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Abstract

Let X1, . . . , Xq be the basis of the space of horizontal vector fields
on a homogeneous Carnot group G =(Rn, ◦) (q < n). We consider the
following divergence degenerate elliptic system

N
∑

β=1

q
∑

i,j=1

Xi

(

a
ij

αβ(x)Xju
β
)

=

q
∑

i=1

Xif
α
i , α = 1, 2, ..., N

where the coefficients a
ij

αβ are real valued bounded measurable functions
defined in Ω ⊂ G, satisfying the strong Legendre condition and belonging
to the space VMOloc (Ω) (defined by the Carnot-Carathéodory distance
induced by the Xi’s). We prove interior HW 1,p estimates (2 ≤ p < ∞)
for weak solutions to the system.

1 Introduction

Let

Xi =

n∑

j=1

bij (x) ∂xj , i = 1, 2, ..., q,

be a family of real smooth vector fields defined in some bounded domain Ω ⊂
Rn (q < n) and satisfying Hörmander’s condition: the Lie algebra generated by
X1, ..., Xq spans Rn at any point of Ω. Since Hörmander’s famous paper [25],
there has been tremendous work on the geometric properties of Hörmander’s
vector fields, see [29], [26], [21], [22], [23], [27], [28], and references therein.
Meanwhile, regularity for linear degenerate elliptic equations involving vector
fields has been investigated and many results have been proved, see for instance
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[20], [31], [2], [3], [4], [5], [6], [7], [34], [27], [28] and references therein; as for
subelliptic systems structured on Hörmander’s vector fields, we can quote [18],
[36], [32].

In this paper we consider divergence degenerate elliptic systems structured
on Hörmander’s vector fields in Carnot groups. Namely (here we briefly state
our assumptions and result; precise definitions and assumptions will be given
in § 2.1), let X1, . . . , Xq be the canonical basis of the space of horizontal vector
fields in a homogeneous Carnot group G =(Rn, ◦); we consider the system

Xi

(
aijαβ(x)Xju

β
)
= Xif

α
i (1.1)

in some domain Ω ⊂ R
n where α, β = 1, . . . , N, i, j = 1, 2, ..., q, F = (fα

i ) ∈
Lp
(
Ω;MN×q

)
(2 ≤ p <∞) is a given N × q matrix. In (1.1) and throughout

the paper, the summation is understood for repeated indices. If the tensor{
aijαβ(x)

}
satisfies the strong Legendre condition (see (2.2)), by Lax-Milgram

theorem the natural functional framework for solutions to (1.1) is the Sobolev
space HW 1,2

(
Ω;RN

)
, so the regularity problem for (1.1) amounts to asking: if

F ∈ Lp
(
Ω;MN×q

)
for some p > 2, can we say that u ∈ HW 1,p, at least locally?

We will prove an affirmative answer to this question (see Theorem 2.7), un-
der the assumption that the coefficients aijαβ belong to the space VMOloc (Ω),
with respect to the Carnot–Carathéodory distance induced by the vector fields.
Under this respect, this result is in the same spirit as the Lp regularity re-
sults proved for nonvariational elliptic equations by Chiarenza-Frasca-Longo
[15], [16], for elliptic systems by Chiarenza-Franciosi-Frasca [14] (see also [13]),
and for nondivergence equations structured on Hörmander’s vector fields by
Bramanti-Brandolini [2], [3], while analogous regularity estimates in Morrey
spaces have been proved for instance by Di Fazio-Palagachev-Ragusa in [19],
and by Palagachev-Softova in [30]. However, the technique of the proof in the
present case is completely different. Namely, while in all the aforementioned
papers Lp or Morrey estimates are proved by exploiting representation formulas
for solutions and singular integral estimates, in the case of subelliptic systems,
even on Carnot groups, no result about representation formulas by means of ho-
mogeneous fundamental solutions seems to be known. Hence we have to make
use of a different technique, which has been designed and exploited in a series of
papers by Byun-Wang to deal with elliptic equations and systems, also in very
rough domains: see [35], [8], [9] and references therein. Namely, the key techni-

cal point is a series of local estimates involving the maximal function of |Xu|2

(§§ 4-5) which hold under an assumption of smallness of the mean oscillation
of the coefficients. One of the tools used to prove these local estimates is the
possibility of approximating, locally, the solution to a system with small datum
and small oscillation of the coefficients by the solution to a different system,
with constant coefficients (§ 3). In turn, the solution to a constant coefficients
system on a Carnot group is known to satisfy an L∞ gradient bound (see The-
orem 2.10) which turns out to be a key tool in our proof. This result about
systems with constant coefficients in Carnot groups has been proved by Shores
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[32], and represents one of the main reasons why we have restricted ourself to
the case of Carnot groups instead of considering general Hörmander’s vector
fields.

This paper represents the first case of study of Lp estimates on the “subel-
liptic gradient” Xu for subelliptic systems. Di Fazio and Fanciullo in [18] have
deduced interior Morrey regularity in spaces L2,λ for weak solutions to the sys-
tem (1.1) under the assumption that the coefficients aijαβ belong to the class
VMOX ∩ L∞ , while Schauder-type estimates have been proved for subelliptic
systems by Xu–Zuily [36].

This paper is organized as follows: in Section 2 we recall some basic facts
about Carnot groups and state precisely our assumption and main results; in
Section 3 we prove the approximation result for local solutions to the original
system by means of solutions to a system with constant coefficients; in Section
4 we prove some local estimates on the Hardy-Littlewood maximal function of
|Xu|2, and in Section 5 we come to the proof of our main result.

2 Preliminaries and statement of the results

2.1 Background on Carnot groups

We are going to recall here the few facts about Carnot groups that we will need
in the following. For the proofs, more properties, and examples, we refer the
reader to the paper [20], the books [1] and [33, Chaps. XII-XIII.].

Definition 2.1 (Homogeneous Carnot groups) A homogeneous group G

is the set Rn endowed with a Lie group operation ◦ (“translation”), where the
origin is the group identity, and a family {D (λ)}λ>0 of group automorphisms
(“dilations”), acting as follows:

D (λ) (x1, x2, ..., xn) = (λα1x1, λ
α2x2, ..., λ

αnxn) ∀λ > 0

for some fixed exponents 0 < α1 < α2 < ... < αn. The number Q =
∑n

j=1 αj is
called the homogeneous dimension of G.

We say that a vector field X =
∑n

j=1 bj (x) ∂xj is left invariant if for any
smooth function f one has

Xx (f (y ◦ x)) = (Xf) (y ◦ x) ∀x, y ∈ G;

we say that X is k-homogeneous if for any smooth function f one has

X (f (D (λ)x)) = λk (Xf) (D (λ)x) ∀λ > 0, x ∈ G.

Let Xi (i = 1, 2, ..., n) be the unique left invariant vector field on G which at
the origin coincides with ∂xi . We assume that for some integer q < n the vector
fields X1, X2, ..., Xq are 1-homogeneous and satisfy Hörmander’s condition in
Rn: the Lie algebra generated by the Xi’s at any point has dimension n. Un-
der these assumption we say that G is a homogeneous Carnot group and that
{X1, X2, ..., Xq} is the canonical basis of the space of horizontal vector fields.
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The properties required in the above definition have a number of conse-
quences: the exponents αi are actually positive integers, the Lie algebra of G
is stratified, homogeneous and nilpotent; the vector fields Xi have polynomial
coefficients. Moreover, the Lebesgue measure of Rn is the Haar measure in G.

