaces on group C∗-algebras). Let G be a
locally compact, unimodular group, with unit e ∈ G, whose elements
will be denoted by s, t, . . . , and let ds be a Haar measure on it. Denote
by λG its left regular representation on L2(G, ds) acting by

(λG(s)a)(t) := a(s−1t) s, t ∈ G , a ∈ L2(G, ds)

and by C∗
red(G) its reduced C∗-algebra in B(L2(G, ds)) generated by

{λG(s) ∈ B(L2(G, ds)) : s ∈ G} (see [Dix]). More explicitly, for a, b ∈
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Cc(G) ⊆ C∗
red(G) their product is defined by convolution

(a ∗ b)(s) :=
∫

G

a(t)b(st−1) dt s ∈ G

while involution is defined by

(a∗)(s) := a(s−1) s ∈ G .

The left regular representation of G extends to a ∗-representation of
the reduced C∗-algebra and will be denoted by the same symbol. The
functional C∗

red(G) ⊇ Cc(G) ∋ a 7→ a(e) ∈ C extends to a trace state
on C∗

red(G) and the associated G.N.S. representation coincides with
the left regular representation above. In particular the G.N.S. Hilbert
space L2(C∗

red(G), τ) can be identified with L2(G, ds) and its positive
cone with the cone of positive definite, square integrable functions.
Any positive, conditionally negative definite function ℓ : G → [0,+∞)
(see for example [CCJJV]) gives rise to a regular Dirichlet form

Eℓ[a] =
∫

G

|a(s)|2ℓ(s) ds ,

with domain the space of those a in L2(G, ds) for which the integral
converges (see [CS1], [C2]).

Examples of the above framework arise on Z
n, where as negative def-

inite function one can choose the Euclidean length ℓ(k) := |k| or its
square ℓ(k) := |k|2, and on free groups Fn with n ∈ {1, 2, . . . } gen-
erators where the most important negative definite functions are the
length functions associated to systems of generators (see [Haa1]).

Example 2.7. Dirichlet forms on noncommutative tori. Non-
commutative tori are a family of C∗-algebras which represent a sort of
gymnasium for Noncommutative Geometry [Co]. They are defined, for
any fixed irrational θ ∈ [0, 1], as the universal C∗-algebras Aθ generated
by two unitaries U and V , satisfying the relation

V U = e2iπθUV .

The functional τ : Aθ → C given by

τ(UnV m) = δn,0δm,0 n,m ∈ Z

is a tracial state and the heat semigroup {Tt : t ≥ 0} on Aθ is defined
by

Tt(U
nV m) = e−t(n2+m2)UnV m n,m ∈ Z .
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It is τ -symmetric and the associated Dirichlet form is the closure of the
quadratic form given by

E
[ ∑

n,m∈Z

αn,mU
nV m

]
=

∑

n,m∈Z

(n2 +m2)|αn,m|2

defined on the algebra {∑n,m∈Z αn,mU
nV m ∈ Aθ : [αn,m]n,m∈Z ∈ cc(Z

2)}

3. Finite-energy functionals and potentials.

In this section we introduce two of the main objects of our investiga-
tion: the class of finite-energy functionals and the class of potentials of
a Dirichlet space. These are generalizations to possibly noncommuta-
tive C∗-algebras of the corresponding objects introduced by A.Beurling
and J. Deny in their work on Dirichlet forms on locally compact spaces
[BeDe2].

Definition 3.1 (Finite-energy functionals and potentials). Let (E ,F)
be a Dirichlet form on the separable C∗-algebra (A, τ) endowed with
a densely defined, faithful, semifinite, lower semicontinuous, positive
trace.

• A positive functional ω ∈ A∗
+ will be said to be a finite-energy

functional if

(3.1) ω(b) ≤ cω‖b‖F b ∈ B+

for some cω ≥ 0.
• An element ξ ∈ F will be called a potential if

(3.2) 〈ξ, b〉F ≥ 0 b ∈ B+ := B ∩ L2
+(A, τ) .

• Let ω ∈ A∗
+ be a finite-energy functional. By the regularity

of the Dirichlet form, in particular the fact that the Dirichlet
algebra B is a form core, the exists a unique element ξ ∈ F
determined by the the relation

(3.3) ω(b) = 〈ξ, b〉F = E(ξ, b) + (ξ, b)2 b ∈ B .

The element ξ will be called the potential associated with ω and
will be denoted by G(ω).

Thus, finite-energy functionals and their potentials satisfy the relation

(3.4) ω(b) = 〈G(ω), b〉F b ∈ B .

Moreover, by the formula above, any finite-energy functional can then
be extended to the whole Dirichlet space F , the quantity

(3.5) E [ω] := E [G(ω)] = ω(G(ω))
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is called the energy content of ω and one has |ω(b)| ≤
√
E [ω]‖b‖F for

all b ∈ F .

The set P+ of potentials is, by definition, the polar cone of the positive
cone F+ := F ∩ L2

+(A, τ) in the Dirichlet space,

P+ := F◦
+ = {ξ ∈ F : 〈ξ, η〉F ≥ 0 for all η ∈ F+} .

We will prove in Proposition 3.7 below that potentials are necessarily
positive elements of L2

+(A, τ) so that P+ ⊆ F+ and then P+ ⊆ P+
◦.

Example 3.2 (Finite-energy normal functionals). Let h ∈ L2
+(A, τ) ∩

L1(A, τ) and consider the normal positive functional ωh ∈ M∗+ defined
by

ωh(b) := τ(hb) b ∈ M .

Since h ∈ L2(A, τ) then ξ := (I + L)−1h ∈ F is such that
〈
ξ , b

〉
F
= (L1/2ξ , L1/2b) + (ξ , b) = τ(hb) b ∈ B ,

the vector ξ ∈ F is a potential, the normal positive linear form ωh is a
finite-energy functional, its potential coincides with ξ

G(ωh) = (I + L)−1h

and its energy content is given by E [ωh] = ωh((I + L)−1h) = τ(h(I +
L)−1h).

Example 3.3 (Finite-energy functionals and potentials on group C∗-algebras).
Let us consider the Dirichlet form on a group algebra C∗

red(Γ) of a dis-
crete group Γ associated to negative definite function ℓ : Γ → [0,+∞),
as in Example 2.5,

Eℓ[a] =
∑

s∈Γ

ℓ(s)|a(s)|2 a ∈ l2(Γ) .

In this case ω is a finite-energy state on C∗
red(Γ) if and only if

∑

s∈Γ

|ϕω(s)|2
1 + ℓ(s)

< +∞

and its potential G(ω) is given by

G(ω)(s) =
ϕω(s)

(1 + ℓ(s))
s ∈ Γ ,

where ϕω : Γ → C is the normalized, positive definite function asso-
ciated to the state ω and defined as ϕω(s) := ω(δs) for all s ∈ Γ. In
particular the energy content of ω is equal to

Eℓ[ω] = Eℓ[G(ω)] =
∑

s∈Γ

|ϕω(s)|2
1 + ℓ(s)

.
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In other words, since states ω on C∗
red(Γ) are characterized by the fact

that the associated function ϕω is positive definite (see [Dix]), poten-
tials ξ ∈ P+ associated to the Dirichlet form Eℓ have the form

ξ(s) =
ϕξ(s)

1 + ℓ(s)
s ∈ Γ

for some positive definite function ϕξ : Γ → C. Notice that, since ℓ is
a negative definite function, the function (1 + ℓ)−1 is positive definite
so that the potential ξ is a positive definite element of L2(G). It will
be shown later in this section that positivity of potentials is a general
fact valid in all Dirichlet spaces.
On groups having the Kazhdan property T, all negative definite func-
tion are bounded so that the cone of potential associated to any such
negative definite function ℓ simply coincides with the cone of square
integrable, positive definite functions. Richer classes of examples can
be found on groups having the Haagerup property, where there exist
proper, negative definite functions (see for example [?]).

