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Abstract

Entanglement between two quantum systems is a resource in quantum information, but
dissipation usually destroys it. In this article we consider two qubits without direct interac-
tion and we show that, even in cases where the open system dynamics destroys any initial
entanglement, the mere monitoring of the environment can preserve or create the entangle-
ment, by filtering the state of the qubits. While the systems we study are very simple, we
can show examples with entanglement protection or entanglement birth, death, rebirth due
to monitoring.

Keywords: Entanglement; Concurrence; Dissipative dynamics; Continuous observation;
A priori state; A posteriori state.

1 Introduction

Entanglement is an intrinsically quantum type of correlation among quantum systems which
is of fundamental importance in quantum information [1]. The behaviour of entanglement
under dissipative dynamics has been studied extensively [3, 2], either to find means to protect
entanglement against decoherence, either to understand how to use a dissipative dynamics to
create entanglement. Usually dissipation tends to destroy entanglement, at least when the two
quantum systems do not interact directly. Sometimes this disentaglement can be completed even
in a finite time [4,5,3] and this phenomenon has been called entanglement sudden death (ESD).
However, dissipation can create entanglement too; this happens when the two parties interact
with a common bath [6–8,2,3], even if they do not interact directly, and we can have entanglement
birth, death, rebirth. Entanglement can be preserved or generated also by controlling the
composite system by means of measurement based feedback [9–11].

Preservation of entanglement can be obtained also by pure monitoring of the system [12–14],
that is by an indirect measurement on the system which acquires information thanks to the
observation of its environment, but which does not perturb the system. Quantum trajectory
theory allows for describing a continuous monitoring [15, 16] and in such a theory we have to
distinguish between the a posteriori state, the conditional state given the observed output, and
the a priori state, the mean state, satisfying a master equation. It is possible that the a posteriori
states are entangled, while the a priori state is not. By using the concurrence [17] as a measure
of entanglement it has been shown that the pure monitoring can slow down the decay of the
entanglement [12].

The aim of our paper is indeed to study the effect of monitoring on the a posteriori entan-
glement when the a priori dynamics washes out any initial entanglement. More precisely, we

1



consider the case of the open dynamics of two qubits in the Markovian regime and we model
their global evolution by a Hudson-Parthasarathy equation. This approach allows to clearly
characterize the Markovian evolutions representing two qubits which do interact or do not inter-
act, directly or through a common bath. Section 2 is devoted to the HP evolutions and to such
a characterization; we recall also how to introduce measurements continuous in time and how
to get the corresponding stochastic Schrödinger equation (SSE) and stochastic master equation,
which are the starting points to study the dynamical behaviour of the monitored system and of
its entanglement. In Section 3 we consider the case of no direct or indirect interaction between
two qubits. When only local detection operators are involved, we show that, by pure monitoring,
the decay of entanglement can be slowed down and, in special cases, even stopped independently
of the qubit initial state (entanglement protection). In cases with non local detection operators,
we show that, now depending on the qubit initial state, entanglement can even be created by
pure monitoring (entanglement generation). In Section 4 we study a case of indirect interaction
between the two qubits through a common bath. We show that, even if the a priori dynamics
completely destroys any entanglement, a proper monitoring scheme can maximally entangle any
initial qubit state.

1.1 Two qubits

We consider two qubits; for each qubit we denote by |1〉 the up state and by |0〉 the down

state. By σx, σy, σz we denote the Pauli matrices. In H = C2 ⊗ C2 the canonical basis (or
computational basis) [1] is

|u1〉 = |11〉, |u2〉 = |10〉, |u3〉 = |01〉, |u4〉 = |00〉, (1)

and the Bell basis [18] is

|β0〉 =
1√
2

(|00〉 + |11〉) , |βi〉 = σi ⊗ 1|β0〉, i = 1, 2, 3. (2)

The set of statistical operators is S(H) and the one of linear operators is L(H). A local

operator is a linear operator which acts non trivially only on one of the factors of C2 ⊗ C2, i.e.
it has the form A⊗1 or 1⊗A with A ∈ L(C2). The two qubits are independent if their state is
a product state ρ = ρ1 ⊗ ρ2. The separable states [19] are the statistical operators which admit
a convex decomposition into product states, so that the correlation between the two qubits has
a classical explanation; the other statistical operators are said to be entangled. The maximally

entangled states are the pure states which, by partial trace on one of the two factors, reduce
to maximally chaotic states, that is 1/2. The projection on one of the Bell vectors (2) is a
maximally entangled state.

1.2 Concurrence

A very useful measure of entanglement is the concurrence, introduced by Wootters [17]. Let us
consider a generic vector ϕ ∈ H and expand it on the canonical basis (1)

ϕ = ϕ11|11〉 + ϕ10|10〉 + ϕ01|01〉 + ϕ00|00〉. (3)

Let T be the complex conjugation of the coefficients in the canonical basis:

Tϕ = ϕ11 |11〉 + ϕ10 |10〉 + ϕ01 |01〉 + ϕ00 |00〉. (4)
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Let us define

χϕ := 〈Tϕ|σy ⊗ σyϕ〉 = 2 (ϕ10ϕ01 − ϕ11ϕ00) , Cϕ := |χϕ| . (5)

When ‖ϕ‖ = 1, Cϕ is the concurrence of the pure state ϕ. In general, if ϕ is not normalized
and ψ = ϕ

‖ϕ‖ , then

Cψ =
Cϕ

‖ϕ‖2 . (6)

Note that Cβj
= 1 and Cuj

= 0.

If ρ is a generic statistical operator, the concurrence is defined by

Cρ := inf
∑

i

piCψi
, (7)

where the infimum is taken over all decompositions of ρ in pure states, ρ =
∑

i pi|ψi〉〈ψi|, see for
instance [3] p. 231. We have 0 ≤ Cρ ≤ 1, ∀ρ ∈ S(H), with Cρ = 0 if and only if ρ is separable
and Cρ = 1 if and only if ρ is maximally entangled.