Like for any set of Hörmander’s vector fields, it is possible to define the
corresponding Carnot-Carathéodory distance dX , as follows.

Definition 2.2 (CC-distance) For any δ > 0, let Cδ be the set of absolutely
continuous curves φ : [0, 1] → Rn such that

φ′ (t) =

q∑

i=1

ai (t)Xi (φi (t)) with |ai (t)| ≤ δ for a.e. t ∈ [0, 1] .

Then
dX (x, y) = inf {δ > 0 : ∃φ ∈ Cδ with φ (0) = x, φ (1) = y} .

The function dX turns out to be finite for any couple of points, and is actually
a distance, called Carnot-Carathéodory distance; due to the structure of Carnot
group, dX is also left invariant and 1-homogeneous on G. Let

Br (x) = {y ∈ G : dX (x, y) < r}

be the metric ball of center x and radius r in G. Since the Lebesgue measure
in Rn is the Haar measure on G, one has (writing |A| for the measure of A)

|Br (x)| = ωGr
Q (2.1)

where Q is the homogeneous dimension of G and ωG is a positive constant.
Next, we need to define the function spaces we will use in the following.

Definition 2.3 (Horizontal Sobolev spaces) For any p ≥ 1 and domain Ω
⊂ G, let us define the horizontal Sobolev space:

HW 1,p
(
Ω;RN

)
=
{
u ∈ Lp

(
Ω;RN

)
: ‖u‖HW 1,p(Ω;RN ) <∞

}

with the norm

‖u‖HW 1,p(Ω;RN ) = ‖u‖Lp(Ω;RN ) + ‖Xu‖Lp(Ω;RN ) ,

having set

‖u‖Lp(Ω;RN ) = ‖|u|‖Lp(Ω) , with |u| =
(∑N

α=1 |u
α|2
)1/2

and

‖Xu‖Lp(Ω;RN ) = ‖|Xu|‖Lp(Ω) , with |Xu| =
(∑N

α=1

∑q
i=1 |Xiu

α|2
)1/2

.

Also, we define the space HW 1,p
loc

(
Ω;RN

)
as the space of functions u such that

uφ ∈ HW 1,p
(
Ω;RN

)
for any φ ∈ C∞

0 (Ω) and the space HW 1,p
0

(
Ω;RN

)
as the

closure of C∞
0

(
Ω;RN

)
in the norm HW 1,p

(
Ω;RN

)
.
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Definition 2.4 (BMO-type spaces) For any Ω′
⋐ Ω, let R0 be a number

such that Br (x) ⋐ Ω for any x ∈ Ω′ and r ≤ R0. For any f ∈ L1
loc (Ω) and

r ≤ R0, let

ηΩ′,R0,f (r) = sup
x0∈Ω′,0<ρ≤r

1

|Bρ (x0)|

∫

Bρ(x0)

∣∣f (x)− fBρ(x0)

∣∣2 dx,

where fBρ(x0) =
1

|Bρ(x0)|

∫
Bρ(x0)

f (x) dx.

We say that f is (δ, R)-vanishing in Ω′ (for a couple of fixed positive numbers
δ, R, with R ≤ R0) if

ηΩ′,R0,f (R) < δ2.

We say that f ∈ VMOloc (Ω) if for any Ω′
⋐ Ω and R0 such that Br (x) ⋐ Ω

for any r ≤ R0 and x ∈ Ω′, we have

ηΩ′,R0,f (r) → 0 as r → 0.

The function ηΩ′,R0,f is called the local VMO modulus of f on Ω′.

2.2 Assumptions and main result

The general assumptions which will be in force throughout the paper are col-
lected in the following:

Assumption (H). We assume that G is a homogeneous Carnot group in
Rn and {X1, X2, ..., Xq} is the canonical basis of the space of horizontal vector
fields in G (see Definition 2.1).

We assume that the coefficients
{
aijαβ

}
i,j=1,...,q
α,β=1,...,N

(for some N > 1) in (1.1)

are real valued, bounded measurable functions defined in Ω and satisfying the
strong Legendre condition: there exists a constant µ > 0 such that

µ|ξ|2 ≤ aijαβ(x)ξ
α
i ξ

β
j ≤ µ−1|ξ|2 (2.2)

for any ξ ∈ MN×q , a.e. x ∈ Ω.

Definition 2.5 We say that u ∈ HW 1,2
(
Ω;RN

)
is a weak solution to the

system (1.1), if it satisfies

∫

Ω

aijαβ(x)Xju
βXiϕ

αdx =

∫

Ω

fα
i Xiϕ

αdx

for any ϕ ∈ HW 1,2
0

(
Ω;RN

)
.

Recall that on a Carnot group the transposed of a vector field is just the
opposite: X∗

i = −Xi. Hence the above definition of weak solution is consistent
with the way the system (1.1) is written.
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Remark 2.6 If fα
i ∈ L2 (Ω) and u0 ∈ HW 1,2 (Ω), then by assumption (2.2)

and Lax-Milgram’s theorem, there exists a unique solution u ∈ HW 1,2
(
Ω;RN

)

to system (1.1) such that u−u0 ∈ HW 1,2
0 (Ω), and the following a priori estimate

holds (see [12, Chap. 8] for the elliptic case):

‖u‖HW 1,2(Ω;RN ) ≤ c
(
‖F‖L2(Ω;MN×q) + ‖u0‖HW 1,2(Ω;RN )

)
(2.3)

for some constant c only depending on G, µ.

We now state precisely the main results of this paper.

Theorem 2.7 Under the Assumption (H), let the aijαβ’s belong to VMOloc (Ω)
and let Ω′

⋐ Ω, 2 < p < ∞. Then there is a positive constant c depending on
G, µ, p,Ω,Ω′ and the local VMO moduli of the aijαβ’s in Ω′ such that if F =

(fa
i ) ∈ Lp

(
Ω;MN×q

)
and u ∈ HW 1,2

(
Ω;RN

)
is a weak solution to (1.1) in Ω,

then u ∈ HW 1,p
(
Ω′;RN

)
and

‖u‖HW 1,p(Ω′;RN ) ≤ c
(
‖F‖Lp(Ω;MN×q) + ‖u‖L2(Ω;RN )

)
(2.4)

In order to prove Theorem 2.7, we will prove the following local result:

Theorem 2.8 Under the Assumption (H), for any x ∈ Ω, R0 > 0 such that
B11R0

(x) ⊂ Ω there exists δ = δ (p,G, R0, µ) > 0 such that for any R ≤ R0, if
the coefficients aijαβ are (δ, 8R)-vanishing in BR (x) and p ∈ (2,∞), then there

is a positive c = c (R,R0, p,G) such that if F = (fa
i ) ∈ Lp

(
B11R (x) ;MN×q

)

and u ∈ HW 1,2
(
B11R (x) ;RN

)
is a weak solution of (1.1) in B11R (x), then

u ∈ HW 1,p
(
BR (x) ;RN

)
and

‖Xu‖Lp(BR(x);RN ) ≤ c
(
‖F‖Lp(B11R(x);MN×q) + ‖Xu‖L2(B11R(x);RN )

)
(2.5)