Suppose that Γ has polynomial growth (i.e. by a theorem of M. Gro-
mov, it has a nilpotent subgroup of finite index) so that, with respect a
system of generators S ⊂ Γ, the associated length function ℓS, assumed
to be negative definite, has spherical growth σS : N → N behaving as
σS(k) ∼ kd−1 for some d > 1. If Γ is nilpotent, by a theorem of J.
Dixmier, the exponent d coincides with the homogeneous dimension
d(Γ), defined in terms of the relative indexes of its lower central series
(see [CCJJV]). Then

‖(1 + ℓ)−1‖qℓq(Γ) =
∑

s∈Γ

(1 + ℓ(s))−q =
∑

k∈N

(1 + k)−qσS(k) < +∞

for all q > d. If ω ∈ A∗
+ is a (pure) state whose cyclic (irreducible)

representation is lp(Γ)-integrable for some 2 ≤ p < 2d
d−1

, by definition
this means that ϕ ∈ lp(Γ), then, by the Hölder inequality, it is a finite-
energy state with respect to the Dirichlet form El

Eℓ[ω] = Eℓ[G(ω)] =
∑

s∈Γ

|ϕω(s)|2
1 + ℓ(s)

≤ ‖ϕω‖ℓp(Γ) · ‖(1 + ℓ)−1‖qℓq(Γ) < +∞ .

For a specific example one may consider the Heisenberg group which
is nilpotent with homogeneous dimension d(Γ) = 4.

As ℓ is a negative definite function, so is its square root
√
ℓ. Hence

(1 +
√
ℓ)−1 is a positive definite, normalized function and there exists

a state ωℓ ∈ A∗
+ such that ϕωℓ

(s) = (1 +
√
ℓ(s))−1 for all s ∈ Γ. Since

(1 +
√
x)2 ≤ 2(1 + x) ≤ 2(1 +

√
x)2 x > 0 ,
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a functional ω ∈ A∗
+ is a finite-energy state if and only if

∑

s∈Γ

|ϕω(s)|2
(1 +

√
ℓ(s))2

=
∑

s∈Γ

|ϕωℓ
(s) · ϕω(s)|2 < +∞ .

Notice that ϕωℓ
·ϕω is a coefficient of a cyclic sub-representation of the

tensor product πωℓ
⊗ πω of the cyclic representations (πℓ,Hℓ, ξℓ) and

(πω,Hω, ξω) associated to the states ωℓ and ω. Hence if ω is a finite-
energy state, the representation πωℓ

⊗ πω is not disjoint from the left
regular representation λΓ.
Moreover, since a state ω has finite energy with respect to the Dirichlet
form generated by a negative definite function ℓ if and only if it is a
finite energy state with respect to the Dirichlet forms associated to each
negative type functions λ−2ℓ for all λ > 0, we have that the family of
normalized, positive definite functions {ϕλ := ϕω

λ−2ℓ
· ϕω : λ > 0},

explicitly given by

ϕλ(s) =
λ

λ+
√

ℓ(s)
· ϕω(s) s ∈ Γ ,

generates a family of cyclic representations {πλ : λ > 0}, contained
in the left regular representation λΓ which interpolate between the left
regular representation λΓ and the cyclic representation πω associated
to the finite energy state ω. In fact

lim
λ→0+

ϕλ = δe , lim
λ→+∞

ϕλ = ϕω

pointwise.

Now we prove that finite-energy functionals extends to positive func-
tionals on the fine C∗-algebras C. For this we need the following ap-
proximation result.

Lemma 3.4. Let b ∈ B̃ such that b∗ = b. Then there exists a sequence
of self-adjoint elements {bn}n∈N ⊂ B such that ||bn − b||F → 0, ||bn|| ≤
||b|| and bn → b σ-weakly in M. If β ≥ 0, one can get bn ≥ 0 for all n.

Proof. As, by the regularity of (E ,F), the Dirichlet algebra B is a form
core, there exists a sequence {bn}n∈N ⊂ B which converges to b in F .
By reality (2.1) of E , the sequence b∗n converges also to b∗, so that one
can suppose bn = b∗n for all n.
Set K := ||b|| and, for each n, let en be the spectral projection of bn
corresponding to the interval (−∞, K]. Set b′n = bn ∧ K = enβn +
K(I − en). One has ||b′n||L2(A,τ) ≤ ||bn||L2(A,τ) (since b′n

2 ≤ b2n) and,
by the Markovian property (2.2) of the Dirichlet form, E [b′n] ≤ E [bn].
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Hence, the sequence b′n is bounded in F . Replacing it by a subsequence,
one can suppose that it has a weak limit γ in F , with γ ≤ b.
As b′n → γ weakly in L2(A, τ), we have

(3.6) τ(γ2) ≤ lim inf τ(b′n
2
) ≤ lim τ(b2n) = τ(b2)

and, weakly in L2(A, τ),

(3.7) (βn −KI)(I − en) = bn − bn ∧K → b− γ .

As K2τ(I − en) ≤ τ(b2n(I − en)) ≤ τ(b2n) → τ(b2), one can suppose
that the I − en have a weak limit p in L2(A, τ), which is also a σ-weak
limit in M. So, bn(1− en) converges weakly to bp in L2(A, τ) and (3.7)
provides

(b−KI)p = b− γ .

As bn commute with en, b will commute with p, so that, in this equality,
the left hand side is a negative operator while the right hand side is
a positive operator. This proves γ = b and, by (3.6), that b′n → b

strongly in L2(A, τ). As the sequence b′n is bounded in F , it converges
to b weakly in F . As moreover E [b′n] ≤ E [bn] which converges to E [b],
this must be a strong limit in F .

Similarly, bn = b′n ∨ (−K) = −(−bn ∧ K) converges to b in F . It is
a bounded sequence in M, with norm less that K = ‖b‖. As its only
possible σ-weak limit is b, it converges to b σ-weakly in M.

Note that, if b ≥ 0, one can replace bn = b′n ∨ (−K) by bn = bn ∨ 0, so
that bn ≥ 0 for all n.

�

Proposition 3.5. If ω ∈ A∗
+ is a finite-energy functional, then the

linear map ω̃ : B̃ → C

(3.8) ω̃(b) :=
〈
G(ω) , b

〉
F

extends to the C∗-algebra C as a positive map with norm equal to ‖ω‖A∗.

Proof. Note first that G(ω)∗ = G(ω) since, by symmetry of E , one has,
for b ∈ B:

〈
G(ω)∗, b

〉
F
=

〈
b∗, G(ω)

〉
F
= ω(b∗) = ω(b) =

〈
G(ω), b

〉
F
.

