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Abstract

The Apparent Diffusion Coefficient (ADC) is often considered in the
differential diagnosis of tumors, since the analysis of a field of ADCs on
a particular region of the body allows to identify regional necrosis. This
quantity can be estimated from magnitude signals obtained in diffusion
Magnetic Resonance (MR), but in some situations, like total body MRs,
it is possible to repeat only few measurements on the same patient, thus
providing a limited amount of data for the estimation of ADCs. In this
work we consider a Rician distributed magnitude signal with an exponential
dependence on the so-called b-value. Different pixelwise estimators for the
ADC, both frequentist and Bayesian, are proposed and compared by a
simulation study, focusing on issues caused by low signal-to-noise ratios
and small sample sizes.
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1 Introduction

Diffusion magnetic resonance (MR) is as an important tool in clinical research,
as it allows to characterize some properties of biological tissues. When tumor
areas are analyzed using this technique, it can be observed that the diffusion
tensor, estimated from the magnetic MR magnitude signal, has reduced values
in lesions with respect to surrounding physiological tissues, allowing to identify
pathological areas or necrosis. When the tissue region of interest can be con-
sidered as isotropic the Apparent Diffusion Coefficient (ADC) is sufficient to
characterize the diffusion properties of the tissue, and it is usually estimated
from the exponential decay of the signal with respect to the b-value, the MR
acquisition parameter. The assumption of isotropy is common and reasonable in
various cases, like breast and prostate cancer (see for example Woodhams et al.
(2005) and Sato et al. (2005)).

In many practical situations it may not be possible to collect more than
few measures at different b-values, limiting the accuracy of the estimation. A
reduction in the total number of measures necessary to achieve a certain accuracy
is convenient in term of costs, and allows to keep the patient involved in the MR
procedure for a shorter amount of time (the experience may be unpleasant,
especially when total body MR must be performed). The purpose of this work
is to compare different frequentist and Bayesian approaches to the estimation of
the ADC, underlining their statistical properties and computational issues.

2 Rice-distributed diffusion MR signals

2.1 The Rice distribution

The random variables we deal with derive from the complex signal w = wr+ iwi

measured in diffusion MR. It is usual to assume that both wr and wi are affected
by a Gaussian noise with equal, constant variance, i.e. wr ∼ N (ν cos(ϑ), σ2) and
wi ∼ N (ν sin(ϑ), σ2), with ν ∈ R

+ and ϑ ∈ [0, 2π). The quantity at hand is the
modulus M of this signal, which has then a Rice (or Rician) distribution, that
we will denote as M ∼ Rice(ν, σ2). The density of this random variable has the
form

fM(m|ν, σ2) =
m

σ2
e−

m
2
+ν

2

2σ2 I0

(mν

σ2

)

I(0,+∞)(m), (1)

where I0 is the zeroth-order modified Bessel function of the first kind (see
Abramowitz and Stegun (1964)). Using the series expression of I0, it is pos-
sible to deduce a different, equivalent definition of a Rician random variable as
M = σ

√
R, where R is a noncentral χ2 variable that can be expressed as a mix-

ture of χ2(2P + 2) distributions with P ∼ Poisson(ν2/2σ2). This formulation
becomes particularly useful for sampling from a Rice distribution, as it allows
an easy implementation of a Gibbs sampler.

2



2.2 Rice exponential regression

Diffusion MR aims at computing the diffusion tensor field on a portion of tissue,
and this is achieved by analyzing the influence of water diffusion on the mea-
sured signal, under different experimental settings. In particular, the classical
model for relating the magnitude signal to the acquisition parameters and the
3-dimensional diffusion tensor D is the Stejskal-Tanner equation

νg = ν0 exp(−gTDgb), (2)

where νg is the “real” intensity signal we want to measure, ν0 is the signal
at b = 0 and the vector g ∈ R

3 is the applied magnetic gradient. The b-
value is a function of other acquisition settings, which we will omit since their
description and discussion beyond the scope of this article. See for example
Landini et al. (2005) for an overview on MR techniques, including diffusion MR,
and a discussion of various issues and recent advances in this field.