A subclass of states, for which it is easy to compute the concurrence, is the one of the “X”
states [5, 3]: in the canonical basis, an X state has non vanishing matrix elements only in the
two main diagonals. The projection on a Bell vector is an X state. For any X state ρ, by
setting ρij = 〈ui|ρuj〉, we have ρjj ≥ 0, ρij = ρji,

∑4
j=1 ρjj = 1, ρ11ρ44 ≥ |ρ14|2, ρ22ρ33 ≥ |ρ23|2;

moreover, the concurrence is given by [5]

Cρ = 2 max {0, C1, C2} , (8a)

C1 = |ρ23| −
√

ρ11ρ44, C2 = |ρ14| −
√

ρ22ρ33. (8b)

Finally, let A and B be linear operators on C2. In studying the dynamics of the concurrence,
the following formulae will be very useful:

χ(A⊗B)ϕ = (detC2A) (detC2B)χϕ, (9a)

〈Tϕ|(σyA) ⊗ σyϕ〉 = 〈TA ⊗ 1ϕ|σy ⊗ σyϕ〉 =
1

2
(TrC2A)χϕ. (9b)

2 Global evolution and continuous measurements

The way to understand whether the two qubits interact or do not interact, directly or indirectly,
is to look at the unitary dynamics of the two qubits plus their environment. In the Markov
regime this can be done by starting from a quantum stochastic differential equation à la Hudson
and Parthasarathy (HP equation) [20] and this is also a clear way to introduce continuous
mesurements [21,15].

As before the system space is H, while we take as environment space the symmetric Fock
space K = Γ[L2(R; Z)]; Z is a complex Hilbert space, which will be only finite dimensional in the
present paper. Let Ut = e−itHT , HT = H∗

T , denote the unitary (Hamiltonian) global evolution in
K⊗H. We suppose that the free environment evolution is Θt = e−itE0 , the second quantization
of the left shift, with its free Hamiltonian E0. Then the global evolution in interaction picture
with respect to Θt is

V (t) = Θ∗
t Ut = eiE0t e−itHT , t ≥ 0,

which, in the Markov regime, can be defined directly by a HP-equation.
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2.1 HP evolutions

We fix a basis {|z〉}z∈Z in the Hilbert space Z. Let az(t) and a†z(t) be the fundamental Bose field
operators in Γ[L2(R;Z)] and Az(t) =

∫ t
0 az(s)ds, A†

z(t) =
∫ t
0 a†z(s)ds, Λzw(t) =

∫ t
0 a†z(s)aw(s)ds

be the fundamental integrators of quantum stochastic calculus.
Let us consider the HP-equation [20] for unitary operators on K ⊗ H

dV (t) =

[ ∑

z,w∈Z

(Szw − δzw) dΛzw(t) −
∑

z,w∈Z

L∗
zSzw dAw(t)

+
∑

z∈Z

Lz dA†
z(t) − iHdt − 1

2

∑

z∈Z

L∗
zLz dt

]
V (t); (10)

the initial condition is V (0) = 1. By taking

1. H, Lz, Szw ∈ L(H) (bounded operators), ∀z, w ∈ Z,

2. H = H∗,

3. S ∈ U(Z ⊗ H) (unitary operators), where S =
∑

zw |z〉〈w| ⊗ Szw,

the solution of (10) is indeed unique and unitary. Every operator is identified with its natural
extension to K ⊗ H.

By using the time ordered exponentials introduced by Holevo [22], the solution V (t) can be
represented as

V (t) = ←−exp

{
−i

∫ t

0

[∑

zw

Kzwa†z(s)aw(s) −
∑

zw

L∗
z

( K

1− S∗

)

zw
aw(s)

+
∑

zw

( K

S − 1

)

zw
Lza

†
w(s) + H +

∑

zw

L∗
z

( K − sinK

4
(
sin(K/2)

)2

)

zw
Lw

]
ds

}
, (11)

where S = e−iK , with a selfadjoint operator K on Z ⊗ H.
Moreover, we have that Ut, defined by Ut := ΘtV (t) for t ≥ 0, and by Ut := U ∗

−t for t ≤ 0,
is a unitary strongly continuous group. So, we can interprete Ut as the evolution operator of
a closed system, Θt as the free evolution of the fields and V (t) as the total evolution in the
interaction picture with respect to Θt.

The interaction between H and K is regulated by the system operators H, Lz and Szw;
the corresponding global Hamiltonian HT is a very singular unbounded operator which could
even encode the whole interaction just in the shape of its domain [23]. Anyway, thanks to
representation (11), the global Hamiltonian HT has the heuristic expression

HT = E0 +
∑

zw

Kzw a†z(0) aw(0) −
∑

zw

L∗
z

( K

1− S∗

)

zw
aw(0)

+
∑

zw

( K

S − 1

)

zw
Lz a†w(0) + H +

∑

zw

L∗
z

( K − sinK

4
(
sin(K/2)

)2

)

zw
Lw, (12)

which allows to read more explicitly the interaction between the systems. In the special case
L = 0 we have

HT = E0 +
∑

zw

Kzwa†z(0) aw(0) + H, (13)
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while for K = 0, i.e. S = 1, we get

HT = E0 − i
∑

z

L∗
z az(0) + i

∑

z

Lz a†z(0) + H. (14)

As initial state let us take |e(v)〉〈e(v)| ⊗ ρ0, where ρ0 ∈ S(H) is the initial system state and
e(v) is the coherent vector in K = Γ[L2(R;Z)] with argument v in L2(R; Z). At the end it will
be possible to take v only locally square integrable.

Then, thanks to the properties of the HP-equation, the dynamics of the reduced system state

η(t) := TrK{U(t) (|e(v)〉〈e(v)| ⊗ ρ0)U(t)∗} = TrK{V (t) (|e(v)〉〈e(v)| ⊗ ρ0)V (t)∗} (15)

is given [20,15] by the master equation η̇(t) = L(t)[η(t)] with Liouville operator

L(t)[τ ] = −i[H(t), τ ] +
∑

z

(
L̃z(t)τL̃z(t)

∗ − 1

2

{
L̃z(t)

∗L̃z(t), τ
})

, (16a)

L̃z(t) := Lz +
∑

w

(Szw − δzw) vw(t), (16b)

H(t) := H +
i

2

∑

zw

[
vz(t) (S∗

wz + δzw)Lw + vz(t)Szwvw(t) − h.c.
]
. (16c)

Of course the reduced evolution depends on the global dynamics (10) and on the environment
initial state. But this correspondence is not injective at all, so that it is not enough to know the
Liouvillian L to know the system/environment interaction.

2.2 From the HP-equation to the SSE

The fields which have already interacted with H can be manipulated in various ways and then
monitored continuously in time. In this way we avoid to further perturb the dynamics of H,
but, at the same time, as we indirectly acquire information on its state, the dynamics of H turns
out to be conditioned by the observed output. In the typical case of quantum optics the system
is a photoemissive source and the output fields are mixed up by means of beam splitters and
optical fibers and detected by photon counters (direct, homodyne, heterodyne detection) [15].
In general, we identify a measurement in continuous time by a family of commuting selfadjoint
field operators which can be chosen as follows.