The same computation proves that ω̃ is hermitian: ω̃(b∗) = ω̃(b) for

b ∈ B̃.
Let b = b∗ ∈ B̃ and bn a sequence in B provided by Lemma 3.4. Since
any finite energy functional is continuous with respect to the topology
of F , one has

|ω̃(b)| = lim |ω(bn)| ≤ ‖ω‖A∗ lim sup ‖bn‖A ≤ ‖ω‖A∗ ‖b‖M .
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By definition, B̃ is dense in C so that ω̃ extends by continuity to C.
To prove positivity, recall that, again by Lemma 3.4, if b ≥ 0 we
may assume the approximating sequence to be positive so that ω̃(b) =
limω(bn) ≥ 0. �

Next proposition contains approximation and positivity results, we
will need in the forthcoming section. They will be also used below to
prove that potentials of finite-energy functionals are positive.

Proposition 3.6. Let ω ∈ A∗
+ be a finite-energy functional, ω̃ ∈ C∗

+

its canonical extension to the fine algebra C and ε > 0. Then

• i) ω̃ ◦ (I + εL)−1
|A is a positive finite-energy functional on A;

• ii) one has G
(
ω̃ ◦ (I + εL)−1

|A

)
= (I + εL)−1G(ω);

• iii) one has (I + L)(I + εL)−1G(ω) ∈ L1(A, τ) ∩ L2
+(A, τ);

Proof. As (I+εL)−1 is a positivity preserving, norm contraction on M,
the functional ω̃ ◦ (I + εL)−1 is positive on C and so it is its restriction
to A, thus proving the statement in i).
As (I + εL)−1(b) ∈ D(L) for b ∈ B, the identities

ω̃
(
(I + εL)−1(b)

)
=

〈
G(ω) , (I + εL)−1(b)

〉
F

= (G(ω) , L(I + εL)−1(b))2 + (G(ω), (I + εL)−1(b))2

= ((I + L)(I + εL)−1G(ω) , b)2

=
〈
(I + εL)−1G(ω) , b

〉
F

(3.9)

allow us to conclude that ω̃ ◦ (I + εL)−1
|A has finite energy, its poten-

tial is given by G
(
ω̃ ◦ (I + εL)−1

|A

)
= (I + εL)−1G(ω) and (I +L)(I +

εL)−1G(ω) is a positive element in L2(A, τ).
The second line in equations (3.9) tells us that the element

h := (I + L)(I + εL)−1G(ω) ∈ L2
+(A, τ)

satisfies

|τ(hb)| = |(h, b)2| = |ω̃((I + εL)−1b)| ≤ ‖ω̃‖C∗‖b‖A b ∈ B
which suffices to imply h ∈ L1(A, τ) thus proving the first assertion of
iii). �

Proposition 3.7. The cone of potentials is contained in the standard
cone: P+ ⊂ L2

+(A, τ).

Proof. Let us consider a potential G ∈ P+. By the positivity preserving
property of the resolvents, we have that (I+L)−1b ∈ F+ := F∩L2

∗(A, τ)
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for any b ∈ L2
∗(A, τ) and then

(G, b)2 = (G, (I + L)(I + L)−1b)2 =
〈
G, (I + L)−1b

〉
F
≥ 0 .

�

Here we prove some useful property shared by potentials.

Lemma 3.8. If G ∈ P+ is a potential then
1√

G+ δ
is a multiplier of

the fine C∗-algebra C, for all δ > 0.

Proof. The function

f : [0,+∞) → R f(t) :=
1√
t+ δ

− 1

δ

vanishes at 0, it is bounded and differentiable with bounded derivative.

Hence by [[CS1] Lemma 7.2] we have f(G) ∈ B̃ ⊂ C. Adding the
constant operator 1

δ
we get a multiplier of C. �

Lemma 3.9. For ξ, η ∈ F we have

(3.10)
d

dt

〈
e−t(1+L)ξ, η

〉
L2(A,τ)

= −
〈
e−t(1+L)ξ, η

〉
F

t ≥ 0 .

Proof. For ξ ∈ DomL2(L) the identity is obvious. Writing it in integral
form

〈
e−t(1+L)ξ, η

〉
L2(A,τ)

= 〈ξ, η〉L2(A,τ) −
∫ t

0

〈
e−s(1+L)ξ, η

〉
F
ds ,

it extends easily to ξ, η ∈ F . �

Lemma 3.10. For any potential G ∈ P+ one has

e−t(1+L)G ≤ G in L2(A, τ) t ≥ 0

and
1

1 + εL
G ≤ 1

1− ε
G in L2(A, τ) 0 < ε < 1 .

Viceversa, any one of the two above properties implies that G is a
potential.

Proof. Applying (3.10), for b ∈ F+ one has

d

dt

〈
e−t(1+L)G, b

〉
L2(A,τ)

= −
〈
e−t(1+L)G, b

〉
F
≤ 0

and then e−t(1+L)G ≤ G. Integrating this inequality between 0 and
+∞ with respect to the probability measure me−tmdt for m > 0, one
gets

m

m+ 1 + L
G ≤ G ,
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and the result choosing m such that (m+1)ε = 1. The converse of the
two above results are easily obtained deriving the inequalities, weakly
in F , in t = 0 and ε = 0, respectively.

�

We conclude this section with a result that could be considered as a
version of a ”noncommutative maximum principle” in Dirichlet spaces
(for other versions see [C3], [CS2], [S4]). We will need it in the proof
of Proposition 4.2 below.

Proposition 3.11. Let ω and ω′ in A∗
+ be such that ω′ ≤ ω and ω has

finite energy. Then ω′ has finite energy, the potential of ω′ is dominated
by the potential of ω

G(ω′) ≤ G(ω) ,

meaning that G(ω) − G(ω′) ∈ F+, and the energy content of ω′ is not
greater than the one of ω

E [ω′] ≤ E [ω] .
Proof. If b ∈ B is positive one has ω′(b) ≤ ω(b) ≤ cω||b||F ≤ cω||b||F for
some cω > 0. Decomposing a generic b ∈ B as a linear superposition
of positive elements in B one gets |ω(b)| ≤ 4cω||b||F so that ω′ is a
finite-energy functional.
Notice that, for the same reason, ω − ω′ is a finite-energy functional
on A whose potential is given by G(ω − ω′) = G(ω)−G(ω′). This is a
positive element in L2(A, τ) by the previous proposition. We conclude
the proof by the estimate

E [ω′] = ω′(G(ω′)) ≤ ω(G(ω′)) ≤ ω(G(ω)) = E [ω] .
�
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4. Deny’s embedding and Deny’s inequality.

This section is devoted, in present setting of Dirichlet spaces over
noncommutative C∗-algebras with traces, to prove a theorem obtained
by J. Deny ([Den]) in the classical framework.
What Deny proved is that, if µ is a finite-energy measure on the locally
compact space X, having a bounded potential, then the Dirichlet space
F is continuously imbedded in the space L2(X,µ). In other words,
the Dirichlet form, initially considered as a closed form on L2(X,m)
with respect to a fixed positive measure m, results to be closable on
all the spaces L2(µ,X) with respect to finite-energy measures having
bounded potentials. The probabilistic counterpart of this property is
the ”change of speed measure” or ”random time change” of the sto-
chastic Hunt processes X associated to the Dirichlet form and to the
different reference measures. A detailed discussion about this can be
found in [FOT].
We will prove below that if ω ∈ A∗

+ is a finite-energy functional with
respect to a Dirichlet form (E ,F), based on the Hilbert space L2(A, τ)
of a trace τ on A, having a bounded potential G(ω) ∈ M, then the
Dirichlet space F is embedded in the G.N.S. space L2(A, ω) with em-

bedding norm less than
√
‖G(ω)‖M.

