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LOCAL AND GLOBAL SURVIVAL FOR NONHOMOGENEOUS RANDOM

WALK SYSTEMS ON Z

DANIELA BERTACCHI, FÁBIO PRATES MACHADO, AND FABIO ZUCCA

Abstract. We study an interacting random walk system on Z where at time 0 there is an active
particle at 0 and one inactive particle on each site n ≥ 1. Particles become active when hit by
another active particle. Once activated they perform an asymmetric nearest neighbour random
walk which depends only on the starting location of the particle. We give conditions for global
survival, local survival and infinite activation both in the case where all particles are immortal and
in the case where particles have geometrically distributed lifespan (with parameter depending on
the starting location of the particle). In particular, in the immortal case, we prove a 0-1 law for
the probability of local survival when all particles drift to the right. Besides that, we give sufficient
conditions for local survival or local extinction when all particles drift to the left. In the mortal case,
we provide sufficient conditions for global survival, local survival and local extinction. Analysis of
explicit examples is provided.

Keywords: inhomogeneous random walks, frog model, egg model, local survival, global survival.
AMS subject classification: 60K35, 60G50.

1. Introduction

We study an interacting random walk system on Z where at time 0 there is one active particle

at 0 and one inactive particle at each vertex of N \ {0} = {1, 2, . . .}. Particles become active if

an active particle jumps to their location. The behaviour of the system depends on two sequences

{ln}n≥0 and {pn}n≥0 of numbers in (0, 1) and [0, 1] respectively. The particle which at time 0 was

at n, once activated, has a geometrically distributed lifespan with parameter 1− pn and while alive

performs a nearest neighbour random walk with probability ln of jumping to the left and 1− ln of

jumping to the right. If pn = 1 we say that the particle is immortal, otherwise it is mortal. We

are interested in establishing, depending on the parameters, whether the process survives globally,

locally and if there is infinite activation or not. Local and global survival have been studied for

several processes; among these it is worth mentioning the Contact Process and the Branching

Random Walks in continuous and discrete time (see for instance [4, 5, 6, 12, 13, 14, 18]).

To be precise, if L0 is the event that site 0 is visited infinitely many times, we say that there is

local survival if L0 has positive probability and almost sure local survival if L0 has probability 1.

When there is no local survival, that is, when L0 has probability zero, we also say that there is local

extinction. We say that there is global survival if, with positive probability, at any time there is at

least one active particle, and we say that there is infinite activation if, with positive probability, at

arbitrarily large times there are particles which turn from inactive to active.
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This process can be seen as a model for information or disease spreading: every active particle

has some information and it shares that information with all particles it encounters on its way. In

the last decade, different versions of this model have been studied, often under the name frog model

or egg model. In [17] the authors prove almost sure local survival for a system of simple random

walkers on Z
d. This result has been extended in [16] to the case of a random initial configuration

(d ≥ 3) and in [8] for random walks on Z with right drift. Shape theorems on Z
d can be found

in [2, 3]. Phase transitions for the model where particles have a G(1 − p)-distributed lifespan, are

investigated in [2, 7, 11, 15]. Recently, in [10], global survival of an asymmetric inhomogeneous

random walk system on Z has been studied (note that in that model particles die after L steps

without activation).

Here is the outline of the paper and of its main results. We first deal, in Section 2, with the case

where all particles are immortal (that is, pn = 1 for all n ≥ 0). It is obvious that in this case there

is always global survival, but infinite activation is trivial only in the case where at least one particle

has ln ≤ 1/2. Local survival is nontrivial in any case. In order to understand what the difficulties

one encounters are, think of the case where all particles drift to the right (we refer to this situation

as the right drift case): infinite activation is guaranteed but local survival is not. Theorem 2.1(a)

states that, in this case, the probability of local survival obeys a 0–1 law. Roughly speaking (see

Corollary 2.2) in the right drift case, if ln ↑ 1
2 sufficiently fast, then we have almost sure local

survival, otherwise we have local extinction. On the other hand, if all particles drift to the left (left

drift case), local survival and infinite activation have the same probability (see Theorem 2.1(b)).

Proposition 2.5 and Remark 2.6 provide sufficient conditions for infinite activation (thus also for

local survival) in the left drift case. Example 2.7 shows that the condition of Remark 2.6 is not

necessary. Proposition 2.8 states that if infn∈N ln > 1/2 then there is no infinite activation (thus

no local survival), but Examples 2.11 and 2.12 show that if infn∈N ln = 1/2 nothing can a priori be

said about infinite activation. Theorems 2.9 and 2.10 give a sufficient condition for local survival.

Section 3 is devoted to the case where all particles are mortal and have geometrical lifespan with

parameter 1− pn, pn ∈ [0, 1). Since any particle disappears almost surely after a finite number of

steps, global survival is no longer guaranteed and, even if all particles have right drift, so is infinite

activation. Indeed in this case global survival and infinite activation have the same probability. In

Subsection 3.1 we give sufficient conditions for global survival (Theorems 3.2 and 3.3). In particular

we show that in order to survive it is necessary that lim supn pn = 1 and if pn → 1 and ln → 1/2

with a certain speed then there is global survival. In Subsection 3.2 we deal with the problem of

local survival of the process. Theorems 3.4, 3.5 and 3.6 give some sufficient conditions for local

extinction and local survival respectively. Example 3.7 shows how our results apply to some explicit

cases.

All the proofs are to be found in Section 5, while in Section 4 we comment on some further

questions which could be investigated.
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2. Immortal particles

In this section, all particles are immortal, that is, pn = 1 for all n ≥ 0. This assumption guaran-

tees global survival, nevertheless local survival and infinite activation need additional conditions on

the sequence {ln}n≥0. Clearly, if for some n ∈ N, ln = 1/2 then there is local survival and infinite

activation (with positive probability the initial particle reaches n and the random walk associated

to n is recurrent). Therefore we assume that ln 6= 1/2 for all n.

