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Abstract. The purpose of this paper is to prove local upper and lower
bounds for weak solutions of semilinear elliptic equations of the form
−∆u = cup, with 0 < p < ps = (d + 2)/(d − 2), defined on bounded

domains of Rd, d ≥ 3, without reference to the boundary behaviour. We
give an explicit expression for all the involved constants. As a conse-
quence, we obtain local Harnack inequalities with explicit constants, as
well as gradient bounds.

Mathematics Subject Classification (2010). 35B45, 35B65, 35K55, 35K65.

Keywords. Local bounds, semilinear elliptic equations, regularity, Har-
nack inequality.

Contents

1. Introduction 2
2. Preliminaries. Local energy estimate 3
2.1. More general nonlinearities 6
3. Local Upper Bounds 7
3.1. Local upper bounds I. The upper Moser iteration 7
3.2. Local upper bounds II. Linear case with unbounded coefficients 17
3.2.1. Energy Estimates and Reverse Poincaré inequalities 17
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1. Introduction

In this paper we obtain local upper and lower estimates for the weak solutions
of semilinear elliptic equations of the form

−∆u = f(u) (1.1)

posed in a bounded domain Ω ⊂ R
d. The choice of right-hand side we have

in mind is f(u) = λup with λ, p > 0. The range of exponents of interest will
be 1 < p < ps := (d+ 2)/(d− 2) if d ≥ 3, or p > 1 if d = 1, 2. This problem
is one of the most popular problems in nonlinear elliptic theory and enjoys
a large bibliography [1, 7, 8, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32,
33, 34, 35, 36, 37] for different p, and [6, 10] for the limit case p = ps.

1

We focus our attention on obtaining local estimates for solutions that are
defined inside the domain without reference to their boundary behaviour.
This is the notion of solution we use.

Definition 1.1. A local weak solution to equation −∆u = f(u) in Ω is defined

as a function u ∈ W 1,2
loc (Ω) with f(u) ∈ L1

loc(Ω) which satisfies
ˆ

K

[∇u · ∇ϕ− f(u)ϕ] dx = 0 (1.2)

for any subdomain with compact closure K ⊂ Ω and all bounded ϕ ∈ C1
0 (K).

Our aim is to contribute quantitative estimates in the form of upper bounds
for solutions of any sign, lower bounds for positive solutions, and also local
Harnack inequalities and gradient bounds. By quantitative estimates we mean
keeping track of all the constants during the proofs. As far as we know, there
does not exist in literature a systematic set of quantitative estimates of local
upper and lower bounds, nor of the Harnack constant, in the explicit form
we provide here. We recall that the quantitative control of the constants of
such inequalities may have an important role in the applications; it is needed
for instance in the results of [2] on the asymptotic properties of solutions of
the fast diffusion equation in bounded domains.

Contents and main results. We start with a section devoted to basic energy
estimates. We then consider in Section 3 the upper estimates for nonnegative
solutions of the equation −∆u = λup. The exponent range is 0 ≤ p < ps;
this is a main restriction of the theory, as it is already well known. See also
[9] for L∞-bounds of different type for Equation (1.1) with more general
nonlinearities.
Our first main result, Theorem 3.1, can be considered as a smoothing ef-

fect with very precise constants; it is much simpler for p ≤ 1, but we also
obtain the more complicated and novel estimates for 1 < p < ps. Next, we
obtain local upper estimates for −∆u = b(x)u with unbounded coefficient b
in Theorem 3.8 and we apply them to the case b(x) = up−1 in Theorem 3.9.

1We refrain from attempting to give a complete bibliography for this nowadays classical
problem.
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In Section 4 we prove quantitative lower estimates, Theorems 4.6, 4.8. We
prove Harnack inequalities in Theorems 5.1, 5.2 and 5.3. All of these results
appear to be well known from a qualitative point of view. Let us mention
that, as far as we know, the Harnack inequality for solutions to (1.2) when
p > 1 is not stated explicitly in the literature. The fact that the “constant”
involved has to depend on u when pc ≤ p < ps is confirmed by the results
of [4], [16] applied to separation of variable solutions of parabolic problems,
see also the very recent monograph [17]. This is also related to the fact that,
in the range pc ≤ p < ps, there exist (very weak) singular solutions. Notice
also that in such a range the notion of weak and very weak solution is really
different, cf. [15, 25, 28, 29, 30, 31].
In Section 6 we derive quantitative absolute upper (for 1 < p < pc) and

lower bounds (for 0 ≤ p < 1) which are new as far as we know, at least from
a quantitative point of view, cf. Theorem 6.1. Universal (or absolute) upper
bounds for weak solutions defined in an open subset of Rd in the whole range
(1, ps) follow as a consequence of the works of Dancer [11, 12] on classical
solutions, and from the fact that weak solutions are indeed classical as can be
proved by a standard bootstrap argument. Weak solutions are classical also
when p = ps, as proved by Brezis and Kato [5]. We do not obtain quantitative
versions of these absolute upper bounds in the intermediate range [pc, ps) with
our methods.
The last section is devoted to quantitative gradient estimates, cf. Theorem

7.2, and absolute upper bounds for the gradient when 1 < p < pc, cf. Theorem
7.3.
Much of the known theory takes into account boundary conditions of dif-

ferent types: Dirichlet, Neumann, Robin, or other. Our results apply to all
those cases. We will study the precise estimates for the Dirichlet problem in
an upcoming paper [3].
Finally, the authors are grateful to A. Farina for relevant information on

the topic of absolute bounds.

2. Preliminaries. Local energy estimate

We shall pursue in the sequel the well-known idea that local weak solutions
satisfy reverse Sobolev or Poincaré inequalities. Such local reverse inequalities
are the key to prove local upper and lower estimates in the next sections, and
indeed they imply that such functions are Hölder continuous.

Lemma 2.1 (Energy Estimates). Let Ω ⊂ R
d be a bounded domain, and let

p ≥ 0 and λ > 0. Let u be a local nonnegative weak solution in Ω to −∆u =
λup. Then the following energy equality holds true for any δ > 0 , α 6= −1
and any positive test function ϕ ∈ C2(Ω) that is compactly supported in Ω:

4α

ˆ

Ω

∣

∣∇
(

(u+ δ)
α+1
2

)

∣

∣

2
ϕ dx = λ(α+ 1)2

ˆ

Ω

up(u+ δ)αϕ dx

+ (α+ 1)

ˆ

Ω

(u+ δ)α+1∆ϕ dx.

(2.1)
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Moreover, for any δ ≥ 0 we have the Caccioppoli estimates

λ

ˆ

Ω

up

u+ δ
ϕ dx+

ˆ

Ω

∣

∣∇ log(u+ δ)
∣

∣

2
ϕ dx ≤

ˆ

Ω

|∇ϕ|2
ϕ

dx. (2.2)

Local subsolutions u of −∆u ≤ λup satisfy, for α 6= −1 and δ > 0:

4α

ˆ

Ω

∣

∣∇
(

(u+ δ)
α+1
2

)

∣

∣

2
ϕ dx ≤ λ(α+ 1)2

ˆ

Ω

up(u+ δ)αϕ dx

+ (α+ 1)

ˆ

Ω

(u+ δ)α+1∆ϕ dx ,

(2.3)

while local supersolution −∆u ≥ λup satisfy, for any α 6= −1 and δ > 0:

4α

(α+ 1)2

ˆ

Ω

∣

∣∇
(

(u+ δ)
α+1
2

)

∣

∣

2
ϕ dx ≥ λ

ˆ

Ω

up(u+ δ)αϕdx

+
1

α+ 1

ˆ

Ω

(u+ δ)α+1∆ϕdx ,

(2.4)

and the Caccioppoli (2.2) estimates also work.

Remark. Notice that when α > −1, we can let δ = 0 in the energy identity
(2.1) to get

4α

ˆ

Ω

∣

∣∇
(

u
α+1
2

)

∣

∣

2
ϕdx = λ(α+ 1)2

ˆ

Ω

up+αϕ dx+ (α+ 1)

ˆ

Ω

uα+1∆ϕ dx.

(2.5)
The same remark applies to subsolutions:

4α

ˆ

Ω

∣

∣∇
(

u
α+1
2

)

∣

∣

2
ϕ dx ≤ λ(α+ 1)2

ˆ

Ω

up+αϕ dx+ (α+ 1)

ˆ

Ω

uα+1∆ϕ dx

(2.6)

Proof. Let ϕ ∈ C2(Ω) ∩C1
0 (Ω) and δ ≥ 0. Multiply −∆u by (u+ δ)αϕ, with

α 6= −1 and integrate by parts to get

−
ˆ

Ω

ϕ(u+ δ)α∆u dx =

ˆ

Ω

∇ϕ ·
(

∇u
)

(u+ δ)α dx

+ α

ˆ

Ω

ϕ(u+ δ)α−1
∣

∣∇u
∣

∣

2
dx

= − 1

α+ 1

ˆ

Ω

(u+ δ)α+1∆ϕ dx

+
4α

(α+ 1)2

ˆ

Ω

∣

∣∇(u+ δ)
α+1
2

∣

∣

2
ϕ dx.

(2.7)

For local weak solutions of −∆u = λup, the above equality immediately
gives the energy identity (2.1) for α 6= −1. Similar considerations hold, in
the stated range of α, for sub and supersolutions. To derive the Cacciopoli
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estimate we use the test function ϕ/(u+ δ) to get

0 ≤ λ

ˆ

Ω

up

u+ δ
ϕdx = −

ˆ

Ω

ϕ

u+ δ
∆u dx

= −
ˆ

Ω

ϕ

(u+ δ)2
∣

∣∇u
∣

∣

2
dx+

ˆ

Ω

∇ϕ · ∇u

u+ δ

√
ϕ

√
ϕ
dx

≤ −
ˆ

Ω

ϕ
∣

∣∇ log(u+ δ)
∣

∣

2
dx+

1

2

ˆ

Ω

|∇ϕ|2
ϕ

dx+
1

2

ˆ

Ω

∣

∣∇ log(u+ δ)
∣

∣

2
ϕ dx

≤ −1

2

ˆ

Ω

ϕ
∣

∣∇ log(u+ δ)
∣

∣

2
dx+

1

2

ˆ

Ω

|∇ϕ|2
ϕ

dx ,

where we have used the inequality a · b ≤ (|a|2 + |b|2)/2.

We shall also need the following particular computation.

Lemma 2.2. Fix two balls BR1 ⊂ BR0 ⊂⊂ Ω. Then there exists a test function
ϕ ∈ C1

0 (BR0), with ∇ϕ ≡ 0 on ∂Ω, which is radially symmetric and piecewise
C2 as a function of r, satisfies supp(ϕ) = BR0 and ϕ = 1 on BR1 , and
moreover satisfies the bounds

‖∇ϕ‖∞ ≤ 4

R0 −R1
and ‖∆ϕ‖∞ ≤ 4d

(R0 −R1)2
. (2.8)

Proof. Consider the radial test function defined on BR0

ϕ(|x|) =







































1 if 0 ≤ |x| ≤ R1

1− 2(|x|−R1)
2

(R0−R1)2
if R1 < |x| ≤ R0+R1

2

2(R0−|x|)2

(R0−R1)2
if R0+R1

2 < |x| ≤ R0

0 if |x| > R0

(2.9)

for any 0 < R1 < R0. We have

∇ϕ(|x|) =



























0 if 0 ≤ |x| ≤ R1 or if |x| > R0

− 4(|x|−R1)
(R0−R1)2

x
|x| if R1 < |x| ≤ R0+R1

2

− 4(R0−|x|)
(R0−R1)2

x
|x| if R0+R1

2 < |x| ≤ R0

and, recalling that ∆ϕ(|x|) = ϕ′′(|x|) + (d− 1)ϕ′(|x|)/|x|,

∆ϕ(|x|) =



























0 if 0 ≤ |x| ≤ R1 or if |x| > R0

− 4
(R0−R1)2

− d−1
|x|

4(|x|−R1)
(R0−R1)2

if R1 < |x| ≤ R0+R1

2

− 4
(R0−R1)2

− d−1
|x|

4(R0−|x|)
(R0−R1)2

if R0+R1

2 < |x| ≤ R0

As a consequence we easily obtain the bounds (2.8).
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Corollary 2.3 (Quantitative Caccioppoli Estimates). Let δ ≥ 0. Let Ω ⊂ R
d

be a bounded domain, and let p ≥ 0 and λ > 0. Let u be a local positive weak
solution in Ω to −∆u = λup. For any BR ⊂ BR0 ⊂⊂ Ω we have

λ

ˆ

BR

up

u+ δ
dx+

ˆ

BR

∣

∣∇ log(u+ δ)
∣

∣

2
dx ≤ 8ωdR

d
0

(R0 −R)2
(2.10)

where ωd denotes the volume of the unit ball in R
d .

Proof. We use (2.2), using the test function ϕ of Lemma 2.2 with R replacing
R1:

λ

ˆ

BR

up

u+ δ
dx+

ˆ

BR

∣

∣∇ log(u+ δ)
∣

∣

2
dx

≤ λ

ˆ

Ω

up

u+ δ
ϕdx+

ˆ

Ω

ϕ
∣

∣∇ log(u+ δ)
∣

∣

2
dx

≤
ˆ

Ω

|∇ϕ|2
ϕ

dx ≤ 8|supp(ϕ)|
(R0 −R)2

=
8ωdR

d
0

(R0 −R)2
.

Note that the case δ > 0 follows immediately from the case δ = 0 since u ≥ 0.

Remark. Letting δ = 0 in the Caccioppoli estimates (2.10) shows that

λ

ˆ

BR

up−1 dx ≤ 8ωdR
d
0

(R0 −R)2
(2.11)

When p > 1 this yields a local absolute upper bound for the local Lp−1-norm,
a fact that will allow to conclude an absolute local L∞-bound in the range
1 < p < pc := d/(d − 2), as we shall see in Section 6. This absolute upper
bound represents a novelty both because it is quantitative and because it
is local: to our knowledge this is the first absolute local bound for elliptic
equations. When p = 1 such absolute bound is easily seen to be impossible,
while in the case 0 < p < 1 we get an absolute lower bound for the local
Lp−1-integral, which is new, at least as far as we know. It will be used below.

2.1. More general nonlinearities

As long as we deal with local estimates, we can apply the method to a larger
class of operators and nonlinearities. (i) First of all, namely we can treat local
solutions of:

−∇ ·A(x, u,∇u) = λup , (2.12)

where A is a Carathéodory function such that

ν1|ξ|2 ≤ A(x, u, ξ) · ξ ≤ ν2|ξ|2 and |A(x, u, ξ)|2 ≤ ν2|ξ|2

for suitable constants 0 < ν1 < ν2. The proofs of the inequalities are the
same, and the results contain ν1 (resp. ν2) depending on whether you consider
subsolutions (resp. supersolutions).
(ii) Second we can consider supersolutions of the problem

−∇ ·A(x, u,∇u) = f(x, u) , (2.13)

as long as f(u) ≥ a0 u
p with a0 > 0, since they are supersolutions of

−∇ ·A(x, u,∇u) = a0 u
p.
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(iii) We can consider subsolutions of (2.13) with f(u) ≤ a1(u + b1)
p , and

a1, b1 ≥ 0. Then we can obtain an estimate for v = u+ b1.

The only thing that changes a bit are the energy estimates, and it is not so
difficult to keep track of the new constants throughout the proof. We have
decided here to consider the model case, to simplify the presentation and to
focus on the main ideas.

(iv) Other semilinear problems of this type are treated in the literature.
Thus, Ambrosetti and Prodi’s book [1] discusses right-hand sides of the form
f(x, u) = λu+c(u)+h(x), with a ∈ R , c(·) ∈ C0(R)∩L∞(R) and h ∈ C0,α(Ω),
for some α ∈ (0, 1) . Such nonlinearities can be treated with the methods
presented here as well. We refrain from dealing with it in this work.

3. Local Upper Bounds

This section is devoted to the proof of the upper bounds and we will pro-
vide two kinds of estimates. We prove local upper bounds for nonnegative
subsolutions, then by Kato’s inequality it is easy to extend such results to
solutions with any sign.

3.1. Local upper bounds I. The upper Moser iteration

The local upper bounds follow from the local Sobolev imbedding theorem on
balls BR ⊂ R

d

‖f‖2L2∗ (BR) ≤ S2
2

(

‖∇f‖2L2(BR) +
1

R2
‖f‖2L2(BR)

)

(3.1)

where S2 = S2(B1) is the best constant and 2∗ = 2d/(d − 2). We are re-
quiring hereafter without any further comment that d ≥ 3. The Sobolev
inequality combines with the energy inequalities of Lemma 2.1 which can
be considered as local reverse Sobolev (or Poincaré) inequalities. The proof
of the local upper bounds goes though the celebrated Moser iteration. We
adopt the notation ‖f‖Lq(BR) = ‖f‖q,R, we recall that |BR| = ωdR

d and

that
ffl

X
f(x) dx =

´

X
f(x) dx/|X|. Throughout this section we are consid-

ering nonnegative subsolutions u to −∆u = λup, unless otherwise explicitly
stated.