One of the problem to circumvent in the proof of the result is that,
in general, the functional ω need not to be a trace and consequently
the extension of bounded maps on the von Neumann algebra M to
bounded maps on the Hilbert space L2(A, ω) cannot rely on their
G.N.S.-symmetry but rather on their K.M.S.-symmetry with respect
to ω (as introduced in [C1], [C2]). Note that, in general, finite-energy
functionals need not to be absolutely continuous with respect to the
trace τ and, as a matter of fact, in current examples most of them are
singular with respect to τ .

In the following we will denote by Ω ∈ L2
+(A, ω) the cyclic vector

representing the functional ω ∈ A∗
+:

ω(b) = (Ω, bΩ)L2(A,ω) b ∈ A .

We also prove below the Deny’s inequality in the noncommutative
framework.

Theorem 4.1. (Deny’s embedding Theorem) Let ω ∈ A∗
+ be a

finite-energy functional. If its potential G(ω) ∈ F is bounded, hence

belongs to extended Dirichlet algebra F ∩M = B̃, then one has

(4.1) ω(b∗b) ≤ ||G(ω)||M ||b||2F b ∈ B .
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Hence, there exist a continuous imbedding T : F → L2(A, ω), with

norm less than ||G(ω)||1/2M , such that Tb = bΩ for b ∈ B.

Before proving the theorem in its full generality, we investigate the
special case where E is bounded and ω is the restriction of a faithful
normal functional on M. The general case will be deduced from this
special one with help of Proposition 3.6.

Proposition 4.2. Let E be a bounded Dirichlet form on L2(A, τ) and
ω ∈ M∗+ be faithful with finite energy. If its potential is bounded
G(ω) ∈ F+ ∩M, then one has

(4.2) ω(b∗b) ≤ ‖G(ω)‖M ‖b‖2F b ∈ B̃ .

Proof. The proof proceeds in several steps.

Step 1. Construction of a completely positive kernel.

Notice first that, by assumption, there exist h ∈ L1
+(A, τ) such that

ω(x) = τ(hx) for x ∈ M. In this case one may realize the G.N.S.
representation of ω in the Hilbert space L2(A, τ) setting Ω := h1/2 ∈
L2
+(A, τ)

ω(b) = (Ω, bΩ)2 b ∈ M .

One checks easily that G(ω) = (I + L)−1h ∈ L2(A, τ) ∩M and that it
is nonsingular: in fact, if p ∈ M is the support projection of G(ω) in
M, one has

0 = τ
(
G(ω)(1M − p)

)
= ω

(
(I + L)−1(1M − p)

)
,

hence (I + L)−1(1M − p) = 0 by faithfulness of ω so that p = 1M.

For x ∈ M, denote ρx ∈ M∗ the σ-weakly continuous linear form on
M defined by

ρx(y) = (Jx∗Ω, yΩ)2 y ∈ M .

By the properties of the standard forms of von Neumann algebras (see
[Ara]), if x ∈ M+ then

ρx(y) = (Jx∗Ω, yΩ)2 ≥ 0 y ∈ M+

so that ρx ∈ M∗+. The map M ∋ x → ρx ∈ M∗ is antilinear,
σ(M,M∗)-σ(M∗,M) continuous and satisfies

0 ≤ ρx ≤ ||x|| · ω x ∈ M+ .

Notice that, since, by assumption, E is bounded, we have F = L2(A, τ)

and B̃ = L2(A, τ) ∩M. Applying proposition 3.11, we get that ρx has
finite energy and

G(ρx) ≤ ||x||G(ω) x ∈ M+ .
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Since, by assumption, the potential of ω is bounded, G(ω) ∈ B̃ =
L2(A, τ) ∩ M, we have a well defined σ-weakly continuous, positive
linear map V : M → M characterized by

V (x) := G(ρx) x ∈ M+

and satisfying V (x) ∈ B̃ = L2(A, τ) ∩M as well as

(4.3) (Jx∗Ω, bΩ)2 = ρx(b) =
〈
V (x) , b

〉
F

x ∈ M , b ∈ B̃ .

We now proceed to check that V : M → M is a completely positive
map. We first check that V is completely positive when considered as
a map V : M → F between the ordered Banach spaces M and F : for

b1, . . . , bn ∈ B̃, c1, . . . , cn ∈ M , we compute
∑

i,j

〈
V (c∗i cj) , b

∗
i bj

〉
F
= (Jc∗jciΩ , b∗i bjΩ)2

=
∑

i,j

(biJciΩ , bjJcjΩ)2

= ‖
∑

i

biJciΩ‖22 ≥ 0 .

This means that, not only V (x) ∈ B̃ is a potential for any x ∈ M+,
so that it is positive in M, because of Proposition 3.7, but also the

matrix [V (c∗i cj)]
n
i,j=1 ∈ Mn(B̃) is positive inMn(M) just applying again

Proposition 3.7 to the matrix ampliation En of the complete Dirichlet
form E to L2(Mn(A), τn) described, in Definition 2.1 iii).

Notice that V (1M) = G(ω) so that the endomorphism V : M → M
has norm not greater than ‖G(ω)‖M. More precisely, for x = x∗ ∈ M
one has

V (x+)− V (x) = V (x−) = G(ρx−
) ≥ 0

hence V (x) ≤ V (x+) ≤ ||x+||G(ω) and, for sake of symmetry,

(4.4) −‖x−‖G(ω) ≤ V (x) ≤ ‖x+‖G(ω) x = x∗ ∈ M .

Step 2. Reduction of V and ω.
Let us consider now the normal, positive functional ω′ := ρG(ω) ∈
M∗+ = L1

+(A, τ). By the properties of standard forms of von Neumann
algebras (see [Ara]), there exists Ω′ ∈ L2

+(A, τ) such that

(4.5) ω′(x) = (Ω′ , xΩ′)2 x ∈ M .

Moreover, ‖xΩ′‖22 = (xΩ , JG(ω)JxΩ)2 ≤ ‖G(ω)‖M ‖xΩ‖22. Conse-
quently, there exists β′ ∈ M′ (the von Neumann algebra commutant
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of M in B(L2(A, τ) ) such that Ω′ = β′ Ω characterized by

β′(xΩ) := xΩ′ x ∈ M .

Notice that, as Ω and Ω′ belong to the self-polar cone L2
+(A, τ) of a

standard form, one has JΩ = Ω and JΩ′ = Ω′. Setting β = Jβ′J ∈
JM′J = M, one has βΩ = Ω′.
Notice also that, as ω and ω′ are faithful states (by assumption for
ω, and by nonsingularity of G(ω) for ω′) and the vectors Ω and Ω′

are cyclic and separating, then β and β′ act in L2(A, τ) as one to one
operators with dense range. Then, for x, y ∈ M one has

(yΩ, β′∗β′xΩ)2 = (yβ′Ω, xβ′Ω)2

= (yΩ′ , xΩ′)2

= ω′(y∗x) = (JG(ω)JΩ, y∗xΩ)2

= (yΩ , JG(ω)JxΩ)2

so that β′∗β′ = JG(ω)J and, finally,

(4.6) β∗β = G(ω) .