Let An be the event that the particle at n ever visits 0 (provided that it is activated), and

Bn the event that the particle at n is activated sooner or later (clearly An ⊆ Bn). Note that

{An i.o.} ⊆ L0 and P(L0 \ {An i.o.}) = 0. Moreover if there exists n such that ln < 1/2 then

P(Bn) > 0 and P(Bm|Bn) = 1 for all m > n, thus in this case there is infinite activation.

For any choice of {ln}n≥0, reasoning as in [8, Section 2] we obtain that

P(An|Bn) =

{
1 if ln > 1/2;(

ln
1−ln

)n
if ln < 1/2.

Let B∞ =
⋂∞

n=1Bn be the event that all the particles are activated sooner or later; B∞ represents

infinite activation. The following theorem includes the particular case of [8, Theorem 2.2] when

η1 = 1 a.s. (there ln = 1 − p for all n). Theorem 2.1 characterizes the right drift case in terms of

the sequence {ln}n≥0 and shows that in the left drift case the probability of local survival is equal

to the probability of infinite activation.

Theorem 2.1. (a) Suppose that ln < 1/2 for all n (right drift case). The probability of local

survival obeys a 0-1 law:

P(An i.o.) =

{
0 if

∑
n

(
ln

1−ln

)n
< +∞;

1 otherwise.

(b) Suppose that ln > 1/2 for all n (left drift case). Then P(B∞ △ (An i.o.)) = 0.

The following corollary gives some conditions which are easy to check that imply convergence or

divergence of the characterizing series of Theorem 2.1(a).

Corollary 2.2. In the right drift case (ln < 1/2 for all n):

(1) if lim supn ln < 1/2 then P(An i.o.) = 0;

(2) if n(1/2− ln) 6→ +∞ then P(An i.o.) = 1;

(3) if there exists λ < 4 such that
∑

n exp(−λn(1/2− ln)) < +∞ then P(An i.o.) = 0.

For instance if there exist λ < 4 and δ > 0 such that ln ≤ 1/2− (1+δ)
λn log(n) eventually as n → ∞,

then P(An i.o.) = 0 (that is, there is not local survival if ln does not converge to 1/2 sufficiently

fast). This corollary is useful for the analysis of the following explicit example.
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Example 2.3. Let ln := 1/2 − 1/nα (where α > 0). It is clear that if α ≥ 1 then n(1/2 − ln) =

n1−α 6→ +∞ thus there is almost sure local survival; conversely, if α ∈ (0, 1) then
∑

n exp(−n(1/2−
ln)) =

∑
n exp(−n1−α) < +∞, hence there is local extinction.

It is easy to extend Theorem 2.1 to the cases where there are both particles with right drift and

ones with left drift, as we note in the following remark, which allows us to focus only on the two

“pure” cases where all particles drift towards the same direction.

Remark 2.4. If all but a finite number of particles have right drift then by Theorem 2.1(a)
∑

n

(
ln

1−ln

)n
< +∞ implies local extinction. If the series diverges, then we have local survival,

since P(Ai i.o.) = P(B∞) = P(Bj) where j = min{n : ln < 1/2}.
On the other hand, if there is an infinite number of particles with left drift and at least one with right

drift, then again we have local survival, since P(An i.o.) = P(Bj), where j = min{n : ln < 1/2}.

In the left drift case, Theorem 2.1(b) tells us that local survival and infinite activation have the

same probability. Thus it is interesting to find conditions for P(B∞) > 0. One idea, implemented

in the following proposition and used throughout the whole paper, is to partition N into blocks.

In each block we consider a sub-block and consider the event that, for each j ≥ 1, at least one

particle of the j-th sub-block visits all the sites of the (j+1)-th sub-block (see Figure 1 for an idea

of how the blocks and the sub-blocks are constructed). This event is clearly a subset of B∞, thus

if this event has positive probability, then there is infinite activation, which, in the left drift case,

also means local survival. Using the fact that the probability that the n-th particle, if activated,

reaches m > n, is
(
1−ln
ln

)m−n
, one gets the following proposition, which gives sufficient conditions

for infinite activation in the left drift case. We note that a similar technique will be used also in

the case of mortal particles replacing (1 − ln)/ln by the r.h.s. of equation (6.6) (see Section 3 for

further details).
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Figure 1.

Proposition 2.5. Suppose that ln > 1/2 for all n ≥ 0. A sufficient condition for P(B∞) > 0 is the

existence of two strictly increasing sequences {nj}j≥0 and {mj}j≥0 in N such that n0 := 0, m0 := 0

and nj ≤ mj ≤ nj+1 − 1 for all j ≥ 0 which satisfy any of the following conditions:

(a)
∏∞

j=0

(
1−∏mj

i=nj

(
1−

(
1−li
li

)mj+1−i
))

> 0;
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(b)
∑∞

j=0

∏mj

i=nj

(
1−

(
1−li
li

)mj+1−i
)

< +∞;

(c)
∑∞

j=0

∏mj

i=nj
(mj+1 − i)2li−1

li
< +∞;

(d)
∑∞

j=0

∑mj

i=nj

(mj+1−i)mj−nj+1

mj−nj+1

(
2li−1
li

)mj−nj+1
< +∞.

Moreover, (a) is equivalent to (b) and (d) implies (c) which in turn implies (b).

The following remark gives a sufficient condition for P(B∞) > 0, in the left drift case, using

a particular choice of sub-blocks in Proposition 2.5, namely sub-blocks of cardinality one. To be

precise, we exploit the fact that if there exists a subsequence {nj}j≥0 in N, such that the event “the

nj-th particle visits the nj+1-th vertex, for all j ≥ 0” (which is a sub-event of B∞) has positive

probability, then also B∞ has positive probability.