Theorem 3.1 (Local Upper Estimates). Let Ω ⊆ R
d and let λ > 0. (i) Let

u ≥ 0 be a local weak subsolution to −∆u = λup in Ω, with 1 < p < ps =
2∗ − 1 = (d + 2)/(d − 2). Then, for any q > q := d(p − 1)+/2 and for any
BR∞ ⊂ BR0 ⊆ Ω, the following bound holds true

‖u‖L∞(BR∞ ) ≤ I∞,q

(

 

BR0

uq dx

)

1+(p−1)µ
q

(

 

BR∞

up−1 dx

)−µ

(3.2)

where µ = d/(2q−d(p−1)) = d/2(q− q) , and the constant I∞,q > 0 depends
on d, p, q, R0, R∞, but not on λ.
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(ii) For 0 ≤ p ≤ 1 the estimate simplifies into

‖u‖L∞(BR∞ ) ≤ I∞,q

(

 

BR0

uq dx

)1/q

. (3.3)

valid for all q > 0. I∞,q > 0 has the same dependence as before, and it also
depends on λ when p = 1, but not otherwise.

Exponents of the local upper estimates.

Remarks on the result. (i) Inequality (3.2) is a kind of reverse Hölder in-
equality, indeed we can rewrite it as:

‖u‖µ(p−1)
Lp−1(BR∞ )‖u‖L∞(BR∞ ) ≤ C ‖u‖1+µ(p−1)

Lq(BR0
) . (3.4)

Written in this form, it is clear from Hölder’s inequality that a constant which
makes (3.4) true for a q > q, make the same inequality true also for all q′ > q .
The same applies to (3.3) .

(ii) The linear case p = 1 is well known, cf. [18, 22, 23].

Remarks on the constant. (i) The proof below allows to find the following
expression for the constant:

I∞,q =







c1S2
2ω

2(p−1)+
d(p−1)

d

(1− ρ)2







d
2q−d(p−1)+ {

(

d

d− 2

)d
2(d− 2)

(√
d−

√
d− 2

)2

×
[

Λp +
d− 2

q
+ (1− ρ)2 max

{

d− 2

(dq)2
|dq − (d− 2)|, 1

4

}]}
d

2q−d(p−1)+

(3.5)
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where ρ = R∞/R0 < 1 and we have used the convention x+/x = 0 when
x = 0 and, moreover, we have set Λp = 2 if p 6= 1, Λp = λ/4 if p = 1, with

c1 :=











(d−2)q
(d−2)q−d if q > d

d−2

max
i=0,1

( d
d−2 )

k0−1+i
[

q−
d(p−1)+

2

]

+(p−1)+
d−2
2

∣

∣

∣( d
d−2 )

k0−1+i
[

q−
d(p−1)+

2

]

+(p−1)+
d−2
2 −1

∣

∣

∣

if 0 < q < d
d−2 .

(3.6)
(iii) When q also satisfies 0 < q < d/(d− 2), we will require in the proof the
additional condition

log 2∗−d(p−1)+
2q−d(p−1)+

log d
d−2

is not an integer, and k0 := i.p.





log 2∗−d(p−1)+
2q−d(p−1)+

log d
d−2



 , (3.7)

(i.p. is the integer part of a real number). Notice that taking q = p + 1 >
d(p− 1)/2 is possible if and only if p < ps = (d+ 2)/(d− 2).

(iv) Of course, condition (3.7) is not essential, in view of the remark after

formula (3.4). In fact, let q > d(p−1)+
2 be such that that A(q) :=

log
2∗−d(p−1)+
2q−d(p−1)+

log d
d−2

is an integer. Take q̂ ∈ (d(p−1)+/2, q) such that A(q̂) is not an integer. Then
(3.2) is valid with q̂ instead of q.

Proof. We are going to use the energy identity (2.1) for any α > −1, α 6= 0,
in the form (2.3) valid for subsolution, to prove Lq − L∞ local estimates via
Moser iteration, keeping track of all the constants. We divide the proof in
several steps.

• Step 1. Let u as in Lemma 2.1 and ϕ the test function of Lemma 2.2,
which is supported in BR0 and such that ϕ ≡ 1 on BR1 . The local Sobolev
inequality (3.1) on the ball BR1 applied to f = u(α+1)/2, together with the
energy inequality (2.3) (we can take δ = 0 as in (2.6)), gives

[

ˆ

BR1

u
2∗

2 (α+1) dx

]
2
2∗

≤ S2
2

(

ˆ

BR1

∣

∣∇u
α+1
2

∣

∣

2
dx+

1

R2
1

ˆ

BR1

uα+1 dx

)

≤ S2
2

(

ˆ

BR0

∣

∣∇u
α+1
2

∣

∣

2
ϕ dx+

1

R2
1

ˆ

BR1

uα+1 dx

)

= S2
2

(

λ(α+ 1)2

4|α|

ˆ

BR0

up+αϕ dx+
α+ 1

4|α|

ˆ

BR0

uα+1∆ϕdx

+
1

R2
1

ˆ

BR1

uα+1 dx

)

≤ S2
2

(

λ(α+ 1)2

4|α|

ˆ

BR0

up+α dx+

[

(α+ 1)‖∆ϕ‖∞
4|α| +

1

R2
1

]
ˆ

BR0

uα+1 dx

)
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≤ S2
2

(

λ(α+ 1)2

4|α|

ˆ

BR0

up+α dx+

[

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

]
ˆ

BR0

uα+1 dx

)

(3.8)

in the last step we have used the inequality ‖∆ϕ‖∞ ≤ 4d/(R0 − R1)
2 of

Lemma 2.2.

• Step 2. Caccioppoli estimates and the first iteration step. Now we need to
split two cases, namely 0 ≤ p ≤ 1 and 1 < p < ps, and in both cases we will
use the Caccioppoli estimate (2.10) with δ = 0 which holds for any p > 0 and
reads

λ
‖u‖p−1

p−1,R∞

|BR0
| ≤ 8

(R0 −R∞)2
. (3.9)

Superlinear case: 1 < p < ps. We continue estimate (3.8) as follows:

[

ˆ

BR1

u
2∗

2 (α+1) dx

]
2
2∗

≤ S2
2

(

λ(α+ 1)2

4|α| +

[

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

]

´

BR0
uα+1 dx

´

BR0
up+α dx

)

ˆ

BR0

up+α dx

≤(a) S2
2

(

λ(α+ 1)2

4|α| +

[

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

] |BR0 |
´

BR0
up−1 dx

)

ˆ

BR0

up+α dx

=
S2
2 |BR0 |

‖u‖p−1
p−1,R0

(

λ(α+ 1)2

4|α|
‖u‖p−1

p−1,R0

|BR0
| +

[

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

]

)

×
ˆ

BR0

up+α dx

≤(b)
S2
2 |BR0 |

‖u‖p−1
p−1,R0

(

2(α+ 1)2

|α|(R0 −R1)2
+

[

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

])

×
ˆ

BR0

up+α dx

=
S2
2 |BR0 |

(R0 −R1)2‖u‖p−1
p−1,R0

[

1

|α|
(

2(α+ 1)2 + d(α+ 1)
)

+
(R0 −R1)

2

R2
1

]

×
ˆ

BR0

up+α dx

(3.10)

where in (a) we have used the convexity in the variable r > 0 of the function
N(r) = log ‖u‖rr, the incremental quotient is increasing, hence choosing α +
1 ≥ α > 0, we obtain

N(p− 1 + α)−N(α)

p− 1
≤ N(α+ p)−N(α+ 1)

p− 1
, namely

‖u‖p−1+α
p−1+α

‖u‖αα
≤

‖u‖α+p
α+p

‖u‖α+1
α+1
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Then we have

‖u‖α+p
α+p

‖u‖α+1
α+1

≥
‖u‖p−1+α

p−1+α

‖u‖αα
=

‖u‖αp−1+α

‖u‖αα
‖u‖p−1

p−1+α

≥ |BR0 |
−(p−1)
α+p−1 |BR0 |

p−1
α+p−1−1‖u‖p−1

p−1 =
‖u‖p−1

p−1

|BR0 |
since by Hölder inequality:

‖u‖p−1+α

‖u‖α
≥ |BR|

−(p−1)
α+p−1 and ‖u‖p−1+α ≥ |BR|

1
α+p−1−

1
p−1 ‖u‖p−1.

In (b) we have used the Caccioppoli estimate (3.9).
Sublinear case: 0 ≤ p ≤ 1. We first assume 0 ≤ p < 1, we discuss the case
p = 1 separately. We continue estimate (3.8) as follows:
[

ˆ

BR1

u
2∗

2 (α+1) dx

]
2
2∗

≤ S2
2

(

λ(α+ 1)2

4|α|

´

BR0
up+α dx

´

BR0
uα+1 dx

+
d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

)

ˆ

BR0

uα+1 dx

≤ S2
2

(

2(α+ 1)2

|α|(R0 −R∞)2
+

d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

)
ˆ

BR0

uα+1 dx

=
S2
2

(R0 −R∞)2

[

1

|α|
(

2(α+ 1)2 + d(α+ 1)
)

+
(R0 −R1)

2

R2
1

]
ˆ

BR0

uα+1 dx

(3.11)

which follows by the convexity in the variable r > 0 of the function N(r) =
log ‖u‖rr, which implies that the incremental quotient is increasing, hence
choosing α+ 1 ≥ α := β0 > 0, we obtain

N(p− 1 + α)−N(α)

p− 1
≤ N(α+ p)−N(α+ 1)

p− 1
namely

‖u‖p−1+α
p−1+α

‖u‖αα
≤

‖u‖α+p
α+p

‖u‖α+1
α+1

hence
´

BR0
up+α dx

´

BR0
uα+1 dx

=
‖u‖α+p

α+p

‖u‖α+1
α+1

≤
‖u‖α−(1−p)

α−(1−p)

‖u‖αα

≤ |BR0 |
1−p
α

‖u‖1−p
α

≤
‖u‖p−1

p−1,R0

|BR0 |
≤ 8

λ(R0 −R∞)2

again by Hölder inequalities, we just stress on the last step in which we have
used that

‖u‖p−1,R0

|BR0 |
1

p−1

≤ ‖u‖α
|BR0 |

1
α

, hence
|BR0

| 1−p
α

‖u‖1−p
α

≤
‖u‖p−1

p−1,R0

|BR0 |
≤ 8

λ(R0 −R∞)2

which is true since p − 1 < 0 < α, and in the last step we have used the
Caccioppoli estimate (3.9).
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Notice that when p = 1, we obtain directly that

[

ˆ

BR1

u
2∗

2 (α+1) dx

]
2
2∗

≤ S2
2

(

λ(α+ 1)2

4|α| +
d(α+ 1)

|α|(R0 −R1)2
+

1

R2
1

)
ˆ

BR0

uα+1 dx

=
S2
2

(R0 −R∞)2

[

1

|α|

(

λ

4
(α+ 1)2 + d(α+ 1)

)

+
(R0 −R1)

2

R2
1

]
ˆ

BR0

uα+1 dx

(3.12)

The first iteration step. We can write the first iteration step for all p ≥ 0 in
the following way: let β = α + 1 ≥ β0 > 0 and recall that we are requiring
β 6= 1 as well, then inequalities (3.10) and (3.11) can be written as

[

ˆ

BR1

u
2∗

2 β dx

]
2
2∗

≤ I(p, β,R1, R0)

ˆ

BR0

uβ+(p−1)+ dx (3.13)

where

I(p, β,R1, R0) =
S2
2

(R0 −R1)2
|BR0 |

´

BR0
u(p−1)+ dx

[

Λpβ
2 + dβ

|β − 1| +
(R0 −R1)

2

R2
1

]

(3.14)
where Λp = 2 if p 6= 1 and Λp = λ/4 if p = 1.

• Step 3. The Moser iteration. Let us define the sequence of exponents
βn > 0 so that

βn + (p− 1)+ =
2∗

2
βn−1 that is βn =

2∗

2
βn−1 − (p− 1)+

it turns out that, for any given β0 and all n ≥ 1:

βn =

[

2∗

2

]n
[

β0 − (p− 1)+

n−1
∑

k=0

(

2∗

2

)k−n
]

=

[

2∗

2

]n


β0 − (p− 1)+

n
∑

j=1

(

2

2∗

)j




=

[

2∗

2

]n [

β0 − (p− 1)+
d− 2

2

(

1−
(

2

2∗

)n)]

=

[

2∗

2

]n [

β0 − (p− 1)+
d− 2

2

]

+ (p− 1)+
d− 2

2

(3.15)

since
∑k

j=1 s
j = (1− sk)s/(1− s). Moreover we have that for all p ≥ 1,

(

2∗

2

)−n

βn −−−−→
n→∞

β0 −
d− 2

2
(p− 1)+.
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Requiring that β0 > (p− 1)+(d− 2)/2, which will be assumed from now on,
then implies that βn → +∞ as n → +∞. We shall also require that βn 6= 1
for all n.
We will explicitly choose a decreasing sequence of radii 0 < R∞ < . . . <
Rn < Rn−1 < . . . < R0 in the next step, in order to estimate explicitly the
constants. The first iteration step then reads:

‖u‖ 2∗

2 βn,Rn
=

[

ˆ

BRn

u
2∗

2 βn dx

]
2

2∗βn

≤ I(p, βn, Rn, Rn−1)
1

βn

[

ˆ

BRn−1

u(p−1)++βn dx

]
1

βn

:= I
1

βn
n ‖u‖

βn+(p−1)+
βn

βn+(p−1)+,Rn−1
= I

1
βn
n ‖u‖

2∗

2

βn−1
βn

2∗

2 βn−1,Rn−1

(3.16)

where the constants I(p, β,R1, R0) are defined in (3.14). Hence

In = I(p, βn, Rn, Rn−1)

=
S2
2

(Rn−1 −Rn)2
|BRn−1 |

´

BRn−1
u(p−1)+ dx

[

2β2
n + dβn

|βn − 1| +
(Rn−1 −Rn)

2

R2
n

]

(3.17)

Iterating the above inequality yields

‖un‖ 2∗

2 βn,Rn
≤ I

1
βn
n ‖un‖

2∗

2

βn−1
βn

2∗

2 βn−1 Rn−1
≤ I

1
βn
n I

2∗

2
1

βn

n−1 ‖un‖
( 2∗

2 )
2 βn−2

βn
2∗

2 βn−2 Rn−2

≤ I
1

βn
n I

2∗

2
1

βn

n−1 . . . I
( 2∗

2 )
n−1 1

βn

1 ‖un‖
( 2∗

2 )
n β0

βn
2∗

2 β0,R0

≤
n
∏

j=1

I
( 2∗

2 )
n−j 1

βn

j ‖un‖
( 2∗

2 )
n β0

βn
2∗

2 β0,R0

(3.18)

with

β0 >
d− 2

2
(p− 1)+ or q :=

2∗

2
β0 >

d(p− 1)+
2

.

Taking the limit as n → ∞ we obtain

‖u‖∞,R∞ = lim
n→∞

‖u‖ 2∗

2 βn,Rn
≤ lim

n→∞

n
∏

k=1

I
( 2∗

2 )
n−k 1

βn

k ‖u‖
β0

β0− d−2
2

(p−1)+

2∗

2 β0,R0

≤ lim
n→∞

n
∏

k=1

I
( 2∗

2 )
n−k 1

βn

k ‖u‖
β0

β0− d−2
2

(p−1)+

2∗

2 β0,R0
= I∞‖u‖

2q
2q−d(p−1)+

q,R0

(3.19)

notice that the penultimate passage follows because we shall see below that
∏n

k=1 I
( 2∗

2 )
n−k 1

βn

k has a limit I∞ as n → +∞.
As a consequence of the above estimates u ∈ L∞, so that the above bounds
holds for any q > d(p− 1)+/2 as stated, provided we show that the constant
I∞ is finite and can be estimated as in (3.5).
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• Step 4. Estimating all the constants. Now it remains to estimate I∞. We
will prove later that

Ik ≤ I0(p)

[

2∗

2

]2k

(3.20)

where I0(p) will have the explicit form given in formula (3.25). Using such
bound we show that

I∞ = lim
n→∞

n
∏

k=1

I
( 2∗

2 )
n−k 1

βn

k = lim
n→∞

exp

[

n
∑

k=1

log

(

I
( 2∗

2 )
−k
( 2∗

2 )
n 1

βn

k

)

]

= lim
n→∞

exp

[

(

2∗

2

)n
1

βn

n
∑

k=1

(

2

2∗

)k

log (Ik)

]

≤ lim
n→∞

exp

[

(

2∗

2

)n
1

βn

n
∑

k=1

(

2

2∗

)k

log

(

I0

[

2∗

2

]2k
)]

= lim
n→∞

exp

[

(

2∗

2

)n
1

βn

(

log(I0)
n
∑

k=1

(

2

2∗

)k

+2 log

(

2∗

2

) n
∑

k=1

(

2

2∗

)k

k

)]

= exp

[

1

β0 − d−2
2 (p− 1)+

(

log(I0)

+∞
∑

k=1

(

2

2∗

)k

+ 2 log

(

2∗

2

) +∞
∑

k=1

(

2

2∗

)k

k

)]

= exp

[

2

2β0 − (d− 2)(p− 1)+

(

log(I0)
d− 2

2
+ 2 log

(

2∗

2

)

d(d− 2)

4

)]

= exp

[

d− 2

2β0 − (d− 2)(p− 1)+
log(I0) +

d(d− 2)

2β0 − (d− 2)(p− 1)+
log

(

2∗

2

)]

= I
d−2

2β0−(d−2)(p−1)+

0

(

2∗

2

)

d(d−2)
2β0−(d−2)(p−1)+

=

[

I0

(

2∗

2

)d
]

d−2
2β0−(d−2)(p−1)+

We shall now obtain an explicit estimate for I0 in order to finally obtain (3.5).