As V is completely positive and V (1M) = G(ω) = β∗β, with β hav-
ing initial and final support equal to 1M, there will exist a σ-weakly
continuous completely positive endomorphism W : M → M such that

(4.7) V (x) = β∗W (x)β x ∈ M .

Moreover, W (1M) = 1M, so that W is a noncommutative Markov
kernel and, in particular, a contraction of M.

Step 3. ω′-KMS-symmetry and L2(A, ω′)-contractivity of W .
By the properties of standard forms (see [Ara]), we have, for x, y ∈ M,
the identities

(JyΩ′ , W (x)Ω′)2 = (JyJβΩ , W (x)βΩ)2

= (JyΩ , β∗W (x)βΩ)2

= (JyΩ , V (x)Ω)2

=
〈
V (y∗) , V (x)

〉
F

=
〈
V (x∗) , V (y)

〉
F

= (JxΩ′ , W (y)Ω′)

= (JW (y)Ω′ , xΩ′)2 .

This reveals that W is ω′-KMS-symmetric so that it extends to a
bounded map on L2(A, ω′) by [C2 Proposition 2.24]. As it is a contrac-
tion of M, it will be also a contraction in L2(A, ω′). Alternatively, we
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can check the boundedness of the extension to L2(A, ω′) invoking the
2-positivity of W :

‖W (x)Ω′‖2 = (Ω , W (x)∗W (x)Ω′)2

≤ (Ω′ , W (x∗x)Ω′)

= (JW (1M)Ω′ , x∗xΩ′)

= (Ω′, x∗xΩ′)2 = ‖xΩ′‖22 x ∈ M .

(4.8)

Consider now x ∈ M and compute
〈
V (x) , V (x)

〉
F
= (JxΩ , V (x)Ω)L2

= (JxΩ′ , W (x)Ω′)2

≤ ||xΩ′||2L2(A,τ)

so that

(4.9) ||V (x)||F ≤ ||xΩ′||2 , x ∈ M .

End of the proof of the proposition. For x and y in M, with y such
that β∗yβ ∈ L2(A, τ), one computes

∣∣〈JyΩ′ , xΩ′
〉
2

∣∣ =
∣∣〈Jβ∗yβΩ , xΩ

〉
2

∣∣

=
∣∣〈β∗yβ , V (x)

〉
F

∣∣
≤ ||β∗yβ||F ||V (x)||F
≤ ||β∗yβ||F ||xΩ′||2 by (4.9) ,

which provides ||yΩ′||2 ≤ ||β∗yβ||F for all y ∈ M and then

(4.10) ||yβΩ||2 ≤ ||β∗yβ||F y ∈ M .

As we are assuming that the Dirichlet form is bounded, the ‖ ·‖F norm
is equivalent to the L2(A, τ) norm. Moreover, since the functional ω
is assumed to be faithful, the potential G(ω) has been proved to be
nonsingular and, since β∗β = G(ω), β ∈ M is nonsingular too. Hence
(4.10) extends as

(4.11) ||xΩ||2 ≤ ||β∗x||F x ∈ F = L2(A, τ) .

Considering the polar decomposition, there exists a unitary u ∈ M
such that β∗ = G(ω)1/2u∗ which implies

(4.12) ||xΩ||2 ≤ ||G(ω)1/2u∗x||F x ∈ F = L2(A, τ)

or

(4.13) ||uxΩ||2 ≤ ||G(ω)1/2x||F x ∈ F = L2(A, τ)
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and finally

(4.14) ||xΩ||2 ≤ ||G(ω)1/2x||F x ∈ F = L2(A, τ)

which provides the result:

1

‖G(ω)‖M
‖xΩ‖22 ≤ ω(x∗G(ω)−1x) ≤ ‖x‖2F x ∈ F = L2(A, τ) .

�

Proof of the theorem. For ε > 0, the operator

Lε = L(I + εL)−1 =
1

ε

(
I − (I + εL)−1

)

acts as a bounded positive operator in L2(A, τ), but also (as it is of the
form constant ×

(
identity - completely positive contraction

)
it acts on

M as the generator of a semigroup of symmetric completely positive
contractions. This means that

(4.15) Eε : L2(A, τ) → [0,+∞) Eε[ξ] =
〈
ξ, Lεξ

〉
2

ξ ∈ L2(A, τ)

is a bounded symmetric Dirichlet form on L2(A, τ).
The associated Dirichlet space, denoted by Fε, is the vector space
L2(A, τ), equipped with the scalar product

〈
η , ξ

〉
Fε

=
〈
η , (I + Lε) ξ

〉
2

ξ, η ∈ L2(A, τ) .

Notice that

(4.16) ||ξ||F = lim
ε↓0

||ξ||Fε
∀ ξ ∈ F .

Consider now the positive linear form ω̃ ◦ (I + εL)−1 on C, with ω̃

provided by Proposition 3.5. It is well defined since (I + εL)−1 acts
as a positive contraction on L2(A, τ), hence as a positive contraction
of F (since it commutes with L), but also as a σ-weakly continuous

completely positive contraction of M, so that it maps B̃ into B̃ and C
into itself. One has, for b ∈ B̃,

ω̃((I + εL)−1(b)) =
〈
G(ω) , (I + εL)−1b

〉
F

=
〈
(I + εL)−1G(ω) , b

〉
F

= τ(hεb)

with hε = (I + L)(I + εL)−1G(ω) well defined in L2(A, τ), since (I +
L)(I + εL)−1 is bounded. One has τ(hεb) ≥ 0 whenever b ≥ 0, and

|τ(hεb)| ≤ ||ω̃||C∗ ||b||M for any b ∈ B̃, so that hε ∈ L1(A, τ)+ and that
ω̃ ◦ (I + εL)−1 extends as a normal positive linear form on M.
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The functional ω̃ ◦ (I + εL)−1 has finite energy with respect to the
Dirichlet form Eε, and the corresponding potential is

Gε

(
ω̃ ◦ (I + εL)−1

)
= (I + Lε)

−1hε

= (I + Lε)
−1(I + L)(I + εL)−1G(ω)

=
1

1 + ε
G(ω) +

ε

1 + ε
(1 + (1 + ε)L)−1G(ω)

so that this potential is bounded, with

(4.17)
∥∥Gε

(
ω̃ ◦ (I + εL)−1

)∥∥
M

≤ ||G(ω)||M , ∀ ε > 0 .

As A is separable, there will exist h0 ∈ L2(A, τ) ∩ L1(A, τ) ∩ M+

which acts as a nonsingular operator on L2(A, τ). Let ω0 ∈ M∗+ be
the corresponding normal positive linear functional on M defined by
ω0(x) = τ(h0x) for x ∈ M. Since ω0 is, by construction, faithful
and has finite energy with respect to Eε, the corresponding potential
Gε(ω0) = (I + Lε)

−1h0 is thus bounded, with

(4.18) ||Gε(ω0)||M ≤ ||h0||M , ∀ ε > 0 .

Applying now Proposition 4.2 to the Dirichlet form Eε and to the faith-
ful, normal, positive linear functional ω̃ ◦ (I + εL)−1 + εω0 ∈ M∗, for
all b ∈ B we get

ω̃
(
(I + εL)−1(b∗b)

)
+ εω0(b

∗b) ≤
∥∥Gε(ω̃ ◦ (I + εL)−1) + εGε(ω0)

∥∥
M

||b||2Fε

≤
(
||G(ω)||M + ε||h0||M

)
||b||2Fε

.