In general, even in the ideal noiseless case, at least 6 observations are needed
to determine the components of the symmetric, positive definite diffusion tensor
D, by varying the direction g of the magnetic field gradient. However, if the
tissue under study can be considered as isotropic, the diffusion tensor has the
simpler form D = αI, where α is the ADC, a scalar parameter, and I is the
identity matrix. This reduces model (2) to the following

ν = ν0 exp(−αb) (3)

for any vector g (in the following, we will omit it for ease of notation).
Equation (3) describes pointwise the phenomenon on the tissue region of

interest. In this study we consider the pixels of a diffusion MR sequence of
images as independent, and focus on the estimation problem for a single point
in space. We do not consider a spatial modeling for the ADC field: although it
could be a useful way to filter noise and to capture underlying tissue structures,
on the other hand for diagnostic purposes it may be preferable to submit to the
physician an estimate that has not been artificially smoothed.

3 Estimation methods

In this Section we present different methods for the estimation of α, the un-
known parameter of interest. We consider a sample of signal intensities on a
single pixel Mi ∼ Rice(ν0e

−αbi , σ2), i = 1, . . . , n, and their respective realiza-
tions m = m1, . . . ,mn at b-values b = b1, . . . , bn. Since it is usual to estimate
the dispersion parameter σ2 in regions where almost pure noise gets measured,
considering it as fixed in the subsequent estimates, in this work we will follow
this framework, considering σ2 as a known parameter. In Section 4 the different
estimation methods for the couple (ν0, α) presented here will be tested under
different Signal-to-Noise Ratios (SNRs) ν/σ.
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3.1 Nonlinear regression

A standard approach for the estimation of ν0 and α is to solve a nonlinear least
squares problem, which is equivalent to approximatingMi = ν0exp(−αbi)+εi for
i = 1, . . . , n, where εi are iid, zero mean, gaussian noise terms. The estimators
ν̂LS0 and α̂LS are defined as

(ν̂LS0 , α̂LS) = argmin
(ν0,α)

n
∑

i=1

(mi − ν0e
−αbi)2,

for ν0, α > 0, which is equivalent to the solution of the following equations
{

ν0
∑n

i=1 e
−2αbi =

∑n
i=1mie

−αbi ,

ν0
∑n

i=1 bie
−2αbi =

∑n
i=1mibie

−αbi .
(4)

The approximation to a nonlinear regression model is inconsistent with the phe-
nomenon under study, most evidently for the fact that in this case the noise
term is symmetric and it can assume real values. This inconsistency is negligi-
ble for high SNR values, since a Rice(ν, σ2) distribution in this case approaches
a N (ν0, σ

2), but becomes important with “intermediate” and low SNRs. In
Walker-Samuel et al. (2009), the behavior of the Rice distribution with fixing
σ = 1 and varying ν is examined, observing that normality can be considered a
good approximation at about ν/σ > 2.64, but the sample variance approaches
σ2 only for SNR values greater than 5.19. Even for pixels with high SNRs at
b = 0, for large b-values the real signal could reach the same order of magnitude
of noise, depending on the unknown value of α, and this could lead to very biased
estimates. However, the least squares approach is computationally simpler and
quicker to carry out, since it can be seen from (4) that ν0 can be expressed as
a function of α, thus requiring just a one-dimensional optimization to compute
the estimates.

3.2 Maximum likelihood

The maximum likelihood approach allows to take into account the asymmetry
of the signal distribution, always providing admissible values of the parameters.
The objective function is the log-likelihood

l(ν0, α|m,b, σ2) = logL(ν0, α|m,b, σ2) =
n
∑

i=1

log fMi
(mi|ν0e−αbi , σ2)

∝ − 1

2σ2

n
∑

i=1

ν20e
−2αbi +

n
∑

i=1

log

[

I0

(

miν0e
−αbi

σ2

)]

,

where fMi
is the Rice density (1), for i = 1, . . . , n. The ML estimator is then

(ν̂ML
0 , α̂ML) = argmax

(ν0,α)
l(ν0, α|m,b, σ2),
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for ν0, α > 0.
Looking for stationary points of l and using the fact that I ′0(x) = I1(x), we

obtain the following estimating equations



















ν0
∑n

i=1 e
−2αbi =

∑n
i=1

I1(
miν0e

−αbi

σ2 )mi

I0(
miν0e

−αbi

σ2 )
e−αbi ,

ν0
∑n

i=1 bie
−2αbi =

∑n
i=1

I1(
miν0e

−αbi

σ2 )mi

I0(
miν0e

−αbi

σ2 )
bie

−αbi .