The manipulation of the fundamental fields is represented by a unitary, possibly time de-
pendent, matrix uiz(t),

∑

i∈Z

uiz(t)uiw(t) = δzw,
∑

z∈Z

uiz(t)ujz(t) = δij ,

and produces the new field operators

Bi(t) :=
∑

z∈Z

∫ t

0
uiz(s) dAz(s), Λ̂ij(t) :=

∑

z,w∈Z

∫ t

0
uiz(s)ujw(s) dΛzw(s), i, j ∈ Z.

Then, set dimZ = d + d′, we choose as observables the commuting selfadjoint operators (inter-
action picture)

Bi(s) + B†
i (s), Λ̂kk(s), i = 1, . . . , d, k = d + 1, . . . , d + d′, s ≥ 0. (17)
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The global evolution (10), the environment initial (coherent) state |e(v)〉〈e(v)| and the ob-
served fields (17) together determine both the distribution of the output processes and the a
posteriori dynamics of the system H, that is the evolution of H as a function of the observed
outputs; both of them depending on the system initial state ρ0. As we observe a maximal family
of compatible fields, the a posteriori evolution preserves the purity of the system states and thus
the problem of dynamics and observation can be reduced to a classical linear SSE [21,16]:

dϕ(t) = K(t)ϕ(t−)dt +
d∑

j=1

Rj(t)ϕ(t−)dWj(t)

+
d′∑

k=1

[(
Jk(t)√

λk
− 1

)
ϕ(t−)dNk(t) +

λk

2
ϕ(t−)dt

]
, (18)

K(t) := −iH0(t) −
1

2

∑

j∈Z

Rj(t)
∗Rj(t). (19)

H0(t) := H +
i

2

∑

z,w∈Z

(
vz(t)S

∗
wzLw − L∗

wSwzvz

)
, (20a)

Rj(t) :=
∑

z∈Z

ujz(t)

(
Lz +

∑

w∈Z

Szwvw(t)

)
, Jk(t) := Rd+k(t); (20b)

the initial condition is ϕ(0) = ψ0 ∈ H, ‖ψ0‖ = 1. Equation (18) is a stochastic differential
equation for a H-valued stochastic process ϕ(t) in a filtered probability space, say

(
Ω, F, (Ft), Q

)
,

where Wj , Nk are independent Wiener and Poisson processes, each Nk with rate λk. The solution
ϕ(t) is taken continuous from the right and ϕ(t−) in the right hand side means that the value
of the solution is taken before of the possible jump at time t. The solution ϕ(t) is a function of
the initial condition ψ0 and of the trajectories of the processes Wj and Nk up to time t.

Equation (18) can be translated in the language of stochastic processes σ(t) taking values
among positive operators on H. Indeed, if A(t, s) is the fundamental solution of Eq. (18), or the
propagator from time s to t, taken ρ0 ∈ S(H), the stochastic process σ(t) := A(t, 0)ρ0A(t, 0)∗

satisfies the linear stochastic master equation

dσ(t) = L(t)[σ(t−)]dt +
d∑

j=1

(
Rj(t)σ(t−) + σ(t−)Rj(t)

∗)dWj(t)

+
d′∑

k=1

[(
Jk(t)σ(t−)Jk(t)

∗

λk
− σ(t−)

) (
dNk(t) − λk dt

)]
, (21)

where L(t) is the Liouville operator defined in Eqs. (16).

Starting from Eq. (18) or Eq. (21) one can get both the distribution of the outputs and the
a posteriori dynamics of H.

Of course, the joint distribution of the compatible field observables B†
i (t)+Bi(t) and Λ̂k(t) is

given by the Born rule based on their joint projection valued measure and the initial system/field
state. Anyway, it can be obtained directly from Eq. (18) or Eq. (21), as it is the joint distribution
of the processes Wj , Nk under the physical probability on (Ω, FT ):

PT (dω) = pT (ω)Q(dω), pt = Tr {σ(t)} . (22)
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Moreover, by defining ρ(t) := σ(t)
pt

when pt > 0, and by taking an arbitrary state for ρ(t)
when pt = 0, we obtain the so called a posteriori state, the conditional state to be attributed
to the system, having observed the realization of all the processes Wj and Nk up to time t.
Correspondingly, let us call σ(t) the non normalized a posteriori state

In particular, regarding the distribution of the outputs, by Girsanov theorem we can say
that under the physical probability PT

Ŵj(t) := Wj(t) −
∫ t

0
mj(s)ds, mj(t) := 2Re Tr {Rj(t)ρ(t−)} , (23)

j = 1, . . . , d, is a d-dimensional standard Wiener process, while Nk(t) is a counting process of
stochastic intensity µk(t) = Tr {Jk(t)

∗Jk(t)ρ(t−)}.
As we observe the fields without introducing any new disturbance on H, we have that its a

priori state, that is the mean of its a posteriori states, coincides with its reduced state (15) in
absence of measurement:

η(t) = EPT
[ρ(t)] = EQ [σ(t)] , t ∈ [0, T ]. (24)

Thus, the continuous measurement gives an unravelling (with a physical interpretation) to the
open dynamics (16). Of course, if we change the observed fields for a given global evolution and
a given environmental initial state, we get a different unravelling of the same open evolution.

2.3 Interacting and non interacting subsystems

Let us finally consider a bipartite system H = H1 ⊗ H2 with its environment K = Γ[L2(R; Z)]
and their HP-evolution (10). We are interested in the case of no direct interaction between the
two subsystems H1 and H2, but, because of the common environment K, the two subsystems
could have or not have an indirect interaction.

If the global Hamiltonian HT were bounded, we could say that H1 and H2 do not interact
directly if the global Hamiltonian is

HT = H0 + H1 + H2 + H01 + H02

where H0 = H∗
0 ∈ L(K) is the free Hamiltonian of the environment, H1 = H∗

1 ∈ L(H1) is the
free Hamiltonian of H1, H2 = H∗

2 ∈ L(H2) is the free Hamiltonian of H2, while H01 ∈ L(K⊗H1)
and H02 ∈ L(K ⊗ H2) give the interaction, respectively, of H1 with K and of H2 with K.

Analogously, dealing with HP-evolutions, we say that H1 and H2 do not interact directly
if, in the heuristic representation (12) of the global Hamiltonian HT , each one of the operators

Kzw,
∑

w

(
K

S−1

)

zw
Lw and H +

∑
zw L∗

z

(
K−sin K

4
(

sin(K/2)
)2

)

zw
Lw is the sum of local operators. This

property is independent of the basis {|z〉}z∈Z chosen in Z.
In the case L = 0, this means H = H1 + H2, with Hℓ = H∗

ℓ ∈ L(Hℓ), and K = K1 + K2,
with Kℓ = K∗

ℓ ∈ L(Z ⊗ Hℓ).
In the case K = 0, this means H = H1 + H2, with Hℓ = H∗

ℓ ∈ L(Hℓ), and each Lz =

L
(1)
z + L

(2)
z , with L

(ℓ)
z ∈ L(Hℓ).