Estimating Ik. We want to obtain estimates (3.20), and to this end we choose
a decreasing sequence of radii 0 < R∞ < . . . < Rk < Rk−1 < . . . < R0 such
that

(Rk−1 −Rk)
2 = (R0 −R∞)2

c20
βk

with c0 =

(

∞
∑

k=1

√

1

βk

)−1

< +∞

so that
∞
∑

k=1

(Rk−1 −Rk) = R0 −R∞.
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We now estimate Ik:

Ik =
S2
2

(Rk−1 −Rk)2
|BRk−1

|
´

BRk−1

u(p−1)+ dx

[

Λpβ
2
k + dβk

|βk − 1| +
(Rk−1 −Rk)

2

R2
k

]

=
S2
2β

2
k

|βk − 1|(Rk−1 −Rk)2
|BRk−1

|
´

BRk−1

u(p−1)+ dx

×
[

Λp +
d

βk
+

(Rk−1 −Rk)
2

R2
k

|βk − 1|
β2
k

]

≤(a)
S2
2β

3
k

c20|βk − 1|(R0 −R∞)2
|BR0 |

´

BR∞
u(p−1)+ dx

×
[

Λp +
d

β0
+

(R0 −R∞)2

R2
∞

max

{ |β0 − 1|
β2
0

,
1

4

}]

≤(b)
c1S2

2β
2
k

c20(R0 −R∞)2
|BR0 |

´

BR∞
u(p−1)+ dx

×
[

Λp +
d

β0
+

(R0 −R∞)2

R2
∞

max

{ |β0 − 1|
β2
0

,
1

4

}]

≤(c)

2c1S2
2

[

β0 − (p− 1)+
d−2
2

]

c20(R0 −R∞)2
|BR0 |

´

BR∞
u(p−1)+ dx

×
[

Λp +
d

β0
+

(R0 −R∞)2

R2
∞

max

{ |β0 − 1|
β2
0

,
1

4

}][

2∗

2

]2n

≤(d)
2(d− 2)c1S2

2 |BR0 |
(√

d−
√
d− 2

)2
(R0 −R∞)2

´

BR∞
u(p−1)+ dx

×
[

Λp +
d

β0
+

(R0 −R∞)2

R2
∞

max

{ |β0 − 1|
β2
0

,
1

4

}][

2∗

2

]2n

in (a) we have used that

|βk − 1|
β2
k

≤ max

{ |β0 − 1|
β2
0

,
1

4

}

. (3.21)

In (b) we have also used the inequality

βk

|βk − 1| ≤ c1 :=







β0

β0−1 if β0 > 1

max
i=0,1

βk0+i

|βk0+i−1| if 0 < β0 < 1,
(3.22)

with k0 = k0 = i.p.





log
1−(p−1)+

d−2
2

β0−(p−1)+
d−2
2

log d
d−2



. The inequality is stated in the general

case p 6= 1 for later use and we shall now prove it. First notice that the
numerical inequality

s

|s− 1| ≤ max

{

a

1− a
,

b

b− 1

}
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holds true for all 0 < a < 1 < b < +∞ and all s ∈ [0, a]∪[b,∞). When β0 > 1
(3.22) follows applying such numerical inequality to s = βk and noticing that
βk > β0 = b > 1 and that the function x/|x − 1| is decreasing when x > 1.
Suppose instead that 0 < β0 < 1. Notice that, since we are also requiring that
β0 > (p−1)+(d−2)/2, this is possible only when 0 < p < pc = d/(d−2) < ps.
We define k0 to be the greatest integer for which βk < 1, so that βk0+1 > 1,
so that

βk0 < 1 < βk0+1 with k0 = i.p.







log
1−(p−1)+

d−2
2

β0−(p−1)+
d−2
2

log d
d−2







and we shall take β0 ∈ (0, 1) such that

log
1−(p−1)+

d−2
2

β0−(p−1)+
d−2
2

log d
d−2

is not an integer. (3.23)

The elementary properties of the function x/|x− 1| then show that, for all k:

βk

|βk − 1| ≤ max
i=0,1

βk0+i

|βk0+i − 1|

= max
i=0,1

(

d
d−2

)k0+i
[

β0 − (p− 1)+
d−2
2

]

+ (p− 1)+
d−2
2

∣

∣

∣

∣

(

d
d−2

)k0+i
[

β0 − (p− 1)+
d−2
2

]

+ (p− 1)+
d−2
2 − 1

∣

∣

∣

∣

= max
i=0,1

(

d
d−2

)k0−1+i [

q − d(p−1)+
2

]

+ (p− 1)+
d−2
2

∣

∣

∣

∣

(

d
d−2

)k0−1+i [

q − d(p−1)+
2

]

+ (p− 1)+
d−2
2 − 1

∣

∣

∣

∣

as claimed, where we have put β0 = 2
2∗ q = d−2

d q and q has to be chosen such
that (3.23) holds.

In (c) we have used that βk = β0(2
∗/2)k > β0

βn =

[

2∗

2

]n [

β0 − (p− 1)+
d− 2

2

]

+ (p− 1)+
d− 2

2

≤ 2

[

2∗

2

]n [

β0 − (p− 1)+
d− 2

2

] (3.24)

Finally in (d) we estimate 1/c20 as follows:

1

c20
=

(

∞
∑

k=1

√

1

βk

)2

≤
(

∞
∑

k=1

1
(

β0 − (p− 1)+
d−2
2

)1/2

(

2

2∗

)
k
2

)2

=
1

(

β0 − (p− 1)+
d−2
2

)

d− 2
(√

d−
√
d− 2

)2
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since the explicit expression of βk shows that

βk ≥
(

β0 − (p− 1)+
d− 2

2

)(

2∗

2

)k

and
+∞
∑

k=1

(

2

2∗

)k/2

=
+∞
∑

k=1

(

d− 2

d

)k/2

=

√
d− 2√

d−
√
d− 2

.

We conclude that we can take I0(p) as follows for any p > 0:

I0(p) =
2(d− 2)

(√
d−

√
d− 2

)2

c1S2
2

(R0 −R∞)2
|BR0 |

´

BR∞
u(p−1)+ dx

×
[

Λp +
d

β0
+

(R0 −R∞)2

R2
∞

max

{ |β0 − 1|
β2
0

,
1

4

}]

(3.25)

and c1 given by (3.22) and we recall that Λp = 2 if p 6= 1 and Λp = λ/4
if p = 1. The proof is concluded once we let β0 = 2q/2∗ as in the previous
step.

3.2. Local upper bounds II. Linear case with unbounded coefficients

The local upper bounds for nonnegative subsolutions to

−∆u = b(x)u

with b ∈ Lr(BR) eventually unbounded, follow from the local Sobolev imbed-
ding theorem on balls BR ⊂ R

d

‖f‖2L2∗ (BR) ≤ S2
2

(

‖∇f‖2L2(BR) +
1

R2
‖f‖2L2(BR)

)

(3.26)

where S2 = S2(B1) is the best constant and 2∗ = 2d/(d − 2). In the case

f ∈ W 1,2
0 (BR), we have

‖f‖2L2∗ (BR) ≤ S2
2 ‖∇f‖2L2(BR). (3.27)

We are requiring hereafter without any further comment that d ≥ 3. We
adopt the notation ‖f‖Lq(BR) = ‖f‖q,R and |BR| = ωdR

d.

3.2.1. Energy Estimates and Reverse Poincaré inequalities.

Lemma 3.2. Let v ∈ L2∗(BR) and b ∈ Lr(BR) for some r > d/2. Then for
any δ > 0 the following inequality holds

ˆ

BR

b(x)v2(x) dx ≤ δ

[
ˆ

BR

v2
∗

dx

]
2
2∗

+
K

(1)
r,d

δ
d+r(d−2)

2r−d

|BR|
2
2∗

[
ˆ

BR

br(x) dx

]
d

2r−d
ˆ

BR

v2(x) dx

(3.28)

where

K
(1)
r,d :=

2r − d

rd

[

rd

d+ r(d− 2)

]

d+r(d−2)
2r−d

(3.29)
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Proof. Let us estimate for any 0 < ε < 2:

ˆ

BR

bv(2−ε)+ε dx ≤(a)

[
ˆ

BR

v(2−ε) 2∗

2 dx

]
2
2∗
[
ˆ

BR

b
d
2 vε

d
2 dx

]
2
d

≤(b) |BR|
ε
2∗

[
ˆ

BR

v2
∗

dx

]
2−ε
2∗
[
ˆ

BR

b
d
2 vε

d
2 dx

]
2
d

≤(c)
δ0(2− ε)

2

[
ˆ

BR

v2
∗

dx

]
2
2∗

+
ε

2δ
2−ε
ε

0

|BR|
2
2∗

[
ˆ

BR

b
d
2 vε

d
2 dx

]
4
dε

≤(d) δ0
d+ r(d− 2)

rd

[
ˆ

BR

v2
∗

dx

]
2
2∗

+
2(2r − d)

2rdδ
d+r(d−2)

2r−d

0

|BR|
2
2∗

[
ˆ

BR

br dx

]
d

2r−d
ˆ

BR

v2 dx

≤(e) δ

[
ˆ

BR

v2
∗

dx

]
2
2∗

+
1

δ
d+r(d−2)

2r−d

2r − d

rd

[

rd

d+ r(d− 2)

]

d+r(d−2)
2r−d

|BR|
2
2∗

[
ˆ

BR

br dx

]
d

2r−d
ˆ

BR

v2 dx

where in the step (a) we have used Hölder inequality with the conjugate
exponents s = 2∗/2 = d/(d − 2) and s′ = s/(s − 1) = d/2. In (b) we have
used the inequality

[
ˆ

BR

v(2−ε) 2∗

2 dx

]
2
2∗

≤ |BR|
ε
2∗

[
ˆ

BR

v2
∗

dx

]
2−ε
2∗

In (c) we have applied the Young inequality, valid for every σ > 1, δ0 > 0,
a, b ≥ 0:

ab ≤ δ0
σ
aσ +

σ − 1

σ

b
σ

σ−1

δ
1

σ−1

0

with σ = 2/(2−ε), so that σ/(σ−1) = 2/ε. In (d) we have used the estimate

[
ˆ

BR

b
d
2 vε

d
2 dx

]
4
dε

≤
[
ˆ

BR

br dx

]
d
2r

4
dε
[
ˆ

BR

vε
d
2

2r
2r−d dx

]
2r−d
2r

4
dε

=

[
ˆ

BR

br dx

]
d

2r−d
ˆ

BR

v2 dx

where in the first step we have used Hölder inequality with the conjugate
exponents s = 2r/d and s′ = s/(s − 1) = 2r/(2r − d) (notice that we are
assuming r > d/2, hence s > 1), while in the second step we have chosen
0 < ε = 2(2r − d)/(rd) ≤ 2. In (e) we have put

δ = δ0
d+ r(d− 2)

rd
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notice that δ > 0 is in fact arbitrary since for every fixed r we can choose
appropriately δ0 to get any given value of δ by the above definition of δ.

Theorem 3.3 (Reverse Poincaré inequality for subsolutions). Consider a non-
negative weak subsolution u to −∆u = b(x)u on BR with b ∈ Lr(BR) with
r > d/2. Suppose that u ∈ Lα+1(BR). Then for any positive test function
ϕ ∈ C2

0 (BR) with |∇ϕ| ≡ 0 on ∂BR we have that for any R > 0 and α > 0:
ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx ≤ K(2)[b]

ˆ

BR

uα+1 dx (3.30)

with

K(2)[b] = K(2)(b,R, α, ϕ, r, d)

:=
α+ 1

α

[

2‖ϕ‖∞‖∆ϕ‖∞ + ‖∇ϕ‖2∞

+S
2[d+r(d−2)]

2r−d

2

(

(α+ 1)2

2α

)
rd

2r−d

Kr,d‖ϕ‖2∞|BR|
2
2∗ ‖b‖

dr
2r−d
r

]

.

(3.31)

Remark. The requirement u ∈ L1+α(BR) will be dispensed with later, with-
out further comment by using a Moser iteration technique.

Proof. It will divided into several steps.

• Step 1. Energy estimates. Proceeding as in (2.3), one shows that subsolu-
tions to −∆u ≤ b(x)u, satisfy, even for any α 6= −1:

4α

(α+ 1)2

ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx ≤ 1

α+ 1

ˆ

BR

uα+1∆ϕ2 dx+

ˆ

BR

b uα+1ϕ2 dx.

(3.32)

• Step 2. Sobolev inequality in W 1,2
0 (BR). We apply inequality (3.28) of

Lemma 3.2 to v = u(α+1)/2ϕ ∈ W 1,2
0 (BR) so that for any δ > 0:

ˆ

BR

buα+1ϕ2 dx ≤ δ

[
ˆ

BR

(

u
α+1
2 ϕ

)2∗

dx

]
2
2∗

+
Kr,d

δ
d+r(d−2)

2r−d

|BR|
2
2∗

[
ˆ

BR

br dx

]
d

2r−d
ˆ

BR

uα+1ϕ2 dx

(3.33)

where Kr,d is given in (3.29). We notice that v = u(α+1)/2ϕ ∈ W 1,2
0 (BR), so

that the Sobolev inequality (3.27) reads

[
ˆ

BR

(

u
α+1
2 ϕ

)2∗

dx

]
2
2∗

≤ S2
2

ˆ

BR

∣

∣∇u
α+1
2 ϕ

∣

∣

2
dx

= S2
2

[
ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx+

ˆ

BR

∣

∣∇ϕ
∣

∣

2
uα+1 dx+

1

2

ˆ

BR

∇ϕ2 · ∇uα+1 dx

]

= S2
2

[
ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx−

ˆ

BR

ϕ
(

∆ϕ
)

uα+1 dx

]
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since ∆ϕ2 = 2ϕ∆ϕ+2|∇ϕ|2. We combine the above Sobolev inequality with
(3.33) to get

ˆ

BR

buα+1ϕ2 dx ≤ δS2
2

[
ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx−

ˆ

BR

ϕ
(

∆ϕ
)

uα+1 dx

]

+
Kr,d

δ
d+r(d−2)

2r−d

|BR|
2
2∗

[
ˆ

BR

br dx

]
d

2r−d
ˆ

BR

uα+1ϕ2 dx

(3.34)

where Kr,d is given in (3.29).