Notice that these score equations differ from (4) only for the Bessel functions

ratios I1(
miν0e

−αbi

σ2 )/I0(
miν0e

−αbi

σ2 ), which multiplies the observations mi. In par-
ticular, this factor decreases the values of observations, since 0 < I1(x)/I0(x) < 1
for x > 0, and increases asymptotically to 1 for large SNRs, so that the score
equations tend to (4).

As shown in Sijbers et al. (1998), the maximum likelihood estimator for ν
obtained from an iid sample M1, . . . ,Mn ∼ Rice(ν, σ2) and known σ2 becomes
exactly 0 when the moment estimator for E[M2] = ν2 + 2σ2 becomes inadmis-
sible, i.e. when

∑n
i=1M

2
i /n − 2σ2 ≤ 0, even if the real value of ν is larger than

0. The case of Rice exponential regression suffers of a similar problem in a non
trivial way, and would require σ2 to be estimated with the other parameters to
keep parameter values coherent with the model. Here we will not address this
problem, but efforts in this direction are currently in progress.

3.3 Bayesian approaches

We consider also three different estimators based on a Bayesian posterior dis-
tribution: its mean, its median and its mode. To allow an easy implementation
using BUGS code, we introduce a slightly different formulation of the model. If
M ∼ Rice(ν, σ2), then R = M2/σ2 has noncentral χ2 distribution with 2 de-
grees of freedom and noncentrality parameter λ = ν2/(2σ2). Be now R1, . . . , Rn

the random sample considered, with Ri = M2
i /σ

2 and Mi ∼ Rice(ν0e
−αbi , σ2)

for i = 1, . . . , n, and let r = (r1, . . . , rn) be the observations from this sample.
Let π(ν0) and π(α) be the prior distributions of the two unknown parame-
ters, while the density of each Ri will be denoted as fRi

(ri), with parameter
λi = ν20e

−2αbi/2σ2. The joint posterior distribution of ν0 and α is then

p(ν0, α|r,b, σ2) ∝
n
∏

i=1

fRi
(ri|λi)π(ν0)π(α)

As anticipated in Section 2.1, a noncentral χ2 distribution of noncentrality
λ can be sampled as a mixture of χ2(2P + 2) with P ∼ P(λ). This allows an
easy BUGS implementation of these estimators.
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4 Simulation study

We compared 5 estimators for α - least squares (LS), maximum likelihood (ML)
and posterior mean (PMe), median (PMd) and mode (PMo) - in terms of mean
and mean square error. For the two frequentist approaches, ranges for the possi-
ble parameter values have been chosen, considering ν0 ∈ [0.1, 10] and α ∈ [0.1, 5],
while the fixed parameter σ2 has been taken always equal to 1. For the Bayesian
point estimators we chose uninformative, uniform priors, with the same sup-
port as the ranges chosen for LS and ML. The first two estimators have been
computed with R 2.12.2 (see R Development Core Team (2009)), using built-in
optimization functions: optimize for the one-dimensional minimization required
in LS and optim, using the L-BFGS-B method, for the likelihood maximization,
with startup values (ν0start, αstart) = (1, 1). Bayesian posterior distributions
have been computed using a Gibbs sampler implemented in JAGS (see Plum-
mer (2003)). In particular, the following model code (valid for any program
supporting BUGS-type language) was used:

model{
f o r ( i in 1 : n ){

lambda [ i ]<−(nu0∗nu0 )∗ exp(−2∗alpha ∗b [ i ] ) / ( 2 ∗ sigma∗ sigma )
p [ i ] ˜ dpo i s ( lambda [ i ] )
k [ i ]<−2∗p [ i ]+2
M[ i ] ˜ dch i sq r ( k [ i ] )

}
alpha ˜ duni f ( 0 . 1 , 5 )
nu0˜ duni f ( 0 . 1 , 1 0 )

}

As it can be seen from the model code, uniform prior distributions have been
chosen, with supports equal to the search ranges for LS and ML. 10000 Gibbs
sampling iterations have been run for each different sample, with a thinning of
10, and standard diagnostics revealed a good behavior of the generated chains.

We chose b-values in a typical range for diffusion MR machine settings, i.e.
from 0 to 1000s/mm2, on equally spaced grids of n = 5, 10, 15, 20, 25, 30 points.
Different simulations have been run with parameter values ν0 = 2, 4, 8, which
represent a low, an intermediate and a high SNR, and α = 0.7, 1, 3, typical low,
intermediate and high physiological values of ADC.