(4.19)

As ε → 0, ||b||2Fε
tends to ||b||F (cf. (4.16)). The convergence in the left

hand side is a bit more delicate, since ω does not necessarily extends
as a linear form on M. Nevertheless, for b ∈ B, we have

lim
ε↓0

ω̃
(
(I + εL)−1(b∗b)

)
= lim

ε↓0

〈
G(ω) , (I + εL)−1(b∗b)

〉
F

=
〈
G(ω) , b∗b) = ω(b∗b)

since (I + εL)−1ξ → ξ in F as ε ↓ 0, for any ξ ∈ F . Letting ε ↓ 0 in
(4.19), we get

ω(b∗b) ≤ ||G(ω)||M ||b||2F ∀ b ∈ B
and the theorem is proved.

�

Remark 4.3. The embedding provided by the above result allows to
study the Dirichlet form E in the space L2(A, ω) of a finite-energy
functional having bounded potential. For normal functionals ω(a) =
τ(ha) this is possible whenever h ∈ L2

+(A, τ) ∩ M because in that
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case G(ω) = (I + L)−1h ∈ L2
+(A, τ) ∩M. In the case of the Dirichlet

integral of a Riemannian manifold (M, g), the associated self-adjoint
operator is unitarily equivalent to the Laplace-Beltrami operator of a
metric g′ which is a conformal change of the original metric g. On
the noncommutative two torus this point of view has been adopted to
study conformal spectral invariants in the setting of Noncommutative
Geometry (see [CoTr]).

The next observation is more important:

Remark 4.4. According to Lemma 3.8, for b ∈ B̃, the operator b∗ 1
G(ω)+δ

b

lies in the fine algebra C. Passing to the increasing limit as δ → 0, one
gets b∗ 1

G(ω)
b as a nonnegative operator affiliated to the enveloping von

Neumann algebra C∗∗ (cf. [Haa2]).
Consequently, for all ω ∈ C∗

+, the quantity ω(b∗ 1
G(ω)

b) is well defined

in the extended half line [0,+∞]. In particular, if ω ∈ A∗
+ is a finite-

energy functional, it extends as ω̃ in C∗
+ and the quantity ω̃(b∗ 1

G(ω)
b)

is well defined in the extended half line [0,+∞]. The following Deny’s
inequality provides a universal bound for this quantity.

Theorem 4.5. (Deny’s inequality) For any finite-energy functional
ω ∈ A∗

+ the following inequality holds true

(4.20) ω̃
(
b∗

1

G(ω)
b
)
≤ ‖b‖2F b ∈ B̃ .

If the potential is bounded the the inequality is saturated by the choice
b = G(ω).

Proof. The proof goes through the discussion of several particular cases.
First particular case: the Dirichlet form E is bounded, the finite-energy
functional ω ∈ A∗

+ is bounded and its potential G(ω) ∈ P+ is bounded
too. In this case the inequality 4.20 is just (4.13) or (4.14) at the end
of the proof of Proposition 4.2.
Second particular case: the Dirichlet form E is bounded, the potential
G(ω) ∈ P+ of the finite-energy functional ω ∈ A∗

+is bounded (but ω

is not necessarily bounded). Choose a nonsingular h0 ∈ L1
+(A, τ) ∩

M ⊂ L2(A, τ) and consider the functional ω0(·) := τ(h0·). Then ω0

is faithful, it has finite energy (since h0 lies in L2(A, τ)) and it has
bounded potential G(ω0) = (I + L)−1h0 (see Example 3.2). The first
particular case applies to ω + εω0 so that

(ω + εω0)
(
b∗

1

G(ω) + εG(ω0) + δ
b
)
≤ ‖b‖2F ε , δ > 0 , b ∈ B̃ .
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Passing to the limit first as ε → 0 and then as δ → 0 provides the
result in this case.
Third particular case: the Dirichlet form E is bounded (but neither
the finite-energy functional ω ∈ A∗

+ is assumed to be faithful nor its
potential G(ω) ∈ P+ is assumed to be bounded). As E is bounded, the
generator L is a bounded operator on L2(A, τ) so that ω(·) = τ(h·)
where h ∈ L1

+(A, τ) ∩ L2(A, τ) and h = (I + L)G(ω) for G(ω) ∈ P+ ⊂
L2(A, τ). For any fixed M > 0, consider hM := h∧M ∈ L1

+(A, τ)∩M
and the corresponding finite-energy functional ωM(·) := τ(hM ·). One
has G(ωM) = (I + L)−1hM ≤ (I + L)−1h = G(ω). According to the
second particular case

ωM

(
b∗

1

G(ω) + δ
b
)
≤ ωM

(
b∗

1

G(ωM) + δ
b
)
≤ ‖b‖2F δ > 0 , b ∈ B̃ .

Passing to the limit first M → +∞ and then δ ց 0 one gets the result
in case.
General case: E is any Dirichlet form and ω ∈ A∗

+ is any finite-energy

functional. For any ε > 0, define the functional ωε = ω◦ 1

1 + εL
and the

bounded Dirichlet form Eε with generator
L

1 + εL
. By Lemma (3.10),

ωε has finite energy with respect to E , and a fortiori with respect to Eε.
Let us identify for b ∈ B̃,

ω
( 1

1 + εL
b) =





=

〈
G(ω),

1

1 + εL
b

〉

F

=

〈
1

1 + εL
G(ω), b

〉

F

= 〈Gε(ωε), b〉Fε
=

〈
1

1 + εL

1 + (1 + ε)L

1 + L
Gε(ωe), b

〉

F

so that we get, applying Lemma (3.10),

Gε(ωε) =
1 + L

1 + (1 + ε)L
G(ω)

=
1

1 + ε
G(ω) +

ε

1 + ε

1

1 + (1 + ε)L
G(ω)

≤ 1

1 + ε
G(ω) +

ε

1 + ε

1

1− ε
G(ω) =

1

1− ε2
G(ω) .

Now the previous particular case allows to write, for any δ > 0 :

(1− ε2)ωε

(
b∗

1

G(ω) + δ
b
)
≤ ωε(b

∗ 1

Gε(ωε)
b) ≤ ||b||2Fε

.

ω(b∗
1

G(ω) + δ
b) ≤ ||b||2F .
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Passing to the limit first as ε → 0 and then as δ → 0 provides the
result. �

As a corollary of the generalized Deny’s embedding theorem, we get
the following bound which will be used below in Proposition 5.5 and
Proposition 6.2.

Corollary 4.6. Let us consider a bounded potential G ∈ P+ ∩ M =

P+ ∩ B̃. Then one has

(4.21)
〈
G, b∗b

〉
F
≤ ||G||M ||b||2F , ∀b ∈ B̃ .

Proof. When G = G(ω), with ω ∈ A∗
+ having finite energy, this is

exactly Theorem 4.1. Now, fix ε > 0 and consider Gε = (I + εL)−1G,
hε = (I + L)Gε. By proposition 3.6 we have hε ∈ L2(A, τ)+ .

For δ > 0, let pδ be the spectral projection of hε corresponding to
the interval [δ,+∞[. Then, pδhε ∈ L1(A, τ)+ and the corresponding
linear form b → τ(pδhε b) has a potential Gε,δ equal to

Gε,δ = (I + L)−1(pδhε) ≤ (I + L)−1hε = Gε .

