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POROUS MEDIA EQUATIONS WITH TWO WEIGHTS:

EXISTENCE, UNIQUENESS, SMOOTHING AND DECAY PROPERTIES

OF ENERGY SOLUTIONS VIA POINCARÉ INEQUALITIES

GABRIELE GRILLO, MATTEO MURATORI AND MARIA MICHAELA PORZIO

Abstract. We study weighted porous media equations on domains Ω ⊆ R
N , either with Dirichlet

or with Neumann homogeneous boundary conditions when Ω 6= R
N . Existence of weak solutions

and uniqueness in a suitable class is studied in detail. Moreover, Lq0 -L̺ smoothing effects (1 ≤

q0 < ̺ < ∞) are discussed for short time, in connection with the validity of a Poincaré inequality
in appropriate weighted Sobolev spaces, and the long-time asymptotic behaviour is also studied.
In fact, we prove full equivalence between certain Lq0 -L̺ smoothing effects and suitable weighted
Poincaré-type inequalities. Particular emphasis is given to the Neumann problem, which is much
less studied in the literature, as well as to the case Ω = R

N when the corresponding weight
makes its measure finite, so that solutions converge to their weighted average instead than to
zero. Examples are given in terms of wide classes of weights.
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1. Introduction

The goal of this paper is the study of both the Dirichlet and the Neumann homogeneous problem
for weighted porous media equations (WPME for short) on Euclidean domains. In particular, given
a domain Ω ⊂ R

N and weights ρν , ρµ > 0 independent of time and satisfying assumptions which
will be stated below, we shall deal with the Dirichlet problem





ρν ut = div (ρµ∇(um)) in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞)

u(·, 0) = u0(·) in Ω

(1.1)

and with the Neumann problem




ρν ut = div (ρµ∇(um)) in Ω× (0,∞)

ρµ
∂(um)
∂n = 0 on ∂Ω× (0,∞)

u(·, 0) = u0(·) in Ω

. (1.2)

As usual, for any q > 0 and x ∈ R we use the convention xq = |x|q sign(x), and we shall assume
throughout the paper that m > 1. Precise meaning to the concept of solution will be given in
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section 2, but we mention from the beginning that, in fact, also the case Ω = R
N can and shall

be dealt with.
Problems (1.1),(1.2) are generalizations of the well-known porous media equation, see e.g. the

recent monograph [50]. The appearance of the weights ρν , ρµ corresponds to spacial nonhomo-
geneity of the medium, either as concerns mass density and as concerns the diffusion coefficient.
The one-weight case on R

N (i.e. ρµ ≡ 1), mainly for a (mass) weight decaying as a negative power
of |x| at infinity, is thoroughly analysed in the papers [33, 34, 20, 21, 32, 45, 46, 47]. Dealing with
weights satisfying such asymptotic properties allows the Authors of those papers to perform an
explicit and very detailed analysis of the fine asymptotic properties of solutions in terms of suit-
ably defined Barenblatt–type fundamental solutions (or, in some cases, of solutions with separated
variables), much in the spirit of the unweighted case.

Our first goal will be to prove existence of solutions for the above mentioned problems and data
in suitable Lq0(Ω; ν) spaces, both for the Dirichlet and for the Neumann problem, provided the
weights are only supposed to be strictly positive and sufficiently regular in Ω (see section 3 for
details). We are not aware of any result on this topic. We proceed by a careful generalization of the
strategy of [50], which turns out to be applicable both to homogeneous Dirichlet and Neumann
boundary conditions: the weighted Neumann problem in particular seems to have never been
considered before in the literature even in the one-weight case, although the pioneering paper
[34] considers the case of a single weight ρν on R

N having finite mass, such context bearing some
similarity with our Neumann problem. Key energy inequalities are shown and the fundamental L1-
contraction and comparison inequality (3.5) are proved. When the data have lower integrability,
we construct the corresponding solutions as limit solutions, according to the terminology of [50].

Uniqueness of solutions to the differential equations considered in general does not hold in L∞

even in the one-weight case, as already noticed in [20]. However it does indeed if it is sought for
in a suitable class, which we identify as the class of weak energy solutions, see definitions 3.3 and
3.11.

Two-weight operators are of common use in linear analysis (see e.g. [16]) and are widely studied
in several different context: for example, every Riemannian Laplacian can be written, locally, as a
two-weight linear operator of second order. The validity of functional inequalities for the quadratic
form associated to the generator of an evolution is well-known, in the linear case, to be strictly
related to regularizing and asymptotic properties of the evolution itself. In the nonlinear case,
such connection is more subtle and less investigated (see e.g. [9, 10, 11, 12, 28, 44] and references
quoted therein). Our second main goal is contributing further to such an analysis here.

In fact, our aim will not be a full investigation of all the qualitative properties of solutions
for some explicit class of weights but, rather, the comprehension of how the validity of Lq0-L̺

regularizing and asymptotic properties for the solutions to (1.1),(1.2) is related to functional
inequalities, naturally associated to the weights considered, for the largest possible choice of
weights compatible with this approach. More precisely, our Lq0-L̺ estimates will follow by making
use only of Poincaré inequalities of the form

‖v‖2;ν ≤ CP ‖∇v‖2;µ ∀v ∈W 1,2
0 (Ω; ν, µ) (1.3)

or of the form

‖v − v‖2;ν ≤MP ‖∇v‖2;µ ∀v ∈W 1,2(Ω; ν, µ) (1.4)

for suitable positive constants CP and MP , where W
1,2
0 (Ω; ν, µ) and W 1,2(Ω; ν, µ) are weighted

Sobolev spaces, whose definition we shall give below, the indices ν, µ mean that the corresponding
norms are taken w.r.t. the weights ρν , ρµ, and v denotes the mean value of v w.r.t. dν = ρν dx,
provided (in this last case) ρν is integrable. We shall refer to (1.4) as the zero-mean Poincaré
inequality. Actually, when dealing with the Neumann problem (1.2), some of our results will hold
starting from the validity of the inequality

‖v‖2;ν ≤WP

(
‖∇v‖2;µ + ‖v‖1;ν

)
∀v ∈W 1,2(Ω; ν, µ), (1.5)

which is clearly weaker than (1.4), and which will turn out to be equivalent to certain smoothing
effects we shall prove.
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It should be noted that inequalities like (1.3) and (1.4) have a clear spectral interpretation in
terms of the differential operator formally given by

Lν,µ = −ρ−1
ν div(ρµ∇) ,

which is formally self-adjoint and nonnegative in L2(Ω; ν): in fact, (1.3) amounts to requiring that
minσ(Lν,µ) ≥ 1

CP
> 0, where σ(Lν,µ) denotes the L2(Ω; ν) spectrum of Lν,µ, whereas (1.4) says

that min [σ(Lν,µ) \ {0}] ≥ 1
MP

> 0. It seems therefore quite unlikely, from the linear situation,

that such inequalities can be related to anything but a long-time bound on the L2 norm of the
solutions. However in [28] it has been shown, in the context of p-Laplacian type operators, that
suitable Poincaré type inequalities imply that L2-L̺ quantitative regularizing effects (2 < ̺ <∞)
hold true, they being in turn equivalent to the Poincaré inequality one starts from. In fact, one
of our goals is to investigate a similar connection in the porous media case, but having in mind
the significantly greater difficulties which have to be expected for the WPME, especially in the
Neumann case.

We want to stress that none of our results depends upon the validity of weighted Sobolev
inequalities, namely functional inequalities of the form

‖v‖q;ν ≤ CS ‖∇v‖2;µ ∀v ∈W 1,2
0 (Ω; ν, µ) , ‖v − v‖q;ν ≤MS ‖∇v‖2;µ ∀v ∈W 1,2(Ω; ν, µ)

for a suitable q strictly larger than 2, nor on compactness of embeddings of W 1,2
0 (Ω; ν, µ) or

W 1,2(Ω; ν, µ) into Lq(Ω; ν), and are therefore technically harder to be treated. Also, none of the
evolutions considered here, for whose generators only a Poincaré inequality is assumed to hold,
seem to have been treated in the literature so far.

As a further comparison with the results of [32, 46, 47], we notice that when ρν(x) = (1+|x|2)α/2,
ρµ(x) = (1 + |x|2)β/2 and β > N − 2, radial solutions of finite (weighted) energy of the equations
at hand are mapped, by a radial change of variable, into radial solutions of finite energy of the
WPME corresponding to ρ̃ν(y) = (1+ |y|2)γ/2, ρ̃µ(y) = 1, for a suitable γ. It must be noted that
this approach seems to be confined to radial solutions. Besides, this procedure works only in the
range of parameters for which Sobolev-type inequalities hold (see section 6 for related examples).
For these evolutions, one indeed expects L∞ regularizing effects along the lines of proof given e.g.
in [9], so that in a sense the class of equations considered in [32, 46, 47] and our present class are
strictly disjoint. In fact, we shall show elsewhere that when suitable L∞ regularizing bounds hold
for porous media type evolutions, then appropriate Sobolev inequalities must hold as well, hence
one cannot expect such L∞ bounds in cases in which no Sobolev inequality is valid.

As already mentioned, the Neumann problem for the WPME is much less studied and, in fact,
constitutes the core of the paper. Asymptotic estimates on u(·, t) were already provided by the
pioneering work of N. D. Alikakos and R. Rostamian [2], where equation (1.2) was studied in the
case ρν = ρµ ≡ 1 on regular domains. Specifically, they proved that if u = 0 then u(·, t) converges
uniformly to zero with the sharp rate t−1/(m−1) [2, Th. 3.1], while if u 6= 0 convergence to the
mean value (which is preserved along the evolution) is exponential [2, Th. 3.3]. However, such
results were proved only for u0 ∈ L∞(Ω), and an Lq0-L∞ regularizing effect was proved much later
in [9] in the context of evolution on Riemannian manifolds. The most important difference with
respect to the present setting lies in the fact that in [9] the validity of the Sobolev inequality was
assumed to hold in W 1,2(Ω; ν, µ), where dν = dµ both coincide with the Riemannian measure on
the manifold considered. The lack of any Sobolev embedding will make here, in general, smoothing
into L∞ false.

For a thorough analysis of smoothing and decay properties of solutions to large classes of
nonlinear evolution equations on R

N , see the monograph [49]. See also [25] for a general study of
asymptotics of solutions to some nonlinear evolution equations. Notice in addition that in [51] one
can find Lq-Lq decay bounds for weighted porous media equations in connection with Poincaré
inequalities, and that in [17] results on the decay of the variance of solutions are given, although
no regularizing effect is shown there.

Other work on the Neumann problem for equations related to the porous media example can be
found in [3, 4], but the discussions there involve domains of infinite volume, so that convergence
to zero, rather than to the mean of the initial datum, takes place, thus giving rise to a situation
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which is in some sense closer to the Dirichlet case.

Plan of the paper. In section 2 we provide the main definitions of the weighted Sobolev spaces
used in the sequel and discuss briefly their main properties. In section 3 we collect all our results
concerning existence and uniqueness of solutions, see e.g. Theorems 3.5, 3.12 and the subsequent
applications. Notice that it is well-known, in the weighted case, that non-uniqueness issues may
arise even for bounded initial data, this being true even for the linear heat equation (see e.g. [27]
for examples on this latter fact in the manifold setting – this is related to stochastic completeness
of the underlying manifold): therefore uniqueness will have to be understood for solutions in a
proper class. Section 4 contains the results on the WPME with Dirichlet boundary conditions.
Theorem 4.1 gives the main L̺ bounds (for all ̺ ∈ [1,∞)) as a consequence of the Poincaré
inequality only, whereas Theorem 4.3 gives the converse result and hence the equivalence between
suitable Lq0-L̺ smoothing effects and (1.3). No L∞ regularization holds true in general. Section 5
contains the results for the harder case, namely the WPME with Neumann boundary conditions.
Theorem 5.4 gives the short-time L̺ smoothing effect (for all ̺ ∈ [1,∞)) as a consequence of
(1.5), and suitable converse implications as well as equivalence results in the same spirit of the
Dirichlet case are given in Theorem 5.6 and Corollary 5.7. Again, no L∞ regularization holds
true in general. We comment that the short time behaviour given in Theorems 4.1 and 5.4 is
different from the one valid in the non-weighted case, since the bound proved in such theorems
must be valid for general Lq0 data, possibly not compactly supported, so that the degeneracy or
singularity of the weights on the boundary influences the resulting estimates at all times.

As for the long-time asymptotics, the case of data with zero mean is studied in Theorem 5.10,
whereas Theorems 5.12–5.13 discuss the other cases. It is important to remark that both our
analyses for the Dirichlet and the Neumann problem also apply when Ω = R

N : ifW 1,2
0 (RN ; ν, µ) 6=

W 1,2(RN ; ν, µ) the two problems, in general, will be different.
Section 6 collects some examples of allowable weights both for the Dirichlet and the Neumann

setting. In that section we certainly do not even try to make a comprehensive account of the
various conditions ensuring the validity of weighted Poincaré inequalities but, instead, we shall
provide the reader with explicit examples of weights, hence of evolutions, for which weighted
Poincaré inequalities hold but weighted Sobolev inequalities do not, thus showing cases in which
only the present results can be used to investigate the smoothing and decay properties of the
associated evolutions. In section 6.3, for the convenience of the reader, we shall list concisely such
cases.
Acknowledgement We thank J. L. Vázquez for helpful discussions. In particular, part of this
work was done when M. M. was visiting him at the Department of Mathematics of the Universidad
Autónoma de Madrid.

2. Weighted Sobolev spaces and Poincaré inequalities

We recall here some basic definitions and facts about weighted Sobolev spaces and related
Poincaré inequalities. In the sequel Ω ⊆ R

N is a domain and ν and µ two measures absolutely
continuous with respect to the Lebesgue measure. Let ρν and ρµ the corresponding weights (or
densities). We shall always assume

ρν(x), ρµ(x) > 0 for a.e. x ∈ Ω ,

so that also the Lebesgue measure is absolutely continuous with respect to ν and µ. For all
p ∈ [1,∞) we denote as Lp(Ω; ν) the Banach space of equivalence classes of Lebesgue-measurable
functions f such that

‖f‖pp;ν =

∫

Ω
|f |p dν =

∫

Ω
|f |p ρνdx <∞ .

We define the weighted Sobolev space W 1,p(Ω; ν, µ) (see e.g. [35]) as the set of all (equivalence

classes of) functions v ∈W 1,1
loc (Ω) such that

‖v‖pp;ν,µ = ‖v‖pp;ν + ‖∇v‖pp;µ <∞ .

Yet without further assumptions on ρν and ρµ in general W 1,p(Ω; ν, µ) would not be complete.
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Definition 2.1. For all p ∈ (1,∞) we denote as Bp(Ω) the class of all measurable functions f
such that f > 0 a.e. and

|f |
1

1−p ∈ L1
loc(Ω) .

One can prove [35, Th. 2.1] that if p ∈ (1,∞) and ρµ ∈ Bp(Ω) then W 1,p(Ω; ν, µ) is indeed
complete. If p = 1 the same is true providing that the condition ρµ ∈ Bp(Ω) is replaced by
ρ−1
µ ∈ L∞

loc(Ω).
The fact that for any ϕ ∈ C∞

c (Ω) the quantity ‖ϕ‖p;ν,µ is finite is equivalent (see [35, Lem. 4.4])
to the local finiteness of ν and µ, that is

ρν , ρµ ∈ L1
loc(Ω) . (2.1)

We then define, assuming (2.1) holds, the spaceW 1,p
0 (Ω; ν, µ) as the closure of C∞

c (Ω) with respect
to the norm ‖ · ‖p;ν,µ.

When dealing with W 1,p(Ω; ν, µ) [W 1,p
0 (Ω; ν, µ)] we shall always require, without further com-

ment, ρµ ∈ Bp(Ω) [ρµ ∈ Bp(Ω) and (2.1)].
In the following, we list some elementary properties of the spaces defined above.

Proposition 2.2. Let p ∈ [1,∞). The inclusion W 1,∞
c (Ω) ⊂W 1,p

0 (Ω; ν, µ) holds.

Proof. Given v ∈W 1,∞
c (Ω), thanks to [1, Lems. 2.18 and 3.15] we know there exists a sequence of

functions {vn} ⊂ C∞
c (Ω) (the mollification of v) such that, as n→ ∞,

vn
a.e.−−→ v , ∇vn a.e.−−→ ∇v , ‖vn‖∞ ≤ ‖v‖∞ , ‖∇vn‖∞ ≤ ‖∇v‖∞

and supp(vn) ⊂ Ω′ ⋐ Ω. Being ν e µ locally finite, vn → v in W 1,p(Ω; ν, µ) by the dominated
convergence Theorem. �

Proposition 2.3. Let p ∈ [1,∞). If ρν , ρµ, ρ
−1
ν , ρ−1

µ ∈ L∞
loc(Ω), then C∞(Ω) ∩W 1,p(Ω; ν, µ) is

dense in W 1,p(Ω; ν, µ).

Proof. The assumptions imply that the weighted norms ‖ · ‖p;ν and ‖ · ‖p;µ are locally equivalent
to the non-weighted norm ‖ · ‖p. This is enough to reproduce the proof of [1, Th. 3.16]. �

Proposition 2.4. For any p ∈ [1,∞) the space L∞(Ω) ∩W 1,p(Ω; ν, µ) is dense in W 1,p(Ω; ν, µ).

Proof. Given v ∈ W 1,p(Ω; ν, µ), as well as for the non-weighted case consider the approximating
sequence of functions vn = min (n,max (−n, v)). By construction, {vn} ⊂ L∞(Ω) ∩W 1,p(Ω; ν, µ)
and |vn| ≤ |v|; moreover, ∇vn = (∇v)χ{−n<v<n}. The assertion then follows by monotone con-
vergence. �

Let us now introduce other useful weighted Sobolev spaces that we shall deal with throughout
the discussion.