Proof of Theorem 2.7 from Theorem 2.8. For fixed domains Ω′
⋐ Ω′′

⋐ Ω,
pick R0 such that B12R0

(x) ⊂ Ω′′ for any x ∈ Ω′. For this R0 and a fixed
p ∈ (2,∞) , let δ be like in Theorem 2.8. Since the aijαβ ’s belong to VMOloc (Ω),

there exists R ≤ R0, R depending on Ω, Ω′, R0, δ, such that the aijαβ ’s are
(δ, 8R)-vanishing in BR (x). Therefore by Theorem 2.8, (2.5) holds for any such
x and R. Next, we apply Caccioppoli’s inequality (2.10), getting

‖Xu‖L2(B11R(x);RN ) ≤ c

{
1

R
‖u‖L2(B12R(x);RN ) + ‖F‖L2(B12R(x);MN×q)

}

which inserted in (2.5) gives

‖Xu‖Lp(BR(x);RN ) ≤ c (R)
{
‖F‖Lp(B12R(x);MN×q) + ‖u‖L2(B12R(x);RN )

}
(2.6)

On the other hand, by Poincaré inequality (2.8) we have:

‖uα‖Lp(BR(x)) ≤
∥∥∥uα − uαBR(x)

∥∥∥
Lp(BR(x))

+
∣∣∣uαBR(x)

∣∣∣ |BR (x)|1/p

≤ cR ‖Xuα‖Lp(BR(x)) + ‖uα‖L2(BR(x)) |BR (x)|1/p−1/2

6



hence

‖u‖Lp(BR(x);RN ) ≤ c (R, p)
{
‖Xu‖Lp(BR(x);RN ) + ‖u‖L2(BR(x);RN )

}

which together with (2.6) gives

‖u‖HW 1,p(BR(x);RN ) ≤ c
{
‖F‖Lp(B12R(x);MN×q) + ‖u‖L2(B12R(x);RN )

}
.

A compactness argument then gives (2.4).
It is worthwhile to point out that, as we will see from the proof of Theorem

2.8 in § 5, the following bound, stronger than (2.5), is actually established:

∥∥∥MB11R(x)

(
|Xu|2

)∥∥∥
1/2

Lp/2(BR(x);RN )
≤ c

{
‖F‖Lp(B12R(x);MN×q) + ‖u‖L2(B12R(x);RN )

}
,

(2.7)
where M is the Hardy-Littewood maximal function (see §4).

Remark 2.9 Note that what allows to exploit the VMO assumption on the
coefficients is the fact that the number δ in Theorem 2.8 depends on R0 but
not on R ≤ R0, which allows shrinking R without changing δ, to get the (δ, R)-
vanishing condition satisfied. Under this regard, our result is very different from
those proved for instance in [9], [8] where the parameter δ possibly depends on
R, which makes the (δ, R)-vanishing assumption hard to check.

Dependence of constants. Throughout this paper, the letter c denotes a
constant which may vary from line to line. The parameters which the constants
depend on are declared in the statements or in the proofs of the theorems. When
we write that c is an “absolute constant” we mean that it may depend on G

and N .

2.3 Some known results

The next result is taken from [32, Corollary 19]. See also [24], where the analo-
gous parabolic inequality is proved.

Theorem 2.10 Let v ∈ HW 1,2
(
KR;RN

)
be a solution to the system

Xi

(
aijαβXjv

β
)
= 0 in B (x0,KR)

with constant coefficients aijαβ satisfying (2.2) and some K > 1. Then v ∈

C∞
(
B (x0,KR) ;R

N
)
; moreover

sup
BR(x0)

|Xv|2 ≤ cR−2 1

|BKR (x0)|

∫

BKR(x0)

|v|2 dx,

where the positive constant c depends on K,µ,G, N but is independent of x0, R
and v.
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We will use the following well-known result by Jerison (see [26, Thm 2.1] for
the case p = 2 and [26, §6] for p 6= 2):

Theorem 2.11 (Poincaré’s inequality) For 1 ≤ p < ∞ there exists a posi-
tive constant c = c (G, p), such that for any u ∈ HW 1,p (BR) ,

‖u− uBR‖Lp(BR) ≤ cR ‖Xu‖Lp(BR) . (2.8)

If u ∈ HW 1,p
0 (BR),

‖u‖Lp(BR) ≤ cR ‖Xu‖Lp(BR) . (2.9)

The previous theorem holds for a general system of Hörmander’s vector
fields; in that case, however, some restriction on the center and radius of the
ball BR applies (see [26, Thm. 2.1]); on a Carnot group, instead, due to the
dilation invariance of the inequalities (2.8) and (2.9), these hold for any ball BR

and with an “absolute” constant c.
The following result can be proved in a completely standard way by suitable

cutoff functions (for the analogous elliptic version see for instance [12, Thm. 2.1
p.134]):

Theorem 2.12 (Caccioppoli’s inequality) Let u ∈ HW 1,2
(
BR (x) ;RN

)
be

a weak solution to (1.1) in BR (x) ⊂ Ω. There exists a constant c > 0 depending
on G, N,R such that for any ρ ∈ (0, R) ,

∫

Bρ(x)

|Xu (x)|2 dx ≤ C

[
1

(R− ρ)
2

∫

BR(x)

|u (x)|2 dx+

∫

BR(x)

|F (x)|2 dx

]
.

(2.10)

We will also make use of the following

Definition 2.13 (Space of homogeneous type, see [17]) Let S be a set and
d : S × S → [0,∞) a quasidistance, that is, for some constant c ≥ 1 one has

d (x, y) = 0 ⇐⇒ x = y

d (x, y) = d (y, x)

d (x, y) ≤ c [d (x, z) + d (z, y)] (2.11)

for all x, y, z ∈ S. The balls defined by d induce a topology in S; let us assume
that the d-balls are open in this topology. Moreover, assume that there exists a
regular Borel measure µ on S, such that the ”doubling condition” is satisfied:

µ (B2r(x)) ≤ cµ (Br(x)) , (2.12)

for every r > 0, x ∈ S and some positive constant c. Then we say that (S, d, µ)
is a space of homogeneous type.

8



Remark 2.14 Note that in our context any Carnot-Carathéodory ball BR (x0)
is a dX -regular domain (see for instance [4, Lemma 4.2]), that is there exists a
positive constant cd such that

|BR (x0) ∩Br (x)| ≥ cd |Br (x)| ∀r > 0, ∀x ∈ BR (x0) . (2.13)

This implies that (BR (x0) , dX , dx) is a space of homogeneous space. Moreover,
a simple dilation argument shows that, in a Carnot group, the constant cd, and
therefore the doubling constant of (BR (x0) , dX , dx), is independent of R.

3 Approximation by solutions of systems with

constant coefficients

Notation 3.1 In order to simplify notation, henceforth we will systematically
write the norms and spaces of vector valued functions as

HW 1,p (B) , ‖u‖HW 1,p(B) , ‖F‖Lp(B) instead of

HW 1,p
(
B;RN

)
, ‖u‖HW 1,p(B;RN ) , ‖F‖Lp(B;MN×q) ,

and so on.

In this section we will prove a couple of theorems asserting that a solution to
a system (1.1) with small datum F and coefficients with small oscillation, can
be suitably approximated by a solution to a system with constant coefficients
and zero datum. This approximation is one of the tools which will be used in
the proof of Theorem 2.8.