Theorem 4.1 applied to this linear form provides

(4.22)
〈
Gε,δ, b

∗b
〉
F
≤ ||G||M ||b||2F , ∀b ∈ B̃

since ||Gε,δ||M ≤ ||Gε||M ≤ ||G||M. The convergence in F , limδ→0 Gε,δ =
Gε, is obvious and we already noticed that Gε → G in F as ε → 0.
Hence the result.

�

5. Energy functionals or ”carré du champ” of Dirichlet

spaces.

A Dirichlet forms (E ,F) on the space L2(A, τ) of a faithful, semifi-
nite, lower semicontinuous, positive trace τ on a C∗-algebra A, gives
rise to a family of positive functionals {Γ[a] ∈ A∗

+ : a ∈ F}, called
carré du champ, from which the quadratic form can be recovered as

E [a] = 〈Γ[a], 1A∗∗〉 .
In the noncommutative setting they were introduced in [CS1] to ana-
lyze the structure of Dirichlet forms on possibly noncommutative C∗-
algebras. In the commutative case, where A = C0(X), they were de-
fined by Y. Le Jan [LJ] as energy measures. This appellation being
justified by the fact that in applications the positive measure Γ[a] may
represents the energy distributions over X of the finite-energy config-
uration a ∈ F .
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Since in case of the Dirichlet integral on a Riemannian manifoldM with
measure m one has Γ[a] = |∇a|2 · m, they are often called ”carré du
champ” (even if in general the measure Γ[a] is not absolutely continuous
with respect to the reference measure of the space X).

In this section we show that the carré du champ Γ[G] of bounded
potentials G ∈ P+∩M form a natural class of finite-energy functionals,
intimately associated to a Dirichlet space.

5.1. Energy functionals of a Dirichlet space.

Definition 5.1. (Carré du champ [CS1]). The carré du champ Γ[a] ∈
A∗

+ of a ∈ B is the functional on A defined by

(5.1)
〈
Γ[a], b

〉
:=

1

2

(
E(a, ab∗) + E(ab∗, a)− E(b∗, a∗a)

)
b ∈ B .

It can be shown (see [CS1]) that Γ[a] is a bounded positive functional
whose norm is E [a].

In order to extend the definition to all elements a ∈ F of the Dirichlet
space and to give a short proof of the main result of this section, we
briefly recall the main properties of the differential calculus associated
to a regular Dirichlet form (see [CS1], [C2]), in terms of which an
alternative and more manageable form of Γ[a] can be given.
Any regular Dirichlet form (E ,F) on L2(A, τ) can be described as

E [a] = ‖∂a‖2H a ∈ F
by a map ∂ : F → H which is closed on L2(A, τ), takes its values in
a Hilbert A-A-bimodule H and which is a derivation on the Dirichlet
algebra B ⊆ F , in the sense that satisfies the Liebniz rule

∂(ab) = (∂a) · b+ a · (∂b) a, b ∈ B
(the dots denote the left and right actions of elements of B on vectors
in H). Moreover, on the bimodule there exists a symmetry J : H →
H, i.e. an antiunitary involution which intertwines the left and right
actions of A

J (aξb) = b∗(J ξ)a∗ a, b ∈ A , ξ ∈ H ,

such that
∂(a∗) = J (∂a) a ∈ A .

Summarizing, one describes the self-adjoint, nonnegative operator L

on L2(A, τ) whose quadratic form is the Dirichlet form (E ,F) as the
divergence of a derivation: L = ∂∗ ◦∂ or, in other words, one can refers
to the derivation as the differential square root of the generator L. The
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derivation representing a regular Dirichlet form is essentially unique
(see [CS1] Theorem 8.3 for details).

Example 5.2. Derivation associated to negative definite func-
tions on group C∗-algebras. In Example 2.5 we considered the
Dirichlet form Eℓ on the reduced group C∗-algebra C∗

red(G) of a locally
compact group G, associated to a continuous negative definite func-
tions ℓ : G → [0,+∞). To describe the derivation it gives rise, recall
that there exists a 1-cocyle (π,K, c), where π : G → K is an orthogonal
representation of G in some real Hilbert space K and c : G → K is a
continuous function satisfying

c(st) = c(s) + π(s)c(t) s, t ∈ G ,

such that ℓ(s) = ‖c(s)‖2K for all s ∈ G. Denote by KC the complexifica-
tion of the real Hilbert space K and by KC ∋ ξ 7→ ξ ∈ KC its canonical
conjugation. The tensor product of complex Hilbert spaces KC⊗L2(G)
is a C∗

red(G)-bimodule under the commuting actions πl := π ⊗ λ and
πr := id ⊗ ρ constructed by the left and right regular representations
λ , ρ of C∗

red(G) in L2(G). This bimodule structure turns out to be
symmetric with respect to the anti-linear involution given by

J (ξ ⊗ a) := ξ ⊗ J(a) ξ ⊗ a ∈ KC ⊗ L2(G) ,

where J(a)(s) = a(s−1), s ∈ Γ, is just the involution associated to the
standard cone of positive definite functions in L2(G). As customary, the
same symbol π will denote both the unitary representation of Γ and the
induced representation of C∗

red(Γ). The map ∂ : D(∂) → KC ⊗ L2(G)
defined by

D(∂) := Cc(G) , ∂(a) := c⊗ f , a ∈ Cc(G) ,

is the a closable derivation such that

E [a] = ‖∂a‖2KC⊗L2(G) a ∈ D(∂) ⊆ Fℓ .

See [CS1], [C2] for the details.

Example 5.3. Derivation on noncommutative tori. The deriva-
tion associated to the Dirichlet form we introduced in Section 2 Exam-
ple 2.6 and given by

E
[ ∑

n,m∈Z

αn,mU
nV m

]
=

∑

n,m∈Z

(n2 +m2)|αn,m|2

on the noncommutative torus Aθ is the direct sum

∂(a) = ∂1(a)⊕ ∂2(a)
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of the following derivations ∂1 and ∂2 defined by

∂1(U
nV m) = inUnV m , ∂1(U

nV m) = imUnV m n,m ∈ Z .

The Aθ–bimodule H associated with E is a sub-bimodule of the direct
sum L2(A, τ)⊕ L2(A, τ) of two copies of the standard Aθ-bimodule.

The following lemma contains consequences of the crucial observation
that a Dirichlet form which is regular with respect to the C∗-algebra A

is also automatically regular with respect to the fine C∗algebra C.

Lemma 5.4. Let (E ,F) be a Dirichlet form on L2(A, τ) which is reg-
ular with respect to the C∗-algebra A.
Then the trace τ on A naturally extends to a trace on the fine C∗-
algebra C so that the G.N.S. representation of (C, τ) is an extension
of the G.N.S. representation of (A, τ) and, in particular, L2(C, τ) =
L2(A, τ) = L2(M, τ).

Moreover, since C ∩ F ⊇ B̃ ∩ F = B̃, the Dirichlet form (E ,F) is also
regular with respect to the C∗-algebra C.
As a consequence, the differential calculus (∂̃, B̃, H̃, J̃ ), associated to
(E ,F) on (C, τ) is an extension of the corresponding one (∂,B,H,J )
on (A, τ). In particular, once these calculi have been identified, the

Leibniz rule holds true on the extended Dirichlet algebra B̃

∂(ab) = (∂a) · b+ a · (∂b) a, b ∈ B̃ .