Remark 2.6. Suppose that all particles have left drift (ln > 1/2 for all n). Take mj = nj for all

j ≥ 0 in Proposition 2.5. In this case the probability P(B∞) is bounded from below by

∞∏

j=0

(
1− lnj

lnj

)nj+1−nj

> 0. (2.1)

By Lemma 6.1(2), an equivalent condition is

∞∑

j=0

(nj+1 − nj)
2lnj − 1

lnj

< +∞. (2.2)

It is clear that it is not possible to satisfy (2.2) if lnj 6→ 1/2, but it is possible for sequences ln going

to 1/2 with sufficiently high speed. Note that, by Lemma 6.2, a sufficient condition for (2.2) is
∑∞

j=0min{(2ln − 1)/ln : n ≤ j} < +∞. In particular if {ln}n≥0 is nonincreasing then there exists

{nj}j≥0 such that equation (2.2) holds if and only if
∑∞

j=0
2lj−1
lj

< +∞.

It is worth noting that even if, for all possible subsequences {nj}j≥0 in N, the event “the nj-th

particle visits the nj+1-th vertex, for all j ≥ 0” has probability zero, nevertheless B∞ may have

positive probability, as the following example shows.

Example 2.7. We can easily construct a class of random walk systems with left drift where there

is no sequence {n̄j}j∈N such that
∏∞

j=0

(
1−ln̄j

ln̄j

)n̄j+1−n̄j

> 0 nevertheless P(B∞) > 0. We use

again a block argument. We consider a partition of N into blocks and we follow the notation of

Proposition 2.5. Given {ni}i and {mi}i such that n0 = m0 := 0 and ni ≤ mi ≤ ni+1 − 1 for all i,

let Ai := {ni, . . . , ni+1 − 1}, Bi := {ni, . . . ,mi} for all i ∈ N. Define qi := max{ln : n ∈ Bi}. Now

we estimate the conditional probability that, once all the particles in Bi are activated, at least one

of them travels at least to the rightmost point of the set Bi+1. This implies that all the particles in

Bi+1 will be activated.

This conditional probability is larger than the probability that, if we have mi−ni+1 independent

random walkers (with probability of moving to the left equal to qi) starting at the leftmost vertex
5



Bi, at least one of them reaches the rightmost vertex of Bi+1, that is,

ζi := 1−
(
1−

(
1− qi
qi

)mi+1−ni
)mi−ni+1

.

If
∏∞

i=1 ζi > 0 then there is global (and local) survival. Clearly

∞∏

i=1

ζi > 0 ⇐⇒
∞∑

i=1

(
1−

(
1− qi
qi

)mi+1−ni
)mi−ni+1

< +∞.

Suppose that mi+1 − ni = O(qi/(2qi − 1)). For every ε ∈ (0, 1) we have, for all i sufficiently large

and C ≥ supi(mi+1 − ni)
2qi−1
qi

,

(
1− qi
qi

)mi+1−ni

=

((
1− 2qi − 1

qi

) qi
2qi−1

)(mi+1−ni)
2qi−1

qi

≥ ((1− ε)/e)C .

Suppose that, for some ε > 0,
∑

i∈N

(
1− ((1− ε)/e)C

)mi−ni < +∞ then

∑

i∈N

(
1−

(
1− qi
qi

)mi+1−ni
)mi−ni+1

≤
∑

i∈N

(
1− ((1− ε)/e)C

)mi−ni+1
< +∞

which implies P(B∞) > 0 (that is, infinite activation and local survival).

Given a sequence {n̄j}j∈N (which has nothing to do with {ni}i∈N), let V{n̄j}j∈N
be the event “the

n̄j-th particle visits the n̄j+1-th vertex, for all j ≥ 0”. Assume that {li}i∈N is constant within each

block (that is, li := qj for all i ∈ Aj and for all j ∈ N). If qi ↓ 1/2 and
∑

i∈N(ni+1−ni)(2qi−1)/qi =

+∞ then P(V{n̄j}j∈N
) = 0 for any possible sequence {n̄j}j∈N. Indeed by Remark 2.6, in this case

P(V{n̄j}j∈N
) > 0 if and only if

∑
i∈N(n̄j+1 − n̄j)(2ln̄j − 1)/ln̄j = +∞. According to Lemma 6.2(4)

(using αi := (2li−1)/li), since {(2li−1)/li}i∈N is nonincreasing, the existence of sequence {n̄j}j∈N
such that

∑∞
j=0(n̄j+1−n̄j)

2ln̄j−1

ln̄j
< +∞ is equivalent to

∑∞
i=0

2li−1
li

< +∞. But in this case, clearly,
∑∞

i=0
2li−1
li

=
∑

i∈N(ni+1 − ni)(2qi − 1)/qi = +∞.

An explicit example is given by qi := 1/2 + 1/i2, ni := i3 and mi := i3 + i.

So far we have seen, in the left drift case, sufficient conditions for P(B∞) > 0. We now give a

sufficient condition for P(B∞) = 0, whose proof makes use of a random walk approach.

Proposition 2.8. In the left drift case(ln > 1/2 for all n), if lim infn→∞ ln > 1/2 then P(B∞) = 0

and there is local extinction.

We observe that, in the left drift case, if infn∈N ln = 1/2 then both P(B∞) > 0 or P(B∞) = 0 are

possible, see Example 2.11 and Example 2.12 respectively. Example 2.11 makes use of Theorem 2.9,

therefore we place these examples after that statement. Theorem 2.9 gives sufficient conditions for

the local survival of the process, which apply also to the general case where there are both particles

with left drift and particles with right drift. We note that, in order to have local survival, with
6



positive probability we need to activate all the particles and at the same time an infinite number

of them must visit the origin. To this aim the idea is to divide N into consecutive connected blocks

of fixed length L. If with positive probability the particles of the odd labelled blocks take care of

activation and the remaining particles (say, at least one per block) visit the origin then we have

local survival and infinite activation. Note that the same idea is used in Theorem 3.5 in the case

of mortal particles.

Theorem 2.9. If there exists L ∈ N such that
∑

n

∏(2n+1)L−1
k=2nL (lk − 1/2)+ < +∞ and

∑
n

∏2(n+1)L−1
k=(2n+1)L k(1/2− lk)

+ < +∞ then there is local survival.