Theorem 3.2 Under Assumption (H) (see §2.2), for any ε > 0, R0 > 0 there is
a small δ = δ (ε,R0, µ) > 0 such that for any R ≤ R0, if u is a weak solution to
system (1.1) in B4R ⋐ Ω with

1

|B4R|

∫

B4R

|Xu|2 dx ≤ 1,
1

|B4R|

∫

B4R

(
|F|2 +

∣∣∣∣a
ij
αβ −

(
aijαβ

)
B4R

∣∣∣∣
2
)
dx ≤ δ2,

(3.1)
then there exists a weak solution v to the following homogeneous system with
constant coefficients:

Xi

((
aijαβ

)
B4R

Xjv
β(x)

)
= 0 in B4R (3.2)

such that
1

R2

1

|B4R|

∫

B4R

|u− v|2 dx ≤ ε2.

Proof. Let us first prove the result for a fixed R (and δ possibly depending on
R), then we will show how to remove the dependence on R.

9



By contradiction. If the result does not hold, then there exist a constant

ε0 > 0, and sequences
{
aijkαβ

}∞

k=1
satisfying (2.2), {uk}

∞
k=1, {Fk}

∞
k=1 such that

uk is a weak solution to the system

Xi

(
aijkαβXju

β
k(x)

)
= X∗

i f
αk
i (x) (3.3)

in B4R with

1

|B4R|

∫

B4R

|Xuk|
2
dx ≤ 1,

1

|B4|

∫

B4R

(
|Fk|

2
+

∣∣∣∣a
ijk
αβ −

(
aijkαβ

)
B4R

∣∣∣∣
2
)
dx ≤

1

k2
,

(3.4)
but

1

R2

1

|B4R|

∫

B4R

|uk − vk|
2 dx > ε20 (3.5)

for any weak solution vk of

Xi

((
aijkαβ

)
B4R

Xjv
β
k (x)

)
= 0 in B4R. (3.6)

From (3.4) and Poincaré’s inequality (2.8), we know that
{
uk − (uk)B4R

}∞
k=1

is bounded in HW 1,2 (B4R), then Rellich’s lemma allows us to find a subse-
quence of

{
uk − (uk)B4R

}
, still denoted by

{
uk − (uk)B4R

}
, such that

1

R2

1

|B4R|

∫

B4R

∣∣uk − (uk)B4R
− u0

∣∣2 dx→ 0, (3.7)

Xuk → Xu0 weakly in L2, (3.8)

as k → ∞, for some u0 ∈ HW 1,2 (B4R). Since

{(
aijkαβ

)
B4R

}∞

k=1

is bounded in

R, it allows a subsequence, still denoted by

{(
aijkαβ

)
B4R

}∞

k=1

, such that

∣∣∣∣
(
aijkαβ

)
B4R

− āijαβ

∣∣∣∣→ 0, as k → ∞, (3.9)

for some constants āijαβ . By (3.4), it follows

aijkαβ → āijαβ in L2 (B4R) , as k → ∞.

Next, we show that u0 is a weak solution of

Xi

(
āijαβXju

β(x)
)
= 0 in B4R. (3.10)

We start from
∫

B4R

aijkαβ (x)Xju
β
kXiϕ

αdx =

∫

B4R

fαk
i Xiϕ

αdx (3.11)

10



with ϕα ∈ C∞
0 (Ω), and take the limit for k → ∞. By (3.4),

∫

B4R

fαk
i Xiϕ

αdx→ 0.

Moreover,

∫

B4R

aijkαβ (x)Xju
β
kXiϕ

αdx =

=

∫

B4R

[
aijkαβ (x)− āijαβ

]
Xju

β
kXiϕ

αdx+

∫

B4R

āijαβXju
β
kXiϕ

αdx ≡ Ak +Bk.

Now,

|Ak| ≤ c
∥∥∥aijkαβ (x) − āijαβ

∥∥∥
L2(B4R)

∥∥∥Xju
β
k

∥∥∥
L2(B4R)

→ 0,

because aijkαβ (x) → āijαβ in L2 and
{
Xju

β
k

}
is bounded in L2. Finally, since

Xuk → Xu0 weakly in L2,

Bk →

∫

B4R

āijαβXju
β
0Xiϕ

αdx,

hence ∫

B4R

āijαβXju
β
0Xiϕ

αdx = 0 for any ϕα ∈ C∞
0 (B4R) .

By density, this holds for any ϕα ∈ HW 1,2
0 (B4R), so u0 is a weak solution to

(3.10).
Now, let vk be the unique solution to the Dirichlet problem





Xi

((
aijkαβ

)
B4R

Xjvk

)
= 0 in B4R

vk − u0 ∈ HW 1,2
0 (B4R)

(3.12)

(see Remark 2.6). By (2.2) and using vk −u0 as a test function in the definition
of solution to (3.12) we have

µ

∫

B4R

|Xvk −Xu0|
2
dx ≤

∫

B4R

(
aijkαβ

)
B4R

(
Xjv

β
k −Xju

β
0

)
(Xiv

α
k −Xiu

α
0 ) dx

= −

∫

B4R

(
aijkαβ

)
B4R

Xju
β
0 (Xiv

α
k −Xiu

α
0 ) dx

11



since u0 is a weak solution to (3.10)

=

∫

B4R

(
āijαβ −

(
aijkαβ

)
B4R

)
Xju

β
0 (Xiv

α
k −Xiu

α
0 ) dx

≤

∣∣∣∣
(
āijαβ −

(
aijkαβ

)
B4R

)∣∣∣∣
∫

B4R

∣∣∣Xju
β
0

∣∣∣ |Xiv
α
k −Xiu

α
0 | dx

≤ c (N) max
i,j,α,β

∣∣∣∣
(
āijαβ −

(
aijkαβ

)
B4R

)∣∣∣∣
(∫

B4R

|Xu0|
2
dx

)1/2

·

·

(∫

B4R

|Xvk −Xu0|
2 dx

)1/2

,

which implies

µ

(∫

B4R

|Xvk −Xu0|
2 dx

)1/2

≤ c max
i,j,α,β

∣∣∣∣
(
āijαβ −

(
aijkαβ

)
B4R

)∣∣∣∣
(∫

B4R

|Xu0|
2 dx

)1/2

.

(3.13)
Since (3.4) and the weak convergence Xuk → Xu0 in L2 give the bound

‖Xu0‖L2 ≤ lim inf ‖Xuk‖L2 ≤ |B4R|
1/2

,

inequalities (3.9) and (3.13) imply

‖Xvk −Xu0‖L2(B4R) → 0 as k → 0.

This convergence, the fact that vk − u0 ∈ HW 1,2
0 (B4R) and (2.9) imply

‖vk − u0‖L2(B4R) → 0 as k → 0. (3.14)

By (3.7) and (3.14) we can write:

∥∥vk −
(
uk − (uk)B4R

)∥∥
L2(B4R)

≤
∥∥u0 −

(
uk − (uk)B4R

)∥∥
L2(B4R)

+ ‖vk − u0‖L2(B4R) → 0. (3.15)

On the other hand, vk + (uk)B4R
is still a weak solution to (3.6), hence (3.5)

implies
1

R2

1

|B4R|

∫

B4R

∣∣vk −
(
uk − (uk)B4R

)∣∣2 dx > ε20,

which contradicts (3.15). So we have proved the assertion, for some δ possibly
depending on ε,R, µ.