It must be reported that the ML estimator, in cases of low SNR, reached the
boundaries of the optimization region in various simulations. In the combination
n = 5, ν0 = 2, α = 3 only 45% of the simulations gave ML estimates that
converged to a value inside the predefined ranges of parameters search, while in
the other cases this number oscillated around 70% when α = 1 or 100% when
α = 0.7. These degenerate results have been removed for the computation of
bias and variance.

Figure 1 displays the decaying exponential curves we aim to estimate in the
9 different combinations of ν0 and α, along with a horizontal line at level σ, to
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represent the order of magnitude of noise with respect to the signal. The quality
of estimates depends both on the SNR at b = 0 and on the ADC, as will be clear
from simulations.
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Figure 1: Stejskal-Tanner model in simulation parameter combinations. b-values
are expressed in 1000s/mm2.

Figure 2 shows the behavior of bias for the estimators of α with different
sample sizes n. For what concerns the frequentist estimators (LS and ML),
there is no uniform ordering through the considered values of n when the signal
decays slowly (α = 0.7), but in the other cases, when noise is stronger along
the curve, the maximum likelihood estimate is always less biased than the least
squares one; notice also that the least squares estimates do not seem to have
a decreasing bias when n increases among the considered values. Concerning
the 3 Bayesian estimators, no striking differences arise among them, while with
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respect to the frequentist estimators in many cases they have comparable or
higher bias, with the exception of the “worst case” ν0 = 2, α = 3, where they
are uniformly more accurate.
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Figure 2: Bias of estimators for α. Bold lines: solid=LS, dashed=ML; slim lines:
solid=PMe, dashed=PMd, dotted=PMo.

From what concerns variance, analyzed in Figure 3, the LS estimator shows
almost always the best performance, excepted for low sample sizes when α =
3. The other estimators have similar performances and behaviors at different
sample sizes n, with ML and PMe having strikingly higher variance in some noisy
cases. As expected, variance notably decreases for all estimators at increasing n
in most combinations of parameters, but with very low SNR (ν0 = 2) the only
one showing empirical convergence of variance to 0 is LS.
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Figure 3: Variance of estimators for α. Bold lines: solid=LS, dashed=ML; slim
lines: solid=PMe, dashed=PMd, dotted=PMo.

An overall index of estimator performance can be evaluated by the mean
square error (MSE). Since the MSE is the sum of square bias and variance,
the orders of magnitude of these two characteristics assume an important role.
As it can be seen from Figure 4, the LS estimator has the lowest MSE when
α = 0.7, 1, but exhibits the worst performances in the critical cases of high ADC,
where Bayesian estimators seem to work better.

Results for ν0 are not detailed here, but it is worth mentioning that, since it
is necessary to estimate the two parameters jointly, the precisions and accuracies
of their estimators are mutually influenced. Anyway, estimators for ν0 show a
more classical behavior: the LS estimator is in all cases less accurate but more
precise (high bias and low variance), and the consistency of all estimators is
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Figure 4: MSE of estimators for α. Bold lines: solid=LS, dashed=ML; slim
lines: solid=PMe, dashed=PMd, dotted=PMo.

evident when increasing n. The summary plots for the MSE of the estimators
for ν0 can be seen in Figure 5.

5 Conclusions

In this work, we proposed different methods for estimating pixelwise the ADC
from diffusion MR signals, following the Rice noise model and the Stejskal-
Tanner equation for magnitude decay. The presented estimators exhibit different
features that should be taken into account when approaching real data. The
least squares approach is the fastest and has low variance, but becomes less
accurate when the conditional signal distribution at different b-values is more
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Figure 5: MSE of estimators for ν0. Bold lines: solid=LS, dashed=ML; slim
lines: solid=PMe, dashed=PMd, dotted=PMo.

distant from normality. The maximum likelihood estimator is slightly slower,
requiring a nonlinear maximization on 2 variables, and has the lowest bias in
many cases, but, as pointed out before, it may diverge with samples from noisy
signals. Bayesian estimators are the most expensive in terms of computational
costs, and may require further tuning for improving their performances; they are
the best in terms of mean square error at the high ADC here tested, and offer the
advantage of providing the whole posterior distribution for inferential purposes,
while inferential tools regarding LS and ML should rely, at present time, on
normal approximations, which may not be reliable with low sample sizes and
SNRs. Future studies concentrate on the inferential aspect, while extending in
efficient ways these estimation methods to full MR images.
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