• Step 3. Putting the pieces together, i.e. combining inequalities (3.34) and
(3.32) we obtain

4α

(α+ 1)2

ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx ≤ 1

α+ 1

ˆ

BR

uα+1∆ϕ2 dx+

ˆ

BR

b uα+1ϕ2 dx

≤ 1

α+ 1

ˆ

BR

uα+1∆ϕ2 dx+ δS2
2

[
ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx−

ˆ

BR

ϕ
(

∆ϕ
)

uα+1 dx

]

+
Kr,d

δ
d+r(d−2)

2r−d

|BR|
2
2∗

[
ˆ

BR

br dx

]
d

2r−d
ˆ

BR

uα+1ϕ2 dx

which thus implies

(

4α

(α+ 1)2
− δS2

2

)
ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx

≤ 1

α+ 1

ˆ

BR

uα+1∆ϕ2 dx− δS2
2

ˆ

BR

ϕ
(

∆ϕ
)

uα+1 dx

+
Kr,d

δ
d+r(d−2)

2r−d

|BR|
2
2∗

[
ˆ

BR

br dx

]
d

2r−d
ˆ

BR

uα+1ϕ2 dx

≤
[(

2

α+ 1
+ δS2

2

)

‖ϕ‖∞‖∆ϕ‖∞ +
2

α+ 1
‖∇ϕ‖2∞

+
Kr,d‖ϕ‖2∞
δ

rd
2r−d

−1
|BR|

2
2∗

(
ˆ

BR

br dx

)
d

2r−d

]

ˆ

BR

uα+1 dx

Letting δS2
2 = 2α

(α+1)2 gives the following reverse Poincaré inequality:

ˆ

BR

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx ≤ Λ0

ˆ

BR

uα+1 dx
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with the constant that we can estimate as follows

Λ0 =
(α+ 1)2

2α

[

2(2α+ 1)

(α+ 1)2
‖ϕ‖∞‖∆ϕ‖∞ +

2

α+ 1
‖∇ϕ‖2∞

+ S
2[d+r(d−2)]

2r−d

2

2α

(α+ 1)2

(

(α+ 1)2

2α

)
rd

2r−d

Kr,d‖ϕ‖2∞|BR|
2
2∗ ‖b‖

dr
2r−d
r

]

≤ α+ 1

α

[

2‖ϕ‖∞‖∆ϕ‖∞ + ‖∇ϕ‖2∞

+S
2[d+r(d−2)]

2r−d

2

(

(α+ 1)2

2α

)
rd

2r−d

Kr,d‖ϕ‖2∞|BR|
2
2∗ ‖b‖

dr
2r−d
r

]

≤
(

α+ 1
)1+ rd

2r−d

α

[

2‖ϕ‖∞‖∆ϕ‖∞ + ‖∇ϕ‖2∞

+S
2[d+r(d−2)]

2r−d

2

(

α+ 1

2α

)
rd

2r−d

Kr,d‖ϕ‖2∞|BR|
2
2∗ ‖b‖

dr
2r−d
r

]

=: K(2)[b].

In fact, the last bound in the above formula for K(2)[b] could be avoided, but
will make the following calculations somewhat easier.
The next calculus lemma, whose proof is straightforward, will be of great

help in performing explicitly the Moser iteration.

Lemma 3.4 (Numerical Iteration). Let Yn ≥ 0 be a sequence of numbers such
that

Yn ≤ Iσθ
n−1

n−1 Yn−1 with In−1 ≤ I0C
n−1 (3.35)

for some σ, I0, C > 0, θ ∈ (0, 1). Then {Yn} is a bounded sequence and one
has

Y∞ := lim sup
n→+∞

Yn ≤ I
σ

1−θ

0 C
σ θ

(1−θ)2 Y0. (3.36)

Now we are ready to perform the Moser iteration, by combining a local
Sobolev inequality with the reverse Poincaré inequality of Theorem 3.3 and
then using the above numerical Lemma.

Theorem 3.5 (Moser Iteration). Let u ≥ 0 be a weak subsolution to −∆u =
b u on BR with b ∈ Lr(BR) with r > d/2, and let q > 1, R∞ < R0 < R.

‖u‖∞,R∞ ≤ K
(3)
q [b]

(R0 −R∞)
d
q

‖u‖q,R0 (3.37)

with constant

K(3)
q [b] =

(

qdd

2d

)

rd2

2(2r−d)q

[

8
q(d+ 2)

q − 1
+

(

R0 −R∞

R∞

)2

+

(S2
2

2

)
rd

2r−d 2r − d

rd

(

qrd

(q − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×(R0 −R∞)2|BR0
| 2
2∗ ‖b‖

rd
2r−d

Lr(BR0 )

]
d
2q

.

(3.38)
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Notice that in the case of bounded coefficients b(x) ∈ L∞(BR0) we can pass

to the limit as r → ∞ in the above expression of K
(3)
q [b] to get

K(3)
q [b] =

(

qdd

2d

)

d2

4q

[

8
q(d+ 2)

q − 1
+

(S2
2

2

)
d
2 2

d

(

qd

(q − 1)(d− 2)

)1+ d
2

×(R0 −R∞)2|BR0 |
2
2∗ ‖b‖

d
2

L∞(BR0
) +

(

R0 −R∞

R∞

)2
]

d
2q

.

(3.39)

Proof. The proof is divided in several steps.

• Step 1. Sobolev and Reverse Poincaré inequalities. We start choosing radii
r1, r0 with R∞ < r1 < r0 < R0 and use the test function of Lemma 2.2 on
the balls Br1 , Br0 . We use the Reverse Poincaré inequality (3.30) on the ball
Br0 and the fact that ϕ ≡ 1 on Br1 to get

ˆ

Br1

∣

∣∇u
α+1
2

∣

∣

2
dx ≤

ˆ

Br0

∣

∣∇u
α+1
2

∣

∣

2
ϕ2 dx ≤ K(2)[b]

ˆ

Br0

uα+1 dx

so that the local Sobolev inequality in W 1,2(Br1) applied to f = v
α+1
2 for

any α > 0 yields

(

ˆ

Br1

u
2∗

2 (α+1) dx

)
2
2∗

≤ S2
2

[

ˆ

Br1

∣

∣∇u
α+1
2

∣

∣

2
dx+

1

r21

ˆ

Br1

uα+1 dx

]

≤ S2
2

(

K(2)[b] +
1

r21

)
ˆ

Br0

uα+1 dx

(3.40)

where the constant K(2)[b] is given by (3.30), and we can estimate it as
follows:

K(2)[b] =

(

α+ 1
)1+ rd

2r−d

α

[

2‖ϕ‖∞,r0‖∆ϕ‖∞,r0 + ‖∇ϕ‖2∞,r0

+S
2[d+r(d−2)]

2r−d

2

(

α+ 1

2α

)
rd

2r−d 2r − d

rd

(

rd

d+ r(d− 2)

)1+ rd
2r−d

×‖ϕ‖2∞,r0 |Br0 |
2
2∗ ‖b‖

rd
2r−d

Lr(Br0 )

]

≤(a)
α+ 1

α

(

α+ 1
)

rd
2r−d

[

8(d+ 2)

(r0 − r1)2
+ S

2[d+r(d−2)]
2r−d

2

(

α+ 1

2α

)
rd

2r−d 2r − d

rd

×
(

rd

d+ r(d− 2)

)1+ rd
2r−d

|Br0 |
2
2∗ ‖b‖

rd
2r−d

Lr(Br0 )

]
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≤(b)

(

α+ 1
)

rd
2r−d

(r0 − r1)2

[

8(d+ 2)
α+ 1

α
+

S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d

rd

×
(

(α+ 1)rd

α[d+ r(d− 2)]

)1+ rd
2r−d

(R0 −R∞)2|BR0 |
2
2∗ ‖b‖

rd
2r−d

Lr(BR0
)

]

where in (a) we have used the fact that the test function of Lemma 2.2 satisfies
‖ϕ‖∞,r0 = 1 ‖∇ϕ‖∞,r0 ≤ 4/(r0 − r1) and ‖∆ϕ‖∞,r0 ≤ 4d/(r0 − r1)

2, and in
(b) the fact that 0 < R∞ < r1 < r0 < R0. Finally we get:

S2
2

(

K(2)[b] +
1

r21

)

≤ S2
2

(

α+ 1
)

rd
2r−d

(r0 − r1)2

[

8(d+ 2)
α+ 1

α
+

S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d

rd

×
(

(α+ 1)rd

α[d+ r(d− 2)]

)1+ rd
2r−d

(R0 −R∞)2|BR0 |
2
2∗ ‖b‖

rd
2r−d

Lr(BR0
) +

1

r21

(r0 − r1)
2

(

α+ 1
)

rd
2r−d





≤ S2
2

(

α+ 1
)

rd
2r−d

(r0 − r1)2

[

8(d+ 2)
α+ 1

α
+

S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d

rd

×
(

(α+ 1)rd

α[d+ r(d− 2)]

)1+ rd
2r−d

(R0 −R∞)2|BR0 |
2
2∗ ‖b‖

rd
2r−d

Lr(BR0
) +

(

R0 −R∞

R∞

)2
]

(3.41)

we have also used the fact that α > 0.

• Step 2. The Moser iteration. We now fix β0 = α + 1 > 1, and we define
the sequence

βn =
2∗

2
βn−1 =

(

2∗

2

)n

β0

Next we pick a sequence of radii R∞ = r∞ < . . . < rn < rn−1 < . . . < r0 =
R0, such that

(rn−1 − rn)
2 = c20 (R0 −R∞)2

(

2

2∗

)
rd n
2r−d

with

c0 =

(

∞
∑

k=1

(

2

2∗

)
rd

2(2r−d)
k
)−1

=

(

2∗

2

)
rd

2(2r−d)

− 1 ≥
(

2∗

2
− 1

)
rd

2(2r−d)

=

(

2

d− 2

)
rd

2(2r−d)

(3.42)

where the inequality in the above formula is easily shown to hold when d ≥ 3
and r > d/2 as assumed, so that

∞
∑

k=1

(rk−1 − rk) = R0 −R∞,
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the above series being convergent. With these choices, inequality (3.40) in
which α+ 1 is replaced by βn−1, this being allowable since βn > 1 for all n,
and r1, r0 replaced by rn, rn−1 reads, noticing in addition that βn/(βn−1) ≤
β0/(β0 − 1) for all n,

(

ˆ

Brn

u
2∗

2 βn−1 dx

)
2
2∗

≤ S2
2

(

K(2)[b] +
1

r2n

)
ˆ

Brn−1

uβn−1 dx

≤ S2
2β

rd
2r−d

n−1

(rn−1 − rn)2

[

8(d+ 2)
β0

β0 − 1

+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d

rd

(

β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×(R0 −R∞)2|BR0 |
2
2∗ ‖b‖

rd
2r−d

Lr(BR0
) +

(

R0 −R∞

R∞

)2
]

ˆ

Brn−1

uβn−1 dx

:= In−1

ˆ

Brn−1

uβn−1 dx

Letting Yn := ‖u‖βn,Rn
, we have obtained

Yn = ‖u‖βn,Rn
≤ I

1
βn−1

n−1 ‖u‖βn−1,Rn−1 = I
1

βn−1

n−1 Yn−1 = I
1
β0
( 2

2∗ )
n−1

n−1 Yn−1

= Iσθ
n−1

n−1 Yn−1

where we have set σ = 1/β0 and θ = 2/2∗ ∈ (0, 1). We shall prove that
In ≤ I0C

n. Indeed:

In−1 =
S2
2β

rd
2r−d

n−1

(rn−1 − rn)2

[

8(d+ 2)
β0

β0 − 1

+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d

rd

(

β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×(R0 −R∞)2|BR0 |
2
2∗ ‖b‖

rd
2r−d

Lr(BR0
) +

(

R0 −R∞

R∞

)2
]

≤ β
rd

2r−d

0

c20(R0 −R∞)2

[

8(d+ 2)
β0

β0 − 1

+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

2r − d

rd

(

β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×(R0 −R∞)2|BR0 |
2
2∗ ‖b‖

rd
2r−d

Lr(BR0 )
+

(

R0 −R∞

R∞

)2
]

(

2∗

2

)
2rd n
2r−d
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≤
(

d− 2

2

)
rd

2r−d β
rd

2r−d

0

(R0 −R∞)2

[

8(d+ 2)
β0

β0 − 1

+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

(

β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×2r − d

rd
(R0 −R∞)2|BR0 |

2
2∗ ‖b‖

rd
2r−d

Lr(BR0 )
+

(

R0 −R∞

R∞

)2
]

(

2∗

2

)
2rd

2r−d
n

:= I0C
n−1

(3.43)

where in the last inequality we estimated c0 as in (3.42). Finally we use
Lemma 3.4 with the above choices of σ and θ, thus proving that

Y∞ ≤ I
σ

1−θ

0 C
σ θ

(1−θ)2 Y0

namely

‖u‖∞,R∞ ≤ I
d

2β0
0 C

d(d−2)
4β0 ‖u‖β0,R0 = K(3)

q [b] ‖u‖β0,R0

which is exactly (3.37) with

K(3)
q [b] =

(

d− 2

2

)
rd2

2(2r−d)β0 β
rd2

2(2r−d)β0
0

(R0 −R∞)
d
β0

×
[

8(d+ 2)
β0

β0 − 1
+

S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

(

β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×2r − d

rd
(R0 −R∞)2|BR0 |

2
2∗ ‖b‖

rd
2r−d

Lr(BR0
) +

(

R0 −R∞

R∞

)2
]

d
2β0

×
(

d

d− 2

)
rd2

(2r−d)β0
(

d

d− 2

)

rd2(d−2)
2β0(2r−d)

≤
(

d

2

)
rd3

2(2r−d)β0 β
rd2

2(2r−d)β0
0

(R0 −R∞)
d
β0

[

8(d+ 2)
β0

β0 − 1

+
S2

2[d+r(d−2)]
2r−d

2
rd

2r−d

(

β0rd

(β0 − 1)[d+ r(d− 2)]

)1+ rd
2r−d

×2r − d

rd
(R0 −R∞)2|BR0 |

2
2∗ ‖b‖

rd
2r−d

Lr(BR0 )
+

(

R0 −R∞

R∞

)2
]

d
2β0

,

as in (3.38). The proof is concluded once we let β0 = q > 1.

3.2.2. Extending local upper bounds. A lemma by De Giorgi. In this section
extend the local upper bound of the previous section. More precisely we show
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that a bound of the type

‖u‖∞,r ≤ A

(R− r)
d
q

‖u‖q,R

which is valid for any q > 1 and any a ≤ r < R ≤ b indeed implies that

‖u‖∞,a ≤ A

(b− a)
d
q0

‖u‖q0,b

for all q0 > 0 and and any a ≤ r < R ≤ b maybe with a different constant
A. The proof relies on the following lemma, originally due to E. De Giorgi,
whose proof is contained in several books and papers, see for example [23],
Lemma 6.1.

Lemma 3.6 (De Giorgi). Let Z(t) be a bounded non-negative function in the
interval [t0, t1]. Assume that for t0 ≤ t < s ≤ t1 we have

Z(t) ≤ θ Z(s) +
A

(s− t)α
(3.44)

with A ≥ 0, α > 0 and 0 ≤ θ < 1. Then

Z(t0) ≤
Ac(α, λ, θ)

(t1 − t0)α
(3.45)

where

c(α, λ, θ) =
1

(1− λ)α
(

1− θ
λα

) for any λ ∈
(

θ
1
α , 1
)

.

The above Lemma has important consequences, indeed it allows to prove
that if a reverse Hölder inequality holds for some 0 < q < q, then it holds for
any 0 < q0 < q.

Lemma 3.7 (Extending Local Upper Bounds). Assume that the following
bounds holds true:

‖u‖q,r ≤ K

(R− r)γ
‖u‖q,R (3.46)

for some 0 < q < q , γ > 0 and for any R∞ ≤ r < R ≤ R0. Then we have
that for all 0 < q0 ≤ q < q

‖u‖q,R∞ ≤ 3 · 2
q(q−q0)

q0(q−q)

[

(

4γ
q(q − q0)

q0(q − q)

)γ
K

(R0 −R∞)γ

]

q(q−q0)

q0(q−q)

‖u‖q0,R0 .

(3.47)

Proof. Define, for t < R0, the bounded nonnegative function

Z(t) = ‖u‖Lq(Bt) = ‖u‖q,t
then (3.46) reads, for s > t,

Z(t) = ‖u‖q,t ≤
K

(s− t)γ
‖u‖q,s ≤

K

(s− t)γ
‖u‖1−σ

q0,s ‖u‖
σ
q,s , (3.48)
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where in the last step we have used that for all 0 < q0 ≤ q < q ≤ +∞

‖u‖q,s ≤ ‖u‖1−σ
q0,s ‖u‖

σ
q,s = ‖u‖

q0(q−q)

q(q−q0)

q0,s ‖u‖
q(q−q0)

q(q−q0)

q,s , σ =
q(q − q0)

q(q − q0)
∈ [0, 1)

Inequality (3.48) gives then

Z(t) = ‖u‖q,t ≤
K

(s− t)γ
‖u‖1−σ

q0,sZ(s)σ ≤ 1

2
Z(s) +

(2σK)
1

1−σ

(s− t)
γ

1−σ

‖u‖q0,s

≤ 1

2
Z(s) +

(2σK)
1

1−σ

(s− t)
γ

1−σ

‖u‖q0,R0

(3.49)
where we have used Young’s inequality valid for any ν > 1, a, b ≥ 0, ε > 0:

ab ≤ ε

ν
aν +

ν − 1

ν

b
ν

ν−1

ε
1

ν−1

≤ εaν +
b

ν
ν−1

ε
1

ν−1

with the choices

ε = 1/2 a = Z(s)σ, ν =
1

σ
> 1 and b =

K

(s− t)γ
‖u‖1−σ

q0,R0
.