Let us now fix a particular R0, and let R be any number ≤ R0. Assume u is
a weak solution to system (1.1) in B4R ⋐ Ω satisfying (3.1). Just to simplify
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notations, assume that the center of B4R is the origin, and define:

ũ (x) =
R0

R
u

(
D

(
R

R0

)
x

)
;

ãαβij (x) = aαβij

(
D

(
R

R0

)
x

)
;

f̃α
i (x) = fα

i

(
D

(
R

R0

)
x

)
.

Then, one can check that the function ũ solves the system

Xi

(
ãijαβ(x)Xj ũ

β
)
= Xif̃α

i in B4R0
.

To see this, for any φ ∈ C∞
0 (B4R) , let φ̃ (x) = R0

R φ
(
D
(

R
R0

)
x
)
; then φ̃ ∈

C∞
0 (B4R0

) and
∫

B4R0

ãαβij (x)Xj ũ
β (x)Xiφ̃

α (x) dx

=

∫

B4R0

aαβij

(
D

(
R

R0

)
x

)(
Xju

β
)(

D

(
R

R0

)
x

)
(Xiφ

α)

(
D

(
R

R0

)
x

)
dx

=

(
R0

R

)Q ∫

B4R

aαβij (y)
(
Xju

β
)
(y) (Xiφ

α) (y) dy

=

(
R0

R

)Q ∫

B4R

fα
i (y) (Xiφ

α) (y) dy

=

∫

B4R0

fα
i

(
D

(
R

R0

)
x

)
(Xiφ

α)

(
D

(
R

R0

)
x

)
dx

=

∫

B4R0

f̃α
i (x)Xiφ̃

α (x) dx.

Also, note that the ãijαβ ’s satisfy condition (2.2) with the same µ. Let δ =
δ (ε,R0, µ) be the number found in the first part of the proof, and assume that

u,F, aαβij satisfy (3.1) on B4R for this δ; then ũ, F̃, ãαβij satisfy (3.1) on B4R0
for

the same δ:

1

|B4R0
|

∫

B4R0

|Xũ (x)|2 dx =
1

|B4R0
|

∫

B4R0

∣∣∣∣(Xu)
(
D

(
R

R0

)
x

)∣∣∣∣
2

dx

=
1

|B4R0
|

(
R0

R

)Q ∫

B4R

|(Xu) (y)|2 dy =
1

|B4R|

∫

B4R

|(Xu) (y)|2 dy ≤ 1;

1

|B4R0
|

∫

B4R0

(∣∣∣F̃
∣∣∣
2

+

∣∣∣∣ã
ij
αβ −

(
ãijαβ

)
B4R0

∣∣∣∣
2
)
dx

=
1

|B4R|

∫

B4R

(
|F|2 +

∣∣∣∣a
ij
αβ −

(
aijαβ

)
B4R

∣∣∣∣
2
)
dx ≤ δ.
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Hence, by the first part of the proof, there exists a weak solution ṽ to the
following homogeneous system with constant coefficients:

Xi

((
ãijαβ

)
B4R0

Xj ṽ
β(x)

)
= 0 in B4R0

such that
1

R2
0

1

|B4R0
|

∫

B4R0

|ũ− ṽ|2 dx ≤ ε2.

Then, the function

v (x) =
R

R0
ṽ

(
D

(
R0

R

)
x

)

satisfies

Xi

((
aijαβ

)
B4R

Xjv
β(x)

)
= 0 in B4R

and

1

R2

1

|B4R|

∫

B4R

|u (x)− v (x)|2 dx

=
1

R2

1

|B4R|

∫

B4R

∣∣∣∣
R

R0
ũ

(
D

(
R0

R

)
x

)
−

R

R0
ṽ

(
D

(
R0

R

)
x

)∣∣∣∣
2

dx

=
1

R2
0

1

|B4R|

∫

B4R

∣∣∣∣ũ
(
D

(
R0

R

)
x

)
− ṽ

(
D

(
R0

R

)
x

)∣∣∣∣
2

dx

=
1

R2
0

1

|B4R0
|

∫

B4R0

|ũ− ṽ|2 dx ≤ ε2.

We have therefore proved that the assertion holds with δ depending on R0 but
independent of R ≤ R0.

The following technical lemma is adapted from [12, lemma 4.1, p.27].

Lemma 3.3 Let ψ(t) be a bounded nonnegative function defined on the interval
[T0, T1], where T1 > T0 ≥ 0. Suppose that for any T0 ≤ t ≤ s ≤ T1, ψ satisfies

ψ(t) ≤ ϑψ(s) +
A

(s− t)
β
+B,

where ϑ, A, B, β are nonnegative constants, and ϑ < 1
3 . Then

ψ(ρ) ≤ cβ

[
A

(R− ρ)
β
+B

]
, ∀ρ, T0 ≤ ρ < R ≤ T1,

where cβ only depends on β.

We are going to enforce the previous theorem with the following
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Theorem 3.4 For any ε > 0 R0 > 0, there is a small δ = δ (ε,R0, µ) > 0 such
that for any R ≤ R0, if u is a weak solution of system (1.1) in B4R ⋐ Ω and
(3.1) holds, then there exists a weak solution v to (3.2) such that

1

|B2R|

∫

B2R

|Xu−Xv|2 dx ≤ ε2.

Proof. By Theorem 3.2, we know that for any η > 0, there exist a small
δ = δ (η,R0, µ) > 0 and a weak solution v of (3.2) in B4R, such that

1

R2

1

|B4R|

∫

B4R

|u− v|2 dx ≤ η2, (3.16)

provided (3.1) holds.
Let us note that u− v is a weak solution to the system

Xi

(
aijαβ (x)Xj

(
uβ − vβ

)
(x)
)
= Xi

(
fα
i (x)−

(
aijαβ (x)−

(
aijαβ

)
B4R

)
Xjv

β

)

(3.17)
in B4R. For any 2R ≤ s < t ≤ 3R, we choose a cutoff function ϕ (x) which
satisfies

0 < ϕ (x) ≤ 1 in B3R, ϕ (x) ≡ 1 in Bs, ϕ (x) ≡ 0 in B3R\Bt

and
|Xϕ (x)| ≤

c

t− s
in B4R.

Taking (u− v)ϕ as a test function, it follows by (3.17) that

µ

∫

Bs

|X (u− v)|2 dx

≤

∫

Bt

ϕ (x) aijαβ (x)Xj

(
uβ − vβ

)
Xi (u

α − vα) dx

=

∫

Bt

(
fα
i (x)−

(
aijαβ (x)−

(
aijαβ

)
B4R

)
Xjv

β

)
Xi ((u

α − vα)ϕ) dx

−

∫

Bt

aijαβ (x) (u
α − vα)Xj

(
uβ − vβ

)
Xiϕdx.

By the properties of ϕ, Young’s inequality and (2.2),

∫

Bs

|Xu−Xv|2 dx

≤ c

∫

Bt

(
|F|+ max

i,j,α,β

∣∣∣∣a
ij
αβ (x) −

(
aijαβ (x)

)
B4R

∣∣∣∣ |Xv|
)2

dx+

+
1

4

∫

Bt

|Xu−Xv|2 dx+
c

(t− s)2

∫

Bt

|u− v|2 dx
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≤ c

∫

4R

|F|2 dx+ sup
B3R

|Xv|2 · max
i,j,α,β

∫

B4R

∣∣∣∣a
ij
αβ (x)−

(
aijαβ (x)

)
B4R

∣∣∣∣
2

dx

+
c

(t− s)
2

∫

B4R

|u− v|2 dx+
1

4

∫

Bt

|Xu−Xv|2 dx.