Definition 2.5. Given p ∈ [1,∞), ρν , ρµ ∈ L1
loc(Ω) and ρµ ∈ B2(Ω), let V p

0 (Ω; ν, µ) be the closure
of C∞

c (Ω) with respect to the norm

‖ϕ‖p,2;ν,µ = ‖ϕ‖p;ν + ‖∇ϕ‖2;µ
and V0(Ω;µ) the space of all functions v ∈ W 1,1

loc (Ω) such that ∇v ∈ L2(Ω;µ) and for which there
exists a sequence {ϕn} ⊂ C∞

c (Ω) such that

‖∇v −∇ϕn‖2;µ → 0 .

Clearly, V p
0 (Ω; ν, µ) is a (reflexive if in addition p > 1) Banach space.

Definition 2.6. Given p ∈ [1,∞) and ρµ ∈ B2(Ω), we denote as V p(Ω; ν, µ) the space of all

functions v ∈W 1,1
loc (Ω) such that

‖v‖p,2;ν,µ = ‖v‖p;ν + ‖∇v‖2;µ <∞ .
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V p(Ω; ν, µ) is also a (reflexive if in addition p > 1) Banach space.
Finally, we mention two elementary properties of weighted Poincaré inequalities. If ν(Ω) <∞ we
shall denote as f the weighted mean value of any function f ∈ L1(Ω; ν), that is

f =

∫
Ω f dν

ν(Ω)
. (2.2)

Proposition 2.7. Suppose that ν(Ω) <∞. The validity of the zero-mean p-Poincaré inequality

‖v − v‖p;ν ≤MP ‖∇v‖p;µ ∀v ∈W 1,p(Ω; ν, µ)

for a suitable MP > 0 is equivalent to the validity of the inequality

inf
c∈R

‖v − c‖p;ν ≤MI ‖∇v‖p;µ ∀v ∈W 1,p(Ω; ν, µ)

for a suitable MI > 0.

Proof. See [19, Lem. 3.1]. �

Proposition 2.8. Let (ρν1 , ρµ1) and (ρν2 , ρµ2) two couples of weights. Suppose that there exist
two constants Dν > 0 and Dµ > 0 such that

ρν2 ≤ Dν ρν1 , ρµ1 ≤ Dµ ρµ2 .

Then if W 1,p
0 (Ω; ν1, µ1) satisfies the p-Poincaré inequality (with ν = ν1 and µ = µ1)

‖v‖p;ν ≤MP1 ‖∇v‖p;µ ,

so does W 1,p
0 (Ω; ν2, µ2) (with ν = ν2 and µ = µ2, up to multiplicative constants). Similarly, if

W 1,p(Ω; ν1, µ1) satisfies the zero-mean p-Poincaré inequality (with ν = ν1 and µ = µ1)

‖v − v‖p;ν ≤MP2 ‖∇v‖p;µ ,
so does W 1,p(Ω; ν2, µ2) (with ν = ν2 and µ = µ2, up to multiplicative constants).

Proof. It is immediate to prove that the p-Poincaré inequality, with respect to (ν2, µ2), holds in

C∞
c (Ω). By density such property is extended to the whole W 1,p

0 (Ω; ν2, µ2). For the zero-mean
p-Poincaré inequality one argues likewise, by taking L∞(Ω) ∩ W 1,p(Ω; ν2, µ2) as a dense space
(Proposition 2.4). In this case it is also convenient to exploit Proposition 2.7. �

3. Well-posedness of the problems

In this section we provide some existence and uniqueness results for the solutions of the pre-
viously mentioned evolutions, whose smoothing and asymptotic properties we shall study in sec-
tions 4 and 5.

3.1. The WPME with Dirichlet boundary conditions. We begin with giving our notion of
weak solution to (1.1). Although we shall not mention it explicitly any further, we comment that
the present results hold, with no modifications, in the case Ω = R

N as well.

Definition 3.1. A function

u ∈ L1((0, T );L1
loc(Ω; ν)) : u

m(t) ∈ V0(Ω;µ) , ∇(um) ∈ L1((0, T ); [L2(Ω;µ)]N )

for a.e. t > 0 and ∀T > 0 ,

is a weak solution of (1.1) with initial datum u0 ∈ L1
loc(Ω; ν) if it satisfies:∫ T

0

∫

Ω
u(x, t)ηt(x, t) dν dt = −

∫

Ω
u0(x)η(x, 0) dν +

∫ T

0

∫

Ω
∇(um)(x, t) · ∇η(x, t) dµ dt (3.1)

∀η ∈ C1(Ω× [0, T ]) : supp η(·, t) ⋐ Ω , η(x, T ) = 0 ∀x ∈ Ω , ∀t ∈ [0, T ] .

Such notion is very similar to the one given in [50, Def. 5.4] (non-weighted porous media
equation on bounded domains). The main difference lies in the fact that, having to deal with
general domains and weights, it seemed reasonable for us not to require any further a priori
integrability property for um.

The next uniqueness result is the equivalent of Theorem 5.3 of [50].
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Proposition 3.2. There exists at most one weak solution of (1.1) satisfying the following addi-
tional hypotheses:

um ∈ L
m+1
m ((0, T );V

m+1
m

0 (Ω; ν, µ)) , ∇(um) ∈ L2((0, T ); [L2(Ω;µ)]N ) ∀T > 0 . (3.2)

Proof. We use the method of proof of [50, Th. 5.3]. In particular, thanks to (3.2) and to a density
argument, it is possible to choose in (3.1) any test function η such that

η ∈W 1,m+1
m ((0, T );V

m+1
m

0 (Ω; ν, µ)) , ∇η ∈ L2((0, T ); [L2(Ω;µ)]N ) , η(T ) = 0 .

The assertion follows as in the quoted proof by plugging Olĕınik’s test function [42, 43]

η(t) =

∫ T

t
(um1 (s)− um2 (s)) ds

into the weak formulation satisfied by the difference of two possible solutions u1 and u2 fulfilling
(3.2) and performing analogous computations. �

According to a common terminology used in [50], we give the following definition.

Definition 3.3. We shall call (weak) energy solutions all the weak solutions of (1.1) that also
satisfy (3.2).

In order to establish a suitable existence theorem, we first need to prove a fundamental lemma.
Hereafter, by saying that a domain Ω is smooth we shall mean, without further comment, that it
is at least C2,α.

Lemma 3.4. If one assumes Ω a smooth bounded domain of RN , ρν ∈ C3,α(Ω), ρµ ∈ C2,α(Ω),

ρ−1
ν , ρ−1

µ ∈ L∞(Ω) and u0 ∈ C2,α
c (Ω), then there exists a weak solution u of (1.1) which satisfies,

for almost every T > 0 and q ≥ 0, the following estimates:

4q(q + 1)m

(m+ q)2

∫ T

0

∫

Ω

∣∣∣∇
(
u

m+q
2

)
(x, t)

∣∣∣
2
dµ dt+

∫

Ω
|u(x, T )|q+1 dν ≤

∫

Ω
|u0(x)|q+1 dν , (3.3)

∫ T

0

∫

Ω
ζ(t)

[(
u

m+1
2

)
t
(x, t)

]2
dν dt ≤ max

t∈[0,T ]
ζ ′(t)

m+ 1

8m

∫

Ω
|u0(x)|m+1 dν , (3.4)

where ζ ≥ 0 is any C1
c (0, T ) function.

Moreover if v is another weak solution, obtained with the same approximating scheme of the
incoming proof (see (3.6)), corresponding to an initial datum v0 ∈ C2,α

c (Ω), the inequality
∫

Ω
(u(x, T )− v(x, T ))+ dν ≤

∫

Ω
(u0(x)− v0(x))+ dν (3.5)

holds for almost every T > 0.

Proof. We proceed along the lines of the proof of [50, Lem. 5.8], where a first existence result
for the non-weighted porous media equation is established. The essential idea is to approximate
problem (1.1) with non-degenerate problems. As a first step we pick a sequence Φ′

n(x) : R → R

of smooth functions such that:

• Φ′
n(x) → m |x|m−1 locally uniformly;

• Φ′
n(x) > 0 ∀x ∈ R;

• Φ′
n(x) = Φ′

n(−x), so that in particular Φn(0) = 0, where Φn(x) =
∫ x
0 Φ′

n(y) dy.

Now, consider the following non-degenerate (thanks to the properties of Φ′
n) quasilinear problem:





(un)t = ρ−1
ν div (ρµ∇(Φn(un))) in Ω× (0,∞)

un = 0 on ∂Ω× (0,∞)

un(·, 0) = u0(·) in Ω

. (3.6)

Performing the change of variable w = ρνun it is convenient to write the latter in divergence form:




wt = div
(
ρµ
ρν

Φ′
n

(
w
ρν

)
∇w − ρµ

ρ2ν
∇(ρν) Φ

′
n

(
w
ρν

)
w
)

in Ω× (0,∞)

w = 0 on ∂Ω× (0,∞)

w(·, 0) = ρν(·)u0(·) in Ω

. (3.7)
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There is no loss of generality in assuming that, given ǫ > 0, Φ′
n(x) = c for |x| ≥ ‖u0‖∞ + ǫ,

being c a suitable positive constant possibly depending on n. Under these hypotheses, Theorem
V.6.1 of [37] is applicable, which provides us with a solution w(x, t) ∈ C2,1(Ω × [0, T ]) ∀T > 0
of (3.7); from standard parabolic regularity results [37, Th. IV.5.2] we also have, in particular,
wt(x, t) ∈ C1,0(Ω × (0, T )). Hence un(x, t) is a solution of (3.6) as regular as w(x, t). Moreover,
thanks to the parabolic maximum principle [37, Th. I.2.9] we have

‖un(T )‖∞ ≤ ‖u0‖∞ ∀ T > 0.

Given a function η as in weak formulation (3.1), multiplying (3.6) by ρνη and integrating in
Ω× (0, T ), we get:
∫ T

0

∫

Ω
un(x, t)ηt(x, t) dν dt = −

∫

Ω
u0(x)η(x, 0) dν+

∫ T

0

∫

Ω
∇(Φn(un))(x, t) ·∇η(x, t) dµ dt . (3.8)

In order to pass to the limit into (3.8) as n → ∞ we must obtain suitable estimates on un and
∇(Φn(un)) and afterwards identify weak limits. Setting

Ψn(x) =

∫ x

0
Φn(y) dy , Υ

1
n(x) =

∫ x

0

√
Φ′
n(y) dy ,

through computations similar to the ones developed in [50, Lem. 5.8] and exploiting the spatial
regularity of ut we arrive at:

∫

Ω
Ψn(un(x, T )) dν +

∫ T

0

∫

Ω
|∇(Φn(un))(x, t)|2 dµ dt =

∫

Ω
Ψn(u0(x)) dν , (3.9)

1

2

∫

Ω
u2n(x, T ) dν +

∫ T

0

∫

Ω

∣∣∇(Υ1
n(un))(x, t)

∣∣2 dµ dt =
1

2

∫

Ω
u20(x) dν , (3.10)

∫ T

0

∫

Ω
ζ(t)

[(
Υ1

n(un)
)
t
(x, t)

]2
dν =

∫ T

0

∫

Ω

ζ ′(t)
2

|∇(Φn(un))(x, t)|2 dµ , (3.11)

ζ ≥ 0 being any C1
c (0, T ) function. From (3.10)–(3.11), the maximum principle and the inner

regularity of ρν and ρµ (in particular, here it is crucial that the weights are locally equivalent to
1), we deduce that {Υ1

n(un)} is locally bounded inH1(Ω×(0,∞)). Therefore, up to a subsequence,
{Υ1

n(un)} converges a.e. in Ω×(0,∞). This easily implies (by the smoothness of the approximating
sequence of functions {Φ′

n}) the existence of a function u such that:

un → u , Ψn(un) →
1

m+ 1
|u|m+1 , Φn(un) → um , Υ1

n(un) →
2
√
m

m+ 1
u

m+1
2 a.e. in Ω× (0,∞) .

(3.12)
The maximum principle, estimates (3.9), (3.11) and the pointwise limits given in (3.12) permit to
conclude (again up to a subsequence) that

un → u in L2((0, T );L2(Ω)) , Φn(un)⇀ um in L2((0, T );H1
0 (Ω)) ,

Υ1
n(un)⇀

2
√
m

m+ 1
u

m+1
2 in W 1,2((τ, T );L2(Ω)) ∀τ ∈ (0, T ) ;

hence, passing to the limit into (3.8) as n→ ∞, we conclude that u is a weak solution of (1.1) (in
the sense of definition 3.1) with initial datum u0.
Finally, we must obtain (3.3), (3.4) and (3.5). The first one follows (at least for q ≥ 1) by
multiplying (3.6) by ρν u

q
n, integrating in Ω× (0, T ) and suitably passing to the limit. If q ∈ (0, 1)

things are slightly more technical. However, one only needs to approximate xq with a sequence of
regular functions. To retrieve the case q = 0 one lets q ↓ 0. See also [50, prop. 5.12]. Estimate (3.4)

is a direct consequence of (3.11), (3.9) and the weak convergence of {Υ1
n(un)} to 2

√
m

m+1 u
(m+1)/2

in W 1,2((τ, T );L2(Ω)). Inequality (3.5) can be obtained exactly as in [50, prop. 3.5] by using in
addition an approximation procedure, see [50, prop. 6.1]. �

Starting from the previous lemma, we are able to prove existence of weak energy solutions when
the initial datum u0, the domain Ω and the weights ρν , ρµ are less regular.
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Theorem 3.5. Let Ω ⊂ R
N be a domain, and let ρν , ρµ be two weights such that

ρν ∈ C3,α
loc (Ω) , ρµ ∈ C2,α

loc (Ω) , ρ
−1
ν , ρ−1

µ ∈ L∞
loc(Ω) .

If u0 ∈ L1(Ω; ν) ∩ Lr(Ω; ν), with r ≥ m + 1, then there exists a weak solution u of (1.1) which
satisfies estimate (3.3) for all 0 ≤ q ≤ r − 1 and estimate (3.4) and it is the energy solution.
Moreover, if v is the energy solution corresponding to another initial datum v0 ∈ L1(Ω; ν) ∩
Lm+1(Ω; ν), inequality (3.5) still holds.

Proof. To extend the results of Lemma 3.4 to general L∞ data, it suffices to approximate u0
with a sequence {u0n} of regular data and check appropriate convergence of the corresponding
(sub)sequence of solutions {un}. To weaken the hypotheses on the domain Ω and on the weights
ρν , ρµ one can proceed similarly to the end of the proof of [50, Th. 5.7]: assuming u0 ∈ L1(Ω; ν)∩
L∞(Ω), one picks an increasing sequence of bounded smooth domains {Ωn} approximating Ω,
with Ωn ⋐ Ω, and solves on each of them the Dirichlet problem with initial datum u0n = u0|Ωn ,
letting un be the relative solution extended to be zero outside Ωn. Estimates (3.3) and (3.4) read
as follows:

4q(q + 1)m

(m+ q)2

∫ T

0

∫

Ω

∣∣∣∣∇
(
u

m+q
2

n

)
(x, t)

∣∣∣∣
2

dµ dt+

∫

Ω
|un(x, T )|q+1 dν ≤

∫

Ω
|u0(x)|q+1 dν ,

∫ T

0

∫

Ω
ζ(t)

[(
u

m+1
2

n

)

t

(x, t)

]2
dν dt ≤ max

t∈[0,T ]
ζ ′(t)

m+ 1

8m

∫

Ω
|u0(x)|m+1 dν .

As in the proof of Lemma 3.4, no major difficulty arises in showing that {un}, up to subsequences,
converges to a weak energy solution u of problem (1.1) (with initial datum u0) in such a way that
estimates (3.3), (3.4) and inequality (3.5) (taking in addition another sequence of solutions {vn})
are preserved.

In order to remove the hypothesis u0 ∈ L1(Ω; ν) ∩ L∞(Ω), one picks a sequence of initial
data {u0n} ⊂ L1(Ω; ν) ∩ L∞(Ω) converging to u0 in L1(Ω; ν) ∩ Lr(Ω; ν) and considers the cor-
responding sequence {un} of solutions of (1.1). Thanks to inequality (3.5), {un} is Cauchy in
L∞((0,∞);L1(Ω; ν)), so that it converges to a function u belonging to the same space. The sta-
bility of the inequality (3.5) as n→ ∞ now is trivial, while the stability of estimates (3.3),(3.4) is
proved by arguing similarly to the proof of Lemma 3.4. In fact one can show that

u
m+q

2
n ⇀ u

m+q
2 in L2((0, T );V

2r1
m+q

0 (Ω; ν, µ))

for any r1 ∈
(m+q

2 , r
]
and q ∈ (0, r − 1]. �

Notice that from estimate (3.4) we know, for instance, that u(m+1)/2 is absolutely continuous
in C([τ,∞);L2(Ω; ν)) (for any τ > 0), which in particular implies u ∈ C([τ,∞);Lm+1(Ω; ν)). By
that, it is not difficult to prove the validity of the so called semigroup property : for any τ > 0,
u|[τ,∞) is the (weak energy) solution of (1.1) with initial datum u(τ).

When u0 is smooth enough, we are able to ensure that u(m+1)/2 is continuous even down to
t = 0. In fact, we have the following (see also [50, Sec. 5.6])

Corollary 3.6. If, together with the hypotheses of Theorem 3.5, one assumes that

um0 ∈ V
m+1
m

0 (Ω; ν, µ) ,

then for almost every T > 0 the estimate
∫ T

0

∫

Ω

[(
u

m+1
2

)
t
(x, t)

]2
dν dt+

(m+ 1)2

8m

∫

Ω
|∇(um)(x, T )|2 dµ ≤ (m+ 1)2

8m

∫

Ω
|∇(um0 )(x)|2 dµ

(3.13)

holds. In particular, u(m+1)/2 is an absolutely continuous curve in C([0,∞);L2(Ω; ν)).