Inequality (3.49) is of the form appearing in Lemma 3.6 with α = γ/(1−σ) >

0, θ = 1/2 and A = (2σK)
1

1−σ ‖u‖q0,R0 . Thus we get

‖u‖q,R∞ = Z(R∞) ≤ c(α, λ, θ) (2σK)
1

1−σ

(R0 −R∞)
γ

1−σ

‖u‖q0,R0

≤ 3

(

4γ

1− σ

)
γ

1−σ (2σK)
1

1−σ

(R0 −R∞)
γ

1−σ

‖u‖q0,R0

= 3 · 2
q(q−q0)

q0(q−q)

[

(

4γ
q(q − q0)

q0(q − q)

)γ
K

(R0 −R∞)γ

]

q(q−q0)

q0(q−q)

‖u‖q0,R0

noticing that

σ

1− σ
=

q(q − q0)

q0(q − q)
, and α =

γ

1− σ
= γ

q(q − q0)

q0(q − q)

which is the desired bound, once we notice that whenever θ < λα < 1,

c(α, λ, θ) =
1

(1− λ)α
(

1− θ
λα

) =
2(1 + θ)

[

2
1
α − (1 + θ)

1
α

]α

(1− θ)

=
12

[

4
1
α − 3

1
α

]α ≤ 12
4α αα

4
= 3 (4α)α

since we can choose 1/2 = θ < λα = (1+θ)/2 < 1, and since α = γ/(1−σ) >

1,
(

41/α − 31/α
)α ≥ 4

4α αα , since we know that a1/α−b1/α ≥ a1/α(a−b)/(αa),
for all a ≥ b ≥ 0 and α ≥ 1.
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The above lemma can be used to extend the local upper bounds (3.50) of
Theorem 3.5.

Theorem 3.8 (Local Upper bounds, unbounded coefficient). Consider a non-
negative weak subsolution u to −∆u = b u in BR with b ∈ Lr(BR) and
r > d/2. Let 0 < R∞ < R0 < R. Then, for any q0 > 0 the following bound
holds true

‖u‖∞,R∞
≤ A

(1)
q0

(R−R∞)
d
q0

[

A(2)
q0 +A(3)

q0 ‖b‖
rd

2r−d

Lr(BR0 )

]
d

2q0

‖u‖q0,R (3.50)

with

A(1)
q0 :=















(

q0d
d

2d

)
rd2

2(2r−d)q0
, if q0 > 1 ,

3 · 2
2d+1
q0

(

d
q0

)
d
q0
(

(q0+1)dd

2d

)
rd2

2(2r−d)q0
, if 0 < q0 ≤ 1 ,

(3.51)

A(2)
q0 :=











8 q0(d+2)
q0−1 +

(

R−R∞

R∞

)2

, if q0 > 1 ,

8 (q0+1)(d+2)
q0

+
(

R−R∞

R∞

)2

, if 0 < q0 ≤ 1 ,
(3.52)

A(3)
q0 :=











(

S2
2

2

)
rd

2r−d 2r−d
rd

(

q0rd
(q0−1)[d+r(d−2)]

)1+ rd
2r−d

(R−R∞)2|BR|
2
2∗ , q0 > 1 ,

(

S2
2

2

)
rd

2r−d 2r−d
rd

(

(q0+1)rd
q0[d+r(d−2)]

)1+ rd
2r−d

(R−R∞)2|BR|
2
2∗ , 0 < q0 ≤ 1 .

(3.53)

Remark. In other words, we have the interior estimate u(x) = O(d(x)−
d
q0 ),

where d(x) is distance to the boundary.

Proof. The upper bounds (3.50) of Theorem 3.5 can be rewritten as

‖u‖∞,r ≤ K
(3)
q [b]

(R− r)
d
q

‖u‖q,R (3.54)

for any q > 1 and R∞ ≤ r < R ≤ R0, where K
(3)
q [b] is given by (3.38). It is

clear that inequality (3.54) guarantees that we can use Lemma 3.7 with 0 <

q = q < +∞ = q , γ = d/q > 1 , K = K
(3)
q [b] and for any R∞ ≤ r < R ≤ R0.

Then we have that for all 0 < q0 ≤ q = q

‖u‖∞,R∞ ≤ 3 · 2
q−q0
q0

[

(

4
d

q

q

q0

)
d
q K

(3)
q [b]

(R0 −R∞)
d
q

]

q
q0

‖u‖q0,R0

= 3 · 2
2d+1
q0

(

d

q0

)
d
q0 K

(3)
q0+1[b]

q0+1
q0

(R0 −R∞)
d
q0

‖u‖q0,R0
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since we can always choose q = q0 + 1 > 1. Finally we notice that we can
rewrite the upper bound for all q0 > 0 in the following form:

‖u‖∞,r ≤ A
(1)
q0

(R0 −R∞)
d
q0

[

A(2)
q0 +A(3)

q0 ‖b‖
rd

2r−d

Lr(BR0
)

]
d

2q0

‖u‖q0,R

where A
(j)
q are as in (3.51), (3.52) and (3.53) respectively.

The above Theorem has the following important consequence, when applied
to the equation −∆u = λup.

Theorem 3.9 (Local Upper bounds, second form). Consider a nonnegative
weak subsolution u to −∆u = λup on BR, with λ > 0, 1 < p < ps = 2∗ − 1 =
(d+2)/(d−2). Let 0 < R∞ < R0 < R. If u ∈ Lr(BR0) with r > d(p−1)/2 := q
then the following bound holds true for any q0 > 0

‖u‖∞,r ≤ A
(1)
q0

(R0 −R∞)
d
q0

[

A(2)
q0 +A(3)

q0 λ
d(p−1)

2r−d(p−1) ‖u‖
d(p−1)r

2r−d(p−1)

r,R0

]
d

2q0

‖u‖q0,R

(3.55)

where A
(j)
q are as in (3.51), (3.52) and (3.53) respectively.

Proof. Since u is a subsolution to −∆u = λup = bu with b = λup−1, we need
to assume that up−1 ∈ Lr with r > d/2, which amounts to require u ∈ Lr

with r = r(p− 1) > d(p− 1)/2, so that

‖b‖
rd

2r−d

Lr(BR0
) =

(

λ

ˆ

BR0

ur(p−1) dx

)
d

2r−d

= λ
d(p−1)

2r−d(p−1) ‖u‖
d(p−1)r

2r−d(p−1)

r,R0

Finally, we can apply the bounds of Theorem 3.8 to get the bounds (3.55)
with the constants written above.

4. Lower bounds

The lower bounds for nonnegative supersolutions can be obtained in two
steps: first we perform a Moser iteration, then we need reverse Hölder in-
equalities, which are a consequence of the celebrated John-Nirenberg Lemma.

4.1. A short reminder about the spaces Mp(Ω).

We recall here some basic definitions and properties of suitable functional
spaces, that will be used in the sequel. We omit the proofs, but we give
appropriate references.

We say that a measurable function on Ω ⊆ R
d belong to the space Mp(Ω)

if and only if there exists a constant K ≥ 0 such that
ˆ

Ω∩BR(x0)

|f | dx ≤ KR
d(p−1)

p for all BR(x0),
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and we define the norm on Mp(Ω) as follows

‖f‖Mp(Ω) = inf

{

K > 0 :

ˆ

Ω∩BR(x0)

|f | dx ≤ KR
d(p−1)

p for all BR(x0)

}

.

One can easily check the strict inclusion Lp(Ω) ⊂ Mp(Ω) for all 1 < p <
∞, and when Ω is bounded, the equalities L1(Ω) = M1(Ω) and L∞(Ω) =
M∞(Ω). Moreover it is easy to check that when Ω is bounded one has:

‖f‖L1(Ω) ≤ diam(Ω)
d(p−1)

p ‖f‖Mp(Ω). (4.1)

We now proceed with a series of results that relate the Mp norm with the
Riesz potential

Vµ[f ](x) :=

ˆ

Ω

f(y)

|x− y|d(1−µ)
dy with µ ∈ (0, 1]. (4.2)

We collect hereafter some well known results, whose proof can be found for
instance in [22].

Lemma 4.1. Let Vµ be defined as above. Then the following holds.

(i) The operator Vµ maps continuously Ls(Ω) into Lr(Ω) for any 1 ≤ r ≤ ∞
satisfying

0 ≤ 1

s
− 1

r
< µ.

Moreover, for any f ∈ Lp(Ω),

‖Vµf‖r ≤
(

s(r + 1)− r

s(µ r + 1)− r

)

s(r+1)−r

sr

ω1−µ
d |Ω|

s(µ r+1)−r

sr ‖f‖s.

(ii) Let f ∈ Mp(Ω), with p > 1/µ ≥ 1. Then

|Vµ[f ](x)| ≤
p− 1

pµ− 1
diam(Ω)

d
p
(pµ−1)‖f‖Mp(Ω).

(iii) A “potential” version of the Morrey inequality. Let Ω be a convex bounded
subset of Rd. Then for all f ∈ W 1,1(Ω) the following inequality holds

|f(x)− fΩ′ | ≤ diam(Ω)d

d |Ω′|
∣

∣

∣
V 1

d
[ |∇f |](x)

∣

∣

∣
(4.3)

for any measurable Ω′ ⊆ Ω with

fΩ′ =

ˆ

Ω′

f
dx

|Ω′|

Proof. Part (i) is exactly Lemma 7.12 of [22], part (ii) is exactly Lemma 7.18
of [22] and part (iii) is exactly Lemma 7.16 of [22].
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4.2. The John-Nirenberg Lemma and reverse Hölder inequalities.

The Caccioppoli estimates proved in Corollary 2.3 show that the gradient of
the logarithm of the solution belongs to the space Md(Ω), see Proposition
4.5 below. Such Md−regularity then guarantees the validity of the celebrated
John-Nirenberg lemma which as a consequence give a reverse Hölder inequal-
ity of the form

‖u‖q,R0

‖u‖−q,R0

≤ κ
2/q
1

for some 0 < q < 1 and some constant κ1. We recall that ‖f‖r,Q0 :=
(

´

Q0
|f(y)|r dy

)1/r

also for negative values of r, provided the integral is finite.

We need a lemma concerning estimates on the Riesz potential Vµ defined
in (4.2). It is a quantified version of Lemma 7.20 of [22].

Lemma 4.2 (A “potential” version of the Moser-Trudinger imbedding.). Let
f ∈ Mp(Ω) with p > 1 and suppose ‖f‖Mp(Ω) ≤ K. Then there exist two
constants κ2 and κ3 such that

ˆ

Ω

exp





∣

∣

∣V 1
p
[f ](x)

∣

∣

∣

κ2 K



 dx ≤ κ3. (4.4)

One can take

κ2 > (p− 1) e and κ3 = |Ω|+ diam(Ω)d√
2π

p eωd

κ2 − (p− 1) e
.

Proof. Let q ≥ 1, µ = 1/p and g = Vµ[f ]. Then

|x− y|d(µ−1) = |x− y| dq (
µ
q
−1)|x− y|d(1− 1

q )(
µ
q
+µ−1)

and by Hölder inequality we obtain

|Vµ[f ]| ≤
∣

∣

∣
Vµ

q
[f ]
∣

∣

∣

1
q
∣

∣

∣
Vµ+µ

q
[f ]
∣

∣

∣

1− 1
q

. (4.5)

Applying now estimates (i) of Lemma 4.1 with s = r = 1, to Vµ
q
[f ], we

obtain,

‖Vµ
q
f‖1 ≤ q ω

1−µ
q

d

µ
|Ω|

µ
q ‖f‖1 ≤ p q ω

1− 1
pq

d |Ω| 1
pq diam(Ω)

d(p−1)
p ‖f‖Mp(Ω)

≤ p q ωddiam(Ω)d(1−
1
p
+ 1

pq )‖f‖Mp(Ω) ≤ p q ωddiam(Ω)d(1−
1
p
+ 1

pq )K

(4.6)

where we have used inequality (4.1) together with the fact that |Ω| ≤ ωd

diam(Ω)d. Next we apply estimates (ii) of Lemma 4.1 to Vµ+µ
q
[f ] (the op-

erator Vν is well-defined on L1, if Ω is bounded, for ν > 1 as well) and we
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obtain
∣

∣

∣
Vµ+µ

q
[f ](x)

∣

∣

∣
≤ p− 1

p
(

µ+ µ
q

)

− 1
diam(Ω)

d
p (p(µ+

µ
q )−1)‖f‖Mp(Ω)

≤ q(p− 1) diam(Ω)
d
pq K

(4.7)

for all x ∈ Ω, hence the same bound is valid for the L∞(Ω)-norm, provided
p(µ+µ/q) > 1 which indeed holds true since µ = 1/p. Joining now inequalities
(4.5), (4.6) and (4.7), we obtain

‖Vµ[f ]‖qq ≤
∥

∥

∥Vµ+µ
q
[f ]
∥

∥

∥

q−1

L∞

∥

∥

∥Vµ
q
[f ](x)

∥

∥

∥

L1(Ω)
≤ pωd

p− 1
[(p− 1)K q]

q
diam(Ω)d

Letting now 1 ≤ q = k ∈ N we get, for k2 as in the statement,
ˆ

Ω

∞
∑

k=1

|g|k
k!(κ2K)k

dx ≤ pωd

p− 1
diam(Ω)d

∞
∑

k=1

[(p− 1)K k]
k

k!(κ2K)k

≤ pωd

p− 1
diam(Ω)d

∞
∑

k=1

[

p− 1

κ2

]k
kk

k!

≤ pωd

p− 1
diam(Ω)d

∞
∑

k=1

[

(p− 1) e

κ2

]k
1√
2πk

≤ pωd

p− 1

diam(Ω)d√
2π

(p− 1) e

κ2 − (p− 1) e

=
diam(Ω)d√

2π

p eωd

κ2 − (p− 1) e

we have used Stirling’s formula:

n! =
√
2π n

[n

e

]n

eαn with
1

12n+ 1
≤ αn ≤ 1

12n
. (4.8)

We prove hereafter a simplified but quantitative version of the celebrated
John-Nirenberg Lemma, which holds in convex domains. Indeed we will use
it only on balls and in such case the constants simplify a bit.

Lemma 4.3 (John-Nirenberg). Let f ∈ W 1,1(Ω) where Ω is convex, and sup-
pose there exists a constant K such that

ˆ

BR∩Ω

∣

∣∇f
∣

∣ dx ≤ KRd−1 for all balls BR

Then the following inequality holds true
ˆ

Ω

exp

[ |f − fΩ|
κ0K

]

dx ≤ κ1 (4.9)

where for any κ2 > (d− 1) e

κ0 =
d |Ω|

diam(Ω)d
κ2 κ1 =

ωd diam(Ω)d
(

κ2 + e
)

κ2 − (d− 1) e
and fΩ =

ˆ

Ω

f
dx

|Ω| .
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Proof. The proof relies on the previous Lemma 4.2 in the special case p = d.
Indeed inequality (4.4) in that case takes the form

ˆ

Ω

exp





∣

∣

∣
V 1

d
[|∇f |](x)

∣

∣

∣

κ2K



 dx ≤ diam(Ω)d√
2π

d eωd

κ2 − (d− 1) e
+ |Ω| ≤ κ3 (4.10)

where

κ2 > (d− 1) e,

κ3 = ωd diam(Ω)d
[

d e

κ2 − (d− 1) e
+ 1

]

=
ωd diam(Ω)d

(

κ2 + e
)

κ2 − (d− 1) e
.

We combine this latter inequality with inequality (4.3) (which requires con-
vexity of the domain) with Ω′ = Ω and |∇f | ∈ Md(Ω).

The John-Nirenberg Lemma has an important consequence when applied to
f = log(u+ δ):

Proposition 4.4 (Reverse Hölder inequalities). Let δ ≥ 0 and u be a positive
measurable function such that log(u+ δ) ∈ W 1,1(Ω), where Ω is convex, and
suppose there exists a constant K such that

ˆ

BR∩Ω

∣

∣∇ log(u+ δ)
∣

∣ dx ≤ KRd−1 for all balls BR. (4.11)

Then the following inequality

‖u+ δ‖q,Ω
‖u+ δ‖−q,Ω

≤ κ
2/q
1 holds true for any 0 < q ≤ 1

κ0 K
(4.12)

where the constants κi are given in Lemma 4.3.

Proof. Let δ > 0. The validity of (4.11) for u entails the validity of the same
inequality for u+ δ. Notice now that

‖u+ δ‖q,Ω
‖u+ δ‖−q,Ω

≤ κ ⇐⇒
(
ˆ

Ω

(u+ δ)q dx

)(
ˆ

Ω

(u+ δ)−q dx

)

≤ κq

Then, letting f = log(u+ δ):
(
ˆ

Ω

(u+ δ)q dx

)(
ˆ

Ω

(u+ δ)−q dx

)

=

(
ˆ

Ω

e[q log(u+δ)] dx

)(
ˆ

Ω

e[−q log(u+δ)] dx

)

=

(
ˆ

Ω

eqf dx

)(
ˆ

Ω

e−qf dx

)

=

(
ˆ

Ω

eq(f−fΩ) dx

)(
ˆ

Ω

e−q(f−fΩ) dx

)

≤
(
ˆ

Ω

eq|f−fΩ| dx

)2

≤ κ2
1

where we used (4.9) for f = log(u + δ), and have assumed q ≤ 1/(κ0K) in
order to ensure its validity. The case δ = 0 is also true, just by taking the
limit δ → 0.
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We conclude this section by showing that reverse Hölder inequalities holds
for local supersolutions to our problem, as a consequence of Caccioppoli es-
timates.