An important subcase is when the subsystems H1 and H2 do not have any kind of interaction,
either direct or indirect. In other words, this means that each subsystem Hℓ has its own
environment Kℓ and that there is no interaction between H1 and K1 on one side and H2 and K2

on the other. Thus, we say that H1 and H2 do not interact, either directly or indirectly, if there
exists a decomposition Z = Z1 ⊕ Z2, that is a decomposition K = Γ[L2(R;Z)] = Γ[L2(R;Z1)] ⊗

7



Γ[L2(R; Z2)] = K1⊗K2 such that, chosen a basis {|z〉}z∈Z1 in Z1 and a basis {|z〉}z∈Z2 in Z2 and
considering the heuristic representation (12) of the global Hamiltonian in the basis {|z〉}z∈Z1∪Z2

in Z, each addendum is an operator on H1 ⊗ K1 or on H2 ⊗ K2. This means that Kzw belongs

L(Hℓ) when both z, w ∈ Zℓ, while it is null otherwise, that
∑

w

(
K

S−1

)

zw
Lw belongs to L(Hℓ)

when z ∈ Zℓ, and that H +
∑

zw L∗
z

(
K−sin K

4
(

sin(K/2)
)2

)

zw
Lw is the sum of local operators. This

property is independent of the bases chosen in Z1 and Z2.
In the case K = 0, this means H = H1 + H2, with Hℓ = H∗

ℓ ∈ L(Hℓ), and Lz ∈ L(H1) for
z ∈ Z1, Lz ∈ L(H2) for z ∈ Z2.

Let us remark that the Liouvillian (16) is not enough to understand whether the subsystems
H1 and H2 do or do not interact.

3 No direct or indirect interaction

Let us start by the last case presented in the previous section, when the two qubits do not
interact either directly or indirectly through a common bath, and let us study the role of a
complete continuous measurement. We consider only the case S = 1, so that we need to take
Z = Z1 ∪ Z2, Z1 ∩ Z2 = ∅,

Lz =

{
L̂z ⊗ 1 for z ∈ Z1,

1⊗ L̂z for z ∈ Z2,
H = H1 ⊗ 1 + 1⊗ H2. (25)

As it will be useful in the following, from now on we give evidence to the tensor product
structure of the various operators we need. Then, from Eqs. (16) we get the Liouville operator
L(t) = L1(t) ⊗ 1 + 1⊗ L2(t) with

Li(t)[τ ] := −i[Hi(t), τ ] +
∑

z∈Zi

(
L̂zτL̂∗

z −
1

2

{
L̂∗

zL̂z, τ
})

,

Hi(t) := Hi + i
∑

z∈Zi

(
vz(t) L̂z − vz(t)L̂

∗
z

)
.

Recall that v is the argument in the environment initial coherent state. Moreover, in the case
of a complete observation, we obtain the SSE (18) with Rj(t) and Jk(t) given by Eq. (20b),
K(t) = K1(t) ⊗ 1 + 1⊗ K2(t),

Ki(t) := −iHi −
1

2

∑

z∈Zi

(
L̂∗

zL̂z + 2vz(t)L̂
∗
z + |vz(t)|2

)
.

Let us start by considering a pure initial state ρ0 = |ψ0〉〈ψ0|, so that σ(t) = |ϕ(t)〉〈ϕ(t)| and
pt = ‖ϕ(t)‖2, cf. Eqs. (18), (21), (22). Now the random a posteriori states are given by ρ(t) =
|ψ(t)〉〈ψ(t)| with ψ(t) = ϕ(t)/ ‖ϕ(t)‖ and the a priori states by η(t) = EPT

[ρ(t)] = EQ [σ(t)], see
Sect. 2.

3.1 The a posteriori concurrence

By the definition of concurrence in the case of pure states (5), (6), we can introduce the random
a posteriori concurrence

Cρ(t) ≡ Cψ(t) =

∣∣∣χϕ(t)

∣∣∣

‖ϕ(t)‖2 (26)
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and the mean a posteriori concurrence

EPT

[
Cψ(t)

]
= EQ

[∣∣∣χϕ(t)

∣∣∣
]
, 0 ≤ t ≤ T. (27)

By the definition of concurrence for mixed states (7) and of a priori states (24), we get that the
a priori concurrence is bounded by the mean a posteriori concurrence:

Cη(t) ≤ EPT

[
Cψ(t)

]
. (28)

By the linear SSE and Itô’s formula we get the stochastic differential of χϕ(t), which we shall
need in the following,

dχϕ(t) = ε(t)dt +
d∑

j=1

ℓj(t)χϕ(t) dWj(t) +
d′∑

k=1

[
qk(t)dNk(t) + λkχϕ(t) dt

]
, (29)

where

ε(t) := TrC2 {K1(t) + K2(t)}χϕ(t) +
d∑

j=1

〈TRj(t)ϕ(t)|σy ⊗ σyRj(t)ϕ(t)〉,

ℓj(t) :=
∑

z∈Z

ujz(t)
(
TrC2 L̂z + 2vz(t)

)
, (30)

qk(t) :=
1

λk
〈TJk(t)ϕ(t)|σy ⊗ σyJk(t)ϕ(t)〉 − χϕ(t).

By writing

L̂z =
3∑

i=1

hziσi + rz, (31)

we get
ℓj(t) = 2

∑

z

ujz(t)
(
rz + vz(t)

)
, (32)

TrC2 {K1(t) + K2(t)} = −i TrC2 {H1 + H2} −
∑

z∈Z

{ 3∑

i=1

|hzi|2 + |rz|2 + |vz(t)|2 + 2vz(t) rz

}
. (33)

Let us stress that the operators Rj(t) and Jk(t) are not in general local operators, but sums of
local operators. By this fact we cannot write in a more explicit form the coefficients ε(t) and
qk(t).