Proof. Estimate (3.13) is easily obtainable under the hypotheses of Lemma 3.4: in fact it is
sufficient to proceed as in the proof of (3.11) but choosing ζ = 1 and passing to the limit as
n → ∞. To prove the same result under the more general hypotheses of Theorem 3.5, one
can replicate the proof of the latter with the following modification: one picks an increasing
sequence of bounded smooth domains {Ωn} approximating Ω, with Ωn ⋐ Ω, and a sequence of
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initial data {u0n} ⊂ C2,α
c (Ωn) such that {um0n} converges to um0 in V

(m+1)/m
0 (Ω; ν, µ). Proceeding

analogously to the proof of the quoted theorem, one infers the existence of a pointwise limit u of
the (sub)sequence of the corresponding solutions {un} (extended to be zero outside Ωn) to (1.1)
such that

un ⇀ u in Lm+1((0, T );Lm+1(Ω; ν)) , ∇(umn )⇀ ∇(um) in L2((0, T ); [L2(Ω;µ)]N ) ,
(
u

m+1
2

n

)

t

⇀
(
u

m+1
2

)
t
in L2((0, T );L2(Ω; ν)) .

(3.14)

In fact, since u(m+1)/2 might not be bounded in H1(Ω′ × (0, T )) (unless, for instance, ν(Ω) <∞),
pointwise convergence cannot be proved as in Lemma 3.5. However this issue is handled by the
same trick as in [50, Lemma 5.9]. One then concludes thanks to (3.14) by passing to the limit
into estimate (3.13) applied to {un}. �

The analysis of the L1-continuity of solutions in t = 0 when u0 only belongs to L1(Ω; ν) ∩
Lm+1(Ω; ν) is not straightforward. We just mention that in the non-weighted case it is proved
by means of an explicit (and technical) initial barrier argument [50, Th. 6.2 and Sec. 7.5.1].
Nevertheless if ν(Ω) <∞ it is a direct consequence of Corollary 3.6 and inequality (3.5).

When dealing with initial data in L1(Ω; ν) with no further integrability properties, we are not
able to provide a weak solution of (1.1) in the sense of definition 3.1. However, from (3.5), we
trivially have that the map L1(Ω; ν) ∩ Lm+1(Ω; ν) → L∞((0,∞);L1(Ω; ν)) which associates an
initial datum u0 with the corresponding energy solution u(·) is Lipschitz and densely defined in
L1(Ω; ν), therefore it admits a unique Lipschitz extension to the whole L1(Ω; ν). We shall call
such extended elements, according to [50, Sec. 6.1], limit solutions.

Proposition 3.7. Let u and v be two limit solutions of (1.1) corresponding to two initial data
u0, v0 ∈ L1(Ω; ν). Then the following properties hold:

• if in addition u0 ∈ Lm+1(Ω; ν), u is the energy solution;
• for a.e. τ > 0, u|[τ,∞) is the limit solution corresponding to the initial datum u(τ) (semi-
group property);

• for a.e. T > 0 inequality (3.5) holds.

Proof. The first claim is obvious. The semigroup property and inequality (3.5) follow easily from
the corresponding properties valid for energy solutions. �

In section 4 we shall see that under the sole hypothesis that the Poincaré inequality (1.4) holds,
the evolution (1.1) gives rise to an Lq0-L̺ regularizing effect for any q0 ∈ [1,∞) and ̺ ∈ (q0,∞):
this, together with Proposition 3.7, implies in particular that limit solutions are indeed weak
energy solutions after an arbitrarily small time τ > 0.

Remark 3.8. We note that since the weak energy solutions belong to C([τ,∞);Lm+1(Ω; ν)) for
these solutions the statements and proofs of Lemma 3.4, Theorem 3.5 and Corollary 3.6, hold “for
any T > 0” instead of “for a.e. T > 0”.

Comparison to some previous results. In the particular context where Ω = R
N (N ≥ 3),

ρµ = 1 and ρν is a weight which satisfies appropriate decay conditions as |x| → ∞, recent works
provided some existence and uniqueness results for non-negative solutions of the WPME (also
called Inhomogeneous PME – see, e.g., [46] and quoted references). Let us now briefly compare
such results to ours.

Given a non-negative initial datum u0 ∈ L1(RN ; ν), according to [46, Def. 1.1] any non-negative
function u(x, t) is a weak solution of (1.1) if it is continuous in R

N × (0,∞) and:

• u ∈ C([0,∞);L1(RN ; ν)) ∩ L∞(RN × (τ,∞)) ∀τ > 0;

• ∇(um) ∈
[
L2(RN × (τ,∞))

]N ∀τ > 0;

• for any ϕ ∈ C1
c (R

N × (0,∞)) the identity
∫ ∞

0

∫

RN

[∇(um)(x, t) · ∇ϕ(x, t)− u(x, t)ϕt(x, t)ρν(x)] dx dt = 0 (3.15)

holds;
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• u(·, 0) = u0(·).
The most important difference between our definition of weak solution and the one just given lies
in the space where u is looked for. In fact note that in [46, Def. 1.1] um is not related to the
test function space chosen in (3.15): in other words, it is not imposed that um(·, t) belongs to the
closure of C1

c (R
N ) with respect to a suitable norm. Indeed when ρν(x) goes to zero sufficiently

fast as |x| → ∞ some non-uniqueness issues arise (see, e.g., [20]).
The two most important well-posedness results proved in [46] are the following:

• if ρν ∈ C1(RN ) is bounded and strictly positive, then [46, Th. 3.1] there exists a weak
solution according to [46, Def. 1.1];

• if, in addition, ρν satisfies

A0(1 + |x|)−N ≤ ρν(x) ∀x ∈ R
N

for a suitable constant A0 > 0, then such solution is also unique [46, Th. 4.1].

The uniqueness result, in some sense, is not improvable. If ρν(x) behaves like |x|−γ at infinity,
with γ > N , the finiteness of the ν-measure of RN implies that if the initial datum is u0 = 1 then
u(x, t) = 1 is a solution of (1.1) according to [46, Def. 1.1]. Yet it is possible to prove [46, Sec.
8] that in this case (even for γ > 2) the solution built up in [46, Th. 3.1] satisfies the following
decay condition (for all T > 0):

lim
R→∞

R1−N

∫

|σ|=R

∫ T

0
um(σ, t) dt dσ = 0 ; (3.16)

since (3.16) is trivially not fulfilled by constants, this means we have at least two solutions.
Also, when the initial datum belongs to L1(RN ; ν) ∩ L∞(RN ) actually the solution from [46,
Th. 3.1] satisfies the requirements of [46, Def. 1.1] down to τ = 0 and it is indeed an energy
solution. Therefore it seems natural to wonder how this non-uniqueness problem matches with
the uniqueness of energy solutions proved by Proposition 3.2. The answer is that in this case

non-zero constants do not belong to V
(m+1)/m
0 (RN ; ν, 1). In fact whenever ρν(x) behaves like

|x|−α as |x| → ∞, with α > N , in W 1,2
0 (RN ; ν, 1) the Poincaré inequality holds (section 6.1), thus

preventing constants to lie in such space (as well as in V
(m+1)/m
0 (RN ; ν, 1)). Roughly speaking, the

choice of test functions into weak formulation (3.15) corresponds to the one typical of a Dirichlet
problem; however, no “boundary condition” is specified on u. Consequently, when the weight
ρν(x) goes to zero sufficiently fast as |x| → ∞, RN behaves like a bounded domain, so that one
expects to have to put boundary conditions at infinity to guarantee uniqueness. Indeed, condition
(3.16) turns out to be sufficient for uniqueness (see [46, Sec. 8] and the references quoted therein).

Despite these non-uniqueness issues (for α > N), it is not difficult to verify that the weak
solution to (1.1) (according to [46, Def. 1.1]) constructed in [46, Th. 3.1] coincides with the weak
energy solution to the same problem (according to definition 3.1) whose existence was proved by
Theorem 3.5, at least for u0 ∈ L1(RN ; ν)∩L∞(RN ) (and so for any L1 datum thanks to inequality
(3.5)). As a consequence in this context solutions are in fact C([0,∞);L1(Ω; ν)). Still from the
results of [46] we know that an L∞ regularizing effect takes place. This is consistent with the

validity of the Sobolev inequality in W 1,2
0 (RN ; ν, 1) (see [9, Th. 1.5]).

3.2. The WPME with Neumann boundary conditions. As we did for the Dirichlet problem,
first of all we give a definition of weak solution to (1.2). Again, it is important to comment that
the present results hold if Ω = R

N as well. The only difference with respect to the Dirichlet
problem is the weighted Sobolev spaces involved.

Definition 3.9. A function

u ∈ L2((0, T );L2(Ω; ν)) : ∇(um) ∈ L2((0, T ); [L2(Ω;µ)]N ) ∀T > 0

is a weak solution of (1.2) with initial datum u0 ∈ L2(Ω; ν) if it satisfies
∫ T

0

∫

Ω
u(x, t)ηt(x, t) dν dt = −

∫

Ω
u0(x)η(x, 0) dν +

∫ T

0

∫

Ω
∇(um)(x, t) · ∇η(x, t) dµ dt (3.17)

∀η ∈W 1,2((0, T );L2(Ω; ν)) : ∇η ∈ L2((0, T ); [L2(Ω;µ)]N ) , η(T ) = 0 .
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Note that weak formulation (3.17) is very similar to (3.1); in fact the boundary condition in
(1.2) is purely formal, and what really changes with respect to (1.1) are the underlying functional
spaces.

Let us start now some well-posedness analysis. Most of the results (and related proofs) of this
section are driven from the analogous ones proved for the non-weighted equation [50, Sec. 11.2].

Proposition 3.10. There exists at most one weak solution of problem (1.2) which satisfies the
following additional hypothesis:

u ∈ Lm+1((0, T );Lm+1(Ω; ν)) . (3.18)

Proof. There is no major difference with respect to the proof of Proposition 3.2: one plugs Olĕınik’s
test function into the weak formulation solved by the difference of two hypothetical solutions
u1 − u2 satisfying (3.18) and then argues likewise. The only relevant issue is to prove that such a
test function is admissible, which is easily achievable by approximating it with a sequence of test
functions as in weak formulation (3.17) �

Again, we can give the definition of (weak) energy solutions as follows.

Definition 3.11. We shall call (weak) energy solutions all the weak solutions of (1.2) that also
satisfy (3.18).

Existence of such solutions is ensured by the next theorem.

Theorem 3.12. Let Ω ⊂ R
N be a domain, and let ρν and ρµ be two weights such that

ρν ∈ C3,α
loc (Ω) , ρµ ∈ C2,α

loc (Ω) , ρ
−1
ν , ρ−1

µ ∈ L∞
loc(Ω) .

If u0 ∈ L1(Ω; ν) ∩ Lr(Ω; ν), with r ≥ m + 1, then there exists the weak energy solution u
of (3.17) which satisfies estimates (3.3)–(3.4) for all q ≤ r − 1 and T > 0. If, in addition,
∇(um0 ) ∈ [L2(Ω;µ)]N then also estimate (3.13) holds true. Moreover, if v is another energy
solution corresponding to an initial datum v0 ∈ L1(Ω; ν) ∩ Lm+1(Ω; ν), inequality (3.5) holds.

Proof. We proceed similarly to the proofs of Lemma 3.4, Theorem 3.5 and Corollary 3.6. That
is, given a sequence of smooth functions {Φ′

n(x)} approximating m |x|m−1 as in Lemma 3.4 and a
fixed smooth domain Ω′ ⋐ Ω, one solves the following Neumann problems:





(un)t = ρ−1
ν div (ρµ∇(Φn(un))) in Ω′ × (0,∞)

∂Φn(un)
∂n = 0 on ∂Ω′ × (0,∞)

un(·, 0) = u0(·) in Ω′
, (3.19)

assuming in addition u0 ∈ C2,α (Ω′) and ∂(u0)
∂n = 0 on ∂Ω′. Setting w = ρνun, let us rewrite (3.19)

in divergence form:




wt = div
(
ρµ
ρν

Φ′
n

(
w
ρν

)
∇w − ρµ

ρ2ν
∇(ρν) Φ

′
n

(
w
ρν

)
w
)

in Ω′ × (0,∞)

Φ′
n

(
w
ρν

)(
∇w − w

ρν
∇(ρν)

)
· n = 0 on ∂Ω′ × (0,∞)

w(·, 0) = ρν(·)u0(·) in Ω′

. (3.20)

Quasilinear theory (see, for instance, [38, Th. 13.24]) ensures that problem (3.20) (and so (3.19))
admits a regular solution w (un). From such solutions, proceeding as in the proof of Lemma 3.4
and in the beginning of the proof of Theorem 3.5, one gets in turn a solution u of (3.17) satisfying
(3.3)–(3.4) (and (3.13) when ∇(um0 ) ∈ [L2(Ω;µ)]N ), at least if u0 ∈ L∞(Ω′) (also inequality (3.5)
still holds). The crucial point is to extend this result to general domains: as in Theorem 3.5,
one picks an initial datum u0 ∈ L1(Ω; ν) ∩ L∞(Ω), an increasing sequence of domains Ωn ∈ C2,α

approximating Ω, with Ωn ⋐ Ω, solves on them the homogeneous Neumann problems (1.2) with
initial data u0n = u0|Ωn , denotes as {un} the corresponding sequence of solutions and exploits
analogous estimates. Now, if umn were extended to be zero outside Ωn (what we actually do in
Theorem 3.5), in general it would not belong to W 1,2(Ω; ν, µ). However, this does not matter: it
suffices to extend to zero un (so umn ) and ∇(umn ) independently from each other. That is, setting

zn = un χΩn
, wn = ∇(umn )χΩn

,
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one has that {zn} and {wn}, up to subsequences, converge respectively pointwise and weakly in
L2((0, T ); L2(Ω; ν)) to u and weakly in L2((0, T ); [L2(Ω;µ)]N ) to w. This is enough in order to
pass to the limit into weak formulation (3.17). Thus it remains to show that ∇(um) = w. First of
all observe that, given any Ω′ ⋐ Ω, wn|Ω′ = ∇(umn |Ω′) for any n large enough; since umn |Ω′ ⇀ um|Ω′

in L2((0, T );H1(Ω′)) and also wn|Ω′ ⇀ w|Ω′ in L2((0, T );L2(Ω′)), necessarily ∇(um|Ω′) = w|Ω′ .
The assertion follows from the arbitrariness of Ω′.

The validity of inequalities (3.3)–(3.5) (and (3.13) when ∇(um0 ) ∈ [L2(Ω;µ)]N ), and their gene-
ralization to initial data in L1(Ω; ν) ∩ Lr(Ω; ν) (for r ≥ m + 1), can be shown exactly as for the
Dirichlet case. �

The theorem just proved provides us with the energy solution of (1.2). Limit solutions for
general L1 data are defined exactly as in section 3.1. Let us also observe that, as a consequence
of the method of proof of Theorems 3.5 and 3.12, we obtain the classical conservation of non-
negativity: if u0 is (essentially) non-negative then u(·, t) is (essentially) non-negative for all t > 0.
Indeed such property is inherited from the solutions of the non-degenerate problems. Actually,
for non-negative data, one can also set up a different and more “natural” proof of existence (see
[50, Sec. 5.4]).

Of particular interest for our purposes is the case ν(Ω) < ∞, where it makes sense to speak
about the weighted mean value (2.2). The next result is straightforward as well as classical and
of great importance.

Proposition 3.13. Let ν(Ω) <∞. If u is a weak energy solution of (1.2) then

u(t) = u0 = u for a.e. t > 0 . (3.21)

Proof. Thanks to the hypotheses, one is allowed to plug into (3.17) the following test functions
(independent of x):

ηh(s) = χ[0,t−h/2)(s) + χ[t−h/2,t+h/2](s)

(
t− s

h
+

1

2

)
,

(where 0 < h < 2t are arbitrarily fixed) which gives

1

h

∫ t+h/2

t−h/2

∫

Ω
u(x, s) dν ds =

∫

Ω
u0(x) dν .

The assertion follows by letting h→ 0 and using Lebesgue’s differentiation Theorem. �

Note that, since ν(Ω) <∞, any weak energy solution u always belongs to C((0,∞);L1(Ω; ν)),
so that the “a.e.” in (3.21) could actually be removed for example for such class of solutions (recall
the brief discussion about continuity in Remark 3.8).

In section 5 we shall prove that the validity of the zero-mean Poincaré inequality (1.4) implies
an Lq0-L̺ (provided q0 ∈ [1,∞) and ̺ ∈ (q0,∞)) regularization also for evolution (1.2), which
again means that limit solutions are energy solutions after an arbitrarily small time τ > 0.

4. Lq0-L̺ smoothing and asymptotic estimates: the WPME with Dirichlet

boundary conditions

In this section we investigate connections between the validity of weighted Poincaré inequalities
and the integrability properties of the solutions to (1.1) and (1.2) both for short and large times.
As already mentioned, the present results also hold, with no modifications, if Ω = R

N .
Suppose that in the domain Ω ⊂ R

N , with respect to the weights ρν , ρµ, the Poincaré inequality
(1.3) holds. Here and in the next section we shall implicitly assume that the weights satisfy all the
hypotheses of Theorem 3.5 for well-posedness. In the case u0 ∈ L1(Ω; ν)∩Lq0(Ω; ν), q0 ∈ [1,m+1),
solutions are meant in the sense of limit solutions (see the discussion before Proposition 3.7).
Notice that in the sequel, when referring to “the solution” to the equation at hand we shall always
mean, without further comment, the solution constructed in section 3 (see Theorem 3.5 and the
subsequent discussion on limit solutions for general L1 data): this is particularly relevant in view
of the possible nonuniqueness issues which may arise.
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By means of a Gross differential method we can show that the solutions of the Dirichlet problem
(1.1) enjoy an Lq0-L̺ regularization for all q0 ∈ [1,∞) and ̺ ∈ (q0,∞). More precisely, we have
the following result:

Theorem 4.1. Let q0 ∈ [1,∞) and u0 ∈ L1(Ω; ν) ∩ Lq0(Ω; ν). If the Poincaré inequality (1.3)
holds then the solution u of (1.1) with initial datum u0 satisfies the estimate

‖u(t)‖̺;ν ≤ K1 t
− ̺−q0

̺(m−1) ‖u0‖
q0
̺

q0;ν for a.e. t > 0 , (4.1)

where ̺ ∈ (q0,∞) and K1 > 0 is a suitable constant depending only on ̺, m and CP .
Moreover, if ν(Ω) <∞ the absolute bound

‖u(t)‖̺;ν ≤ K2 t
− 1

m−1 for a.e. t > 0 (4.2)

holds as well, being K2 > 0 another constant depending only on ̺, m, CP and ν(Ω).