Setting

ψ (s) =

∫

Bs

|Xu−Xv|2 dx,

B = c

∫

B4R

|F|2 dx+ sup
B3R

|Xv|2 · max
i,j,α,β

∫

B4R

∣∣∣∣a
ij
αβ (x)−

(
aijαβ (x)

)
B4R

∣∣∣∣
2

dx,

A =

∫

B4R

|u− v|2 dx, β = 2,

by Lemma 3.3 we deduce
∫

B2R

|Xu−Xv|2 dx ≤
c

R2

∫

B4R

|u− v|2 dx+ c

∫

B4R

|F|2 dx

+ csup
B3R

|Xv|2 · max
i,j,α,β

∫

B4R

∣∣∣∣
(
aijαβ (x)−

(
aijαβ (x)

)
B4R

)∣∣∣∣
2

dx. (3.18)

By Theorem 2.10, since v − uB4R is still a solution to the system (3.2) in B4R

we can write:

sup
B3R

|Xv| ≤
c

R
|BR|

−1/2 ‖v − uB4R‖L2(B4R)

≤
c

R
|BR|

−1/2
(
‖u− v‖L2(B4R) + ‖u− uB4R‖L2(B4R)

)

by (3.16), (2.8) and assumption (3.1) on u

≤ cη + c |BR|
−1/2 ‖Xu‖L2(B4R) ≤ c (η + 1) ≤ N0, (3.19)

for some absolute constant N0 when η is, say, any number ≤ 1.
By (3.18) and (3.19) we have

1

|B2R|

∫

B2R

|Xu−Xv|2 dx

≤
c

|B4R|

∫

B4R

|F|2 dx+
cN0

|B4R|
max
i,j,α,β

∫

B4R

∣∣∣∣a
ij
αβ (x)−

(
aijαβ

)
B4R

∣∣∣∣
2

dx

+
c

R2

1

|B4R|

∫

B4R

|u− v|2 dx

by (3.16) and (3.1)

≤
c

|B4R|

∫

B4R

(
|F|2 + max

i,j,α,β

∣∣∣∣a
ij
αβ (x)−

(
aijαβ (x)

)
B4R

∣∣∣∣
2
)
dx+ cη2

≤ c
(
δ2 + η2

)
< ε2,
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for a suitable choice of η, and after possibly diminishing δ. This ends the proof.

4 Estimates on the maximal function of |Xu|2

Definition 4.1 Let BR ⋐ Ω. For every f ∈ L1 (BR), define the Hardy–
Littlewood maximal function of f by

(MBRf) (x) = sup
r>0

1

|Br (x) ∩BR|

∫

Br(x)∩BR

|f (y)| dy.

Since (BR, dX , dx) is a space of homogeneous type (see Remark 2.14), by
[17, Thm.2.1 p.71] the following holds:

Lemma 4.2 Let f ∈ L1 (BR), then
(i) MBR (f) (x) is finite almost everywhere in BR;
(ii) for every α > 0,

|{x ∈ BR : MBR (f) (x) > α}| ≤
c1
α

∫

BR

|f (y)| dy;

(iii) if f ∈ Lp (BR) with 1 < p <∞, then MBR (f) ∈ Lp (BR) and

‖MBR (f)‖Lp(BR) ≤ cp ‖f‖Lp(BR) ,

where the constants cp only depend on p and G (but are independent of BR).

The last statement about the dependence of the constants requires some
explanation. In any space of homogeneous type these constants depend on the
two constants of the space, namely the one appearing in the “quasitriangle
inequality” (2.11) and the doubling constant appearing in (2.12). In our case
the first constant is 1 (since dX is a distance) and the second is independent of
R, by Remark 2.14. Hence cp is independent of R.

Theorem 4.3 There exists an absolute constant N1 such that for any ε > 0,
R0 > 0, there is a small δ = δ (ε,R0, µ) > 0 such that for any R ≤ R0/2,
z ∈ BR (x) ⊂ B11R (x) ⋐ Ω and 0 < r ≤ 2R, if u is a weak solution of (1.1) in
B11R (x) with

Br (z) ∩
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) ≤ 1

}
∩

∩
{
x ∈ BR (x) : MB11R(x)

(
|F|2

)
(x) ≤ δ2

}
6=∅ (4.1)

and the coefficients aijαβ (x) are (δ, 4r)-vanishing in BR (x), then

∣∣∣Br (z) ∩
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N2

1

}∣∣∣ < ε |Br (z)| . (4.2)

17



Proof. Fix ε,R0 > 0; the number δ will be chosen later. By (4.1), there exists
a point x0 ∈ Br (z), such that for any ρ > 0,

1

|Bρ (x0) ∩B11R (x)|

∫

Bρ(x0)∩B11R(x)

|Xu|2 dx ≤ 1, (4.3)

1

|Bρ (x0) ∩B11R (x)|

∫

Bρ(x0)∩B11R(x)

|F|2 dx ≤ δ2. (4.4)

Since z, x0 ∈ BR (x) and r ≤ 2R, we have the inclusions: B4r (z) ⊂ B5r (x0) ⊂
B11R (x) and B5r (x0) ⊂ B6r (z). Then by (4.4) with ρ = 5r we have that

1

|B4r (z)|

∫

B4r(z)

|F|2 dx ≤
|B6r (z)|

|B4r (z)|

1

|B5r (x0)|

∫

B5r(x0)

|F|2 dx ≤

(
6

4

)Q

δ2.

(4.5)
Similarly, by (4.3) we find

1

|B4r (z)|

∫

B4r(z)

|Xu|2 dx ≤

(
6

4

)Q

. (4.6)

By (4.5), (4.6) and the assumption on aijαβ (x), we can apply Theorem 3.4 (with

u replaced by
(
4
6

)Q
u and F replaced by

(
4
6

)Q
F) on the ball B4r (z) (recall that

r ≤ R0) and obtain that for any η > 0, there exists a small δ = δ (η,R0, µ) and
a weak solution v to

Xi

((
aijαβ

)
B4r(z)

Xjv

)
= 0 in B4r (z)

such that
1

|B2r (z)|

∫

B2r(z)

|X (u− v)|2 dx ≤ η2. (4.7)

Also, recall the interior HW 1,∞ regularity of v (3.19):

‖Xv‖2L∞(B3r(z))
≤ N2

0 . (4.8)

Now, pick

N2
1 = max

{
5Q

cd
, 4N2

0

}
. (4.9)

Then we claim that
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N2

1

}
∩Br (z)

⊂
{
x ∈ BR (x) : MB2r(z)

(
|X (u− v)|2

)
(x) > N2

0

}
∩Br (z) . (4.10)

To see this, suppose

x1 ∈
{
x ∈ BR (x) ∩Br (z) : MB2r(z) (|X (u− v)|)2 (x) ≤ N2

0

}
. (4.11)
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When ρ ≤ r, it follows Bρ (x1) ⊂ B2r (z) ⊂ B5R (x), then (4.11) and (4.8) imply

1

|Bρ (x1) ∩B11R (x)|

∫

Bρ(x1)∩B11R(x)

|Xu|2 dx =
1

|Bρ (x1)|

∫

Bρ(x1)

|Xu|2 dx

(4.12)

≤
2

|Bρ (x1)|

∫

Bρ(x1)

(
|X (u− v)|2 + |Xv|2

)
dx ≤ 4N2

0 ≤ N2
1 .