In particular if there exists L ∈ N such that
∑

n:ln>1/2(ln−1/2)L < +∞ and
∑

n:ln<1/2 n
L(1/2−

ln)
L < +∞ then there is local survival.

We note that to apply the previous theorem it suffices that ln → 1/2 sufficiently fast. In

Example 2.11 we show that ln → 1/2 is not necessary. Indeed, if instead of blocks of length L

we use blocks of length L1 and, in each block, we require that a particular subset of particles of

cardinality L is responsible for the action (the visit to the rightmost vertex of the next block or

the visit to the origin) then we obtain the following result.

Theorem 2.10. If there exists L,L1 ∈ N such that, L ≤ L1 and

∑

n∈N

min
B⊆A2n:#B=L

∏

k∈B

(lk − 1/2)+ < +∞,
∑

n∈N

min
B⊆A2n+1:#B=L

∏

k∈B

k(1/2− lk)
+

(where Ai is the i-th block of length L1) then there is local survival.

In particular if

∑

n∈N

min
B⊆A2n:#B=L

∑

k∈B

((lk − 1/2)+)L < +∞,
∑

n∈N

min
B⊆A2n+1:#B=L

∑

k∈B

kL((1/2− lk)
+)L < +∞

then there is local survival.

Example 2.11. Take li = 1/2+1/iα where α > 0; hence li ↓ 1/2 and, if L > 1/α,
∑

i (li − 1/2)L <

∞ thus, by Theorem 2.9, we have local survival and P(B∞) > 0 for all α > 0.

Note that when {li}i∈N satisfies Theorem 2.9 then a “mild” modification of that sequence, such as

{l̄i}i∈N where l̄2i := li, satisfies Theorem 2.10; thus there is local survival even if limi l̄i 6= 1/2 (take

for instance l̄2i = 1/2 + 1/i and l̄2i+1 = 3/4 for all i ∈ N).

Example 2.12. We now construct an example where ln ↓ 1/2 so slowly that P(B∞) = 0. Indeed,

consider a decreasing sequence {qi}i∈N such that qi ↓ 1/2 and fix δ > 0. The idea is to construct

an increasing sequence of integers {nk}k∈N and to define li = qk if j ∈ {nk, . . . , nk+1 − 1} (we call

{nk, . . . , nk+1−1} the k-th block). We construct {nk}k∈N iteratively, in such a way that P(B∞) = 0

(clearly ln ↓ 1/2). Suppose we defined ni for all i ≤ k. Consider the models Mk with left jump
7



probabilities {l̂i(k)}i∈N where

l̂i(k) =

{
qj if j ∈ {nj , . . . , nj+1 − 1}, ∀j < k

qk if i ≥ nk.

We know that, since infi l̂i(k) > 1/2, by Proposition 2.8, almost surely for the model Mk we will

have only a finite number of activations (i.e. there is no local survival). Hence it is possible to

find nk+1 large enough such that, with probability at least δ, no particles in {i : i ≥ nk+1} will be

activated in the model Mk.

Note that for a model M satisfying li = qk if j ∈ {nk, . . . , nk+1 − 1} (for all k), the conditional

probability of activating particles in the (k+1)-th block given that all the particles in {1, . . . , nk−1}
have been activated is at most 1− δ. This is due to the fact that, since li = l̂i(k) for all i < nk+1,

before the activation of a particle in the (k + 1)-th block, M and Mk have the same behaviour.

Hence, with probability 1, sooner or later there will be no new activations and P(B∞) = 0.

3. Particles with geometrical lifespan

We now suppose that the particle at n survives, at each step, with probability pn, thus it has a

lifespan which is G(1−pn)-distributed. The main differences between the immortal particle case are

that here global survival is not guaranteed (but it has the same probability as the event of infinite

activations) and that the knowledge of the drift, a priori, plays a minor role. Indeed particles with

right drift will activate a finite number of sites almost surely and particles with left drift have a

positive (but strictly smaller than 1) probability of visiting the origin. We note that if pn = 1

for some n, then there is global survival, since there is a positive probability of activating those

particles. Thus we assume in this whole section that pn ∈ [0, 1) for all n, that is, that all particles

are mortal (clearly p0 > 0 otherwise the process would not start at all). Observe that if pn = 0 for

some n ∈ N then those particles do not participate in the evolution of the system therefore it is

like having a system with empty vertices.

Remark 3.1. If we focus only on the left and right drift cases, by coupling with the case of

immortal particles, it is clear that the most interesting situations are sup ln = 1/2 (if right drift)

and inf ln = 1/2 (if left drift). Indeed if sup ln < 1/2 then, according to Corollary 2.2(1), then

there is local extinction even for an immortal particle system, thus there is no local survival in the

mortal case. If inf ln > 1/2, by Proposition 2.8, even in the immortal case we activate only a finite

number of particles almost surely, thus there is global extinction in the mortal case.

3.1. Conditions for global survival. In this case global survival is not guaranteed and has the

same probability of B∞, that is, the event of infinite activation. Note that to activate infinitely

many sites, in any case we need the action of infinitely many particles. For instance it is no longer

true, as it was in the case of immortal particles, that it suffices that there exists a particle with
8



right drift to have infinite activation (that particle would still be activated with positive probability

but in the mortal case it will almost surely activate a finite number of particles). The following

theorem gives some sufficient conditions for global survival and states that lim supn pn = 1 is a

necessary condition.

Theorem 3.2. (a) If there exists L ∈ N such that
∑

n

∏(n+1)L−1
k=nL Sk < +∞, where

Sk :=

{√
1− pk if pklk ≤ 1/2√
1− pk + 2pk(lk − 1/2) if pklk > 1/2

then there is global survival.

(b) If
∑

n(1− pn)
L/2 < +∞,

∑
n:pnln>1/2(ln − 1/2)L < +∞ then there is global survival.

(c) If supn pn < 1 then P(B∞) = 0 and there is no global survival almost surely.