Proof. Notice that, even if the fine C∗-algebra C need not to be sep-
arable, it acts, by definition, on a separable Hilbert space so that it
admits a faithful state and the framework of [CS1] applies.
The first statement concerning the trace comes from the fact that, by
definition, A ⊆ C ⊆ M so that the normal extension of the trace τ

to the von Neumann algebra M reduce to a trace on the subalgebra
C. The second one follows because, by definition, the Dirichlet algebra
C ∩ F of (E ,F) with respect to (C, τ) contain the extended Dirichlet

algebra B̃ and this one is, again by definition, dense in C. �

As announced before, using the derivation associated to a Dirichlet
space, one can readily give a definition of the energy functional Γ[a] for
all elements a ∈ F by

(5.2)
〈
Γ[a], b

〉
C∗,C

=
〈
∂a, (∂a) · b

〉
H

b ∈ C .

Using the Leibniz rule one can check that the above formula reduce to
(5.1) whenever a, b ∈ B.
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The following result shows that the family of finite-energy functionals
include some natural functional deeply connected to the structure of
the Dirichlet space.

Proposition 5.5. If G is a bounded potential, G ∈ P+∩M = P+∩B̃,
its carré du champ Γ[G] ∈ C∗

+ is a finite-energy functional.

Proof. Let us consider on the extended Dirichlet algebra, the functional

ωG : B̃ → C defined by the potential G ∈ P+ ∩ B̃:

ωG : B̃ → C ωG(b) :=
〈
G, b

〉
F
.

Since the Dirichlet form is completely positive, the functional ωG is

completely positive with respect to the cone P+ ⊂ B̃. Therefore a
Cauchy-Schwartz inequality holds true

(5.3) |ωG(b
∗c)|2 ≤ ωG(b

∗b) · ωG(c
∗c) b, c ∈ B̃ .

Hence we have

(5.4) |
〈
G,Gb

〉
F
|2 ≤

〈
G,G2

〉
F
·
〈
G, b∗b

〉
F

b ∈ B̃
and by Corollary 4.6 we have also

(5.5) |
〈
G,Gb

〉
F
| ≤ ‖G‖M · ‖G‖F · ‖b‖F b ∈ B̃ .

Then we compute for b ∈ B̃+

Γ[G](b) =
〈
∂(G), ∂(G)b

〉
H

=
〈
∂(G), ∂(Gb)

〉
H
−

〈
∂(G), G∂(b)

〉
H

= E(G,Gb)−
〈
G∂(G), ∂(b)

〉
H

≤ 〈G,Gb〉F + ‖G‖M
√

E [G] ·
√

E [b] b ∈ B̃
≤ 〈G,Gb〉F + ‖G‖M‖G‖F · ‖b‖F
≤ ‖G‖M · ‖G‖F · ‖b‖F + ‖G‖M‖G‖F · ‖b‖F
= 2‖G‖M · ‖G‖F · ‖b‖F

which provides the result.
�

6. Multipliers of Dirichlet spaces

We define in this section multipliers of Dirichlet spaces and, as a
final application of the previous work, we prove their existence and a
related approximation property.
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Definition 6.1. (Multipliers of a Dirichlet space) An element b ∈ M
is called a multiplier of the Dirichlet space (E ,F) if

bξ ∈ F and ξb ∈ F ∀ ξ ∈ F .

A direct application of the Closed-Graph Theorem implies that mul-
tipliers are bounded maps on the Dirichlet space F and form an in-
volutive sub-algebra, denoted by M(E ,F), of the algebra B(F) of all
bounded operators on F .
Notice that if the Dirichlet space contains the unit 1M ∈ F , then the
multipliers algebra is a subalgebra of the extended Dirichlet algebra:

M(E ,F) ⊆ B̃.
We prove below that multipliers exist.

Proposition 6.2. Let g ∈ P+∩M be a bounded potential and suppose
that its carré du champ Γ[g] ∈ C∗

+ has a bounded potential G(Γ[g]) ∈
P+ ∩M. Then g is a multiplier of the Dirichlet space.

Proof. Applying the generalized Deny embedding Theorem 4.1 and
Proposition 5.5, we get, for b ∈ B:

||(∂g)b||2H =
〈
Γ[b], bb∗

〉
C∗,C

≤ ||G(Γ[b])||M ||b∗||2F = ||G(Γ[g]||M ||b||2F .
(6.1)

Hence

||∂(gb)||H = ||∂(g)b+ g∂(b)||H ≤
(
||G(Γ[g])||1/2M + ||g||M

)
||b||F

and then

||gb||2F = ||∂(gb)||2H+||gb||2L2(A,τ) ≤
[(
||G(Γ[g])||1/2M +||g||M

)2
+||g||2M

]
||b||2F .

Since the Dirichlet algebra B is a form core, for a fixed b ∈ F the exists
a Cauchy net {bi ∈ B : i ∈ I} converging to it in the norm of F . The
above bound implies that also {gbi ∈ B : i ∈ I} ⊂ F is a Cauchy net
in F , hence converging to an element c ∈ F . Since F is continuously
embedded in L2(A, τ), we have that c = gb. An analogous computation
shows that bg ∈ F for all b ∈ F so hat g is a multiplier of the Dirichlet
space. �

Next result shows that the resolvent (I+L)−1 are positivity preserv-
ing maps from the Hilbert algebra L2(A, τ) ∩ M into the multipliers
algebra M(E ,F).

Proposition 6.3. Let h ∈ L2(A, τ) ∩M. Then g = (I + L)−1h ∈ M
is a potential and a multiplier of the Dirichlet space F .
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Proof. Without loss of generality, we may assume h ∈ L2(A, τ)+ ∩M.

Since
〈
g, b

〉
F
= τ((I + L)g · b) = τ(hb) for all b ∈ B̃, we have that g is

a bounded potential (see Example 3.2).
Denoting by J the anti-unitary involution of L2(A, τ) determined by

the self-polar cone L2(A, τ), since g = g∗, for all b ∈ B̃ we have
〈
∂g, (∂g)b

〉
H
=

〈
J ((∂g)b),J (∂g)

〉
H
=

〈
b∗(∂g), ∂g

〉
H
=

〈
∂g, b(∂g)

〉
H

and then

2
〈
Γ[g], b

〉
C∗,C

= 2
〈
∂g, (∂g)b

〉
H

= 2
〈
∂g, b(∂g)

〉
H

=
〈
∂g, (∂g)b+ b(∂g)

〉
H

=
〈
∂g, ∂(gb) + ∂(bg)− g(∂b)− (∂b)g

〉
H

= τ
(
h(gb+ bg)

)
−

〈
g(∂g) + (∂g)g, ∂b

〉
H

= τ
(
(hg + gh)b

)
−
〈
∂g2 , ∂b

〉
F

=
〈
(I + L)−1(hg + gh)− g2, b

〉
F

which provides that the positive linear functional Γ[g] has a bounded
potential (I + L)−1(hg + gh) − g2 ∈ M. Apply Proposition 6.2 to
conclude. �

Corollary 6.4. Let g be a bounded potential. 1. Then, for any ε > 0,
(I + εL)−1g is a multiplier of the Dirichlet space F . 2. Multipliers are
dense in F . 3. The algebra of multipliers is dense in fine C∗-algebra
C.
Proof. Apply the previous corollary and Lemma 2.3. �
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