Proof. The procedure is very similar to the one developed in [28, Th. 1.3], so we just point out
the most significant differences. Upon defining the entropy functional

J(r, f) =

∫

Ω

|f |r
‖f‖rr;ν

log

(
|f |

‖f‖r;ν

)
dν ,

the validity of the family of logarithmic Sobolev inequalities
(
J(r, v) +

1

2− r
log ε

)
(2− r) ‖v‖2r;ν

εC2
P

≤ ‖∇v‖22;µ (4.3)

∀r ∈ [1, 2) , ∀ε > 0 , ∀v ∈ Lr(Ω; ν) ∩W 1,2
0 (Ω; ν, µ)

was already established in [28, Th. 1.3]. Given u0 ∈ L1(Ω; ν) ∩ L∞(Ω), t > 0, q0 ∈ (1,∞),
̺ ∈ (q0,∞), let u be the solution of (1.1) with initial datum u0. Introducing an increasing,
one-to-one and C1[0, t] function q : [0, t] → [q0, ̺], after explicit calculations one gets:

d

ds
log ‖u(s)‖q(s);ν =

q′(s)
q(s)

J(q(s), u(s))−
(

2

q(s) +m− 1

)2 m(q(s)− 1)

‖u(s)‖q(s)q(s);ν

∥∥∥∇
(
u

q(s)+m−1
2

)
(s)
∥∥∥
2

2;µ
.

From now on, one applies (4.3) to u(q+m−1)/2 in the equation above, chooses r and ε appropriately
and solves the resulting differential inequality in the variable y(s) = log ‖u(s)‖q(s);ν along the lines

of the proof given in [28, Th. 1.3] (with respect to the notation used therein, it is enough to
substitute q − 1 with m(q − 1), p− 2 with m− 1, p with 2 and C with C2

P ). So we get estimate
(4.1) for q0 > 1. The case q0 = 1 is obtained by taking limits since the constant K1 in (4.1) can
be shown to be bounded as q0 ↓ 1.

Concerning the absolute bound, first of all note that, thanks to (1.3) and to the finiteness of
ν(Ω), one has:

d

ds
‖u(s)‖̺̺;ν = −

(
2

̺+m− 1

)2

m̺(̺− 1)
∥∥∥∇
(
u

̺+m−1
2

)
(s)
∥∥∥
2

2;µ
≤

≤ −
(

2

̺+m− 1

)2 m̺(̺− 1)

C2
P

‖u(s)‖̺+m−1
̺+m−1;ν ≤

≤ −
(

2

̺+m− 1

)2 m̺(̺− 1)

C2
P ν(Ω)

m−1
̺

‖u(s)‖̺+m−1
̺;ν = −D

(
‖u(s)‖̺̺;ν

) ̺+m−1
̺

,

where D > 0 is a constant depending only on ̺, m, CP and ν(Ω). Solving the above differential
inequality in the variable y(s) = ‖u(s)‖̺̺;ν one arrives at:

‖u(t)‖̺;ν ≤ 1
(
‖u0‖1−m

̺;ν + D(m−1)
̺ t

) 1
m−1

∀t > 0 ,

from which (4.2) follows immediately.
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Finally, the removal of the hypothesis u0 ∈ L∞(Ω) is standard (see the end of the proof of [28,
Th. 1.3]). �

Notice that the conclusions of Theorem 4.1 hold for any t > 0 when weak energy solutions are
considered, see Remark 3.8.

Remark 4.2. The calculations performed in the proof just given are formal, since the solution
might not be regular enough. Nonetheless they can be justified by approximation, for instance
developing analogous ones for the non-degenerate problems solved in Lemma 3.4 (through a similar
differential method) and passing to the limit.

We also have, in some sense, the converse of Theorem 4.1.

Theorem 4.3. Suppose ν(Ω) < ∞. If there exist a constant K1 > 0 and two given numbers
q0 ∈ [1,m+1) and ̺ ≥ m+1 such that, for all u0 ∈ Lq0(Ω; ν), the solution u of (1.1) corresponding
to the initial datum u0 satisfies the estimate

‖u(t)‖̺;ν ≤ K1 t
− ̺−q0

̺(m−1) ‖u0‖
q0
̺

q0;ν for a.e. t > 0 , (4.4)

then the Poincaré inequality (1.3) holds. In particular, the validity of (4.4) for two given q̄0 ∈
[1,m+ 1) and ¯̺≥ m+ 1 is equivalent to the validity of (1.3), and hence it implies the validity of
the same estimate for any q0 ∈ [1,∞) and ̺ > q0.

Proof. As in the second part of the proof of [28, Th. 1.3], we want to take advantage of the strong

result [6, Th. 3.1]. In order to do that, let us consider an initial datum u0 ∈ W 1,∞
c (Ω). First of

all, one can prove the following inequality:

‖u(t)‖m+1
m+1;ν − ‖u0‖m+1

m+1;ν ≥ −(m+ 1) t ‖∇(um0 )‖22;µ for almost every t > 0 . (4.5)

Formally, (4.5) is easily obtainable by multiplying equation (1.1) by ρνu
m, integrating in Ω× (0, t)

and exploiting the fact that the quantity ‖∇(um)(·)‖2;µ is non-increasing (see Corollary 3.6).
However, in this case we must proceed more carefully. If estimate (3.3) (for q = m) were an
equality then (4.5) would be easily provable in a rigorous way. On the other hand recall that (3.3)
was deduced by weak convergence, so in general it is just an inequality, with the wrong verse with
respect to what we want to show. Yet if ν(Ω) < ∞ and the initial datum belongs to W 1,∞

c (Ω),
inequality (4.5) holds indeed. To prove it, we need to go back to the approximate problems of
Lemma 3.4: from (3.9) and proceeding as in the proof of (3.11) we infer, in particular, that

∫

Ω
Ψn(un(x, t)) dν −

∫

Ω
Ψn(u0(x)) dν ≥ −t

∫

Ω
|∇(Φn(u0))(x)|2 dµ ∀t > 0 .

Passing to the limit as n → ∞ this last inequality continues to hold for a.e. t > 0 (provided the
initial datum is regular enough) thanks to the pointwise a.e. convergence of Ψn(un(·, t)), Ψn(u0(·)),
Φ′
n(u0(·)) respectively to 1

m+1 |u(·, t)|m+1, 1
m+1 |u0(·)|m+1, m|u0(·)|m−1 and the fact that they are

dominated in L∞(Ω). The hypotheses of Lemma 3.4 can then be removed as in the proof of
Theorem 3.5.
Now, using (4.5) together with (4.4) for ̺ = m + 1 (by means of an interpolation between the
norms ‖ · ‖q0;ν , ‖ · ‖m+1;ν and ‖ · ‖̺;ν on the left hand side and by exploiting the non-expansivity of
the ‖ · ‖q0;ν norm, one can deduce from (4.4) the validity of the same estimate also for ̺ = m+1,
possibly with a different constant K1), we have:

‖u0‖m+1
m+1;ν ≤ K1

(m+1) t−
(m+1−q0)

m−1 ‖u0‖q0q0;ν + (m+ 1) t ‖∇(um0 )‖22;µ ∀t > 0 .

Minimizing explicitly (w.r.t. t > 0) the right hand side of the inequality above, we obtain:

‖u0‖m+1;ν ≤ B ‖∇(um0 )‖
2(m+1−q0)

(m+1)(2m−q0)

2;µ ‖u0‖
q0(m−1)

(m+1)(2m−q0)
q0;ν , (4.6)

where B = B(q0,m,K1) > 0 is a suitable constant. In order to rewrite (4.6) in a more convenient
way for our purposes, we start considering the following sequence {ξn} of real functions:

ξn(x) = 2

(
x− 1

2n

)
χ[ 1

2n
, 1
n)
(x) + 2

(
x+

1

2n

)
χ(− 1

n
,− 1

2n ]
(x) + xχ[ 1n ,∞) (|x|) , x ∈ R.
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The regularized approximations

vn = ξn

(
u

1
m
0

)

of u
1/m
0 still belong to W 1,∞

c (Ω). Moreover

|vn(x)| ≤ |u0(x)|
1
m , ∇(vmn )(x) = ξ′n

(
u

1
m
0 (x)

)
|vn(x)|m−1 |u0(x)|

1
m
−1∇u0(x) for a.e. x ∈ Ω .

In view of the estimates above and from the properties of {ξn}, it is straightforward to check that

|∇(vmn )| (x) ≤ 2 |∇u0(x)| for a.e. x ∈ Ω

and that {vn} and {∇(vmn )} converge pointwise respectively to u
1/m
0 and ∇(u0). Applying then

(4.6) to the sequence of initial data {vn} and passing to the limit as n → ∞, by dominated
convergence we infer that

‖u0‖m+1
m

;ν ≤ Bm ‖∇(u0)‖
2m(m+1−q0)
(m+1)(2m−q0)

2;µ ‖u0‖
q0(m−1)

(m+1)(2m−q0)
q0
m

;ν
. (4.7)

Setting

ϑ =
2m(m+ 1− q0)

(m+ 1)(2m− q0)
, r =

m+ 1

m
, s =

q0
m
, q = 2 , W(f) = ‖∇f‖2;µ ,

where f is any non-negative function belonging to W 1,∞
c (Ω), inequality (4.7) reads

‖f‖r;ν ≤
(
B

m
ϑ W(f)

)ϑ
‖f‖1−ϑ

s;ν ,
1

r
=
ϑ

q
+

1− ϑ

s
; (4.8)

Theorem 3.1 of [6] is now applicable, providing us with the existence of a non-negative constant
(that we keep denoting as B) such that (4.8) holds for ϑ = 1 and q = 2 as well, which in this case
means

‖f‖2;ν ≤ Bm ‖∇f‖2;µ , (4.9)

namely the Poincaré inequality for non-negative functions of W 1,∞
c (Ω). The extension of (4.9)

(up to multiplicative constants) to signed functions of W 1,∞
c (Ω) is simply achieved by writing

f = f+ − f−, while the extension to the whole W 1,2
0 (Ω; ν, µ) follows by density. �

Let us observe that estimate (4.1) shows an Lq0-L̺ regularization which does not hold up to
̺ = ∞ (by direct calculations one verifies that K1 diverges as ̺→ ∞). If instead we assumed that
a Sobolev-type inequality holds, namely that there exists q > 2 such that ‖v‖q;ν ≤ CS‖∇v‖2;µ
for all v ∈ W 1,2

0 (Ω; ν, µ), then there would be no difficulty in repeating the proof of Theorem
1.5 of [9] and so conclude that an Lq0-L∞ regularization takes place indeed. However, through
an explicit counterexample, we shall see now that the sole validity of the Poincaré inequality in
general prevents the L∞ regularization.

Counterexample to the L∞(Ω) regularization. Let Ω = (0,∞). With respect to the weights
ρν(x) = ρµ(x) = e−x, it is known that the Poincaré inequality (1.3) holds (see section 6.1). In
this context, the WPME with Dirichlet boundary conditions reads




ut = ex(e−x(um)x)x in (0,∞)× (0,∞)

u(0, t) = 0 for t > 0

u(x, 0) = u0(x) in (0,∞)

. (4.10)

We want to prove that the solution u(x, t) corresponding to the initial datum u0(x) = log(x+ 1)
remains unbounded for all t ≥ 0. To this aim, consider the following family of functions:

vB(x, t) =
log(x+ 1)

(1 +B−1(m− 1)t)
1

m−1

;

we can show that for a suitable choice of the constant B > 0, vB is a subsolution of (4.10). In
fact, after some computations, one gets:

ex(e−x([log(x+ 1)]m)x)x = −m [log(x+ 1)]m−1

x+ 1
−m

[log(x+ 1)]m−1

(x+ 1)2
+m(m− 1)

[log(x+ 1)]m−2

(x+ 1)2
.
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Clearly, there exists a constant B̂ > 0 such that

log(x+ 1) ≥ −B̂ex(e−x([log(x+ 1)]m)x)x ,

so that

(
v
B̂

)
t
= − log(x+ 1)

B̂
(
1 + B̂−1(m− 1)t

) m
m−1

≤ ex(e−x([log(x+ 1)]m)x)x(
1 + B̂−1(m− 1)t

) m
m−1

= ex
(
e−x

([
v
B̂

]m)
x

)
x
.

As a consequence, v
B̂

is a subsolution of (4.10) for u0(x) = log(x + 1). From the comparison
principle for sub-supersolutions (given the regularity of the data, one can argue as in [50, Th.
8.10], see also [32]) we have that v

B̂
≤ u; in particular, u(·, t) is unbounded for all t ≥ 0.

Moreover, since u0 ∈ Lq0((0,∞); e−x) ∀q0 ∈ [1,∞), we have also shown that in this case the
Lq0-L∞ regularization does not take place for any q0 ∈ [1,∞).

5. Lq0-L̺ smoothing and asymptotic estimates: the WPME with Neumann

boundary conditions

Given a domain Ω ⊂ R
N and two weights ρν , ρµ, assume that ν(Ω) <∞. By means of a Gross

differential method and Moser iterative techniques, we shall now analyse Lq0-L̺ smoothing and
asymptotic properties of the solutions to the Neumann problem (1.2) exploiting the validity of
functional inequalities like (1.4) or the weaker (1.5).

Similarly to the Dirichlet problem, the present results hold as well, with no modifications, if
Ω = R

N and its ν-measure is finite. Notice once again that in the sequel, when referring to “the
solution” to the equation at hand we shall always mean, without further comment, the solution
constructed in section 3, see in particular Theorem 3.12 and the subsequent discussion of limit
solutions for general L1 data.

5.1. Smoothing estimates. Most of the smoothing results we shall obtain firstly will only hold
for initial data which at least belong to L1∨(m−1)(Ω; ν), where 1 ∨ (m − 1) ≡ max{1,m − 1}. In
order to extend them to general Lq0 data, the next two lemmas will turn out to be very useful.

Lemma 5.1. Suppose that the zero-mean Poincaré inequality (1.4) holds. Then for any a ∈ (0, 1]
one has:

‖va − va‖2;ν ≤MP,a ‖∇v‖a2;µ ∀v ∈W 1,2(Ω; ν, µ) , (5.1)

where one can choose MP,a = 21−
a
2 ν(Ω)

1
2
(1−a)Ma

P .

Proof. See [17, prop. 2.2]. �

Starting from the previous lemma, we are able to prove a first regularization result.

Lemma 5.2. Suppose that the zero-mean Poincaré inequality (1.4) holds. Given k ∈ N, q0 ∈(
1, m−1

2k−1

]
and m > 2, the solution u of (1.2) with initial datum u0 ∈ Lq0(Ω; ν) satisfies the

following estimate:

‖u(t)‖2kq0;ν ≤ D

(
t
− 1

q0+m−1 ‖u0‖
q0

q0+m−1

q0;ν + ‖u0‖q0;ν
)

for a.e. t > 0 , (5.2)

being D > 0 a constant that depends only on k, q0, m, MP and ν(Ω).

Proof. It is convenient to proceed by induction. Let us first prove (5.2) for k = 1. We shall
consider L∞ data, since the passage to general Lq0 data is standard. Now, setting T = t and
q = q0 − 1 in (3.3), applying to the function u(q0+m−1)/2 on its left hand side inequality (5.1) and

recalling that ‖f‖2;ν − ν(Ω)−1/2‖f‖1;ν ≤ ‖f − f‖2;ν , we obtain:

4(q0 − 1)q0m

M
2/a
P,a (q0 +m− 1)2

∫ t

0

(∥∥∥ua
q0+m−1

2 (s)
∥∥∥
2;ν

− ν(Ω)−
1
2

∥∥∥ua
q0+m−1

2 (s)
∥∥∥
1;ν

) 2
a

ds ≤ ‖u0‖q0q0;ν .
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Exploiting Jensen’s inequality in the time integral of the inequality above and raising to the power
of a

2 , we get (D will always represent a generic constant which possibly depends on k, q0, m, MP ,
ν(Ω) and may differ from line to line):

t
a
2
−1

∫ t

0

(
‖u(s)‖

a
2
(q0+m−1)

a(q0+m−1);ν − ν(Ω)−
1
2 ‖u(s)‖

a
2
(q0+m−1)

a
2
(q0+m−1);ν

)
ds ≤ D ‖u0‖

q0
a
2

q0;ν ;

by the non-expansivity of the norms (trivial consequence of (3.3)), we then deduce that

t
a
2 ‖u(t)‖

a
2
(q0+m−1)

a(q0+m−1);ν ≤ D ‖u0‖
q0

a
2

q0;ν +
t
a
2

ν(Ω)
1
2

‖u0‖
a
2
(q0+m−1)

a
2
(q0+m−1) ,

that is

‖u(t)‖a(q0+m−1);ν ≤ D

(
t
− 1

q0+m−1 ‖u0‖
q0

q0+m−1

q0;ν + ‖u0‖a
2
(q0+m−1);ν

)
. (5.3)

Choosing a = 2q0
q0+m−1 we recover (5.2) for k = 1 (the constraint a ≤ 1 reads q0 ≤ m− 1).

Suppose now that (5.2) holds for some k. Set a = 2k+1q0
q0+m−1 into (5.3): this is feasible providing

that q0 ≤ m−1
2k+1−1

, and it leads us to

‖u(t)‖2k+1q0;ν
≤ D

(
t
− 1

q0+m−1 ‖u0‖
q0

q0+m−1

q0;ν + ‖u0‖2kq0;ν
)
. (5.4)

Since (5.4) holds for a.e. t > 0, thanks to the semigroup property we are allowed to take (for a.e.
t) t/2 as the origin of time axis in it (that is, we replace u0 with u(t/2) and t with t/2 on the
right hand side), so that applying to the resulting right hand side inequality (5.2) (which holds by
the inductive hypothesis) evaluated at time t/2 (again this choice is allowed for a.e. t), together

with the non-expansivity of the norm ‖ · ‖q0;ν , we obtain (5.2) for k + 1 and q0 ∈
(
1, m−1

2k+1−1

]
as

well. �

The following lemma provides an elementary (but very useful to our purposes) inequality.