Note that condition (b) of the previous theorem implies for instance that if pn → 1 and (ln −
1/2)+ → 0 sufficiently fast, then there is global survival. In particular, if all but a finite number

of particles have right drift, then a sufficient condition for global survival is the existence of L ∈ N

such that
∑

n(1 − pn)
L/2 < +∞. By using the same trick as in Theorem 2.10, it is clear that the

conditions in the previous theorem do not need to be satisfied by the whole sequences {pn}n∈N and

{ln}n∈N as the following theorem states.

Theorem 3.3. (a) If there exists L,L1 ∈ N such that, L ≤ L1 and
∑

n∈N

min
B⊆An:#B=L

∏

k∈B

Sk < +∞,

where Sk is the same as in Theorem 3.2 and An is the n-th block of length L1, then there is

global survival.

(b) If ∑

n∈N

min
B⊆An:#B=L

(∑

k∈B

(1− pk)
L/2 +

∑

k∈B:pklk>1/2

(lk − 1/2)L
)
< +∞,

then there is global survival.

3.2. Conditions for local survival. From now on we deal with local survival. Our first result

gives sufficient conditions for local extinction. The first assertion is similar to Theorem 2.1(a): note

that (as explained in the proof of the theorem) the probability that the n-th particle, if activated,

ever visits the site 0, is (
1−

√
1− 4p2nln(1− ln)

2pn(1− ln)

)n

. (3.3)

Theorem 3.4. If
∑

n

(
1−
√

1−4p2nln(1−ln)

2pn(1−ln)

)n

< +∞ then P(An i.o.) = 0. In particular

(1) if
∑

n p
n
n(1− (2ln − 1)+)n < +∞ then P(An i.o.) = 0;

(2) if
∑

n p
n
n < +∞ (for instance, if supn pn < 1) then P(An i.o.) = 0 for any choice of {ln}n.

9



The tricky part is finding conditions for local survival: note that on one hand we need that all

particles get activated sooner or later and on the other hand that infinitely many of them visit

the origin. To avoid dealing with situations where a particle is required both to activate a certain

number of sites and to visit the origin, we exploit once again the idea of partitioning N into blocks

and sub-blocks. Some sub-blocks will take care of activation and the others of local survival. We

partition N into subsets of length 2L: the event where, for all j, at least one of the particles between

position 2jL and (2j + 1)L − 1 visits site (2j + 3)L − 1 and at least one of the particles between

position (2j+1)L and 2(j+1)L−1 visits 0 (see Figure 2), is a subset of the event of local survival.

Thus a sufficient condition for local survival is that this event has positive probability.
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2jL (2j+1)L 2(j+1)L

(2j+3)L−1

at least one visits (2j+3)L−1

j−th block

at least one visits 0

Figure 2.

By using (3.3) and the fact that the probability that the n-th particle, if activated, ever visits

the site m > n is (
1−

√
1− 4p2nln(1− ln)

2pnln

)m−n

, (3.4)

one gets a lower bound for the probability of local survival: this is the main idea in Theorem 3.5.

Theorem 3.5. If there exists L ∈ N such that
∑

n

∏(2n+1)L−1
k=2nL Sk < +∞ and

∑
n

∏2(n+1)L−1
k=(2n+1)L kS̃k <

+∞, where

Sk :=

{√
1− pk if pklk ≤ 1/2√
1− pk + 2pk(lk − 1/2) if pklk > 1/2

S̃k :=

{√
1− pk if pk(1− lk) ≤ 1/2√
1− pk + 2pk(1/2− lk) if pk(1− lk) > 1/2,

then there is local survival.

In particular if there exists L ∈ N such that
∑

n n
L(1− pn)

L/2 < +∞,
∑

n:pnln>1/2(ln − 1/2)L <

+∞ and
∑

n:pn(1−ln)>1/2 n
L(1/2− ln)

L < +∞ then there is local survival.

Again, the same trick used in Theorems 2.10 and 3.3 yields the following generalization.

Theorem 3.6. If there exists L,L1 ∈ N such that, L ≤ L1 and
∑

n∈N

min
B⊆A2n:#B=L

∏

k∈B

Sk < +∞,
∑

n∈N

min
B⊆A2n+1:#B=L

∏

k∈B

kS̃k < +∞,

10



where Sk and S̃k are the same as in Theorem 3.5 and Ai is the i-th block of length L1, then there

is local survival.

In particular if




∑

n∈N

min
B⊆A2n:#B=L

( ∑

k∈B
pklk>1/2

(lk − 1/2)L +
∑

k∈B

(1− pk)
L/2
)
< +∞

∑

n∈N

min
B⊆A2n+1:#B=L

( ∑

k∈B
pk(1−lk)>1/2

kL(1/2− lk)
L +

∑

k∈B

kL(1− pk)
L/2
)
< +∞

then there is local survival.

Example 3.7. Suppose that pn := 1 − 1/nβ and ln := 1/2 + 1/nα (where α, β > 0). According

to Theorem 3.2 for all α, β > 0 there is global survival. By Theorem 3.5 there is local survival if

β > 2 and α > 0 while, by Theorem 3.4 there is local extinction if β < 1 and α > 0. Note that, if

β < 1 then there is local extinction for any choice of {ln}n∈N.
On the other hand, if pn := 1 − 1/nβ and ln := 1/2 − 1/nα, we still have global survival for all

α, β > 0 and local extinction if β < 1 and α > 0. If β > 2 and α > 1 then Theorem 3.5 guarantees

local survival.

We note that local survival does not imply lim infn ln ≥ 1/2 or limn pn = 1; analogously, global

survival does not imply lim supn ln ≤ 1/2 or limn pn = 1. Indeed one can proceed as in Example 2.11

by modifying the sequences of Example 3.7 and by using Theorem 3.6.

4. Final Remarks

First of all, let us discuss briefly the case where there are particles on the whole line Z. When we

say that the left (respectively right) process survives globally (respectively locally) we are talking

about the process which involves just the particle in the left (respectively right) side of the line

(the origin is included).