3.2 Only local detection operators

As already said, in this section we are considering only local operators in the dynamics: every
qubit has its own environment and there is no direct nor indirect interaction between the two
qubits. Now we consider the case in which also the detection operators are local, that is

Rj(t) = R0
j (t) ⊗ 1 or Rj(t) = 1⊗ R0

j (t). (34)

This means that we observe separately the two environments. With this further assumption,
the stochastic differential (29) becomes the closed equation

dχϕ(t) = χϕ(t)

(
κ(t)dt +

∑

j

ℓj(t)dWj(t) +
∑

k

(
dk(t)

λk
− 1

)
dNk(t)

)
, (35)
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κ(t) = TrC2 {K1(t) + K2(t)} +
d′∑

k=1

λk +
d∑

j=1

detC2R0
j (t),

ℓj(t) = TrC2 R0
j (t), dk(t) = detC2R0

d+k(t). (36)

Equation (35) can be explicitly solved and, by stochastic calculus, we get

EPT

[
Cψ(t)

]
= EQ

[
Cϕ(t)

]
= Cψ0 exp

{
−

∫ t

0
c(s)ds

}
, (37)

c(t) :=
d′∑

k=1

(λk − |dk(t)|) −
1

2

d∑

j=1

(Im ℓj(t))
2 − Reκ(t).

The first important result is that c(t) does not depend on the initial state of the qubits, but
only on the operators involved in the reduced dynamics and in the observation. This result is a
slight generalization of the analogous one in Ref. [12]. By using (31), we get, by straightforward
calculations,

R0
j (t) =

3∑

i=1

h̃ji(t)σi +
ℓj(t)

2
, h̃ji(t) :=

∑

z∈Z

ujz(t)hzi, (38)

dk(t) =
ℓd+k(t)

2

4
−

3∑

i=1

h̃(d+k)i(t)
2, c(t) =

∑

j∈Z

cj(t), (39)

cj(t) = 2
3∑

i=1

(
Re h̃ji(t)

)2
≥ 0, j ≤ d, (40)

cj(t) =
1

4
|ℓj(t)|2 − |dj−d(t)| +

3∑

i=1

∣∣∣h̃ji(t)
∣∣∣
2
≥ 0, j > d. (41)

By the fact that c does not depend on the initial state of the qubits we can extend the result
to the case of an initial mixed state ρ0 and we get

Cη(t) ≤ EPT

[
Cρ(t)

]
= Cρ0 exp

{
−

∫ t

0
c(s)ds

}
; (42)

we assume always complete observation. Note that the mean a posteriori concurrence is non
increasing. Moreover,

∫ +∞

0
c(s)ds = +∞ ⇒ lim

t→+∞
EPt

[
Cρ(t)

]
= 0, (43)

and, if c(t) = c > 0, the mean a posteriori concurrence decreases exponentially.

For what concerns the a priori states η(t), when the master equation involves only local
operators, one can have the phenomenon of entanglement sudden death (ESD) [3,12]. Note that
no revival is possible for the concurrence of η(t) due to the bound given by the mean a posteriori
concurrence (42).

Also the a posteriori concurrence, without the mean, can be studied. From the SDEs (18)
for ϕ(t) and (35) for χϕ(t), we can compute the stochastic differential of the concurrence Cψ(t) =

10



∣∣∣χϕ(t)

∣∣∣
/ ‖ϕ(t)‖2; in terms of the new Wiener process (23), the final result is the closed SDE

dCψ(t) = Cψ(t)

{ d∑

j=1

[
nj(t)dŴj(t) − cj(t)

]

+
d′∑

k=1

[( |dk(t)|
µk(t)

− 1

)
(dNk(t) − µk(t) dt) − cd+k(t) dt

]}
, (44)

where the cj(t) are given by Eq. (40), the cd+k(t) by Eq. (41), the dk(t) by Eq. (39) and

nj(t) := Re ℓj(t) − mj(t) = −2
3∑

i=1

(
Re h̃ji(t)

)
〈ψ(t)|siψ(t)〉, (45)

µk(t) =

∥∥∥∥∥

(
3∑

i=1

h̃(k+d) i(t)si +
ℓk+d(t)

2

)
ψ(t)

∥∥∥∥∥

2

,

h̃ji(t)si =

{
h̃ji(t)σi ⊗ 1 if Rj(t) = R0

j (t) ⊗ 1,

h̃ji(t)1⊗ σi if Rj(t) = 1⊗ R0
j (t).

The solution of the SDE (44) is given by the stochastic exponential

Cψ(t) = Cψ0 exp

{ d∑

j=1

[∫ t

0
nj(s) dŴj(s) −

∫ t

0

(
cj(s) +

nj(s)
2

2

)
ds

]

−
d′∑

k=1

∫ t

0

(
cd+k(s) + |dk(s)| − µk(s)

)
ds

} ∏

0<s≤t

d′∏

k=1

∣∣∣∣
dk(s)

µk(s)

∣∣∣∣
∆Nk(s)

. (46)

3.2.1 Diffusive case

Here we consider the purely diffusive case (d′ = 0). Now, in Eq. (37) the decay intensity of
the mean a posteriori concurrence is c(t) =

∑d
j=1 cj(t) with cj(t) given by Eq. (40), while the

random a posteriori concurrence reduces to

Cψ(t) = Cψ0 exp

{ d∑

j=1

[∫ t

0
nj(s) dŴj(s) −

∫ t

0

(
cj(s) +

nj(s)
2

2

)
ds

]}
, (47)

with nj(t) given by Eq. (45). Let us stress that neither cj nor nj depend on the trace of the
operators R0

j (t).
Note that, while the a priori states η(t) can suddenly loose any entanglement (ESD), this is

a.s. impossible for the a posteriori state (with complete observation).
In the particular case of all the R0

j ’s selfadjoint there is decay of the a posteriori concurrence,
but, thanks to the freedom in the choice of the matrix u, by a change of phase we can pass from
this case to the case of all the R0

j ’s anti-selfadjoint, for which there is no decay for every initial
qubit state (nj = cj = 0). Therefore, without changing the master equation, i.e. without
changing the dynamical behaviour of the concurrence of the a priori state, one gets the complete
entanglement protection by the choice of a phase in the detection operators. The case of all
the R0

j anti-selfadjoint gives ‖ϕ(t)‖ = constant and the SSE describes two independent random
unitary evolutions.
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3.2.2 Jump case

Let us consider the purely jump case, i.e. d = 0 and Jk(t) = J0
k (t) ⊗ 1 or Jk(t) = 1⊗ J0

k (t), for

which we have EPT

[
Cψ(t)

]
= Cψ0e

−
∫ t

0
c(s) ds,

Cψ(t) = Cψ0 exp

{
−

d′∑

k=1

∫ t

0

(
ck(s) + |dk(s)| − µk(s)

)
ds

} ∏

0<s≤t

d′∏

k=1

∣∣∣∣
dk(s)

µk(s)

∣∣∣∣
∆Nk(s)

,

dk(t) = detC2J0
k (t) =

ℓk(t)
2

4
−

3∑

i=1

h̃ki(t)
2, µk(t) = ‖Jk(t)ψ(t)‖2 ,

c(t) =
d′∑

k=1

ck(t), ck(t) =
1

4
|ℓk(t)|2 − |dk(t)| +

3∑

i=1

∣∣∣h̃ki(t)
∣∣∣
2
≥ 0.