Lemma 5.3. Given α, β ∈ (0, 1), with α > β, there exists a constant c = c(α, β) > 0 such that
∀x, y ∈ R

+

x−αy1−α + x−βy1−β + y ≤ c(α, β)(x−αy1−α + y) . (5.5)

Proof. We need to show that

R(x, y) =
x−βy1−β

x−αy1−α + y
(5.6)

is bounded in R
+×R

+ by a constant which depends only on α and β. In order to do that, we can
fix y and find the zeros x∗(y) of Rx(·, y) (in fact 0 < β < α implies R(0+, y) = R(+∞, y) = 0).
Through an explicit calculation we get

x∗(y) =

(
α− β

β

) 1
α

y−1 .

Substituting such value into (5.6) we easily obtain (5.5) with

c(α, β) = 1 +

(
β

α

) β
α
(
1− β

α

)1− β
α

.

�

We are now ready to prove our main smoothing result.

Theorem 5.4. Let u0 ∈ Lq0(Ω; ν). If the zero-mean Poincaré inequality (1.4) holds, then the
solution u of (1.2) with initial datum u0 satisfies the estimate

‖u(t)‖̺;ν ≤ K1 t
− ̺−q0

̺(m−1) ‖u0‖
q0
̺

q0;ν e
H ‖u0‖m−1

q0;ν
t

for a.e. t > 0 (5.7)
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for all q0 ∈ [1,∞) and ̺ ∈ (q0,∞), where K1 = K1(̺,m,MP , ν(Ω)) > 0, H = H(m,MP , ν(Ω)) >
0. Moreover, the estimate

‖u(t)‖̺;ν ≤ K2

(
t
− ̺−q0

̺(m−1) ‖u0‖
q0
̺

q0;ν + ‖u0‖q0;ν
)

for a.e. t > 0 (5.8)

holds true for all q0 ∈ (1,∞) and ̺ ∈ (q0,∞), where K2 = K2(q0, ̺,m,MP , ν(Ω)) > 0.
If instead only the weaker inequality (1.5) is assumed to hold, then the bound (5.7) holds true

for all q0 ∈ [1 ∨ (m − 1),∞), while (5.8) holds true for all q0 ∈ (1,∞) ∩ [m − 1,∞), both upon
replacing the dependence of the constants on MP by WP .

Proof. To prove estimate (5.7) we adopt the techniques of [28, Th. 1.3] and [10, Th. 1.1]. We also
refer to the notations used in the quoted theorems. Again, we shall consider L∞ data without
loss of generality, and 1 < q0 < ̺.

First of all, from (1.4) we have

‖v‖22;ν ≤ 2
(
M2

P ‖∇v‖22;µ + ‖v‖22;ν
)

∀v ∈W 1,2(Ω; ν, µ) ; (5.9)

from that, proceeding exactly as in [28, Th. 1.3], it is straightforward to obtain the following
family of logarithmic inequalities:

(
J(r, v) +

1

2− r
log ε

)
(2− r) ‖v‖2r;ν

2 εM2
P

−
‖v‖22;ν
M2

P

≤ ‖∇v‖22;µ ∀ε > 0 , ∀r ∈ [1, 2) , ∀v ∈W 1,2(Ω; ν, µ).

(5.10)
Introducing a real function q as in the proof of Theorem 4.1, through explicit computations we
get:

d

ds
log ‖u(s)‖q(s);ν =

q′(s)
q(s)

J(q(s), u(s))−
(

2

q(s) +m− 1

)2 m(q(s)− 1)

‖u(s)‖q(s)q(s);ν

∥∥∥∇
(
u

q(s)+m−1
2 (s)

)∥∥∥
2

2;µ
.

Applying (5.10) to u(q+m−1)/2 on the right hand side of the equation above, after some computa-
tions we arrive at (we omit time dependence for the sake of greater readability)

d

ds
log ‖u‖q;ν ≤ q′

q2
J(1, uq)−

− 2m (q − 1) (2− r)

(q +m− 1)2 εM2
P

‖u‖q+m−1
r
2
(q+m−1);ν

‖u‖qq;ν

(
1

r
J
(
1, u

r
2
(q+m−1)

)
+

1

2− r
log ε

)
+

+

(
2

q +m− 1

)2 m(q − 1)

M2
P ν(Ω)

‖u‖q+m−1
q+m−1

2
;ν

‖u‖qq;ν
.

(5.11)
To handle (5.11) it is convenient to make, according to [28, Th. 1.3], the following choices:

r =
2q

q +m− 1
, ε1 =

2q2m (q − 1) (2− r)

q′ (q +m− 1)2 rM2
P

, ε = ε1
‖u‖q+m−1

r
2
(q+m−1);ν

‖u‖qq;ν
,

so that (5.11) itself becomes

d

ds
log ‖u‖q;ν ≤ − q′

q(m− 1)
log ε1 −

q′

q
log ‖u‖q;ν +

(
2

q +m− 1

)2 m(q − 1)

M2
P ν(Ω)

‖u‖q+m−1
q+m−1

2
;ν

‖u‖qq;ν
. (5.12)

To control the last term on the right hand side, we interpolate between the norms ‖ · ‖m−1;ν ,
‖ · ‖(q+m−1)/2;ν , ‖ · ‖q;ν and use the non-expansivity of the norm ‖ · ‖1∨(m−1);ν . So we have:

‖u‖ q+m−1
2

;ν ≤ ν(Ω)
1−1∧(m−1)

q+m−1 ‖u‖
q

q+m−1

q;ν ‖u0‖
m−1

q+m−1

1∨(m−1);ν ; (5.13)
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(5.12) and (5.13) then give

d

ds
log ‖u‖q;ν ≤− q′

q(m− 1)
log

[
2q(q − 1)m(m− 1)

q′(q +m− 1)2M2
P

]
− q′

q
log ‖u‖q;ν+

+

(
2

q +m− 1

)2 m(q − 1)

M2
P ν(Ω)

1∧(m−1)
‖u0‖m−1

1∨(m−1);ν .

Setting

A(s) =
q′(s)

q(s)(m− 1)
log

[
2q(s)(q(s)− 1)m(m− 1)

q′(s)(q(s) +m− 1)2M2
P

]
,

(
2

q +m− 1

)2 m(q − 1)

M2
P ν(Ω)

1∧(m−1)
≤ 4

M2
P ν(Ω)

1∧(m−1)
= G(m,MP , ν(Ω))

and solving the resulting differential inequality in the variable y(s) = log ‖u(s)‖q(s);ν , we obtain:

log ‖u(t)‖̺;ν ≤ log

(
‖u0‖

q0
̺

q0;ν

)
− 1

̺

∫ t

0

(
A(s)−G ‖u0‖m−1

1∨(m−1);ν

)
q(s) ds ; (5.14)

choosing q(s) = q0 +
s
t (̺ − q0) and performing the change of variable ξ = q(s), we easily get a

lower bound on the time integral:
∫ t

0

(
A(s)−G ‖u0‖m−1

1∨(m−1);ν

)
q(s) ds =

=
1

m− 1

∫ ̺

q0

log

[
t

2ξ(ξ − 1)m(m− 1)

(̺− q0)(ξ +m− 1)2M2
P

]
dξ −G(q0 + ̺) ‖u0‖m−1

1∨(m−1);ν

t

2
≥

≥ ̺− q0
m− 1

log t−B −G(q0 + ̺) ‖u0‖m−1
1∨(m−1);ν

t

2
,

(5.15)

where B > 0 is a constant which depends only on ̺, m and MP . Hence we have proved estimate
(5.7) with 1∨ (m−1) instead of q0 in the norm appearing in the exponential term (the case q0 = 1
is handled by letting q0 ↓ 1). In the end of the proof we shall show how it is possible to replace
1 ∨ (m− 1) with q0.

In order to prove estimate (5.8) it is enough to carry out a single step of the Moser iteration.
Firstly we assume q0 ∈ (1,∞) ∩ [m− 1,∞), and with no loss of generality ν(Ω) = 1. From (5.9)
we have, in particular,

1

2M2
P

‖v‖22;ν −
1

M2
P

‖v‖21;ν ≤ ‖∇v‖22;µ ∀v ∈W 1,2(Ω; ν, µ) ; (5.16)

setting T = t and q = q0 − 1 into estimate (3.3) and applying (5.16) to u(q0+m−1)/2, we obtain:

4(q0 − 1)q0m

M2
P (m+ q0 − 1)2

∫ t

0

(
1

2
‖u(s)‖q0+m−1

q0+m−1;ν − ‖u(s)‖q0+m−1
q0+m−1

2
;ν

)
ds ≤ ‖u0‖q0q0;ν . (5.17)

Since q0 ≥ m − 1 and ν(Ω) < ∞, the quantity ‖u‖(q0+m−1)/2;ν can be controlled from above by
‖u‖q0 ; using this fact and the non-expansivity of the norms ‖ · ‖q0+m−1;ν and ‖ · ‖q0;ν , after some
calculations we arrive at

‖u(t)‖q0+m−1;ν ≤ D

(
t
− 1

q0+m−1 ‖u0‖
q0

q0+m−1

q0;ν + ‖u0‖q0;ν
)
, (5.18)

where D > 0 is a constant possibly depending on q0, ̺, m, MP which may change from line to
line. Clearly (5.18) only provides a regularization from Lq0(Ω; ν) to Lq0+m−1(Ω; ν); however, it is
not difficult to infer from it an Lq0-L̺ regularization for all ̺ ∈ (q0,∞). To do that, let us first
generalize (5.18) to every ̺ ∈ (q0, q0 +m− 1]. By means of the interpolation inequality between
the norms ‖ · ‖q0;ν , ‖ · ‖̺;ν and ‖ · ‖q0+m−1;ν , (5.18) itself and the non-expansivity of the norm
‖ · ‖q0;ν , we get:

‖u(t)‖̺;ν ≤ D ‖u0‖
q0
̺

q0+m−1−̺
m−1

q0;ν

(
t
− 1

q0+m−1 ‖u0‖
q0

q0+m−1

q0;ν + ‖u0‖q0;ν
) q0+m−1

̺
̺−q0
m−1

,
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that is

‖u(t)‖̺;ν ≤ D

(
t
− ̺−q0

̺(m−1) ‖u0‖
q0
̺

q0;ν + ‖u0‖q0;ν
)
. (5.19)

To extend (5.19) to every ̺ ∈ (q0,∞), we proceed by induction. We already know that (5.19) holds
for ̺ ∈ (q0, q0+m−1]. As inductive hypothesis we assume that it holds for all ̺ ∈ (q0, q0+k(m−1)]
for some k ∈ N. Given ̺1 ∈ (q0 + k(m − 1), q0 + (k + 1)(m − 1)], from (5.19) itself (choosing
q0 + k(m− 1) as q0 and ̺1 as ̺) we have:

‖u(t)‖̺1;ν ≤ D

(
t
− ̺1−q0−k(m−1)

̺1(m−1) ‖u0‖
q0+k(m−1)

̺1

q0+k(m−1);ν + ‖u0‖q0+k(m−1);ν

)
. (5.20)

Shifting the origin of time axis to t/2 into estimate (5.20) (this choice, together with the following,
are allowed for almost every t) and using the inductive hypothesis on ‖u(t/2)‖q0+k(m−1), we arrive
at

‖u(t)‖̺1;ν ≤ D

(
t
− ̺1−q0

̺1(m−1) ‖u0‖
q0
̺1
q0;ν + t

− ̺1−q0−k(m−1)
̺1(m−1) ‖u0‖

q0+k(m−1)
̺1

q0;ν +

+ t
− k(m−1)

(q0+k(m−1))(m−1) ‖u0‖
q0

q0+k(m−1)

q0;ν + ‖u0‖q0;ν
)
,

which, thanks to Lemma 5.3, simplifies into

‖u(t)‖̺1;ν ≤ D

(
t
− ̺1−q0

̺1(m−1) ‖u0‖
q0
̺1
q0;ν + ‖u0‖q0;ν

)
, (5.21)

namely estimate (5.19) extended to all ̺1 ∈ (q0 + k(m − 1), q0 + (k + 1)(m − 1)] as well. The
inductive step has then been proved, so that (5.8) holds for all q0 ∈ (1,∞) ∩ [m − 1,∞) and
̺ ∈ (q0,∞).

At this stage we notice that the above strategy also shows that the latter claim in the statement
holds true. In fact one easily realizes that all the calculations performed so far hold true as well,
possibly with different numerical constants, if one assumes the validity of inequality (1.5) only.

In order to remove the constraint q0 ≥ m − 1 we need to exploit Lemma 5.2. To this end,
suppose m > 2 (otherwise there is nothing to prove). Given q0 ∈ (1,m− 1), of course there exists
an integer k such that

q0 +m− 1

2
≤ 2kq0 , q0 ≤

m− 1

2k − 1
; (5.22)

from (5.17) and the first inequality in (5.22), it is easy to deduce that

‖u(t)‖q0+m−1;ν ≤ D

(
t
− 1

q0+m−1 ‖u0‖
q0

q0+m−1

q0;ν + ‖u0‖2kq0;ν
)
. (5.23)

Shifting the origin of time axis to t/2 into (5.23) and applying to the so modified right hand side
estimate (5.2) evaluated at time t/2 (which is feasible in view of the second inequality in (5.22)),
we are able to conclude that (5.18) holds for all q0 ∈ (1,∞), and so (5.8) by arguing exactly as in
the cases q0 ≥ m− 1.
The initial assumption ν(Ω) = 1 is removable by a spatial scaling. In fact, if u(x, t) is a solution
of (1.2) on the domain Ω of measure V = ν(Ω), with respect to the weights ρν(x), ρµ(x) and with
initial datum u0(x), then

ũ(x̃, t) = V
− 2

N(m−1)u
(
V

1
N x̃, t

)
(5.24)

is also a solution of (1.2) on the domain Ω̃ = Ω/V
1
N of measure 1, with respect to the weights

ρ̃ν(x̃) = ρν

(
V

1
N x̃
)
, ρ̃µ(x̃) = ρµ

(
V

1
N x̃
)

and with initial datum

ũ0(x̃) = V
− 2

N(m−1)u0

(
V

1
N x̃
)
.

From that, one applies (5.21) to ũ and then goes back to the original solution u through (5.24)
and

‖ũ‖q;ν̃ = V
− 2

N(m−1)
− 1

q ‖u‖q;ν , MP (Ω̃) = V − 1
NMP (Ω) ,
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thus obtaining (5.8) with a multiplicative constant that in general will depend on ν(Ω) as well.
Finally, we are left to show that the estimate

‖u(t)‖̺;ν ≤ K1 t
− ̺−q0

̺(m−1) ‖u0‖
q0
̺

q0;ν e
H ‖u0‖m−1

1∨(m−1);ν
t

for a.e. t > 0 , (5.25)

whose validity we proved above, implies (5.7). First of all let us suppose m > 2, otherwise there
is nothing to prove (one controls ‖u0‖1;ν with ‖u0‖q0;ν). Lemma 5.11, which we shall prove below,
gives as a byproduct the validity of the estimate

‖u(t)‖2;ν ≤ C1

(
t−

1
m−1 + ‖u0‖1;ν

)
for a.e. t > 0 (5.26)

for a suitable constant C1 > 0 depending on m, MP and ν(Ω). Hence from (5.26) and the
regularity estimate (5.8) we can infer in turn that

‖u(t)‖m−1;ν ≤ C2

(
t−

1
m−1 + ‖u0‖1;ν

)
for a.e. t > 0 (5.27)

for another constant C2 > 0 depending on the same quantities. Indeed, if m ≤ 3 (5.27) clearly
follows from (5.26), else one combines (5.8) with the choices ̺ = m − 1, q0 = 2 and (5.26) by
means of the usual t/2-shift argument, which again entails (5.27) (up to a different constant C2).
It is now plain that (5.27) and (5.25) give the desired result thanks to another t/2-shift argument.

The dependence of the constants K1 and H on q0 has been implicitly absorbed into ̺, since
q0 < ̺ and they remain bounded as q0 varies in the interval [1, ̺].

The last statement of the theorem is a mere consequence of the fact that the validity of inequality
(5.16) is sufficient in order to prove (5.8) at least for q0 ∈ (1,∞)∩ [m−1,∞). The same applies for
(5.7) provided q0 ∈ [1∨(m−1),∞). The passage to data in Lq0(Ω; ν) with q0 ∈ (1,m−1), instead,
needs Lemma 5.2 and so Lemma 5.1, which requires the original zero-mean Poincaré inequality
(1.4). �

Remark 5.5. Our proof of the validity of (5.8) is not extendible to the case q0 = 1, since
the constant D in (5.18) diverges as q0 ↓ 1. Nevertheless estimate (5.7) also ensures an L1-L̺

regularization with the same short-time rate one would expect from (5.8) letting q0 ↓ 1.

Counterexample to the L∞(Ω) regularization. For the Neumann problem, too, we can
show by means of a counterexample that the sole validity of the zero-mean Poincaré inequality
in general does not give rise to the Lq0-L∞ regularization. In fact, consider the domain Ω = R

and the weights ρν(x) = ρµ(x) = e−|x| (one can regularize them in x = 0 without significant
modifications). These weights (see section 6.2) satisfy the zero-mean Poincaré inequality (1.4).

Moreover, it is easy to show that W 1,2(R; e−|x|, e−|x|) =W 1,2
0 (R; e−|x|, e−|x|), implying that in this

case the Neumann problem coincides with the Dirichlet one: in particular, in order to prove that
a certain function is a (sub)solution of 1.2, one can neglect its behaviour at infinity and just test
it on compactly supported functions in the weak formulation.

By means of computations analogous to the ones performed in the counterexample associated
to Dirichlet boundary conditions, one can check that there exists a constant B > 0 such that the
function

v(x, t) =
log(x2 + 2)

(1 +B−1(m− 1)t)
1

m−1

is a subsolution of (1.2), so that u(·, t) 6∈ L∞(R) for all t ≥ 0. This proves that for the initial

datum u0(x) = log(x2 + 2), which belongs to Lq0(R; e−|x|) ∀q0 ∈ [1,∞), there is no Lq0-L∞

regularization.