Proposition 4.5 (Reverse Hölder inequalities for supersolutions). Let Ω ⊂ R
d

and let λ > 0. Let u be a local weak supersolution to −∆u = λup, with
1 ≤ p < ps = 2∗ − 1 = (d + 2)/(d − 2). Then for any ε > 0 the following
inequality holds true for any δ ≥ 0

[

ε

2d (e d+ ε)

]2/q ‖u+ δ‖q,R0

|BR0 |
1
q

≤ ‖u+ δ‖−q,R0

|BR0 |−
1
q

, 0 < q ≤ 2
d−3
2

dω2
d[e(d− 1) + ε]

.

Proof. The Caccioppoli estimates (2.2) with R0 replaced by 2r and R re-
placed by r imply the hypothesis of the above Lemma, in fact:
ˆ

Br∩BR0

∣

∣∇ log(u+ δ)
∣

∣ dx ≤
ˆ

Br

∣

∣∇ log(u+ δ)
∣

∣ dx

≤ |Br|
1
2

[
ˆ

Br

∣

∣∇ log(u+ δ)
∣

∣

2
dx

]
1
2

≤ 2
d+3
2 ωdr

d−1

:= K rd−1.

(4.13)

Therefore puttingK = 2
d+3
2 ωd, taking an ε > 0 and choosing κ2 = e(d−1)+ε,

we obtain that

1

κ0K
=

2
d−3
2

dω2
d [e(d− 1) + ε]

, κ1 = 2dωdR
d
0

ε+ e d

ε
= |BR0 |2d

ε+ e d

ε
.

4.3. Lower Moser iteration

Now we are ready to run the Moser iteration to obtain quantitative local
lower bounds in the form:

Theorem 4.6 (Local Lower Estimates). Let Ω ⊆ R
d and let λ > 0. Let u

be a nonnegative local weak supersolution in BR0 ⊆ Ω to −∆u = λup, with
0 ≤ p < ps = 2∗ − 1 = (d+ 2)/(d− 2). Then for any ε > 0 and for any

0 < q ≤ 2
d−3
2

dω2
d[e(d− 1) + ε]

= q0 (4.14)

the following bound holds true

inf
x∈BR∞

u(x) = ‖u‖−∞,R∞ ≥ I−∞,q

‖u‖q,R0

|BR0 |
1
q

. (4.15)

where

I−∞,q =

[

2dS2
2

(

dR2
0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q
[

ε

2d (e d+ ε)
√
ωd

]
2
q

. (4.16)
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Upper figure: Plot of q0(d) defined in (4.14), for 1 ≤ d ≤ 16, with ε = 0.1.
Lower figure: Zoom for the plot of the same q0(x) near its minimum that
lies in (5 , 6).

Remark. One can see that when the dimension d is sufficiently low one has
q0 < 1 whereas q0 > 1 in higher dimensions. Notice also that the equality
inf

x∈BR∞

u(x) = ‖u‖−∞,R∞ holds since u is nonnegative.

Proof. The proof is divided in two steps. We always consider a local super-
solution u of −∆u ≥ λup.

• Step 1. In this step we consider α < 0, and we want to prove L−q − L−∞

local estimates via Moser iteration. The the energy inequality (2.4) for α <
−1 and δ > 0 gives the estimate

ˆ

Ω

∣

∣∇
(

(u+ δ)
α+1
2

)

∣

∣

2
ϕ dx ≤ λ(α+ 1)2

4α

ˆ

Ω

up(u+ δ)αϕ dx

+
α+ 1

4α

ˆ

Ω

(u+ δ)α+1∆ϕ dx

≤ α+ 1

4α

ˆ

Ω

(u+ δ)α+1
∣

∣∆ϕ
∣

∣ dx

(4.17)
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Applying now the Sobolev inequality (3.1) on the ball BR1 and the properties
of the test function ϕ defined in Lemma 2.2, one gets

[

ˆ

BR1

(u+ δ)
2∗

2 (α+1) dx

]
2
2∗

≤ S2
2

(

ˆ

BR1

∣

∣∇(u+ δ)
α+1
2

∣

∣

2
dx+

1

R2
1

ˆ

BR1

(u+ δ)α+1 dx

)

≤ S2
2

(

ˆ

Ω

∣

∣∇(u+ δ)
α+1
2

∣

∣

2
ϕdx+

1

R2
1

ˆ

BR1

(u+ δ)α+1 dx

)

≤ S2
2

(

α+ 1

4α

ˆ

Ω

(u+ δ)α+1
∣

∣∆ϕ
∣

∣ dx+
1

R2
1

ˆ

BR1

(u+ δ)α+1 dx

)

≤ S2
2

(

α+ 1

4α

∥

∥∆ϕ
∥

∥

∞
+

1

R2
1

)
ˆ

BR0

(u+ δ)α+1 dx

≤ S2
2

(

d

(R0 −R1)2
+

1

R2
1

)
ˆ

BR0

(u+ δ)α+1 dx

(4.18)

Let, for a given γ0 < 0, γn :=
[

2∗

2

]n

γ0 so that γn = 2∗

2 γn−1. Notice that

γn → −∞ monotonically. Consider the above inequality for α = αn and let
αn + 1 = γn−1 so that

‖u+ δ‖γn,Rn
= ‖u+ δ‖ 2∗

2 γn−1,Rn
=

[

ˆ

BRn

(u+ δ)
2∗

2 γn−1 dx

]
2

2∗γn−1

≥
[

S2
2

(

d

(Rn−1 −Rn)2
+

1

R2
n

)]
1

γn−1

[

ˆ

BRn−1

(u+ δ)γn−1 dx

]
1

γn−1

≥
[

S2
2

(

d

(Rn−1 −Rn)2
+

1

R2
n

)]
1

γn−1

‖u+ δ‖γn−1,Rn−1

:= I
1

γn−1
n ‖u+ δ‖γn−1,Rn−1

(4.19)

Hence, iterating the above inequality:

‖u+ δ‖γn,Rn
≥ I

1
γn−1
n I

1
γn−2

n−1 . . . I
1
γ0
1 ‖u+ δ‖γ0,R0 =

n
∏

k=1

I
1

γk−1

k ‖u+ δ‖γ0,R0

(4.20)
where have chosen 0 < R∞ < . . . < Rn+1 < Rn < . . . < R0 such that

∞
∑

k=1

(Rk−1 −Rk) = R0 −R∞ and Rk−1 −Rk =
R0 −R∞

2k

so that

Ik = S2
2

(

d

(Rn−1 −Rn)2
+

1

R2
n

)

≤ S2
2

(

d

(R0 −R∞)2
+

1

R2
∞

)

4k := I04
k
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and
n
∏

k=1

I
1

γk−1

k = exp

[

n
∑

k=1

1

γk−1
log Ik

]

= exp

[

2∗

2γ0

n
∑

k=1

[

2

2∗

]k

log Ik

]

= exp

[

2∗

2γ0

n
∑

k=1

[

2

2∗

]k

log I0 +
2∗ log 4

2γ0

n
∑

k=1

k

[

2

2∗

]k
]

≥ I
2∗

2γ0

∑n
k=1[ 2

2∗ ]
k

0 4
d2

4γ0 .

Taking limits we obtain

∞
∏

k=1

I
1

γk−1

k ≥ I
2∗

2γ0

d−2
2

0 4
d2

4γ0 =
(

2d I0
)

d
2γ0 .

We can now take the limit in (4.20) to get for any γ0 < 0:

‖u+ δ‖−∞,R∞ ≥
∞
∏

k=1

I
1

γk−1

k ‖u+ δ‖γ0,R0 ≥
(

2d I0
)

d
2γ0 ‖u+ δ‖γ0,R0

=

[

2dS2
2

(

d

(R0 −R∞)2
+ 1

)]
d

2γ0

‖u+ δ‖γ0,R0 .

(4.21)

Now we need some Reverse Hölder inequalities, which is the subject of the
next step.

• Step 2. Reverse Hölder inequalities. The John-Nirenberg lemma implies
reverse Hölder inequalities for super-solutions, in the form of Proposition 4.5:
for any ε > 0 the following inequality holds true

[

ε

2d (e d+ ε)

]
2
q ‖u+ δ‖q,R0

|BR0 |
2
q

≤ ‖u+ δ‖−q,R0 , 0 < q ≤ 2
d−3
2

dω2
d[e(d− 1) + ε]

.

(4.22)
Joining inequality (4.21) and (4.22) and letting γ0 = −q with q as in (4.22)
we obtain

‖u+ δ‖−∞,R∞ ≥
[

2dS2
2

(

d

(R0 −R∞)2
+

1

R2
∞

)]− d
2q

‖u+ δ‖−q,R0

≥
[

2dS2
2

(

d

(R0 −R∞)2
+

1

R2
∞

)]− d
2q
[

ε

2d (e d+ ε)

]
2
q ‖u+ δ‖q,R0

|BR0 |
2
q

=

[

2dS2
2

(

dR2
0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q
[

ε

2d (e d+ ε)
√
ωd

]
2
q ‖u+ δ‖q,R0

|BR0 |
1
q

:= I−∞,q

‖u+ δ‖q,R0

|BR0 |
1
q

.

(4.23)

Finally we observe that we can let δ → 0+, and obtain the desired result.
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4.4. Reverse Hölder inequalities and lower bounds when 1 < p < pc

In this section we will first prove more quantitative reverse Hölder inequal-
ities, when p > 1. We have obtained a reverse smoothing effect from Lq to
L−∞, for a suitable explicit q which may be close to zero, if we seek for a
bound valid for any dimension. In order to be able to join local upper and
lower estimates to get a clean form of Harnack inequality, we need to reach
those values of q which are above d(p− 1)/2, and this is possible only when
1 < p < pc = d/(d− 2).

Proposition 4.7 (Reverse Hölder inequalities for 1 < p < pc). Let Ω ⊆ R
d and

let λ > 0. Let u be a nonnegative local weak supersolution in Ω to −∆u = λup,
with 1 < p < pc = d/(d− 2). Let BR ⊂ BR0 ⊂ Ω. Then we have that

‖u‖q,R
|BR|

1
q

≤ Iq,q0
‖u‖q0,R0

|BR0 |
1
q0

∀q0 ∈ (0, q], d(p− 1)/2 < q < d/(d− 2) (4.24)

where, if d−2
d q ≤ q0 ≤ q

Iq,q0 :=

[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R)2

R
2

]

2∗

2q

[

ω
1/d
d R0

R0 −R

]
2∗

q [

R0

R

]
d
q

whereas if 0 < q0 < d−2
d q

Iq,q0 := 3 · 2
(d−2)q

2q0
− d

2

[

2d q S2
2

(2∗ − 2q)

R
2

(R0 −R)2
+ S2

2

]

q−q0
q q0

d
2

×
(

4ω
1
d

d

q − q0
q0q

)
d
q0

− d
q
[

R

R0

]

d
q0

.

Proof. Consider the energy identity for supersolutions with −1 < α < 0 (we
can take δ = 0 in such a range of α), which gives the following estimate for
any positive test function ϕ ∈ C2

0 (Ω) with ∇ϕ ≡ 0 on ∂Ω:

4|α|
(α+ 1)2

ˆ

Ω

∣

∣∇u
α+1
2

∣

∣

2
ϕ dx+ λ

ˆ

Ω

up+αϕ dx ≤ 1

|α+ 1|

ˆ

Ω

uα+1|∆ϕ| dx
(4.25)

that implies, using the test function ϕ of Lemma 2.2 with R∞ < R0

ˆ

BR∞

∣

∣∇u
α+1
2

∣

∣

2
dx ≤ d|α+ 1|

|α| (R0 −R∞)2

ˆ

BR0

uα+1 dx (4.26)

Applying now the Sobolev inequality (3.26) on the ball BR∞ we arrive at

[

ˆ

BR∞

u
2∗

2 (α+1) dx

]
2
2∗

≤ S2
2

[

d|α+ 1|
|α| (R0 −R∞)2

+
1

R2
∞

]
ˆ

BR0

uα+1 dx
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Letting now 0 < α+ 1 = β < 1 we get

[

ˆ

BR∞

u
2∗

2 β dx

]
2

2∗β

≤
[ S2

R0 −R∞

]
2
β
[

d |β|
(1− β)

+
(R0 −R∞)2

R2
∞

]
1
β

×
[

ˆ

BR0

uβ dx

]
1
β

.

(4.27)

Choosing β > (d − 2)(p − 1)/2 is compatible with β < 1, if and only if
p < d/(d − 2) = pc and this is the point where the well known Serrin’s
exponent pc enters. We now let d(p − 1)/2 < q = 2∗β/2 < 2∗/2 and we see
that (4.27) implies

‖u‖q,r ≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R− r)2

r2

]
2∗

2q ‖u‖ 2
2∗

q,R

(R− r)
2∗

q

≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

]
2∗

2q ‖u‖ 2
2∗

q,R

(R− r)
2∗

q

(4.28)

for any R∞ ≤ r < R ≤ R0. Let q = 2q/2∗ < q. We consider separately the
case q ≤ q0 ≤ q and the case 0 < q0 < q < q. In the first case we can use
Hölder inequality in (4.28):

‖u‖q,r ≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

]
2∗

2q ‖u‖ 2
2∗

q,R

(R− r)
2∗

q

≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

]
2∗

2q

[

ω
1/d
d R

R− r

]
2∗

q |BR|
1
q

|BR|
1
q0

‖u‖q0,R

which is (4.24) when q ≤ q0 ≤ q, once we let R = R0 and r = R. On the
other hand, when 0 < q0 < q < q , we can use inequality (4.28) rewritten as

‖u‖q,r ≤
[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

]
2∗

2q ‖u‖ 2
2∗

q,R

(R− r)
2∗

q

:=
K

(R− r)
2∗

q

‖u‖ 2
2∗

q,R

(4.29)
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so that Lemma 3.7 with γ = 2∗/q gives that for all 0 < q0 ≤ q < q (recall
that q = 2q/2∗)

‖u‖q,R∞ ≤ 3 · 2
q(q−q0)

q0(q−q)

[

(

4γ
q(q − q0)

q0(q − q)

)γ
K

(R0 −R∞)γ

]

q(q−q0)

q0(q−q)

‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d

2

[(

4
2d

(d− 2)q

d− 2

d
q
(q − q0)

q0
2
dq

)γ
K

(R0 −R∞)γ

]

q(q−q0)

q0(q−q)

× ‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d

2 K
q(q−q0)

q0(q−q)

(

4d
q − q0
q0q

1

R0 −R∞

)γ
q(q−q0)

q0(q−q)

‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d

2 K
q−q0
q0

d−2
2

(

4d
q − q0
q0q

ω
1/d
d R0

R0 −R∞

)
d
q0

− d
q

× |BR0 |
1
q

|BR0 |
1
q0

‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d

2

[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R∞)2

R2
∞

]

q−q0
q q0

d
2

×
(

4d
q − q0
q0q

ω
1/d
d R0

R0 −R∞

)
d
q0

− d
q [

R∞

R0

]
d
q0 |BR0 |

1
q

|BR∞ |
1
q0

‖u‖q0,R0

= 3 · 2
(d−2)q

2q0
− d

2

[

2d q S2
2

(2∗ − 2q)

R2
∞

(R0 −R∞)2
+ S2

2

]

q−q0
q q0

d
2

×
(

4dω
1
d

d

q − q0
q0q

)
d
q0

− d
q
[

R∞

R0

]
d
q0 |BR0 |

1
q

|BR∞ |
1
q0

‖u‖q0,R0

(4.30)

whence the statement follows upon relabeling R∞ as R.

As a first consequence of the above inequalities, we can improve the local
lower bounds of Theorem 4.6 in this good supercritical range.

Theorem 4.8 (Local Lower Estimates when 1 < p < pc). Let Ω ⊆ R
d and

let λ > 0. Let u be a nonnegative local weak supersolution in BR0 ⊆ Ω to
−∆u = λup, with 1 < p < pc = d/(d− 2).

inf
x∈BR∞

u(x) = ‖u‖−∞,R∞ ≥
I−∞,q

Iq,q

‖u‖q,R
|BR|

1
q

with d(p− 1)/2 < q < d/(d− 2)

(4.31)
for any 0 < R∞ < R < R0, where q ∈ (0, q0 ∧ q], q0 and I−∞,q are given in

(4.33) and Iq,q is given by (4.35), (4.36).
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Proof. We use the local lower bounds of Theorem 4.6 for q ∈ (0, q0], ε = e,
with the definition of q0 to be recalled below, so that

inf
x∈BR∞

u(x) = ‖u‖−∞,R∞ ≥ I−∞,q

‖u‖q,R0

|BR0 |
1
q

. (4.32)

where

q ≤ q0 :=
2

d−3
2

d2ω2
de

I−∞,q =

[

2dS2
2

(

dR2
0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q
[

e

2d e (d+ 1)
√
ωd

]
2
q

.