One can check that ck(t) = 0 if and only if Im
(
h̃kj(t) h̃ki(t)

)
= 0, Re

(
ℓk(t) h̃ki(t)

)
= 0,

i, j = 1, 2, 3. Again, in some cases, one can protect the entanglement by tuning the detection
operators without changing the mean dynamics, for instance by changing the unitary matrix
u(t). Let us give some examples.

A jump operator such as J0
k = hσi + ℓ/2 contributes [12] with

ck = |h|2 +
|ℓ|2
4

−

√√√√
(
|h|2 +

|ℓ|2
4

)2

− 1

2

(
Reh ℓ

)2
;

note that this contribution is zero when Reh ℓ = 0, while its maximum contribution is ck =

|h|2 + |ℓ|2 /4 −
√
|h|4 + |ℓ|4 /16, reached when Reh ℓ = ± |h ℓ|.

The jump operator J0
k = ασ± + β contributes [12] with ck = |α|2 /2.

Let us consider the term

γ−

(
σ− • σ+ − 1

2
{σ+σ−, •}

)
+ γ+

(
σ+ • σ− − 1

2
{σ−σ+, •}

)
(48)

in the Liouville operator with γ+ ≥ 0, δ > 0, γ− = δ + γ+. Three different choices of detection
operators, but which give rise to the same dissipative term (48) in the master equation, are:

1. J− =
√

γ− σ− and J+ =
√

γ+ σ+, which contribute to c with γ+ + δ/2;

2. J1 =
√

γ+ σ1, J2 =
√

γ+ σ2, J3 =
√

δ σ−, which contribute to c with δ/2;

3. J1 = 1√
2

(√
γ+ σ+ +

√
γ− σ−

)
, J2 = 1√

2

(√
γ+ σ+ −√

γ− σ−
)
, which contribute to c with

1
2

(√
γ− −√

γ+
)2

.

Note that 1
2

(√
γ− −√

γ+
)2 ≤ δ

2 ≤ γ+ + δ
2 . Given the dissipative term (48) in the Liouville

operator, the choice (3) is the best one to slow down the disentanglement [12, Eq. (19)].

For what concerns the random a posteriori concurrence, if Cψ(0) > 0, Cψ(t) can vanish only
if dk(s) ≡ detC2J0

k (s) = 0 for some k and some s, as in the case of σ±. In the jump case we
can have ESD for some trajectories, eventually for all trajectories. The exponential decay of the
mean concurrence is due to the randomness of the time of death.
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3.3 An example with general detection operators

Let us now consider a concrete model of non interacting qubits plus an environment. We want
to show, in a very simple model, how the mere choice of the detection operators changes the
behaviour of the a posteriori concurrence and how much this behaviour is different from the one
of the a priori concurrence. The Liouville operator is fixed, but different choices of detection
operators are studied.

As staring point (25) we take Z = {1, 2}, v(t) = 0,

L1 = L̂1 ⊗ 1, L2 = 1⊗ L̂2, L̂1 = L̂2 =

√
γ

2
σx, γ > 0,

H1 = H2 =
ω0

2
σz, ω0 ∈ R.

The Liouville operator turns out to be

L = L0 ⊗ 1 + 1⊗ L0, L0[τ ] = −i
ω0

2
[σz, τ ] − γ

4
[σx, [σx, τ ]] ;

we can also write

L[η] = −i
ω0

2
[σz ⊗ 1 + 1⊗ σz, η] − γη +

γ

2
(σx ⊗ 1 η σx ⊗ 1 + 1⊗ σx η 1⊗ σx) . (49)

The master equation with Liouville operator (49) with ω0 6= 0 has a unique equilibrium state
given by ηeq = 1/4. When ω0 = 0, we have more equilibria, the statistical operators which are
diagonal in the canonical basis. In any case the equilibrium states are separable.

3.3.1 Concurrence of the a priori state

If one writes down the master equation with Liouville operator (49), one sees that it decomposes
in subsystems of equations which can be solved analytically. However, to simplify the analysis of
the dynamics and the computation of the concurrence, it is worthwhile to consider the subclass
of the “X” states given in Section 1.2. By checking the master equation with generator (49) in
the canonical basis, one can see that the class of X states is preserved.

Case ω0 6= 0. By the fact that there is a unique equilibrium state proportional to the identity,
we get

lim
t→+∞

ρ23(t) = lim
t→+∞

ρ14(t) = 0, lim
t→+∞

ρjj(t) =
1

4
.

Then, if the initial X state has positive concurrence, it exists a finite time tD > 0 for which
Cρ(tD) = 0 and we have entanglement sudden death.

Case ω0 = 0. In this case there is not a unique equilibrium state. As we shall see, the a priori
concurrence is always limited by the exponential decay (50) (local detection operators, diffusive
case); one can also check that this limit is saturated when the initial state is a Bell state. But
we can have also ESD; for instance, take as initial state ρ0 = |ψ0〉〈ψ0|, ψ0 = 1√

2
(|10〉 + i|01〉) =

1+i
2 (|β1〉 + β2〉), which is again an X state. By solving the master equation and computing

the concurrence by formulae (8) we find ESD at the time tD = − 1
γ ln

(√
2 − 1

)
; moreover, for

t ∈ [0, tD] the a priori concurrence is given by Cη(t) = 1
2

(
1 + e−γt

)2 − 1.
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3.3.2 Local detection operators

We start by considering local detection operators. The unitary matrix u which fixes the observed
fields in Sect. 2.2 is taken to be ujz = δjz eiφj , φj ∈ [0, 2π]. Then, the detection operators (20b),
(34) reduce to

R1 =

√
γ

2
eiφ1σx ⊗ 1, R2 =

√
γ

2
eiφ21⊗ σx.