Converse implications. In section 4 we saw that the validity of a suitable estimate for the
solutions to the Dirichlet problem (1.1) implies, in turn, the validity of the Poincaré inequality
(1.3). For the Neumann problem we are able to prove, with analogous techniques, a slightly weaker
but similar result.

Theorem 5.6. Suppose ν(Ω) < ∞. If there exist a constant K > 0 and a given q0 ∈ [m,m+ 1)
such that, for all u0 ∈ Lq0(Ω; ν), the solution u of (1.2) corresponding to the initial datum u0
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satisfies the estimate

‖u(t)‖m+1;ν ≤ K

(
t
− m+1−q0

(m+1)(m−1) ‖u0‖
q0

m+1
q0;ν + ‖u0‖q0;ν

)
for a.e. t > 0

(namely (5.8) when ̺ = m + 1), then there exists a constant B > 0 such that the functional
inequality

‖v‖2;ν ≤ B
(
‖∇v‖2;µ + ‖v‖ q0

m
;ν

)
∀v ∈W 1,2(Ω; ν, µ) (5.28)

holds as well.

Proof. Let us start considering an initial non-negative datum u0 ∈ L∞(Ω)∩W 1,2(Ω; ν, µ). Clearly,

um0 ∈ V (m+1)/m(Ω; ν, µ). As a consequence, proceeding along the lines of the proof of Theorem
4.3, no major difficulty arises in obtaining the following inequality:

‖u0‖m+1;ν ≤ B

(
‖∇(um0 )‖

2(m+1−q0)
(m+1)(2m−q0)

2;µ ‖u0‖
q0(m−1)

(m+1)(2m−q0)

q0;ν + ‖u0‖q0;ν

)
, (5.29)

where B > 0 is a suitable constant that may change from line to line. Now take the sequence of
functions {ξn} from R

+ to R
+ defined as

ξn(x) =
1

n
χ[0, 1n ]

(x) + xχ( 1
n
,∞)(x) ;

setting vn = ξn(u
1/m
0 ), it is easy to check that {vn} converges to u

1/m
0 in L∞(Ω) and {∇(vmn )}

converges to ∇(u0) in [L2(Ω;µ)]N . Hence, replacing u0 with vn into (5.29), passing to the limit
as n→ ∞ and raising to the power of m, we get:

‖u0‖m+1
m

;ν ≤ B

(
‖∇(u0)‖

2m(m+1−q0)
(m+1)(2m−q0)

2;µ ‖u0‖
q0(m−1)

(m+1)(2m−q0)
q0
m

;ν
+ ‖u0‖ q0

m
;ν

)
. (5.30)

Upon defining

ϑ =
2m(m+ 1− q0)

(m+ 1)(2m− q0)
, r =

m+ 1

m
, s =

q0
m
, q = 2 , W(f) = ‖∇f‖2;µ + ‖f‖ q0

m
;ν ,

(5.30) reads

‖f‖r;ν ≤ (BW(f))ϑ ‖f‖1−ϑ
s;ν ,

1

r
=
ϑ

q
+

1− ϑ

s
, ∀f ≥ 0 ∈ L∞(Ω) ∩W 1,2(Ω; ν, µ) . (5.31)

Exploiting once again Theorem 3.1 of [6] we infer that (5.31) also holds for ϑ = 1 and q = 2 (and
for a suitable constant that we keep indicating as B), that is

‖f‖2;ν ≤ B
(
‖∇f‖2;µ + ‖f‖ q0

m
;ν

)
∀f ≥ 0 ∈ L∞(Ω) ∩W 1,2(Ω; ν, µ) .

The extension of the inequality above to generic W 1,2(Ω; ν, µ) functions follows by writing f =
f+ − f− and by Proposition 2.4. �

Note that (5.28) is equivalent to the fact that the spaces V q0/m(Ω; ν, µ) and W 1,2(Ω; ν, µ)
coincide. Also, if q0 = m (5.28) becomes (1.5), so that from Theorems 5.4 and 5.6 we can get the
following

Corollary 5.7. Suppose ν(Ω) < ∞. Consider, for all u0 ∈ Lm(Ω; ν), the solution u of (1.2)
corresponding to the initial datum u0. The existence of constants ̺ ≥ m+1, K > 0 such that the
estimate

‖u(t)‖̺;ν ≤ K

(
t
− ̺−m

̺(m−1) ‖u0‖
m
̺

m;ν + ‖u0‖m;ν

)
for a.e. t > 0 (5.32)

holds, is equivalent to the validity of inequality (1.5). In particular, the validity of (5.32) for a
given ¯̺≥ m+ 1 implies the validity of the same estimate for all ̺ ≥ m+ 1 and, more generally,
the validity of (5.8) for any q0 ∈ (1,∞) ∩ [m− 1,∞) and ̺ > q0.
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5.2. Asymptotic estimates. As already mentioned, estimate (5.7) diverges as t → ∞, so it
prevents us from obtaining any information about the asymptotic behaviour of u(·, t). On the
other hand, estimate (5.8) only allows us to deduce that

lim sup
t→∞

‖u(t)‖̺;ν ≤ K2 ‖u0‖q0;ν .

In order to study in deeper detail such asymptotic behaviour, it is crucial to be able to suitably
handle the quantity (recall by Proposition 3.13 that the mean value of u0 is preserved)

d

ds
‖u(s)− u‖̺̺;ν .

To this end, the next lemma will be fundamental.

Lemma 5.8. Suppose that the zero-mean Poincaré inequality (1.4) holds. Let Φ : R → R be a
continuous and increasing function with the following properties:

lim
x→0

Φ(x)

xr
= l0 , lim

x→−∞
Φ(x)

xr
= l− , lim

x→+∞
Φ(x)

xr
= l+ (5.33)

for some constants r ≥ 1
2 and l0, l−, l+ ∈ (0,+∞). Then there exists a constant CΦ > 0 such that

for every function ξ ∈ L1(Ω; ν) such that ξ = 0 and Φ(ξ) ∈W 1,2(Ω; ν, µ) the inequality

‖Φ(ξ)‖2;ν ≤ CΦ ‖∇Φ(ξ)‖2;µ (5.34)

holds.

Proof. We proceed by contradiction. Should the assertion be false, then there exists a sequence
of functions {ξn} ⊂ {ξ ∈ L1(Ω; ν) : ξ = 0 , Φ(ξ) ∈W 1,2(Ω; ν, µ)} (not identically zero) such that

‖∇Φ(ξn)‖2;µ ≤ 1

n
‖Φ(ξn)‖2;ν .

Let us set an = ‖Φ(ξn)‖2;ν and

Ψn(ξn) =
Φ(ξn)

an
.

Clearly,

‖Ψn(ξn)‖2;ν = 1 , ‖∇Ψn(ξn)‖2;µ ≤ 1

n
. (5.35)

Applying the zero-mean Poincaré inequality to the sequence {Ψn(ξn)} and exploiting the second
inequality in (5.35), we have that

∥∥∥Ψn(ξn)−Ψn(ξn)
∥∥∥
2;ν

≤ MP

n
. (5.36)

The inequality just obtained and the normalization condition in (5.35) together imply that the

sequence of real numbers {Ψn(ξn)} is bounded, hence up to subsequences it converges to some
limit c0. This and again (5.36) allow us to deduce that

‖Ψn(ξn)− c0‖2;ν → 0 ,

that is, up to subsequences,

Ψn(ξn(x)) → c0 for a.e. x ∈ Ω . (5.37)

The normalization condition just mentioned prevents c0 from being zero. Now we need to distin-
guish three cases according to the value of the quantity

a∞ = lim
n→∞

an ,

the limit above existing possibly passing again to a subsequence. If a∞ ∈ (0,+∞), from the
continuity of Φ (and so of Φ−1) it is easy to infer that

ξn(x) → Φ−1(a∞c0) 6= 0 for a.e. x ∈ Ω .

When a∞ = 0 or a∞ = +∞ things are slightly more delicate. Let us begin with the case a∞ = 0.
By the definition and the properties of Φ, and in view of (5.37), it follows that

ξn(x) → 0 for a.e. x ∈ Ω ;



POROUS MEDIA EQUATIONS WITH TWO WEIGHTS 25

hence, exploiting the first equality in (5.33) and again (5.37),

Zn(x) =
ξn(x)

a
1/r
n

=

(
[ξn(x)]

r

Φ(ξn(x))
Ψn(ξn(x))

) 1
r

→
(
c0
l0

) 1
r

6= 0 for a.e. x ∈ Ω .

If instead a∞ = +∞ one argues likewise. In fact, suppose c0 > 0. From the properties of Φ and
(5.37) we deduce that

ξn(x) → +∞ for a.e. x ∈ Ω ,

which, thanks to the third equality in (5.33), implies

Zn(x) =
ξn(x)

a
1/r
n

=

(
[ξn(x)]

r

Φ(ξn(x))
Ψn(ξn(x))

) 1
r

→
(
c0
l+

) 1
r

6= 0 for a.e. x ∈ Ω .

When c0 < 0 one proves similarly that

Zn(x) →
(
c0
l−

) 1
r

6= 0 for a.e. x ∈ Ω .

Hence in any case the sequence {Zn} converges pointwise to a non-zero constant. Since obviously
Zn = 0 and the mean value operator is continuous in L1(Ω; ν), we come to a contradiction as soon
as we prove that {Zn} also converges in L1(Ω; ν) to such non-zero constant. To this end, note
that from Egoroff’s Theorem it is enough to show that the quantity

∫

E
|Zn(x)| dν

converges to zero uniformly as n → ∞ and |E| → 0. First of all, observe that (5.33), together
with the continuity and the monotonicity of Φ, imply the existence of a constant D > 0 such that

D−1|x|r ≤ |Φ(x)| ≤ D|x|r ∀x ∈ R .

As a consequence,

∫

E
|Zn(x)| dν =

∫

E

|ξn(x)|
a
1/r
n

dν ≤ D
1
r

∫

E
|Ψn(ξn(x))|

1
r dν ≤ D

1
r |E|1− 1

2r

(∫

E
|Ψn(ξn(x))|2 dν

) 1
2r

,

so that the quantity ∫

E
|Ψn(ξn(x))|2 dν

indeed goes to zero uniformly as n→ ∞ and |E| → 0 since
∫

E
|Ψn(ξn(x))|2 dν ≤ 2

(∫

Ω
|Ψn(ξn(x))− c0|2 dν + |E|c20

)
.

Therefore we conclude that {Zn} converges in L1(Ω; ν) to a non-zero constant with zero mean, a
contradiction. �

Remark 5.9. When ρν = ρµ = 1 and Φ(x) = xm (m > 1), the result had already been proved in
[2, Lem. 3.2] . However, the proof provided therein exploits the compactness of the embedding
H1(Ω) →֒ L2(Ω). The proof of Lemma 5.8 does not need compactness. Note that it is essential
that the behaviour of Φ(x) as x → 0 and x → ±∞ is given by the same power of x. If, for
example, Φ(x) ∼ xr1 as x→ 0 and Φ(x) ∼ xr2 as x→ ±∞ with r1 6= r2 our proof does not work
(one loses control of

∫
E |Zn| dν either when a∞ = 0 or a∞ = +∞).

We are now ready to prove an asymptotic estimate for zero-mean solutions. With a slight abuse
of notation, we shall indicate below by Cxa the value of CΦ (see formula (5.34)) when Φ(x) = xa.

Theorem 5.10. Let q0 ∈ [1,∞), u0 ∈ Lq0(Ω; ν) and u0 = 0. If the zero-mean Poincaré inequality
(1.4) holds, then the solution u of (1.2) with initial datum u0 satisfies the following absolute bound:

‖u(t)‖̺;ν ≤ Q2 t
− 1

m−1 for a.e. t > 0 , (5.38)
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where ̺ ∈ [1,∞) and Q2 is a constant depending only on ̺, m, MP , Cxm and ν(Ω). As a
consequence, for initial data with zero mean (5.7) becomes

‖u(t)‖̺;ν ≤ Q1 t
− ̺−q0

̺(m−1) ‖u0‖
q0
̺

q0;ν for a.e. t > 0 , (5.39)

for a suitable constant Q1 depending only on ̺, m, MP and Cxm.

Proof. Given ̺ ∈ (1,∞) (and, as usual, assuming u0 ∈ L∞(Ω)), consider the (formal) identity

d

ds
‖u(s)‖̺̺;ν = −

(
2

̺+m− 1

)2

m̺(̺− 1)
∥∥∥∇
(
u

̺+m−1
2

)
(s)
∥∥∥
2

2;µ
.

In order to handle the right hand side, we can apply Lemma 5.8 with the choice Φ(x) = x(̺+m−1)/2,
which provides us with a constant Cx(̺+m−1)/2 such that

‖u‖̺+m−1
̺+m−1;ν ≤ C2

x(̺+m−1)/2

∥∥∥∇
(
u

(̺+m−1)
2

)∥∥∥
2

2;µ
.

From now on, to obtain the absolute bound (5.38), one proceeds exactly as in the proof of Theorem
4.1, replacing CP with Cx(̺+m−1)/2 (the case ̺ = 1 is recovered by the finiteness of ν(Ω)). If

̺ < m + 1, since ‖u(t)‖̺;ν ≤ ν(Ω)1/̺−1/(m+1)‖u(t)‖m+1;ν , Cx(̺+m−1)/2 can in turn be replaced by
Cxm into constant Q2.

Now we have to prove estimate (5.39). First of all, let us rewrite (5.25) with the time origin
shifted to t/2 (this choice, together with the following, are allowed for almost every t) and writing
explicitly the constant H appearing there. Exploiting the non-expansivity of the norm ‖ · ‖q0;ν ,
we have:

‖u(t)‖̺;ν ≤ K1

(
t

2

)− ̺−q0
̺(m−1)

‖u0‖
q0
̺

q0;ν e
2

M2
P

ν(Ω)1∧(m−1)
‖u(t/2)‖m−1

1∨(m−1);ν
t

∀t > 0 ; (5.40)

applying to the exponential term in (5.40) the absolute bound just proved, we easily deduce (5.39).
The fact that the constant Q1 is independent of ν(Ω) can be shown as follows. First one proves
that, setting ̺ = m + 1, the constant Q2 in (5.38) depends on ν(Ω) through a multiplication by

ν(Ω)1/(m+1). Therefore

2

M2
P ν(Ω)

1∧(m−1)
‖u (t/2)‖m−1

1∨(m−1);ν t ≤ Q0(m,MP , Cxm) .

Afterwards one notices, from the proof of Theorem 5.4, that the constant K1 appearing in (5.40)
depends only on ̺, m and MP .

Estimate (5.39) can be also used to show that the constant Q2 in (5.38) depends in turn on
a constant coming from Lemma 5.8 which is at most Cxm even if ̺ > m + 1. To this end, it is
enough to perform the usual t/2-shift into (5.39) (with q0 = m + 1) and use the absolute bound
itself (with ̺ = m+ 1) on the right hand side. �

The informations we provided by the previous corollary only concern the asymptotic behaviour
of zero-mean solutions. However, this does not allow us to infer anything about non-zero-mean
solutions (i.e. the solution of (1.2) corresponding to the initial datum u0+ c, for c ∈ R\{0}, is not
the solution corresponding to u0 plus c). In order to obtain such informations also when u 6= 0,
we begin with an important lemma.

Lemma 5.11. If the zero-mean Poincaré inequality (1.4) holds, then there exists a constant
Q > 0, possibly depending on ̺ ∈ [1, 2], m, MP and ν(Ω), such that for all solutions of (1.2) the
following absolute bound holds:

‖u(t)− u‖̺;ν ≤ Qt−
1

m−1 for a.e. t > 0 . (5.41)

Proof. The result had already been proved in [17, Th. 4.5] when ρν = ρµ, but there is no difficulty
in extending it to the case ρν 6= ρµ. For the sake of completeness we repeat the main lines. First
of all, let us start from the following (formal) identity:

d

ds
‖u(s)− u‖̺̺;ν = −̺(̺− 1)m

∫

Ω
|u(s,x)|m−1|u(s,x)− u|̺−2|∇u(s,x)|2 dµ . (5.42)
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In the particular case ̺ = 2 the right hand side of (5.42) simplifies into

− 8m

(m+ 1)2

∥∥∥∇
(
u

m+1
2

)
(s)
∥∥∥
2

2;µ
, (5.43)

which is easily bounded from above by applying Lemma 5.1 (with a = 2
m+1) to the function

u(m+1)/2, so as to obtain

− 8m

(m+ 1)2

∥∥∥∇
(
u

m+1
2

)
(s)
∥∥∥
2

2;µ
≤ − 8m

(m+ 1)2Mm+1
P, 2

m+1

‖u(s)− u‖m+1
2;ν , (5.44)

MP, 2
m+1

being the constant appearing in the statement of the quoted lemma. Combining (5.44)

with (5.42) and solving the resulting differential inequality in the variable y(s) = ‖u(s) − u‖22;ν ,
we get (5.41) for ̺ = 2. The case ̺ ∈ [1, 2) follows from the finiteness of the measure. �

From Lemma 5.11 and the smoothing results provided by Theorem 5.4, it is not difficult to
deduce asymptotic estimates for ‖u(t)− u‖̺;ν also when ̺ ∈ (2,∞).

Corollary 5.12. Let q0 ∈ [1,∞) and ̺ ∈ (2 ∨ q0,∞). If the zero-mean Poincaré inequality
(1.4) holds, then the solution u of (1.2) with initial datum u0 ∈ Lq0(Ω; ν) satisfies the following
asymptotic estimate:

‖u(t)− u‖̺;ν ≤ Q1 t
− 2(1−ǫ)

̺(m−1) ‖u0‖
q0

ǫ
̺

q0;ν e
H1 ‖u0‖m−1

q0;ν ∀ǫ ∈ (0, 1) , for a.e. t > 1 , (5.45)

where Q1 = Q1(ǫ, ̺,m,MP , ν(Ω)) > 0 and H1 = H1(m,MP , ν(Ω)).