Clearly if either the right or the left process survives (globally or locally) then the whole process

survives (globally or locally).

We discuss mainly the immortal particle case for simplicity and we sketch the differences with the

mortal case. Suppose that all the particles in the left (respectively right) process are activated then

the conditional probability of local survival is 1 or 0 depending on the divergence or convergence

of the series
∑

nmin
(
1, ln

1−ln

)
(respectively

∑
nmin

(
1, 1−ln

ln

)
).

Clearly if the conditional probabilities of local survival of both the left and right processes are

0, then there is local extinction for the whole process as well. Indeed there might be cooperation

between the particles in two half lines in order to improve the activation process but nothing can

be done for local survival.

Hence if either the left process or the right one can survive globally, then there is a positive

probability of local survival if and only if at least one of the two process survives locally (once
11



all the particle are activated). Here we are not saying that one of the process survives locally by

itself but that it might survive once all its particles are activated (maybe by one particle from the

other side). We observe that in the mortal particle case, the local survival of the whole process is

equivalent to the local survival of one of the two half processes by itself.

If both processes cannot survive globally then there might still be global survival; in order to

survive globally it is sufficient (and necessary as well) that an infinite number of particle from each

side crosses the origin and goes to the other side. Thus, in this case global survival is equivalent to

local survival.

Another question is what can be said in random environment, that is the case where {ln}n∈N
is a sequence of i.i.d. random variables taking values in (0, 1) (also the sequence {pn}n∈N may be

randomly chosen). The analysis of the random environment case exceeds the purpose of this paper,

nevertheless some results may be deduced, for instance in the immortal case it is not difficult to

see that if
∑

n P

(
l1 > 1/2− (1+δ)

λn log(n)
)

< +∞ for some λ < 4 and δ > 0 then there is local

extinction (see Corollary 2.2(3)).

5. Proofs

Proof of Theorem 2.1. (a) Let C0 be the event that the particle which starts at 0 visits all vertices

n ≥ 1: since l0 < 1/2, then P(B∞) = P(C0) = 1. Moreover, with respect to P(·|C0), {An}n≥1

is an independent family of events; P(An) = P(An|Bn) = P(An|C0) for n ≥ 1. Clearly in this

case, {An}n≥1 is independent with respect to P. Thus

∞∑

n=1

P(An) =
∞∑

n=1

(
ln

1− ln

)n

.

The claim follows by Borel-Cantelli lemma.

(b) If all particles have a drift to the left, each particle visits 0 a.s. only a finite number of times.

Hence in order to have local survival, we need to activate all particles. But infinite activation

is also a sufficient condition since starting at n > 0 each particle visits 0 a.s. at least once.

�

Proof of Corollary 2.2. (1) Since ln < 1/2 for all n ∈ N then lim supn ln < 1/2 is equivalent to

supn ln < 1/2. Thus supn ln/(1− ln) < 1 and the series
∑∞

n=1 (ln/(1− ln))
n converges.

(2) Let {nj} be such that nj(1/2 − lnj ) ≤ δ for all j ∈ N. In this case lnj → 1/2 as j → ∞ and,

for every ε > 0, eventually we have that

(
lnj

1− lnj

)nj

=

[(
1−

1− 2lnj

1− lnj

)(1−lnj )/(1−2lnj )
]2nj(1/2−lnj )/(1−lnj )

≥
(
1− ε

e

)4nj(1/2−lnj )

≥
(
1− ε

e

)4δ

which implies the divergence of
∑∞

n=1 (ln/(1− ln))
n.

12



(3) Note that (1− 1−2ln
1−ln

)
1−ln
1−2ln ≤ 1/e. Then

(
ln

1− ln

)n

≤ exp

(
−2n(1/2− ln)

1− ln

)
.

We divide the sum into two disjoint convergent series

∑

n

(
ln

1− ln

)n

≤
∑

n:2/(1−ln)≤λ

(
ln

1− ln

)n

+
∑

n:2/(1−ln)>λ

exp

(
−2n(1/2− ln)

1− ln

)
< ∞

and this yields the conclusion.

�

Proof of Proposition 2.5. Let {nj}j≥0 and {mj}j≥0 be two strictly increasing sequences in N such

that n0 := 0 and nj ≤ mj ≤ nj+1 − 1 for all j ≥ 0. We define j-th block of vertices the set

which spans from position nj to position nj+1 − 1 (included) while we refer to the set of vertices

{nj , . . . ,mj} as the j-th sub-block. A sufficient condition for P(B∞) > 0 is that, with positive

probability, for every sub-block there exists at least one particle visiting all the vertices in the

following sub-block. Since the probability that the n-th particle, if activated, reaches m > n, is(
1−ln
ln

)m−n
, the probability that, for every sub-block there exists at least one particle visiting all

the vertices in the following sub-block, is condition (a), that is

∏

j


1−

mj∏

i=nj

(
1−

(
1− li
li

)mj+1−i
)
 > 0

which, by Lemma 6.1, is equivalent to (b)

∑

j

mj∏

i=nj

(
1−

(
1− li
li

)mj+1−i
)

< +∞.

Since 1− xn ≤ n(1− x) for all x ≥ 0, the previous inequality is implied by (c)

∑

j

mj∏

i=nj

(mj+1 − i)
2li − 1

li
< +∞

which, using the inequality between arithmetic and geometric means, is in turn implied by (d)

∑

j

mj∑

i=nj

(mj+1 − i)mj−nj+1

mj − nj + 1

(
2li − 1

li

)mj−nj+1

< +∞.

�

Proof of Proposition 2.8. Note that, since ln > 1/2 for all n ∈ N, then lim infn ln > 1/2 is equivalent

to infn ln > 1/2. We associate to the process a random walk on a subset of N × N. To this aim

we define the generation 0 as the set containing only the initial active particle and, recursively, the

generation n + 1 as the set of vertices visited by at least one particle of generation n. We denote

by jn+1 the rightmost position reached by a particle of a generation i ≤ n. Hence the generation

n is nonempty if and only if jn > jn−1, in this case it contains all the particles starting in the set
13



of positions {jn−1 + 1, . . . , jn}. It is clear that if the n-th generation is empty then all generations

m ≥ n are empty as well. The system survives locally if and only if all the particles are activated,

that is, if and only if every generation contains at least one particle.