When ρ > r, since x1, x0 ∈ Br (z) we have d (x1, x0) < 2r < 2ρ; it follows
Bρ (x1) ⊂ B3ρ (x0) ⊂ B5ρ (x1). Then by Remark 2.14 and (4.3) we have

1

|Bρ (x1) ∩B11R (x)|

∫

Bρ(x1)∩B11R(x)

|Xu|2 dx

≤
1

cd |Bρ (x1)|

∫

B3ρ(x0)∩B11R(x)

|Xu|2 dx

=
5Q

cd |B5ρ (x1)|

∫

B3ρ(x0)∩B11R(x)

|Xu|2 dx

≤
5Q

cd |B3ρ (x0) ∩B11R (x)|

∫

B3ρ(x0)∩B11R(x)

|Xu|2 dx

≤
5Q

cd
≤ N2

1 . (4.13)

By (4.12) and (4.13), we have

x1 ∈
{
x ∈ BR (x) : MB11R(x) (Xu)

2 ≤ N2
1

}
∩Br (z) . (4.14)

Thus, inclusion (4.10) follows from the fact that (4.11) implies (4.14).
By (4.10), Lemma 4.2 (ii) and (4.7) , we have

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N2

1

}
∩Br (z)

∣∣∣

≤
∣∣∣
{
x ∈ B2r (z) : MB2r(z)

(
|X (u− v)|2

)
(x) > N2

0

}∣∣∣

≤
c

N2
0

∫

B2r(z)

|X (u− v)|2 dx

≤ cη2 |B2r (z)| = c2Qη2 |Br (z)|

= ε2 |Br (z)| .

For a fixed ε, we have finally chosen η so that c2Qη2 = ε2 and picked the
corresponding δ depending on R0, µ and η, that is on R0, µ, ε. This finishes our
proof.

Corollary 4.4 For any ε > 0, R0 > 0, there is a small δ = δ (ε,R0, µ) > 0
such that for any R ≤ R0/2, z ∈ BR (x), 0 < r ≤ 2R, if u is a weak solution
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of (1.1) in B11R (x) ⋐ Ω, the coefficients aijαβ (x) are (δ, 4r)-vanishing in BR (x)
and

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N2

1

}
∩Br (z)

∣∣∣ ≥ ε |Br (z)| ,

then

Br (z) ∩BR (x)

⊂
{
x ∈ BR (x) : MB11R(x) (|Xu|)

2
(x) > 1

}
∪
{
x ∈ BR (x) : MB11R(x) |F|

2
(x) > δ2

}
.

5 Lp estimate on |Xu|2

In this section we exploit the local estimates on the maximal function of |Xu|2

proved in the previous section in order to prove the desired Lp bound. The
starting point is the following useful lemma about the estimate of the Lp norm
of a function by means of its distribution function.

Lemma 5.1 (See [10, p.62]) Let θ > 0, m > 1 be constants, p ∈ (1,∞). Then
there exists c > 0 such that for any nonnegative and measurable function f in
Ω,

f ∈ Lp (Ω) if and only if S =
∑

l≥1

mlp
∣∣{x ∈ Ω : f (x) > θml

}∣∣ <∞

and
1

c
S ≤ ‖f‖pLp(Ω) ≤ c (|Ω|+ S) .

Lemma 5.2 (Vitali) Let F be a family of dX -balls in Rn with bounded radii.
There exists a finite or countable sequence {Bi} ⊂ F of mutually disjoint balls
such that ⋃

B∈F

B ⊂
⋃

i

5Bi

where 5B is the ball with the same center as B and radius five times big.

The proof is identical to that of the Euclidean case, with the Euclidean
distance replaced by dX here.

Lemma 5.3 Let 0 < ε < 1, C and D be two measurable sets satisfying C ⊂
D ⊂ BR (x) ⊂ Ω, |C| < ε |BR (x)| and the following property:

∀x ∈ BR (x) , ∀r ≤ 2R, |C ∩Br (x)| ≥ ε |Br (x)| =⇒ Br (x)∩BR (x) ⊂ D. (5.1)

Then

|C| ≤ ε
5Q

cd
|D| ,

where cd is the constants in (2.13).
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Proof. For any x ∈ C, C ⊂ BR (x) ⊂ B2R (x), hence

|C ∩B2R (x)| = |C| < ε |BR (x)| < ε |B2R (x)| .

On the other hand, by Lebesgue differentiation theorem, for a.e. x ∈ C,

lim
r→0

|C ∩Br (x)|

|Br (x)|
= 1,

hence for a.e. x ∈ C there is an rx ≤ 2R such that for all r ∈ (rx, 2R) it holds

|C ∩Brx (x)| ≥ ε |Brx (x)| and |C ∩Br (x)| < ε |Br (x)| . (5.2)

By Lemma 5.2, there are x1, x2, . . . ∈ C, such that Brx1
(x1), Brx2

(x2) , . . . are
mutually disjoint and satisfy

⋃

k

B5rxk
(xk) ∩BR (x) ⊃ C.

By (5.2) and (2.1), we know

∣∣∣C ∩B5rxk
(xk)

∣∣∣ < ε
∣∣∣B5rxk

(xk)
∣∣∣ = ε5Q

∣∣∣Brxk
(xk)

∣∣∣ .

Also,

|C| =

∣∣∣∣∣
⋃

k

B5rxk
(xk) ∩ C

∣∣∣∣∣ ≤
∑

k

∣∣∣B5rxk
(xk) ∩ C

∣∣∣

≤ ε5Q
∑

k

∣∣∣Brxk
(xk)

∣∣∣

≤ ε
5Q

cd

∑

k

∣∣∣Brxk
(xk) ∩BR (x)

∣∣∣

where the last inequality follows since BR (x) is dX -regular (see Remark 2.14).
Moreover since the Brxk

(xk) are mutually disjoint the last quantity equals

= ε
5Q

cd

∣∣∣∣∣
⋃

k

(
Brxk

(xk) ∩BR (x)
)∣∣∣∣∣ ≤ ε

5Q

cd
|D| ,

since, by assumption (5.1), Brxk
(xk) ∩BR (x) ⊂ D. This completes the proof.

Theorem 5.4 For any ε > 0, R0 > 0 there is a small δ = δ (ε,R0, µ) > 0 such
that for any R ≤ R0/2, if u is a weak solution of (1.1) in B11R (x) ⋐ Ω, the
coefficients aijαβ (x) are (δ, 8R)-vanishing in BR (x) and

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N2

1

}∣∣∣ < ε |BR (x)| (5.3)
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(where N1 is like in Theorem 4.3), then for any positive integer m,

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N2m

1

}∣∣∣

≤
m∑

i=1

εi1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|F|2

)
(x) > δ2N

2(m−i)
1

}∣∣∣

+ εm1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > 1

}∣∣∣ .

where ε1 = ε5Q/cd.

Proof. Fix ε,R0 > 0 and pick δ = δ (ε,R0, µ) as in Corollary 4.4. We will
prove this assertion by induction on m. For m = 1, we want to apply Lemma
5.3 to

C :=
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N2

1

}
,

D :=
{
x ∈ BR (x) : MB11R(x) (|F|)

2
(x) > δ2

}
∪
{
x ∈ BR (x) : MB11R(x) (Xu)

2
(x) > 1

}
.