Proof. We combine Lemma 5.11, norm interpolation inequalities and the smoothing results proved
in Theorem 5.4. In fact, given ̺ > 2, ǫ ∈ (0, 1) and t > 1, interpolating between the norms ‖ · ‖2;ν ,
‖ · ‖̺;ν and ‖ · ‖(̺−2+2ǫ)/ǫ;ν we obtain:

‖u(t)− u‖̺;ν ≤ ‖u(t)− u‖
2
̺
(1−ǫ)

2;ν ‖u(t)− u‖
̺−2+2ǫ

̺
̺−2+2ǫ

ǫ
;ν
.

Applying (5.41) to the first factor on the right hand side we get the time rate. The norm on the
second factor can be handled in this way:

‖u(t)− u‖ ̺−2+2ǫ
ǫ

;ν ≤ 2 ‖u(t)‖ ̺−2+2ǫ
ǫ

;ν ≤ 2 ‖u(1)‖ ̺−2+2ǫ
ǫ

;ν .

Therefore we arrive at

‖u(t)− u‖̺;ν ≤ 2
̺−2+2ǫ

̺ Q
2
̺
(1−ǫ)

t
− 2(1−ǫ)

̺(m−1) ‖u(1)‖
̺−2+2ǫ

̺
̺−2+2ǫ

ǫ
;ν

;

bounding from above the quantity ‖u(1)‖ ̺−2+2ǫ
ǫ

;ν by the smoothing estimate (5.7) (evaluated at

the time t = 1) of Theorem 5.4, we then obtain (5.45). �

If in addition the initial datum is essentially bounded, it is easy to check that one can choose
ǫ = 0 in estimate (5.45) (indeed it is enough to interpolate between the norms ‖ · ‖2;ν , ‖ · ‖̺;ν and
‖ · ‖∞). However, in this case we can prove a much stronger result.

Theorem 5.13. Let ̺ ∈ (1,∞), u0 ∈ L∞(Ω) and u 6= 0. If the zero-mean Poincaré inequality
(1.4) holds and u is the energy solution of (1.2) with initial datum u0, then u(·, t) converges at
least exponentially to its mean value. More precisely:

‖u(t)− u‖̺;ν ≤ e−C|u|m−1t ‖u0 − u‖̺;ν ∀ t > 0 , (5.46)

where C > 0 is a constant depending on ̺, m and R > 0, the latter being any number such that

‖u0 − u‖∞
|u| ≤ R .

Proof. Setting w = u/u− 1, let us rewrite (5.42) as follows:

d

ds
‖w(s)‖̺̺;ν = −̺(̺− 1)m|u|m−1

∫

Ω
|w(x, s) + 1|m−1|w(x, s)|̺−2|∇w(x, s)|2 dµ . (5.47)
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Upon defining

Φ(x) =

∫ x

0
|y|

̺
2
−1|y + 1|m−1

2 dy ,

(5.47) becomes

d

ds
‖w(s)‖̺̺;ν = −̺(̺− 1)m|u|m−1

∫

Ω
|∇Φ(w)(x, s)|2 dµ . (5.48)

At this point need to apply Lemma 5.8 to Φ. Such function is certainly continuous and increasing,
and by means of de l’Hôpital’s Theorem it is straightforward to verify that

lim
x→0

Φ(x)

x
̺
2

=
2

̺
, lim

x→±∞
Φ(x)

x
̺+m−1

2

=
2

̺+m− 1
.

Actually, since trivially ̺
2 6= ̺+m−1

2 , as observed in Remark 5.9 Lemma 5.8 is not directly applicable
to Φ. However, exploiting the fact that u0 ∈ L∞(Ω) and the quantity ‖u(t)−u‖∞ is non-expansive
(immediate consequence of (5.42)), we have that

|w(x, t)| ≤ ‖u0 − u‖∞
|u| = R

for all t > 0 and a.e. x ∈ Ω. Therefore the behaviour of Φ(x) for |x| large has no effect on Φ(w).
In view of that, we are allowed to modify Φ, for instance, as follows:

ΦR(x) =





Φ(x) for x ∈ [−R− 2, R]

Φ(R) +
∫ x
R y

̺
2
−1(R+ 1)

m−1
2 dy for x > R

Φ(−R− 2)−
∫ −R−2
x |y| ̺2−1(R+ 1)

m−1
2 dy for x < −R− 2

;

the function ΦR satisfies indeed all the hypotheses of Lemma 5.8 since

lim
x→+∞

ΦR(x)

x
̺
2

= lim
x→−∞

ΦR(x)

x
̺
2

=
2(R+ 1)

m−1
2

̺
.

Thus, being w = 0, we know that

‖ΦR(w)‖2;ν ≤ CΦR
‖∇ΦR(w)‖2;µ (5.49)

for a suitable constant constant CΦR
> 0. Moreover, as Φ(w) = ΦR(w), (5.49) together with

(5.48) give

d

ds
‖w(s)‖̺̺;ν ≤ −̺(̺− 1)m|u|m−1

C2
ΦR

‖ΦR(w(s))‖22;ν .

In view of the way ΦR was defined, clearly there exists a constant D = D(̺,m) > 0 such that

D−1|x|
̺
2 ≤ |Φ0(x)| ≤ |ΦR(x)| ∀x ∈ R ,

so that
d

ds
‖w(s)‖̺̺;ν ≤ −̺(̺− 1)m|u|m−1

C2
ΦR
D2

∥∥∥w
̺
2 (s)

∥∥∥
2

2;ν
= −C̺ |u|m−1 ‖w(s)‖̺̺;ν .

Solving the above differential inequality in the variable y(s) = ‖w(s)‖̺̺;ν and going back to the
original function u− u we finally obtain (5.46). �

Note that, from the proof above, the constant C appearing in (5.46) depends on ̺, m and R
also through the constant CΦR

from Lemma 5.8: this, in particular, implies that it is impossible
to deduce how C depends on ‖u0‖∞, therefore the result just proved is not trivially extendible to
data which do not belong to L∞(Ω) (recall that the existence of the constant CΦ in Lemma 5.8
was established by means of an argument by contradiction).

Remark 5.14. Notice that all the results stated above for a.e. t > 0 do in fact hold true for
all t > 0 provided weak energy solutions are considered, since the continuity property stated in
Remark 3.8 holds true also for solutions to the Neumann problem.
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Counterexamples to the L∞(Ω) convergence to the mean value. By means of an explicit
counterexample, we have seen in this section that, in general, if the sole zero-mean Poincaré
inequality (1.4) holds then the regularizing effect of equation (1.2) works up to L̺(Ω; ν) with ̺
strictly less than infinity. Also, by Corollary 5.12 we know that convergence to the mean value
for the solutions to (1.2) always takes place in all the L̺(Ω; ν) spaces, provided again ̺ < ∞.
Nonetheless it seems natural to ask whether, at least for regular initial data, uniform convergence
of solutions to their mean value holds true. Actually, the answer in general is negative, and we
shall now prove this fact through another counterexample. We stress that the construction of such
a counterexample works for all m > 1.

Indeed, consider equation (1.2) with the following choices:

Ω = (0, 1) , ρν(x) = xβ−2 , ρµ(x) = xβ , β > 1 , m ≥ 2 ;

in section 6.2 we shall see that such weights satisfy the zero-mean Poincaré inequality (1.4). We
look for a function r : R+ → (0, 1) regular, decreasing, with limt→∞ r(t) = 0 and such that the
function

û(x, t) =





0 for x ∈
[
0, r(t)2

]

2x
r(t) − 1 for x ∈

(
r(t)
2 , r(t)

]

1 for x ∈ (r(t), 1]

(5.50)

is a supersolution of (1.2). Since ûx(x, t) vanishes in neighbourhoods of x = 0 and x = 1 for all
t > 0, it is enough to check that û is a supersolution in the distributional sense: in other words,
it is certainly a supersolution as regards the boundary conditions, so it remains to verify that it
is a supersolution also as regards the equation. This amounts to asking that

ρν(x)ût(x, t) ≥ [ρµ]x (x) [û
m]x (x, t) + ρµ(x) [û

m]xx (x, t) in D′((0, 1)× (0,∞)). (5.51)

After some straightforward computations, one gets:

ût(x, t) =





0 for x ∈
[
0, r(t)2

]

−2r′(t)x
r2(t)

for x ∈
(
r(t)
2 , r(t)

]

0 for x ∈ (r(t), 1]

,

[ûm]x (x, t) =





0 for x ∈
[
0, r(t)2

]

2m
r(t)

(
2x
r(t) − 1

)m−1
for x ∈

(
r(t)
2 , r(t)

]

0 for x ∈ (r(t), 1]

,

[ûm]xx (x, t) = v(x, t)− 2m

r(t)
δx=r(t)(x, t) , (5.52)

where

v(x, t) =





0 for x ∈
[
0, r(t)2

]

4m(m−1)
r2(t)

(
2x
r(t) − 1

)m−2
for x ∈

(
r(t)
2 , r(t)

]

0 for x ∈ (r(t), 1]

and, of course, [ρµ]x (x) = βxβ−1. Since the contribution of the Dirac mass into (5.52) is negative,
we can neglect it, so that (5.51) holds true if

−xβ−2 2r
′(t)x
r2(t)

≥ 2mβxβ−1

r(t)

(
2x

r(t)
− 1

)m−1

+
4m(m− 1)xβ

r2(t)

(
2x

r(t)
− 1

)m−2

(5.53)

∀t > 0 , ∀x ∈
(
r(t)

2
, r(t)

)
.

Dividing (5.53) by xβ−1 we obtain

−2r′(t)
r2(t)

≥ 2mβ

r(t)

(
2x

r(t)
− 1

)m−1

+
4m(m− 1)x

r2(t)

(
2x

r(t)
− 1

)m−2

. (5.54)
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Clearly, for all fixed t > 0, (5.54) holds true for all x ∈ (r(t)/2, r(t)) if and only if it holds true at
x = r(t) (recall that m ≥ 2). Set then x = r(t) in the right hand side of (5.54) in order to get

r′(t)
r(t)

≤ −m(β + 2(m− 1)) = −C(m,β) < 0 .

Integrating between 0 and t gives then

r(t) ≤ r(0)e−C(m,β)t . (5.55)

Providing that one chooses r(0) small enough, a function r(t) equal to the right-hand side of
(5.55) certainly has all the requirements listed in the beginning of the construction. So we have
proved that there exists a supersolution to (1.2) of the type (5.50). In particular, the solution
to (1.2) associated with any positive datum u0(x) ≤ û(x, 0) will be less or equal than û(x, t) for
all t > 0, and as a consequence it will be prevented from converging uniformly to the constant
function corresponding to its mean value u > 0 since it is bounded to be zero in (0, r(t)/2) for
any t > 0. It is easy to check (by a time scaling argument and by taking r(0) small enough) that
the same applies to solutions corresponding to any uniformly bounded initial datum which is less
or equal than zero in a neighbourhood of x = 0 and has positive mean value.

As the reader may note, the assumption m ≥ 2 we made in the beginning cannot be relaxed,
since for m ∈ (1, 2) the right hand side of (5.53) blows up as x → r(t)/2. However, in that case
we are still able to build a similar supersolution. Indeed, upon setting

ũ(x, t) =

{
x

r(t) for x ∈ [0, r(t)]

1 for x ∈ (r(t), 1]

and performing analogous computations as above one arrives at

− r′(t)
r2(t)

≥ mβxm−1

rm(t)
+
m(m− 1)xm−1

rm(t)
, (5.56)

which must be valid for x ∈ (0, r(t)). The right hand side of (5.56) is clearly maximized at
x = r(t), so that by substituting such value into it and solving the resulting differential inequality
one obtains again (5.55) (up to a different positive constant C(m,β)). Unlike û, the supersolution
ũ has not zero derivative at x = 0: nonetheless, this turns out not to matter. In fact, the space
of absolutely continuous functions in [0, 1] which vanish in a neighbourhood of x = 0 is dense in
W 1,2((0, 1);xα, xβ), provided α ∈ R and β ≥ 1 (see the proof of [24, Th. 2.11]). This means that
in order to prove that ũ is a supersolution of (1.2) it is enough to test it on functions which vanish
in a neighbourhood of x = 0, so that its behaviour at x = 0 is not relevant. The fact that ũ is
zero at x = 0 for all t > 0 is then sufficient in order to prevent uniform convergence to the mean
value u > 0 for the class of data discussed above.

6. Some examples of weighted Poincaré inequalities

In the following, we list actual examples of domains Ω ⊂ R
N and weights ρν , ρµ with respect

to which weighted Poincaré inequalities hold. The reader should keep in mind that we just aim
at stating some significant and explicit results: an exhaustive description of the known theory is
far beyond our purposes (as well as hopeless).

6.1. Poincaré inequalities in W 1,2
0 (Ω; ν, µ). We begin with the one-dimensional case, where

necessary and sufficient conditions are available. Afterwards we shall consider also N -dimensional
domains.

The case N = 1. Let Ω = (a, b), the cases a = −∞ and b = +∞ being allowed. We look
for weights ρν , ρµ such that the Poincaré inequality (sometimes it is also called Hardy inequality,
having in mind the pioneering weighted inequalities originally proved by G. H. Hardy)

‖η‖2;ν ≤ CP ‖η′‖2;µ (6.1)

holds for every η belonging to a suitable functional space. We shall mainly refer to [36]. Accor-
ding to the notation used therein, we indicate as ACL(a, b) the space of all functions η : (a, b) → R

which are locally absolutely continuous and such that limx→a+ η(x) = 0. The space ACR(a, b) is
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understood likewise, replacing a+ with b−, while ACLR = ACL∩ACR. Since C∞
c (a, b) is included

in ACLR(a, b) and it is dense in W 1,2
0 ((a, b); ν, µ), the validity of (6.1) in ACLR(a, b) implies in

turn the validity of the same inequality in W 1,2
0 ((a, b); ν, µ).

Necessary and sufficient conditions. From [36, Th. 1.14] we have that (6.1) holds in ACL(a, b)
if and only if the weights satisfy the following condition:

BL(a, b, ν, µ) = sup
x∈(a,b)

(∫ b

x
ρν(y) dy

)(∫ x

a
ρµ(y)

−1 dy

)
<∞ . (6.2)

Similarly, (6.1) holds in ACR(a, b) if and only if

BR(a, b, ν, µ) = sup
x∈(a,b)

(∫ x

a
ρν(y) dy

)(∫ b

x
ρµ(y)

−1 dy

)
<∞ . (6.3)

It is then possible to show [36, Th. 8.8] that the existence of a constant c ∈ [a, b] such that, setting
conventionally BL(a, a, ·, ·) = BR(b, b, ·, ·) = 0,

BL(a, c, ν, µ) <∞ , BR(c, b, ν, µ) <∞ (6.4)

is necessary and sufficient for the validity of (6.1) in ACLR(a, b). Actually, the same result holds
replacing ACLR(a, b) with the space of absolutely continuous functions on (a, b) with compact
support. For a more general discussion about inequality (6.1), possibly involving weights which
are not absolutely continuous with respect to the Lebesgue measure, see [39, Sec. 1.3] or also the
pioneering work of B. Muckenhoupt [40, 41].

Some more direct formulas for weights ρν(x) and ρµ(x) giving rise to Poincaré inqualities are
known. For instance [36, Sec. 2.5], given any function λ : (a, b) → R ∈ C1(a, b) such that λ′ > 0
and limx→b− λ(x) = +∞, the weights

ρν(x) =
eλ(x)λ′(x)

(
eλ(x) − eλ(a)

)2 , ρµ(x) =
1

eλ(x)λ′(x)

automatically fulfil (6.2) (λ(a) may be −∞).
The following results can be obtained just by checking through straightforward computations

when condition (6.4) and the corresponding conditions given in [36, Th. 8.8] for the validity of
Sobolev-type inequalities are satisfied. See also [36, Sec. 6].
Elementary weights. Throughout the discussion, α and β will always be real parameters. On
the interval (0,+∞), consider the power-type weights

ρν(x) = xα , ρµ(x) = xβ . (6.5)

One can show that the Poincaré inequality (6.1) holds in W 1,2
0 ((0,+∞);xα, xβ) (with a slight

abuse of notation, sometimes we shall replace ν, µ with ρν , ρµ) if and only if β 6= 1 and α = β− 2.
Furthermore, no Sobolev-type inequality holds. Such weights, basically, correspond to the original
Hardy’s inequality.
Given any interval (0, b), with b ∈ (0,+∞), we have that the Poincaré inequality holds in the

space W 1,2
0 ((0, b);xα, xβ) if and only if either β 6= 1 and α ≥ β − 2 or β = 1 and α > −1. Also

Sobolev-type inequalities are valid provided α > β − 2.
Similarly, given any interval (a,+∞) (a > 0), the Poincaré inequality holds inW 1,2

0 ((a,+∞);xα, xβ)
if and only if either β 6= 1 and α ≤ β − 2 or β = 1 and α < −1, while Sobolev-type inequalities
are valid provided α < β − 2.

Now, let us set

ρν(x) =
1

x
|log x|α , ρµ(x) = x |log x|β (6.6)

on the interval (0, 1). Similarly to the power-type weights, it is easy to prove that the Poincaré

inequality holds in W 1,2
0 ((0, 1); 1x |log x|

α , x |log x|β) if and only if β 6= 1 and α = β − 2, and in
this case no Sobolev-type inequality holds.

Finally, consider the exponential weights

ρν(x) = eαx , ρµ(x) = eβx



32 GABRIELE GRILLO, MATTEO MURATORI AND MARIA MICHAELA PORZIO

on the real line. The Poincaré inequality holds in W 1,2
0 (R; eαx, eβx) if and only if α = β 6= 0, and

for such a choice no Sobolev-type inequality holds.
An example in Riemannian geometry. For the sake of simplicity we consider the following
example only in the radial setting (see below for the meaning of the term “radial” in this example).
In fact, weighted one-dimensional inequalities on (0,+∞) admit in some cases a geometric inter-
pretation which we now sketch. In fact, such construction can be performed e.g. when ̺ν = ̺µ.
We consider a C2 Riemannian manifold M , of dimension N , with a pole o given on it and whose
metric is given, in polar or spherical coordinates around o, as

ds2 = dr2 + ψ(r)2dΘ2. (6.7)

Here dΘ2 denotes the canonical metric on the Euclidean unit sphere S
N−1, the function ψ is

assumed to be smooth and positive on (0,+∞), with ψ(0) = ψ′′(0) = 0, ψ′(0) = 1 (the prime
indicating right derivative), and r is by construction the Riemannian distance between a point
whose coordinates are (r,Θ) and o. The conditions on ψ ensure that M is C2 in a neighborhood
of o. A manifold satisfying the above conditions is said to be a Riemannian model with pole o.
The running assumptions entail that M is complete and that the cut locus of o is empty.