Diffusive case. Let us start by an observation of homodyne/heterodyne type: d = 2, d′ = 0.
Then, by Eqs. (38)–(42), (45), (47) we get the a posteriori concurrence

Cψ(t) = Cψ0e
−ct exp

{ 2∑

j=1

[∫ t

0
nj(s) dŴj(s) −

1

2

∫ t

0
nj(s)

2ds

]}

and the mean a posteriori concurrence EPT

[
Cρ(t)

]
= Cρ0e

−ct, where

0 ≤ c = γ
[
(cos φ1)

2 + (cos φ2)
2
]
≤ 2γ,

n1(t) =
√

2γ cos φ1 〈ψ(t)|σx ⊗ 1ψ(t)〉, n2(t) =
√

2γ cos φ2 〈ψ(t)|1⊗ σx ψ(t)〉.
The important feature of this model is that it shows the dependence on the measuring phases:
the decay constant c can take any value in the closed interval [0, 2γ]. Note that c does not
depend on ω0. Finally, by the bound (42) for the a priori concurrence, we get

Cη(t) ≤ Cρ0e
−2γt. (50)

Jump case. Now let us consider a counting observation, with the same detection operators:
d′ = 2, d = 0, Jk = Rk. From (46) we can check that the a posteriori concurrence turns out to
be non random and constant: Cψ(t) = Cψ0 . This is due to the fact that the jump operators are
proportional to local unitaries. Thus, any initial entanglement can be perfectly protected just
by a proper monitoring of the environment. Let us stress that the a priori concurrence always
vanishes for long times and sometimes even in a finite time.

3.3.3 Non local detection operators

We give now an example of detection with non local operators for the same non interacting
qubits. Now we measure in a non local way the environments of the qubits, but we do not
change the interaction with the environments and, thus, their a priori dynamics. We consider
only the diffusive case (d = 2, d′ = 0) and we take the unitary matrix u of Section 2.2 to be

u =
1√
2

(
ei(θ+φ) ei(θ−φ)

iei(θ+φ) −iei(θ−φ)

)
;

then, we get

R1 =
eiθ√γ

2

(
eiφσx ⊗ 1 + e−iφ

1⊗ σx

)
, R2 =

eiθ√γ

2

(
ieiφσx ⊗ 1− ie−iφ

1⊗ σx

)
.

By particularizing the general formulae of Sect. 3.1 we obtain that the stochastic differential
of χϕ(t) does not contain the white noise term and we have

χ̇ϕ(t) = −γχϕ(t) + γe2iθD(t), D(t) := 〈Tϕ(t)|σz ⊗ σzϕ(t)〉. (51)
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Again by stochastic differentiation, we get

Ḋ(t) = γe2iθχϕ(t) − γD(t) − iω0E(t), (52)

E(t) := 〈Tϕ(t)| (σz ⊗ 1 + 1⊗ σz)ϕ(t)〉.

By differentiation of E we get more complicated expressions, including terms with stochastic
differentials. Anyway, from Eqs. (51), (52) we obtain

χϕ(t) ±D(t) = e−γ±t(χψ0 ±D(0)
) ∓ iω0

∫ t

0
e−γ±(t−s)E(s)ds, (53)

γ± := γ
(
1 ± e2iθ

)
.

In this model one can have a variety of behaviours for the mean concurrence, such as revivals
and creation of concurrence in the long run. Let us see this in the simplest case.

The case ω0 = 0. In this case we have

χϕ(t) =
1

2
e−γ+t(χψ0 + D(0)

)
+

1

2
e−γ−t(χψ0 −D(0)

)
. (54)

Being non random, by Eqs. (26), (27), we get EPT

[
Cψ(t)

]
=

∣∣∣χϕ(t)

∣∣∣, for all T ≥ t.

If e2iθ 6= ±1, we get Re γ± > 0. Then, the mean a posteriori concurrence decays exponentially
at long times, but, depending on the initial state of the qubits, it can have also revivals. For
instance, by taking ψ0 such that χψ0 = 0 and D(0) 6= 0, we have

∣∣∣χϕ(t)

∣∣∣ =
1

2
|D(0)|

∣∣∣e−γ+t − e−γ−t
∣∣∣ .

If e2iθ = 1, we get γ+ = 2γ, γ− = 0 and

∣∣∣χϕ(t)

∣∣∣ =
1

2

∣∣∣e−2γt(χψ0 + D(0)
)
+

(
χψ0 −D(0)

)∣∣∣ .

So, depending on the initial state of the qubits, some concurrence can survive (entanglement
protection) or can be created in the long run (entanglement generation). The case e2iθ = −1 is
similar.

4 An example with indirect interaction

In this last section we consider the case of indirect interaction between two qubits and, by means
of an explicit model, we show that a very extreme scenario can occur: the interaction with the
environment completely destroys any entanglement between the qubits, if no measurement is
performed, while the same interaction generates maximally entangled states, independently of
the initial state of the qubits, if the environment is simply continuously monitored after the
interaction. Indeed, while in the long run the a priori state of the qubits becomes maximally
chaotic, and thus separable, their a posteriori state becomes maximally entangled for every
output of the continuous measurement.

We consider a couple of qubits H = H1 ⊗ H2 interacting with a sort of continuous flow
K = Γ[L2(R; Z)] of quadruples of qubits Z = Z1 ⊗ Z2 ⊗ Z′

1 ⊗ Z′
2.

15



Let us denote by {|i〉}i=0,1 the canonical basis in H1 = H2 = Z1 = Z2 = Z′
1 = Z′

2 = C2 and
then let us introduce the flip operator Fℓ in Zℓ ⊗ Hℓ:

Fℓ =
∑

ij

|ij〉〈ji| = F ∗
ℓ = F−1

ℓ = e−iπ
2
(Fℓ−1).

Let us choose in Z the basis generated by the Bell bases in Z1 ⊗ Z2 and in Z′
1 ⊗ Z′

2, that is
{|βx ⊗ βx′〉}x,x′=0,...,3.

We consider the HP evolution (10) generated by the interaction

H = 0, L = 0, S = F1 F2 = F2 F1 = e−iπ
2
(F1+F2−2), K =

π

2
(F1 + F2 − 2),

where every operator is identified with its natural extension. Roughly speaking, when a quadru-
ple of qubits Z belonging to the continuous flow interacts with the couple of interest H, the
first two qubits of the quadruple Z1 ⊗ Z2 exchange their joint state with H, while the other two
qubits Z′

1 ⊗ Z′
2 are simple witnesses. Then

S(xx′)(yy′) = TrZ

[(|βy ⊗ βy′〉〈βx ⊗ βx′ | ⊗ 1H

)
S

]
= |βy〉〈βx| δx′y′

and the Hudson-Parthasaraty equation is

dV (t) =
∑

xyx′

(
|βy〉〈βx| − δxy

)
V (t) dΛ(xx′)(yx′)(t).