As a warm-up we start with the simpler case of an homogeneous system: ln = l > 1/2 for every

n. We associate to this process the random walk {∆n}n which counts the particles of the generation

n, which is ∆n = jn − jn−1. The origin is the only absorbing state of this Markov chain. It is easy

to compute the probability of absorption (or local extinction)

P(∆n = 0|∆n−1 = h) =

(
1− 1− l

l

)(
1−

(
1− l

l

)2
)
· · ·
(
1−

(
1− l

l

)h
)

≥
∞∏

i=1

(
1−

(
1− l

l

)i
)

which is strictly positive according to Lemma 6.1. This implies, in particular, that the Markov

chain {∆n}n is absorbed in 0 a.s., whence P(B∞) = 0.

In the general case of an inhomogeneous system, {∆n}n is no longer a Markov process. In order

to be able to mimic the steps above, we must consider the Markov chain {(∆n, jn)}n. In this case

P(∆n = 0|(∆n−1, jn−1) = (h, k)) =
k∏

i=k−h+1

(
1−

(
1− li
li

)k−i+1
)

≥ inf
h,k∈N:h≤k

k∏

i=k−h+1

(
1−

(
1− li
li

)k−i+1
)

= inf
k∈N

k∏

i=1

(
1−

(
1− li
li

)k−i+1
)
.

Note that infk∈N
∏k

i=1

(
1−

(
1−li
li

)k−i+1
)

> 0 is equivalent to inf i∈N li > 1/2 and implies P(B∞) =

0. �

Proof of Theorem 2.9. The proof can be easily adapted from the proof of Theorem 3.5. �

Proof of Theorem 2.10. The proof is an easy adaptation of the proof of Theorem 3.6. �

Proof of Theorem 3.2. We note that under the conditions of the theorem we have that, if we parti-

tion N into blocks of length L, in all but a finite number (say N0) of blocks at least one particle has a

strictly positive lifetime parameter pn. Otherwise the series
∑

n

∏(n+1)L−1
k=nL Sk (or

∑
n∈N

√
1− pn)

would be divergent. Since there is always a positive probabilty that the particle at 0 reaches

(N0 + 1)L, then we can assume without loss of generality that in every block there is at least one

particle with strictly positive lifetime parameter.

(a) Consider the (mortal) random walk with p(j, j − 1) = pnln, p(j, j + 1) = pn(1− ln), p(j,D) =

1 − pn for all j ∈ Z, p(D,D) = 1 (D represents the absorbing state where the particle is
14



considered dead). Define

f (k)
n (x, y) = P(the n-th RW visits y for the first time at time k + h|the RW is at x at time h).

Let Fn(x, y|z) =
∑

k f
(k)
n (x, y)zk. Then

Fn(x− 1, x|z) = pn(1− ln)z + pnlnzFn(x− 1, x+ 1|z). (6.5)

Noting that Fn(x− 1, x+ 1|z) = (Fn(x− 1, x|z))2 we get an equation for Fn(x− 1, x|z) whose
acceptable solution is

Fn(x− 1, x|z) = 1−
√
1− 4z2p2nln(1− ln)

2zpnln
=

2zpn(1− ln)

1 +
√
1− 4z2p2nln(1− ln)

. (6.6)

Hence the probability for a mortal particle starting from jn to ever reach jn+1 is Fjn(x −
1, x|1)jn+1−jn .

Consider now the partition in blocks of length L. The probability that, in each block, there

exists at least one particle which visits all the site of the following block is

∞∏

j=1


1−

(j+1)L−1∏

k=jL


1−



1−

√
1− 4p2klk(1− lk)

2pklk




(j+2)L−1−k




 . (6.7)

By Lemma 6.1 a sufficient condition for the positivity of the product in equation (6.7) is

∑

j

(j+1)L−1∏

k=jL


1−



1−

√
1− 4p2klk(1− lk)

2pklk




(j+2)L−1−k

 < +∞; (6.8)

the fact that in each block there is at least one particle, say at n, with pn > 0 implies that each

term in the product (6.7) is strictly positive and Lemma 6.1 applies. Since 1 − xn ≤ n(1− x)

(for all n ∈ N) and by using the following estimates

0 ≤ 1− 2pn(1− ln)

1 +
√
1− 4p2nln(1− ln)

=
1 +

√
(2pnln − 1)2 + 4pn(1− pn)ln − 2pn(1− ln)

1 +
√
1− 4p2nln(1− ln)

≤ 1− 2pn(1− ln) + 2
√
1− pn + |2pnln − 1| ≤ Wn :=

{
2(1− pn) + 2

√
1− pn if pnln ≤ 1/2

4pn(ln − 1/2) + 2
√
1− pn if pnln > 1/2.

we have that equation (6.8) is implied by
∑

n

∏(n+1)L−1
k=nL Wk < +∞ (note that the exponent

(j +2)L− 1− k in equation (6.8) is bounded above by 2L− 1, uniformly in k and j) which, in

turn, is implied by
∑

n

∏(n+1)L−1
k=nL Sk < +∞ since

Wk ≤
{
4Sk if pklk ≤ 1/2

2Sk if pklk > 1/2

whence
∏(n+1)L−1

k=nL Wk ≤ 4L
∏(n+1)L−1

k=nL Sk and we are done.
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(b) By using the inequality between arithmetic and geometric means we have that
∑∞

n=0

∏(n+1)L−1
k=nL Sk ≤

1
L

∑∞
n=0

∑(n+1)L−1
k=nL (SnL+k)

L ≡ 1
L

∑
n S

L
n . Hence

∑
n S

L
n < +∞ implies global survival. Using,

on one hand, the Minkowski inequality and, on the other, the fact that Sn is the sum of the two

nonnegative functions
√
1− pn and 2pn(ln−1/2)1l(0,+∞)(ln−1/2) , we have that

∑
n S

L
n < +∞

is equivalent to
∑

n(1 − pn)
L/2 < +∞,

∑
n:pnln>1/2(ln − 1/2)L < +∞ (since pn → 1 in both

cases).