(4.33)

Recall the reverse Hölder inequalities of Proposition 4.7

‖u‖q,R0

|BR0 |
1
q

≥
‖u‖q,R

Iq,q|BR|
1
q

, (4.34)

valid whenever 0 < R < R0 q ∈ (0, q] d(p− 1)/2 < q < d/(d− 2), where

Iq,q :=

[

2d q S2
2

(2∗ − 2q)
+ S2

2

(R0 −R)2

R
2

]

2∗

2q

[

ω
1/d
d R0

R0 −R

]
2∗

q [

R0

R

]
d
q

(4.35)

if d−2
d q ≤ q ≤ q,

Iq,q = 3·2
(d−2)q

2q − d
2

[

2d q S2
2

(2∗ − 2q)

R
2

(R0 −R)2
+ S2

2

]

q−q

q q
d
2 (

4ω
1
d

d

q − q

qq

)
d
q
− d

q
[

R0

R

]
d
q

,

(4.36)
if 0 < q < d−2

d q, with q0 as in (4.33). Combining inequalities (4.32) and (4.34)
we obtain (4.31).

Remark. The above lower bounds turn our to be important when applied to
solutions, since they will imply directly a clean form of Harnack inequality
when 1 < p < pc and then local absolute bounds, which is a novelty and
a typical feature of the “good” superlinear case 1 < p < pc. We stress the
fact that in the upper range pc ≤ p < ps such absolute bounds can not be
true, as explicit counter-examples show. We will give more details on these
counterexamples in the next section.

5. Harnack inequalities

In this section we will show in a quantitative way how upper and lower bounds
can be joined to form Harnack inequalities for solutions, and to obtain as a
consequence absolute local upper (1 < p < pc) and absolute local lower
bounds (0 < p < 1), which are new, as far as we know. We first join local
bounds of Theorems 3.1, 3.9 (upper) and (4.6) (lower), to obtain a general
form for Harnack inequalities, which at a first sight appear to be weaker
than what expected, because its constant depends on local Lq-norms of the
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solution itself. This is the only form of Harnack inequality that can hold
for all 0 ≤ p < ps = (d + 2)/(d − 2). To eliminate this quotient and to
obtain Harnack inequalities in a more classical form one has to assume that
0 < p < pc = d/(d− 2).

This fact might seem puzzling, but there are very weak (distributional) so-
lutions in the range pc ≤ p < ps that are not bounded, cf. [25, 28, 29, 30, 31],
even when one prescribes zero Dirichlet boundary conditions. According to
Mazzeo and Pacard [25], in this range there are solutions with a singularity
of the type |x− x0|−2/(p−1) at a point x0 ∈ Ω. Such solutions are not locally
in Lq with q > d(p− 1)+/2 if p > pc, hence the local upper estimate fails for
them when applied to a ball that contains the singularity. In this range there
appears in a clear form the difference between weak and very weak solutions,
which helps understanding these critical exponents. Regarding boundary be-
haviour, the range to consider is p1 ≤ p < ps, where p1 = (d + 1)/(d − 1)
is the exponent introduced by Brezis and Turner [7]. In this range there ex-
ist very weak solutions which are not weak (energy) solutions and can have
a singularity at some points of the boundary and satisfy elsewhere on the
boundary the prescribed condition in a suitable trace sense, not necessarily
in a continuous fashion, cf. del Pino et al. [15].

Theorem 5.1 (Harnack inequality for 0 ≤ p < ps). Let Ω ⊆ R
d and let λ > 0.

Let u be a nonnegative local weak solution in BR0 ⊆ Ω to −∆u = λup, with
0 ≤ p < ps = (d+ 2)/(d− 2). Given R∞ < R0 and ε > 0 we assume

0 < q ≤ q0 :=
2

d−3
2

dω2
d[e(d− 1) + ε]

, q >
d(p− 1)+

2
. (5.1)

If 0 < q < d/(d− 2) we also assume





log 2∗−d(p−1)+
2q−d(p−1)+

log d
d−2



not integer.

Then the following bound holds true

sup
x∈BR∞

u(x) ≤ Hp[u] inf
x∈BR∞

u(x) (5.2)

where Hp[u] depends on u through some local norms as follows

Hp[u] = Hp[u](d, q, q, ε, R0, R∞)

=
I∞,q

I−∞,q









(

ffl

BR0
uq dx

)

(p−1)+
q

ffl

BR∞
u(p−1)+ dx









d
2q−d(p−1)+ (

ffl

BR0
uq dx

)
1
q

(

ffl

BR0
uq dx

)
1
q

.
(5.3)

with I∞,q given by (3.5), I−∞,q is given by (4.16).
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Proof. We recall the local upper bounds of Theorem 3.1: for any BR∞ ⊂
BR0 ⊆ Ω

‖u‖∞,R∞ ≤ I∞,q









(

ffl

BR0
uq dx

)

(p−1)+
q

ffl

BR∞
u(p−1)+ dx









d
2q−d(p−1)+

‖u‖q,R0

|BR0 |
1
q

(5.4)

for any q > d(p−1)+
2 , where I∞,q is given by (3.5) and when 0 < q < d/(d−2)

we require the additional condition (3.7) on q. We also recall the lower bounds
of Theorem 4.6: for any ε > 0 and for any q as in (5.1), the following bound
holds true

infx∈BR∞
u(x)

I−∞,q

|BR0 |
1
q

‖u‖q,R0

≥ 1. (5.5)

where I−∞,q is given by (4.16). Joining (5.4) and (5.5) gives (5.2) .

Theorem 5.2 (Harnack inequality, 0 ≤ p ≤ 1). Let Ω ⊆ R
d and let λ > 0.

Let u be a nonnegative local weak solution in BR0 ⊆ Ω to −∆u = λup, with
0 ≤ p ≤ 1. For all R∞ < R0 the following bound holds true

sup
x∈BR∞

u(x) ≤ Hp inf
x∈BR∞

u(x)

where Hp does not depend on u , and is given by

Hp =

[

2dS4
2R

2
0

(R0 −R∞)2

(

dR2
0

(R0 −R∞)2
+

R2
0

R2
∞

)]

d
2q0

×









2d
(

(

d
d−2

)n0−
1
2 2

d−3
2

dω2
d

+ e

)

√
ωd

(

d
d−2

)n0−
1
2 2

d−3
2

dω2
d

− e(d− 1)









2
q0

×
{

(

d

d− 2

)d
2(d− 2)

√
d

(√
d−

√
d− 2

)3

[

Λp +
d− 2

q0
+

(R0 −R∞)2

R2
∞

max

{

d− 2

(dq0)2
|dq0 − (d− 2)|, 1

4

}]}
d

2q0

(5.6)

with

q0 =

(

d− 2

d

)n0−
1
2

and n0 = i.p.







log
(

e(d− 1)
dω2

d

2
d−3
2

)

log d
d−2

+
3

2






(5.7)

Proof. The goal of the proof is to simplify the quotient of Lq-norms in the
expression of the constant Hp[u] of the Harnack inequality (5.2). Since we
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are dealing with the range 0 ≤ p ≤ 1, we can choose

0 < q = q = q0 = q0(ε) :=
2

d−3
2

dω2
d[e(d− 1) + ε]

,

where q > 0 with

[

log 2∗

2q

log d
d−2

]

not an integer. In fact, we shall arrive, with a

suitable choice of the parameter ε, to a value of q0 smaller than d/(d − 2),

so that the requirement
[

log 2∗

2q /log
d

d−2

]

not being integer is necessary. The

latter condition means q0(ε) 6= [(d− 2)/d]n for all n ∈ N, and this is possible
since we can always choose ε

0 < ε =

(

d

d− 2

)n0−
1
2 2

d−3
2

dω2
d

− e(d− 1) so that q0 =

(

d− 2

d

)n0−
1
2

where n0 is the first integer n such that ε(n) > 0, which is

n0 = i.p.







log
(

e(d− 1)
dω2

d

2
d−3
2

)

log d
d−2

+
1

2






+ 1.

The constants become in this case

I∞,q =

[

c1S2
2R

2
0

(R0 −R∞)2

]
d

2q0

{

(

d

d− 2

)d
2(d− 2)

(√
d−

√
d− 2

)2 ×

×
[

Λp +
d− 2

q0
+

(R0 −R∞)2

R2
∞

max

{

d− 2

(dq0)2
|dq0 − (d− 2)|, 1

4

}]}
d

2q0

=

[ S2
2R

2
0

(R0 −R∞)2

]
d

2q0

{

(

d

d− 2

)d
2(d− 2)

√
d

(√
d−

√
d− 2

)3 ×

×
[

Λp +
d− 2

q0
+

(R0 −R∞)2

R2
∞

max

{

d− 2

(dq0)2
|dq0 − (d− 2)|, 1

4

}]}
d

2q0

,

(5.8)

where Λp = 2 if p 6= 1, Λp = λ/4 if p = 1 and, since q0 < d/(d− 2),

c1 := max
i=0,1

q0

(

d
d−2

)k0−1+i

∣

∣

∣

∣

q0

(

d
d−2

)k0−1+i

− 1

∣

∣

∣

∣

= max
i=0,1

(

d
d−2

)i+ 1
2

(

d
d−2

)i+ 1
2 − 1

=

√
d√

d−
√
d− 2

(5.9)
since k0 is given by:

k0 = i.p.

[

log 2∗

2q0

log d
d−2

]

= i.p.

[

1 +
log 1

q0

log d
d−2

]

= i.p.

[

1 + n0 −
1

2

]

= n0 + 1
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and the last step in (5.9) follows by an explicit calculation. Moreover I−∞,q

given by formula (4.16) takes the form

I−∞,q0 =

[

2dS2
2

(

dR2
0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q0
[

ε

2d (e d+ ε)
√
ωd

]
2
q0

=

[

2dS2
2

(

dR2
0

(R0 −R∞)2
+

R2
0

R2
∞

)]− d
2q0

×









(

d
d−2

)n0−
1
2 2

d−3
2

dω2
d

− e(d− 1)

2d
(

(

d
d−2

)n0−
1
2 2

d−3
2

dω2
d

+ e

)

√
ωd









2
q0

.

Hence we get the expression of Hp = I∞,q0/I−∞,q0 given in (5.6) .

When p > 1 we can not join the upper and the lower bound so easily, we
need the improved lower bounds of Theorem 4.8, valid only when p < pc.

Theorem 5.3 (Harnack Inequalities when 1 < p < pc). Let Ω ⊆ R
d and let

λ > 0. Let u be a nonnegative local weak solution to −∆u = λup in BR0 ⊆ Ω,
with 1 < p < pc = d/(d − 2). Then for any 0 < R∞ < R < R0 there exists
an explicit constant Hp > 0 such that

sup
x∈BR∞

u(x) ≤ Hp inf
x∈BR∞

u(x) (5.10)

where Hp does not depend on u , and is given by

Hp = I∞,q

(

Iq,q

I−∞,q

)
2q

2q−d(p−1)

, with
d(p− 1)

2
< q <

d

d− 2
(5.11)

where the constants q ∈ (0, q0 ∧ q], q0 and I−∞,q are given in (4.33), Iq,q is

given by (4.35), (4.36), I∞,q is given by (3.5); moreover, since q < d/(d− 2)
we require the additional condition (3.7).

Proof. We first consider the lower bounds of Theorem 4.8. Let Ω ⊆ R
d and

let λ > 0. Let u be a nonnegative local weak supersolution in BR0 ⊆ Ω to
−∆u = λup, with 1 < p < pc = d/(d− 2). Then

‖u‖q,R
|BR|

1
q

≤
Iq,q

I−∞,q
inf

x∈BR∞

u(x) (5.12)

for any 0 < R∞ < R < R0, where d(p− 1)/2 < q < d/(d− 2), q ∈ (0, q0 ∧ q],
q0 and I−∞,q are given in (4.33) and Iq,q is given by (4.35), (4.36). Then we
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recall the upper bounds of Theorem 3.1 which we rewrite as

‖u‖∞,R∞ ≤ I∞,q





‖u‖(p−1)+

q,R

|BR|
(p−1)+

q

|BR∞ |
´

BR∞
u(p−1)+ dx





d
2q−d(p−1)+ ‖u‖q,R

|BR|
1
q

≤ I∞,q

(

‖u‖q,R
|BR|

1
q

1

infx∈BR∞
u(x)

)

d(p−1)
2q−d(p−1) ‖u‖q,R

|BR|
1
q

≤ I∞,q

(

Iq,q

I−∞,q

)

d(p−1)
2q−d(p−1)

+1

inf
x∈BR∞

u(x)

(5.13)

for any q > d(p−1)+
2 , where I∞,q is given by (3.5) and since 0 < q < d/(d− 2)

we require the additional condition (3.7). In the third step we have used the
lower bound (5.12).

Remark. Notice that the constant Hp does not depend on u in the range
0 ≤ p < pc , and it does not depend on λ > 0 when moreover p 6= 1.

6. Local Absolute bounds

In this section we will prove local absolute lower bounds when 0 < p < 1
and local absolute upper bounds when 1 < p < pc as a consequence of the
Harnack inequalities of the previous section together with the Caccioppoli
estimates (2.11).

Theorem 6.1 (Local Absolute bounds). Let Ω ⊆ R
d and let λ > 0. Let u be

a local nonnegative weak solution to −∆u = λup in BR0 ⊆ Ω, with 0 < p <
pc = d/(d − 2). Then for any 0 < R∞ < R < R0 there exists a constant
Hp > 0 that does not depend on u, such that

sup
x∈BR(x0)

u(x) ≤ Hp

(

8Rd
0

λ(R0 −R)2Rd

)

1
p−1

when 1 < p < pc =
d

d− 2
,

(6.1)
and, if u 6≡ 0 on BR0

inf
x∈BR(x0)

u(x) ≥ H−1
p

(

λ(R0 −R)2Rd

8Rd
0

)

1
1−p

when 0 < p < 1 . (6.2)

The constant Hp is given by (5.6) when 0 < p < 1 and by (5.11) when
1 < p < pc.

Remark. The way the estimate blows up as R → R0 is (R0 − R)−2/(p−1)

which is natural from scaling considerations and is predicted by Dancer in
the papers [11, 12].
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Proof. We combine the quantitative Harnack inequalities of Theorems 5.2
and 5.3 together with the quantitative Caccioppoli estimates (2.11)

λ

ˆ

BR

up−1 dx ≤ 8ωdR
d
0

(R0 −R)2

which implies, when p > 1,

inf
x∈BR

u(x) ≤
(

1

|BR|

ˆ

BR

up−1 dx

)
1

p−1

≤
(

8Rd
0

λ(R0 −R)2Rd

)

1
p−1

(6.3)

and when 0 < p < 1 as

(

λ(R0 −R)2Rd

8Rd
0

)

1
1−p

≤
(

|BR|
´

BR
up−1 dx

)
1

1−p

≤





1

sup
x∈BR

u(x)p−1





1
1−p

= sup
x∈BR

u(x)

(6.4)

The above inequalities can be now combined with the corresponding Harnack
inequalities of Theorems 5.2 and 5.3, which have the form

sup
x∈BR

u(x) ≤ Hp inf
x∈BR

u(x)

to obtain the desired bounds in both cases. The constant Hp is given by (5.6)
when 0 < p < 1 and by (5.11) 1 < p < pc.

7. Regularity. Local bounds for the gradients

In this section we will prove L∞ bounds for the gradients, to conclude that
solutions to −∆u = λup are indeed local Lipschitz functions. The strategy
to prove such results is to show that the incremental quotients uh,i satisfy
the equation −∆uh,i ≤ b(x)uh,i for a suitable b(x), so that we can apply the
local L∞ bounds of Theorem 3.8 . We start with a numerical Lemma.

Lemma 7.1. The following inequality holds for any a, b ≥ 0

(a− b)(ap − bp) ≤ (p ∨ 1) max
{

ap−1, bp−1
}

(a− b)2 , and for any p ≥ 0 .
(7.1)

Moreover the following inequality holds for any a, b ≥ 0 and p ≥ 1:

ap − bp ≥ p bp−1(a− b). (7.2)

Proof. If a ≥ b the validity of (7.1) is equivalent, setting x = b
a , to the validity

of (1−x)(1−xp) ≤ p(1−x)2 for all x ∈ [0, 1], that is to 1−xp ≤ p(1−x) for all
x ∈ [0, 1], which does in fact hold if p ≥ 1 by the concavity of g(x) := 1− xp,
since the line h(x) := p(1 − x) is the tangent to g at x = 1. The case a < b
follows as well by interchanging the role of a and b. The case 0 < p < 1 can be
proven analogously: if fact the stated inequality is equivalent to 1−xp ≤ 1−x
for any x ∈ [0, 1], which holds true by the convexity of h(x) = 1− xp for any
p ∈ (0, 1).
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The second inequality (7.2) follows by the inequality xp − 1 ≥ p(x− 1) for
all x ≥ 0 which is valid since xp − 1 is convex so that its graph lies above its
tangent at x = 1.