Therefore, there is no direct interaction between H1 and H2 as K = π
2 (F1 + F2 − 2) with

F1 involving only H1 and F2 involving only H2. Let us remark that this is just one of those
cases where the whole interaction is encoded in the domain of the global Hamiltonian HT .
Indeed, [23] HT is just an extension of the free field Hamiltonian E0, re-restricted to the domain
of the “regular vectors” Φ ∈ K⊗H such that axx′(0−)Φ =

∑
yy′ S(xx′)(yy′) ayy′(0+)Φ for all x, x′.

For the environment we choose the initial pure coherent state |e(v)〉〈e(v)| with argument

v(t) =

√
ν

4

3∑

x=0

|βx〉 ⊗ |βx〉 ∈ Z =
(
Z1 ⊗ Z2

)
⊗

(
Z′

1 ⊗ Z′
2

)
, ∀0 ≤ t ≤ T,

where ν is a positive parameter and T > 0 is our arbitrary time horizon. Roughly speaking, even
if the qubits Z′

1 and Z′
2 are not involved in the interaction with H1 and H2, they are initially

entangled with the qubits Z1 and Z2 which exchange their state with H1 and H2.
Then, if ρ0 is the system initial state, its reduced state at time t is

η(t) = TrK

[
Ut |e(v)〉〈e(v)| ⊗ ρ0 U∗

t

]
= eLtρ0,

where

Lη = ν
Tr η

4
1− ν η,

so that

η(t) = ρ0e
−νt +

1

4
(1 − e−νt) → 1

4
, for t → ∞,

and the state of H becomes maximally chaotic and any entanglement between H1 and H2 is
destroyed by the interaction with the common bath.

The a priori concurrence goes to 0 at least exponentially,

Cη(t) ≤ Cρ0 e−νt → 0, for t → ∞,
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and, depending on the system initial state ρ0, we can even assist to entanglement sudden death.
This can be verified by considering an X state as initial state. Indeed, if ηij are the matrix

elements of ρ0 with respect to the computational basis (1), we find

Cη(t) = 2 max {0, C1(t), C2(t)} ,

C1(t) = |η23| e−νt −
√(

η11e−νt +
1

4
(1 − e−νt)

)(
η44e−νt +

1

4
(1 − e−νt)

)
,

C2(t) = |η14| e−νt −
√(

η22e−νt +
1

4
(1 − e−νt)

)(
η33e−νt +

1

4
(1 − e−νt)

)
.

By the fact that

lim
t→+∞

C1(t) = lim
t→+∞

C2(t) = −1

4
,

if the initial X state ρ0 has positive concurrence, it exists a finite time tD > 0 for which
Cη(tD) = 0. The death time tD can be explicitly computed. For example, if ρ0 = |β1〉〈β1|, then

tD = ln 3
ν .

Let us introduce now the continuous measurement. As a preliminary step, let us suppose we
observe all the sixteen compatible processes of observables Λ(xx′)(xx′)(t). Roughly speaking, we
count the quadruples of kinds (xx′) which have been through an interaction with the couple H

between time 0 and time t. Then the corresponding linear stochastic master equation for the
non normalized a posteriori state σ̃(t) is

dσ̃(t) = L[σ̃(t−)]dt +
3∑

x,x′=0

(
4ν

λ
|βx′〉〈βx|σ̃(t−)|βx〉〈βx′ | − σ̃(t−)

) (
dNxx′(t) − λ

16
dt

)

in a probability space (Ω,F, Ft, Nxx′(t), Q) where Nxx′(t), x, x′ = 0, . . . , 3, are sixteen indepen-
dent Poisson processes of rates λ/16 under Q.

The definitive step is to consider the measurement of the (non maximal) family of the four
compatible processes of observables

Λx′(t) =
3∑

x=0

Λ(xx′)(xx′)(t).

Roughly speaking, we count the quadruples of qubits, with the second couple of kind x′, which
have been through an interaction with the couple H between time 0 and time t. Then, by
conditioning, we get the linear stochastic master equation for the non normalized a posteriori
state σ(t),

dσ(t) = L[σ(t−)]dt +
3∑

x′=0

(
ν

λ

(
Trσ(t−)

)
|βx′〉〈βx′ | − σ(t−)

) (
dNx′(t) − λ

4
dt

)
,

in a probability space (Ω, F, Ft, Nx′(t), Q) where Nx′(t), x′ = 0, . . . , 3, are four independent
Poisson processes of rates λ/4 under Q.

If N(t) =
∑3

x′=0 Nx′(t) denotes the total counts up to time t, Tn denotes the arrival time of
the count n and if X ′

n denotes the mark of count n, the solution is

σ(t) =





ρ0 e−νt+λt, if 0 ≤ t < T1,

|βX′

N(t)
〉〈βX′

N(t)
| e−νt+λt

(
ν
λ

)N(t)
, if t ≥ T1.
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Then, under the physical probability PT (dω) = Tr {σ(T )}Q(dω), the four counting processes
Nx′(t) are four independent Poisson processes of rates ν/4, which depend on the environment
initial state, and the a posteriori state is

ρ(t) =





ρ0, if 0 ≤ t < T1,

|βX′

N(t)
〉〈βX′

N(t)
|, if t ≥ T1.

Roughly summarizing, a flow of quadruples of qubits Z interacts with the two qubits H.
Actually only the couple Z1 ⊗ Z2 interacts by exchanging its state with H, while Z′

1 ⊗ Z′
2 is a

simple witness which is, nevertheless, initially entangled with Z1 ⊗ Z2. As a result, the couple
H becomes entangled with the last couple Z′

1 ⊗ Z′
2 with which has interacted. By counting the

quadruples gone through an interaction with H and measuring the projection valued measure
{|βx′〉〈βx′ |}3

x′=0 on Z′
1 ⊗ Z′

2, we get an output with the distribution of a marked Poisson process
and, at every count, the a posteriori state of H jumps into the Bell state labelled by the
corresponding mark X ′.

We can also compute the random a posteriori concurrence

Cρ(t) =

{
Cρ0 , if 0 ≤ t < T1,

1, if t ≥ T1,

and we find that the a posteriori concurrence goes to 1, both almost surely and in the mean,

Cρ(t) → 1, for t → ∞, P-a.s., ∀ρ0,

EP[Cρ(t)] = 1 − (1 − Cη(0))e
−νt → 1, for t → ∞, ∀ρ0,

while the a priori concurrence goes to 0,

EP[Cρ(t)] ≥ Cη(t) → 0, for t → ∞.

Therefore, while any entanglement between the qubits is a priori destroyed by the interaction
with the common bath, at the same time it is enough to monitor the bath in a proper way to
get a maximal creation of the a posteriori entanglement, for any initial state of the qubits.
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