The Riemannian Laplacian of a scalar function f on M is given, in the above coordinates, by

∆f(r, θ1, . . . , θN−1) =

=
1

ψ(r)N−1

∂

∂r

[
ψ(r)N−1∂f

∂r
(r, θ1, . . . , θN−1)

]
+

1

ψ(r)2
∆SN−1f(r, θ1, . . . , θN−1) ,

where ∆SN−1 is the Riemannian Laplacian on the unit sphere S
N−1. In particular, for radial

functions, namely functions depending only on the geodesic distance r, one has

∆f(r) =
1

ψ(r)N−1

[(
ψ(r)N−1

)
f ′(r)

]′
,

where the prime denotes, for radial functions, derivative w.r.t. r. Consider the inequality
∫ ∞

0
f(r)2ψ(r)N−1 dr ≤ C

∫ ∞

0
f ′(r)2ψ(r)N−1 dr ∀f s.t. supp f ⊂ [0, b] , f ′(0) = 0 (6.8)

for a suitable b = b(f) > 0. If (6.8) holds, then it is easy to realize that it can be extended to all
radial functions in W 1,2(M). By construction, the volume element on M is ψ(r)N−1 dr dωN−1,
where dωN−1 is the volume element on the Euclidean unit sphere S

N−1. Inequality (6.8) (or its
extension to all radial function in W 1,2(M)) is therefore equivalent to the fact that σ(−∆r) ⊂[
1
C ,+∞

)
, where ∆r is the Laplacian on radial functions and σ(L) denotes the L2 spectrum of

an operator L. Necessary and sufficient conditions for the existence of a spectral gap for −∆ are
known, and of course their validity implies the existence of a spectral gap for −∆r as well. From
[26, Th. 2.10] one then easily argues that a spectral gap for −∆ holds if and only if there exists
Q > 0 (independent of r, ξ) such that

(∫ ξ

0
ψ(s)N−1 ds

)(∫ r

ξ

1

ψ(s)N−1
ds

)
≤ Q ∀r > 0, ξ ∈ (0, r) . (6.9)

Therefore under condition (6.9) the L2 spectrum of −∆r is bounded away from zero.
As a consequence of the above discussion, we stress that whenever ψ(s) satisfies (6.9) then

radial solutions to the Porous Media Equation on the Riemannian model M associated to such
ψ enjoy the Lq0-L̺ regularizing property discussed in section 4. We omit the details, and refer
to [30] for a discussion of the technical conditions concerning the validity, or lack of validity, of
Sobolev inequalities on M .

The case N ≥ 1. It is well-known, see e.g. [36, Sec. 15], that the so called Muckenhoupt classes
of weights originally introduced in [41] have an important role in weighted functional inequalities.
In fact, Muckenhoupt weights are defined by a sort of generalization of (6.4) for N -dimensional
domains.

To give explicit examples, we refer again to [36].
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Bounded domains. Let Ω ⊂ R
N be a bounded Lipschitz domain. We indicate as δ(x) :=

dist (x, ∂Ω) the distance function of Ω. Consider a parameter β < 1. From [36, Th. 21.5] we have
that the Poincaré inequality

‖v‖2;ν ≤ CP ‖∇v‖2;µ (6.10)

holds for all v ∈W 1,2
0 (Ω; δα, δβ) if and only if α ≥ β−2. Moreover, Sobolev-type inequalities hold

if in addition α > β−2. When β ≥ 1 it is possible to prove that W 1,2
0 (Ω; δβ , δβ) =W 1,2(Ω; δβ , δβ)

[24, Th. 2.11]: this is enough to conclude that for any α ∈ R and β ≥ 1 the Poincaré inequality

cannot be valid in W 1,2
0 (Ω; δα, δβ).

Exterior domains. If Ω ⊂ R
N is an exterior domain (namely the complement of any compact

set) such that infx∈Ω |x| > 0, then the Poincaré inequality (6.10) holds in W 1,2
0 (Ω; |x|α, |x|β) if

and only if β 6= 2 − N and α ≤ β − 2 [36, Ex. 21.10]. Under these conditions, Sobolev-type
inequalities are valid either if β > 2−N or if β < 2−N and α < β − 2. The same results apply
with respect to the weights (|x| + 1)α, (|x| + 1)β replacing Ω with R

N , provided β > 2 − N ; if
instead β < 2−N then the Poincaré inequality (6.10) in this case does not hold (indeed one can

prove that constants belong to W 1,2
0 (RN ; |x|α, |x|β) if α ≤ β − 2 < −N). For the limiting case

β = 2 − N and the peculiar functional inequalities satisfied for a suitable value of α see also [8]
and [12].

Finally, let us also consider exponential weights on an exterior domain Ω ⊂ R
N as above and

two parameters α, β (β 6= 0). The Poincaré inequality holds in W 1,2
0 (Ω; eα|x|, eβ|x|) if and only if

α ≤ β [36, Ex. 21.12]. Moreover, Sobolev-type inequalities are valid either if β > 0 or if β < 0

and α < β. If β > 0 the same results apply for W 1,2
0 (RN ; eα|x|, eβ|x|), while if β < 0 the Poincaré

inequality (6.10) does not hold (again, constants belong toW 1,2
0 (RN ; eα|x|, eβ|x|) when α ≤ β < 0).

6.2. Zero-mean Poincaré inequalities inW 1,2(Ω; ν, µ). In the framework of zero-mean Poincaré
inequalities, less results are available with respect to those known for the Poincaré inequalities.
See for example [5] and references quoted for a clever approach generalizing the Bakry-Emery
criterion. We shall anyway, as before, confine ourselves to a list of significant examples, starting
with necessary and sufficient conditions when N = 1.

The case N = 1. We consider an interval (a, b), the cases a = −∞ and b = +∞ being allowed.
Given two weights ρν , ρµ defined on it, with ν(a, b) <∞, consider the quantities

KL(a, b, ν, µ) = sup
x∈(a,b)

(∫ b

x
ρν(y) dy

)(∫ x

a

(∫ y

a
ρν(t) dt

)2

ρµ(y)
−1 dy

)
, (6.11)

KR(a, b, ν, µ) = sup
x∈(a,b)

(∫ x

a
ρν(y) dy

)(∫ b

x

(∫ b

y
ρν(t) dt

)2

ρµ(y)
−1 dy

)
. (6.12)

From [14, Th. 1.4] we have that the zero-mean Poincaré inequality

‖η − η‖2;ν ≤MP ‖η′‖2;µ (6.13)

holds for all η ∈W 1,2((a, b); ν, µ) if and only if

KL(a, b, ν, µ) +KR(a, b, ν, µ) <∞ . (6.14)

Now we shall see some explicit examples of weights depending on elementary functions that
satisfy condition (6.14). To infer other properties such as the validity of Sobolev inequalities we
still refer to the results provided by Theorem 1.4 of [14].
Again, α and β are real parameters.
Elementary weights: an approach through necessary and sufficient conditions. Given
b ∈ (0,+∞), on the interval (0, b) consider the power-type weights (6.5). By means of direct com-
putations, one can show that the zero-mean Poincaré inequality (6.13) holds inW 1,2((0, b);xα, xβ)
if and only if α > −1 (finiteness of the measure) and α ≥ β − 2. We have also Sobolev-type ine-
qualities if in addition α > β − 2.
A similar result holds for power-type weights on the intervals (a,+∞) (a > 0). That is, the zero
mean Poincaré inequality holds in W 1,2((a,+∞);xα, xβ) if and only if α < −1 and α ≤ β − 2,



34 GABRIELE GRILLO, MATTEO MURATORI AND MARIA MICHAELA PORZIO

while Sobolev-type inequalities hold provided α < β − 2.
Given c ∈ (0, 1), consider the logarithmic weights (6.6) on the intervals (0, c). The zero-mean

Poincaré inequality holds in W 1,2((0, c); 1x |log x|
α , x |log x|β) if and only if α < −1 and α ≤ β− 2.

Sobolev-type inequalities hold if in addition α < β − 2.
Finally, let us also mention the following exponential weights on the real line:

ρν(x) = eα|x| , ρµ(x) = eβ|x| .

The zero-mean Poincaré inequality holds in W 1,2(R; eα|x|, eβ|x|) if and only if α < 0 (finiteness of
the measure) and α ≤ β. Sobolev-type inequalities also hold provided α < β.
Elementary weights: an alternative approach. In some cases, it is possible to deduce the
validity of the zero-mean Poincaré inequality in W 1,2((a, b); ν, µ) also by suitably exploiting the
validity of other functional inequalities. We sketch this approach through two examples.

In [19, Ex. 5.4] it is proved that, given any a > 0, the inequality

inf
c∈R

‖η − c‖2;xα ≤MI‖η′‖2;xβ ∀η ∈W 1,2((a,+∞);xα, xβ)

holds providing that either β 6= 1 and α ≤ β − 2 or β = 1 and α < −1. This result is established
by using the local absolute continuity of the functions belonging to W 1,2((a,+∞); ν, µ) and by
showing that the quantity ‖η−c‖2;xα can be bounded with ‖η′‖2;xβ (up to a multiplicative constant)
when c is the value of η(x) at some point x ∈ (a,+∞) or the limit of η(x) as x → +∞ (after
having proved that for suitable α, β such limit exists). The ν-measure of (a,+∞) is finite if and
only if α < −1, so that in this case (see Proposition 2.7) also the zero-mean Poincaré inequality

‖η − η‖2;xα ≤MP ‖η′‖2;xβ (6.15)

holds in W 1,2((a,+∞);xα, xβ) in the above ranges of the parameters α, β. Of course we retrieve
the same result as the one previously obtained by necessary and sufficient conditions.

Through a similar technique, we are able to prove in an alternative way that the zero-mean
Poincaré inequality holds in W 1,2(R; eα|x|, eα|x|) (let α < 0). In fact, from [36, Ex. 6.12] we know
that the Poincaré inequality (6.1) holds both in ACR(−∞, 0) (for ρν(x) = ρµ(x) = e−αx) and
ACL(0,+∞) (for ρν(x) = ρµ(x) = eαx). This implies in turn the existence of a suitable constant
M > 0 such that

‖η − η(0)‖2;eα|x| ≤M ‖η′‖2;eα|x|

for all η ∈W 1,2(R; eα|x|, eα|x|), and so the validity of (6.15) in W 1,2(R; eα|x|, eα|x|) again by Propo-
sition 2.7.

The case N ≥ 1. Now we present some specific examples of weighted zero-mean Poincaré ine-
qualities in the N -dimensional context, both for bounded domains and the euclidean space.
Bounded domains. If Ω ⊂ R

N is a bounded star-shaped domain, w : (0,+∞) → (0,+∞) is any
increasing function which satisfies the weak concavity property (namely, w(sr) ≥ sw(r) ∀s ∈ (0, 1))
and k is any integer, then [13, Th. 1] there exists a constantMP such that the following inequality
holds: ∫

Ω
|η(x)− η|2 w(δ(x))kdx ≤M2

P

∫

Ω
|∇η(x)|2 w(δ(x))kdx ∀η ∈ C1(Ω) . (6.16)

Of course in this case ν and µ satisfy the hypotheses of Proposition 2.3, so that by density (6.16)
can be extended to the whole W 1,2(Ω; (w ◦ δ)k, (w ◦ δ)k). As in [13, Cor. 2], if we suitably choose
w and k we deduce that for any t ≥ 0 the zero-mean Poincaré inequality holds in W 1,2(Ω; δt, δt).
Actually, in such a particular case, the validity of the zero-mean Poincaré inequality had already
been proved in [31] for more general domains (the so called bounded John domains, a much wider
class which includes Lipschitz domains).

If Ω ⊂ R
N is a bounded convex domain, from [15, Th. 1.1] we have that the inequality

‖v − v‖2;δβ−2 ≤MP ‖∇v‖2;δβ (6.17)

holds inW 1,∞
loc (Ω)∩W 1,2(Ω; δβ−2, δβ), that is in the wholeW 1,2(Ω; δβ−2, δβ) (again by Proposition

2.3), provided β ≥ 2. The boundedness of the domain implies in turn that (6.17) continues to
hold if one replaces δβ−2 with δγ , for any γ ≥ β − 2 (Proposition 2.8). Of course if γ = β we
recover the case discussed above. Sobolev-type inequalities hold providing that γ > β − 2, while
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at the limit value γ = β − 2 there is no Sobolev embedding (see [15, Th. 1.1],[36, Ex. 18.15, Th.
19.9, Th. 19.11]).

Still in the framework of bounded domains, let us also mention the main result of [18] (obtained
by means of the theory of fractional integrals). Theorem 3.3 of that paper states that (in the
particular case p = q = 2), given the parameter α ≤ 2, the inequality

inf
c∈R

‖v − c‖2;σ ≤MI ‖∇v‖2;δασ

holds for all v ∈ W 1,∞
loc (Ω) ∩W 1,2(Ω;σ, δασ) providing that Ω ⊂ R

N is a bounded John domain
and σ is a weight which belongs to the Muckenhoupt class A2, namely such that

sup
Q⊂RN

1

|Q|

(∫

Q∩Ω
σ(x) dx

)(∫

Q∩Ω
σ(x)−1 dx

)
<∞ , (6.18)

being Q is any N -dimensional cube. To give an explicit example of a weight σ which fulfils (6.18),
take Ω = (0, 1)N and

σ(x) =
[
xi1(1− xi1)xi2(1− xi2) . . . xij (1− xij )

] 1
2 ,

where {i1 < i2 < . . . < in} is any n-tuple (let n ≤ N) of indexes. It can be shown by straightfor-
ward computations that for such a choice (6.18) holds. Actually, in this case, also Sobolev-type
inequalities are valid (use [18, Th. 4.1]).
The case Ω = R

N. Consider the following power-type weights defined on R
N , where for simplicity

we assume N ≥ 3 (see [8] for the cases N = 1, 2):

ρν(x) = (1 + |x|2)α−1 , ρµ(x) = (1 + |x|2)α .

Suppose that α < 1−N
2 (finiteness of the ν-measure of RN ). In [7] it was proved that the zero-mean

Poincaré inequality

‖v − v‖2;ν ≤MP ‖∇v‖2;µ
holds for all v ∈ W 1,2(RN ; (1 + |x|2)α−1, (1 + |x|2)α). In the subsequent paper [8] the authors
also provided the exact value of the sharp constants MP for every α (Theorem 2). From [36,
Ex. 20.6] we know that for such weights no Sobolev-type embedding holds (that is, no Sobolev-
type inequality is valid). Replacing the weight ρν(x) by a generic power (1 + |x|2)γ , thanks to
Proposition 2.8 we have that for γ < α−1 the zero-mean Poincaré inequality holds inW 1,2(RN ; (1+
|x|2)γ , (1 + |x|2)α) as well. However, from [36, Exs. 20.6, 21.10] we can infer that for such values
of the parameter γ also Sobolev-type inequalities are valid.

Finally, let us mention the Gaussian weights (a > 0)

ρν(x) = ρµ(x) = e−a|x|2 .

It is well-known that in the space W 1,2(RN ; e−a|x|2 , e−a|x|2) the zero-mean Poincaré inequality
holds and that no Sobolev-type inequality is valid. These results can be justified through different
methods: we quote the one that exploits the properties of Logarithmic Sobolev Inequalities [23,
29] and their connection to the hypercontractivity of the semigroups generated by suitable self-
adjoint differential operators (see [16, Ch. 2 and Sec. 4.3], [22] and references quoted). Here the

self-adjoint operator dealt with is the weighted negative Laplacian (namely −ea|x|2div(e−a|x|2∇))

defined in L2(RN , e−a|x|2).
The same results apply if one replaces a|x|2 with x′Ax, where A is any positive definite matrix.

Remark 6.1. The distance function δ of a domain Ω ⊂ R
N , which we often used above, in

general need not be more regular than Lipschitz. However, thanks to a well-known theorem due

to Whitney [48, Th. VI.2], it is always possible to construct a function δ̃ which is C∞(Ω) and
equivalent to δ, so that in all the examples we have seen the weights considered can be locally

regularized without affecting the validity of the mentioned results just by replacing δ with δ̃.
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6.3. Explicit weights. For the reader’s convenience in the sequel we list, among the examples we
have seen, all the cases of couples of weights for which Poincaré inequalities hold but Sobolev-type
inequalities do not, so that the results we provided for the WPME are in fact new.

For the following weights, Poincaré inequalities hold in W 1,2
0 but no Sobolev-type inequality holds

in the same space:

• Intervals:

◦ (xβ−2, xβ) for β 6= 1 on (0,+∞), (0, b) or (a,+∞);

◦
(
1
x | log x|β−2, x| log x|β

)
for β 6= 1 on (0, 1);

◦ (eαx, eαx) for α 6= 0 on R;

• Bounded Lipschitz domains :

◦ (δβ−2, δβ) for β < 1;

• Exterior domains:

◦ (|x|β−2, |x|β) for β < 2−N ;

◦ (eα|x|, eα|x|) for α < 0.

For the following weights, zero-mean Poincaré inequalities hold in W 1,2 but no Sobolev-type ine-
quality holds in the same space:

• Intervals:

◦ (xβ−2, xβ) for β > 1 on (0, b) or for β < 1 on (a,+∞);

◦
(
1
x | log x|β−2, x| log x|β

)
for β 6= 1 on (0, c), with c ∈ (0, 1);

◦ (eα|x|, eα|x|) for α < 0 on R;

• Bounded convex domains :

◦ (δβ−2, δβ) for β ≥ 2;

• The Euclidean space R
N :

◦ ((1 + |x|2)α−1, (1 + |x|2)α) for α < 1− N
2 ;

◦ (e−a|x|2 , e−a|x|2) for a > 0.
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