Short reminder about incremental quotients in W 1,q. Here we follow Giusti
[23]. It is well known that if u ∈ W 1,q(Ω) then its incremental quotients is
defined as

uh,i :=
u(x+ hei)− u(x)

h
where ei denotes the unit vector in the direction xi , cf. [18, 23] . Let us recall
some properties of the incremental quotients:
(i) If u ∈ W 1,q(Ω) , then its incremental quotient uh,i is defined in the set

Ω|h| :=
{

x ∈ Ω
∣

∣ dist(x, ∂Ω) > |h|
}

, moreover uh,i ∈ W 1,q(Ω|h|) .

(ii) If u ∈ W 1,q(Ω) for 1 ≤ q ≤ ∞ and Σ ⊂⊂ Ω , then for any |h| <

dist(Σ,Ω)/(10
√
d) we have

‖uh,i‖Lq(Σ) ≤ 5
d
q ‖∂iu‖Lq(Ω) . (7.3)

for a proof of the latter fact we refer to Lemma 8.1 of [23] .
(iii) Let u ∈ Lq(Ω), 1 < q < ∞ , and assume that there is a constant K such
that for every h small enough we have ‖uh,i‖Lq(Ω|h|) ≤ K. Then ∂iu ∈ Lq(Ω)

and ‖∂iu‖Lq(Ω) ≤ K . Moreover uh,i → ∂iu in Lq
loc(Ω) as h → 0 . For a proof

of this fact we refer to Lemma 8.2 of [23] .

We can now state and prove the following theorem.

Theorem 7.2 (Local upper bounds for the gradient). Let Ω ⊆ R
d and let

λ > 0. Let u be a local nonnegative weak solution to −∆u = λup in BR0 ⊆ Ω,
with 0 < p < pc = d/(d− 2). Then for any 0 < R∞ < R0 we have

‖∇u‖∞,R∞ ≤ K[u] ‖u‖2,R0 (7.4)

where

K[u] =

(

15

R0 −R∞

)
d
2
[

λ bp,R0 [u] +
18d

(R0 −R∞)2

]
1
2
(

2dd

2d

)

d2

8

×
[

16(d+ 2) +
(R0 −R∞)2

9R2
∞

+

(

dS2
2 (p ∨ 1)

d− 2

)
d
2 4(R0 −R∞)2

9(d− 2)
|BR0

| d−2
d (λbp,R0

[u])
d
2

]

d
4

(7.5)

with

bp,R0 [u] ≤



















1 , if p = 1 ,

8Rd
0 H

|p−1|
p

λ(R0 −R∞)2Rd
∞

, if 0 ≤ p < pc and p 6= 1 ,

‖u‖p−1
∞,R0

, if pc ≤ p < ps ,

(7.6)
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where the constant Hp is given by (5.6) when 0 < p < 1 and by (5.11) when
1 < p < pc.

Proof. The proof is divided into several steps. We start fixing h0 > 0 small
enough.

• Step 1. The equation satisfied by the incremental quotients. First we deduce
formally the equation for the positive and negative part, then we justify it
rigorously at the end of this step, using Kato’s inequality. If u is a solution
to −∆u = λup, then the equation satisfied by u+

h,i is

−∆u+
h,i = b+(x, h)u+

h,i ≤ λ (p ∨ 1) bp u
+
h,i , for all |h| ≤ h0 , (7.7)

where

bp = bp,R0 [u] :=















sup
BR0

up−1 if 1 ≤ p < ps

[

inf
BR0

u1−p

]−1

if 0 ≤ p < 1

(7.8)

and we observe that bp,R[u] ≤ bp,R0 [u] for any 0 < R < R0. Indeed, when
uh,i ≥ 0:

−∆u+
h,i = λ

up(x+ hei)− up(x)

h
= λ

up(x+ hei)− up(x)

u(x+ hei)− u(x)

u(x+ hei)− u(x)

h

:= b+(x, h)u+
h,i

≤ λ(p ∨ 1) max
{

up−1(x+ hei), u
p−1(x)

}

u+
h,i

by using the numerical inequality (7.1), namely (a − c)(ap − cp) ≤ (p ∨
1) max

{

ap−1, cp−1
}

(a− c)2 valid for any p > 0 and all a, c ≥ 0 to estimate

b+(x, h) = λ
up(x+ hei)− up(x)

u(x+ hei)− u(x)
≤ λ(p ∨ 1) max

{

up−1(x+ hei), u
p−1(x)

}

we have used the fact that up(x + hei) − up(x) and u(x + hei) − u(x) have
the same sign.
When p ≥ 1 we have

−∆u+
h,i = b+(x, h)u+

h,i ≤ λ(p ∨ 1) sup
BR+h0

(

up−1
)

u+
h,i ,

while when 0 ≤ p < 1 we have

−∆u+
h,i = b+(x, h)u+

h,i ≤
λ(p ∨ 1)

inf
BR+h0

u1−p
u+
h,i

On the other hand, if u is a solution to −∆u = λup, then the equation
satisfied by u−

h,i is

−∆u−
h,i = b−(x, h)u−

h,i ≤ λ (p ∨ 1) bp u
−
h,i , for all |h| ≤ h0 , (7.9)
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where bp is given by (7.8). Indeed when uh,i ≤ 0 we have that

−∆u−
h,i = −λ

up(x+ hei)− up(x)

h
= −λ

up(x+ hei)− up(x)

u(x+ hei)− u(x)

u(x+ hei)− u(x)

h

:= b−(x, h)u−
h,i

≤ λ(p ∨ 1) max
{

up−1(x+ hei), u
p−1(x)

}

u−
h,i

for the same arguments as above. Now it remains to justify the formal calcu-
lations made above. First we recall Kato’s inequality: if j : R → R is a convex
function such that j(0) = 0, j′(v) > 0 if v > 0, then ∆j(v) ≥ j′(v)∆v, in the
weak sense, whenever ∆v ∈ L1

loc(Ω) . Consider a sequence of convex function
jε that approximate j(uh,i) = u+

h,i and such that jε(0) = 0, j′ε(uh,i) > 0 if

uh,i > 0. Then by Kato’s inequality, we have that indeed u+ satisfy the weak
formulation

ˆ

K

∇ϕ · ∇jε(uh,i) dx = −
ˆ

K

ϕ∆jε(uh,i) dx ≤ −
ˆ

K

ϕ j′ε(uh,i)∆uh,i dx

=

ˆ

K

ϕ j′ε(uh,i)b
+(x)uh,i dx

≤
ˆ

K

ϕ
(

jε(uh,i) + ε
)

b+(x) dx

for any subdomain with compact closure K ⊂ Ω, and all bounded 0 ≤ ϕ ∈
C1

0 (K). Passing to the limit as ε → 0 proves that u+
h,i is a weak subsolution

to −∆u+
h,i ≤ b+(x)u+

h,i. A similar procedure can be applied to u−
h,i, therefore

all the formal calculations made above are justified.
• Step 2. L∞-bounds for the gradients. Since |uh,i| = u+

h,i + u−
h,i is a weak

nonnegative subsolution to −∆
∣

∣uh,i

∣

∣ ≤ λ(p∨1) bp |uh,i| := b(x) |uh,i| , we can
apply the upper bounds of Theorem 3.5 that read

‖uh,i‖∞,R ≤ K
(3)
2 [b]

h
d
2
0

‖uh,i‖2,R+h0 (7.10)

with q = 2 and the expression of the constant obtained by letting r → ∞,
since b(x) ∈ L∞(BR+h0):

K
(3)
2 [b] =

(

2dd

2d

)

d2

8
[

16(d+ 2) +
h2
0

R2

+

(

dS2
2

d− 2

)
d
2 4h2

0

d− 2
|BR+h0 |

d−2
d ‖b‖

d
2

∞,R+h0

]

d
4

≤
(

2dd

2d

)

d2

8
[

16(d+ 2) +
h2
0

R2

+

(

dS2
2 (p ∨ 1)

d− 2

)
d
2 4h2

0

d− 2
|BR+h0 |

d−2
d

(

λ bp
)

d
2

]

d
4

(7.11)
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since

‖b‖
d
2

∞,R+h0
=
(

λ(p ∨ 1) bp
)

d
2 .

Next we observe that by inequality (7.3) it follows that for any δ > 0 and

any |h| < δ/(10
√
d) we have

‖uh,i‖2,R+h0 ≤ 5
d
2 ‖∂iu‖2,R+h0+δ.

Finally, since

‖uh,i‖s,R
|BR|

1
s

≤ ‖uh,i‖∞,R ≤ K

holds for any |h| ≤ h0 with K that do not depend on s, then by remark (iii)
above we have that

‖∂iu‖s,R
|BR|

1
s

≤ K .

Letting now s → ∞ in the above expression gives ‖∂iu‖∞,R ≤ K. Therefore
we have proven that

‖∂iu‖∞,R ≤ K
(3)
2 [b]

h
d
2
0

5
d
2 ‖∂iu‖2,R+h0+δ , (7.12)

with K
(3)
2 [b] as in (7.11) which implies

‖∇u‖∞,R ≤ K
(3)
2 [b]

h
d
2
0

5
d
2 ‖∇u‖2,R+h0+δ , (7.13)

• Step 3. Energy inequalities. We now need the energy inequalities (2.3) to
estimate the L2 norm of the gradient of u in terms of u itself. We choose
α = 1 there so that the choice δ = 0 is admissible.

ˆ

BR+h0+δ

∣

∣∇u
∣

∣

2
ϕ dx ≤

ˆ

Ω

∣

∣∇u
∣

∣

2
ϕ dx ≤ λ

ˆ

Ω

up+1ϕdx+
1

2

ˆ

Ω

u2∆ϕ dx

≤ λ

ˆ

BR+h0+2δ

up+1 dx+
2d

δ2

ˆ

BR+h0+2δ

u2 dx

≤
(

λ bp +
2d

δ2

)
ˆ

BR+h0+2δ

u2 dx

≤
(

λ bp +
2d

δ2

)

‖u‖22,R+h0+2δ

(7.14)

since we have used the fact that up−1 ≤ bp for any 0 ≤ p < ps and the test
function ϕ of Lemma 2.2 with the choice of balls BR+h0+δ ⊂ BR+h0+2δ.
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• Step 4. Putting all the pieces together, we have obtained

‖∇u‖∞,R ≤ K
(3)
2 [b]

h
d
2
0

5
d
2 ‖∇u‖2,R+h0+δ

≤ K
(3)
2 [b]

h
d
2
0

5
d
2

(

λ bp +
2d

δ2

)
1
2

‖u‖2,R+h0+2δ.

(7.15)

We finally choose h0 = δ > 0 and we let R∞ = R , R0 = R+h0+2δ = R+3δ,
so that δ = (R0 −R∞)/3 and we have obtained

‖∇u‖∞,R∞ ≤ K
(3)
2 [b]

(

15

R0 −R∞

)
d
2
(

λ bp +
18d

(R0 −R∞)2

)
1
2

‖u‖2,R0

:= K[u]‖u‖2,R0

(7.16)

where we recall that, with the above choices of h0, δ we have (see (7.11))

K
(3)
2 [b] ≤

(

2dd

2d

)

d2

8
[

16(d+ 2) +
(R0 −R∞)2

9R2
∞

+

(

dS2
2 (p ∨ 1)

d− 2

)
d
2 4(R0 −R∞)2

9(d− 2)
|BR0 |

d−2
d (λ bp)

d
2

]

d
4

.

(7.17)

Finally we observe that bp can be bounded depending on the values of p as
follows:
(i) If 0 ≤ p < 1 we can use the absolute bounds (6.2) to get

bp =
1

inf
BR0

u1−p
≤ H1−p

p

8Rd
0

λ(R0 −R∞)2Rd
∞

, (7.18)

the constant Hp being given in this case by (5.6).
(ii) If p = 1 then bp = 1 .
(iii) If 1 < p < pc we can use the absolute bounds (6.1)

bp = sup
x∈BR(x0)

up−1(x) ≤ Hp−1
p

8Rd
0

λ(R0 −R∞)2Rd
∞

, (7.19)

the constant Hp being given in this case by (5.11).

(iv) If pc ≤ p < ps, we just leave bp = ‖u‖p−1
∞,R0

.

When 1 < p < pc we have local absolute bounds for the gradients, which
seem to be new.

Theorem 7.3 (Local absolute bounds for the gradient when 1 < p < pc).
Let Ω ⊆ R

d and let λ > 0. Let u be a local nonnegative weak solution to
−∆u = λup in BR0 ⊆ Ω, with 1 < p < pc = d/(d − 2). Then for any
0 < R∞ < R0 we have

‖∇u‖∞,R∞ ≤ K (7.20)
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where

K =

(

dd

2d−1

)

d2

8 (15)
d
2 Hpω

1
2

d R
d
2
∞

(R0 −R∞)1+
d
2+

2
p−1

[

8Rd
0 Hp−1

p

Rd
∞

+ 18d

]
1
2 (

8Rd
0

λRd
∞

)

1
p−1

×
[

16(d+ 2) +
(R0 −R∞)2

9R2
∞

+

(

dS2
2p

d− 2

)
d
2 22+

3
2d ω

(d−2)
d

d R
d2

2 +(d−2)
0

9(d− 2)(R0 −R∞)2(d−1)R
d2

2
∞

H
d(p−1)

2
p





d
4

(7.21)

where the constant Hp is given by (5.11) and depends on R0, R∞ as well.

8. Table of results

Let us resume the main results of this paper: recall that d ≥ 3 and

pc =
d

d− 2
, ps =

d+ 2

d− 2
, q =

d(p− 1)+
2

, q0 =
2

d−3
2

dω2
d[e(d− 1) + ε]

, ∀ε > 0 .

Upper I Upper II Lower Harnack Absolute Gradient

0 ≤ p < 1 0 < q → ∞ q0 > 0 , 0 < q < q0 Hp lower upper
r > 0

Thm. 3.1 Thm. 3.9 Thm. 4.6 Thm. 5.2 Thm. 6.1 Thm. 7.2

p = 1 0 < q → ∞ q0 > 0 , 0 < q < q0 H1 No upper
b ∈ Lr ,

r > d
2

Thm. 3.1 Thm. 3.8 Thm. 4.6 Thm. 5.2 Thm. 7.2

1 < p < pc q < q → ∞ q0 > 0 , q < q < pc Hp upper absolute
b = λup−1 ∈ Lr

r > q

Thm. 3.1 Thm. 3.9 Thm. 4.8 Thm. 5.3 Thm. 6.1 Thm. 7.3

pc < p < ps q < q → ∞ q0 > 0 , 0 < q < q0 Hp[u] No upper
b = λup−1 ∈ Lr

r > q

Thm. 3.1 Thm. 3.9 Thm. 4.6 Thm. 5.1 Thm. 7.2

Recall the bounds:

Upper I ‖u‖L∞(BR∞ ) ‖u‖µ(p−1)+
Lp−1(BR∞ ) ≤ I∞,q

‖u‖
1+µ(p−1)+
Lq(BR0

)

|BR0 |
1
q

, µ = d
2q−d(p−1)+

Upper II ‖u‖∞,R∞ ≤ A(1)
q0

(R−R∞)
d
q0

[

A
(2)
q0 +A

(3)
q0 ‖b‖

rd
2r−d

Lr(BR0
)

]
d

2q0

‖u‖q0,R

Lower infx∈BR∞
u(x) = ‖u‖L−∞(BR∞ ) ≥ I−∞,q

‖u‖Lq(BR0
)

|BR0 |
1
q

.

Harnack supx∈BR∞
u(x) ≤ Hp[u] infx∈BR∞

u(x)
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where Hp[u] depends on u only when pc ≤ p < ps through some local norms
as follows

Hp[u] = Hp[u](d, q, q, ε, R0, R∞)

=
I∞,q

I−∞,q









(

ffl

BR0
uq dx

)

(p−1)+
q

ffl

BR∞
u(p−1)+ dx









d
2q−d(p−1)+ (

ffl

BR0
uq dx

)
1
q

(

ffl

BR0
uq dx

)
1
q

.

whereas Hp[u] can be taken to be independent of u if p ∈ [0, pc), see (5.6),
(5.11).

Gradient ‖∇u‖∞,R∞ ≤ K[u] ‖u‖2,R0 .
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