Since N1 ≥ 1, C ⊂ D ⊂ BR (x). Also, by assumption |C| < ε |BR (x)|. Let
x ∈ BR (x) such that

|C ∩Br (x)| ≥ ε |Br (x)| .

Then by Corollary 4.4
Br (x) ∩BR (x) ⊂ D

hence by Lemma 5.3

|C| ≤ ε
5Q

cd
|D|

which is our assertion for m = 1.
Now assume the assertion is valid for some m. Let u be a weak solution to

(1.1) in B11R (x) satisfying (5.3). Set u1 = u/N1 and F1 = F/N1, then u1 is a
weak solution of

Xi

(
aijαβ (x)Xju1

)
= XiF1

in B11R (x) ⋐ Ω, and satisfies

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu1|

2
)
(x) > N2

1

}∣∣∣

=
∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N4

1

}∣∣∣

<
∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > N2

1

}∣∣∣ < ε |BR (x)| .
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By the induction assumption on m, we have
∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Xu|)

2
(x) > N

2(m+1)
1

}∣∣∣

=
∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Xu1|)

2
(x) > N2m

1

}∣∣∣

≤
m∑

i=1

εi1

∣∣∣
{
x ∈ BR (x) : MB11R(x) (|F1|)

2 (x) > δ2N
2(m−i)
1

}∣∣∣

+ εm1

∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Xu1|)

2 (x) > 1
}∣∣∣

=

m∑

i=1

εi1

∣∣∣
{
x ∈ BR (x) : MB11R(x) (|F|)

2
(x) > δ2N

2(m+1−i)
1

}∣∣∣

+ εm1

∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Xu|)

2
(x) > N2

1

}∣∣∣ . (5.4)

On the other hand, by the assertion valid for m = 1,
∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Xu|)

2
(x) > N2

1

}∣∣∣

≤ ε1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|F|2

)
(x) > δ2

}∣∣∣

+ ε1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > 1

}∣∣∣ . (5.5)

Putting (5.5) into (5.4) we get
∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Xu|)

2
(x) > N

2(m+1)
1

}∣∣∣

≤
m∑

i=1

εi1

∣∣∣
{
x ∈ BR (x) : MB11R(x) (|F|)

2
(x) > δ2N

2(m+1−i)
1

}∣∣∣

+ εm+1
1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > 1

}∣∣∣

+ εm+1
1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|F|2

)
(x) > δ2

}∣∣∣

=

m+1∑

i=1

εi1

∣∣∣
{
x ∈ BR (x) : MB11R(x) (|F|)

2
(x) > δ2N

2(m+1−i)
1

}∣∣∣

+ εm+1
1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > 1

}∣∣∣

which is the desired assertion for m+ 1. This completes the proof.
We can finally come to the

Proof of Theorem 2.8. Fix R0, let ε > 0 to be chosen later, and pick
δ = δ (ε,R0, µ) as in Theorem 5.4. For λ > 0, let uλ = u

λ ,Fλ = F

λ . We claim
that we can take λ large enough (depending on ε, u and F) so that

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xuλ|

2
)
(x) > N2

1

}∣∣∣ < ε |BR (x)| (5.6)
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and

∞∑

k=1

Nkp
1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Fλ|

2
)
(x) > δN2k

1

}∣∣∣ ≤ 1. (5.7)

Actually, since F ∈ Lp
(
B11R (x) ;MN×q

)
with p > 2, we haveMB11R(x)

(
|Fλ|

2
)
(x) ∈

L
p
2 (B11R (x)) by Lemma 4.2. Applying Lemma 5.1 with f = MB11R(x)

(
|Fλ|

2
)
,

θ = δ, m = N2
1 , Ω = BR (x) and p replaced by p/2, there is a positive constant

c depending only on δ, p and N1, such that

∞∑

k=1

Nkp
1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Fλ|

2
)
(x) > δN2k

1

}∣∣∣

≤ c
∥∥∥MB11R(x)

(
|Fλ|

2
)∥∥∥

p/2

Lp/2(B11R(x))
≤ c ‖Fλ‖

p
Lp(B11R(x)) .

Also, by Lemma 4.2 we have

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xuλ|

2
)
(x) > N2

1

}∣∣∣

=
∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xu|2

)
(x) > λ2N2

1

}∣∣∣ ≤ c

λ2N2
1

‖Xu‖2L2(B11R(x))

Hence we can take

λ = c

(
‖Xu‖L2(B11R(x);RN )

ε1/2 |BR (x)|1/2
+ ‖F‖Lp(B11R(x))

)
(5.8)

for some constant c depending on δ, p,N1, hence c = (ε,R0, p,G), and get (5.6)
and (5.7) satisfied.

Next, by (5.6) we can apply Theorem 5.4 to uλ for this large λ, writing

∞∑

k=1

Nkp
1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xuλ|

2
)
(x) > N2k

1

}∣∣∣

≤
∞∑

k=1

Nkp
1

(
k∑

i=1

εi1

∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Fλ|)

2
(x) > δ2N

2(k−i)
1

}∣∣∣

+εk1

∣∣∣
{
x ∈ BR (x) : MB11R(x)

(
|Xuλ|

2
)
(x) > 1

}∣∣∣
)

=

∞∑

i=1

(Np
1 ε1)

i
∞∑

k=i

N
p(k−i)
1

∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Fλ|)

2
(x) > δ2N

2(k−i)
1

}∣∣∣

+

∞∑

i=1

(Np
1 ε1)

i
∣∣∣
{
x ∈ BR (x) : MB11R(x) (|Xuλ|)

2
(x) > 1

}∣∣∣
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by (5.7)

=

∞∑

i=1

(Np
1 ε1)

i
(1 + |BR (x)|)

< 1 + |BR (x)|

taking ε so that Np
1 ε1 = 1/2. We have finally chosen ε small enough, depending

on p and G, and a corresponding δ = δ (ε,R0, µ) = δ (p,G, R0, µ) .

Therefore we can apply Lemma 5.1 to f = MB11R(x)

(
|Xuλ|

2
)
(x) and m =

N2
1 getting ∥∥∥MB11R(x)

(
|Xuλ|

2
)∥∥∥

p/2

Lp/2(BR(x))
≤ c

(
1 +RQ

)

with c = c (p,G), which by (5.8) implies

∥∥∥MB11R(x)

(
|Xu|2

)∥∥∥
1/2

Lp/2(BR(x))
≤ c

{
‖Xu‖L2(B11R(x)) + ‖F‖Lp(B11R(x))

}

with c = c (R,R0, p,G) , and recalling that |f (x)| ≤ MB11R(x)f (x) for a.e. x,
we get

‖Xu‖Lp(BR(x)) ≤ c
{
‖Xu‖L2(B11R(x)) + ‖F‖Lp(B11R(x))

}
.

This completes the proof of Theorem 2.8.
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[10] L. A. Caffarelli, X. Cabré: Fully nonlinear elliptic equations. American
Mathematical Society Colloquium Publication 43, American Mathematical
Society, Providence, RI, 1995.

[11] L. Capogna, N. Garofalo: Regularity of minimizers of the calculus of vari-
ations in Carnot groups via hypoellipticity of systems of Hörmander type.
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[25] L. Hörmander: Hypoelliptic second order differential equations. Acta
Math., 119 (1967), 147-171.
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