(c) Suppose that supn pn = p < 1 and that n dormient particles are activated in n consecutive

vertices, say i, i+ 1, . . . , i+ n− 1. The probability that the lifespan of all these particles is so

short that neither of them can possibly reach the vertex i+ n (and activate more particles) is

n−1∏

j=0

(1− pn−j
i+j ) ≥

∞∏

j=1

(1− pj) > 0, ∀n ∈ N.

which implies the result.

�

Proof of Theorem 3.3. We fix a subset B of cardinality L in each block of length L1. We require

that, in each block, at least one particle of the fixed subset visits all the vertices of the fixed subset

of the following block. It is easy to see that, mimicking the proof of Theorem 3.2, the best choice

for the subsets B in each block is the one which minimizes the summands. �

Proof of Theorem 3.4. We note that in this case, switching ln and 1− ln in equation (6.6)

P(An|Bn) =

(
1−

√
1− 4p2nln(1− ln)

2pn(1− ln)

)n

=

(
2pn(1− ln)

1 +
√
1− 4p2nln(1− ln)

)n

. (6.9)

Now, since An ⊂ Bn, P(An) ≤ P(An|Bn) and and by Borel-Cantelli we have that
∑

n P(An|Bn) <

+∞ implies P(Ai i.o.) = 0.

In particular,

2pn(1− ln)

1 +
√
1− 4p2nln(1− ln)

≤ 2pn(1− ln)

1 + |2pnln − 1| =





1− ln
ln

, if pnln ≥ 1/2

1− 1− pn
1− pnln

, if pnln < 1/2.

≤ pn(1− (2ln − 1)+)

then
∑

n p
n
n(1− (2ln − 1)+)n < +∞ implies

∑
n P(An|Bn) < +∞. The last part is straightforward.

�

Proof of Theorem 3.5. We follow closely the proof of Theorem 3.2. We consider N partitioned into

subsets of length 2L; as in Theorem 3.2 we can assume, without loss of generality, that in each

block of length L there exists at least one particle with strictly positive lifetime parameter pn.

The probability of local survival is larger or equal to the probability that, for all j, at least one

of the particles between position 2jL and (2j +1)L− 1 visits site (2j +3)L− 1 and at least one of
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the particles between position (2j + 1)L and 2(j + 1)L− 1 visits 0. By (3.3) and (3.4), this event

has probability

∞∏

j=1


1−

(2j+1)L−1∏

k=2jL


1−



1−

√
1− 4p2klk(1− lk)

2pklk




(2j+3)L−1−k






·
∞∏

j=1


1−

2(j+1)L−1∏

k=(2j+1)L


1−



1−

√
1− 4p2klk(1− lk)

2pk(1− lk)




k




 .

(6.10)

By Lemma 6.1 an equivalent condition for the positivity of the product in equation (6.10) is




∑

j

(2j+1)L−1∏

k=2jL


1−



1−

√
1− 4p2klk(1− lk)

2pklk




(2j+3)L−1−k

 < +∞,

∑

j

2(j+1)L−1∏

k=(2j+1)L


1−



1−

√
1− 4p2klk(1− lk)

2pk(1− lk)




k

 < +∞.

(6.11)

Since 1− xn ≤ n(1− x) (for all n ∈ N) and by using the following estimates

0 ≤ 1− 2pn(1− ln)

1 +
√
1− 4p2nln(1− ln)

≤ Wn :=

{
2(1− pn) + 2

√
1− pn if pnln ≤ 1/2

4pn(ln − 1/2) + 2
√
1− pn if pnln > 1/2.

0 ≤ 1− 2pnln

1 +
√
1− 4p2nln(1− ln)

≤ W̃n :=

{
2(1− pn) + 2

√
1− pn if pn(1− ln) ≤ 1/2

4pn(1/2− ln) + 2
√
1− pn if pn(1− ln) > 1/2.

we have that equation (6.11) is implied by
∑

n

∏(2n+1)L−1
k=2nL Wk < +∞ and

∑
n

∏2(n+1)L−1
k=(2n+1)L kW̃k <

+∞ which, in turn, is implied by
∑

n

∏(2n+1)L−1
k=2nL Sk < +∞ and

∑
n

∏2(n+1)L−1
k=(2n+1)L kS̃k < +∞ since

Wk ≤
{
4Sk if pklk ≤ 1/2

2Sk if pklk > 1/2
W̃k ≤

{
4S̃k if pk(1− lk) ≤ 1/2

2Sk if pk(1− lk) > 1/2

whence
∏(2n+1)L−1

k=2nL Wk ≤ 4L
∏(2n+1)L−1

k=2nL Sk and
∏(2n+1)L−1

k=2nL kW̃k ≤ 4L
∏2(n+1)L−1

k=(2n+1)L kS̃k and the first

part of the theorem is proved.

As before, the inequality between arithmetic and geometric means implies
∑

n

∏(2n+1)L−1
k=2nL Sk ≤

∑∞
n=0

1
L

∑L−1
k=0 (S2nL+k)

L and a similar one for W̃k. Hence
∑

n∈N,k=0,...,L−1

(S2nL+k)
L < +∞ and

∑

n∈N,k=0,...,L−1

(((2n+ 1)L+ k)S̃(2n+1)L+k)
L < +∞

imply local survival. Again, the Minkowski inequality yields the result. �

Proof of Theorem 3.6. As in the proof of Theorem 3.3, we fix a subset B of cardinality L in each

block of length L1. We require that, in odd-labelled blocks, at least one particle of the fixed subset

visits all the vertices of the fixed subset of the following block; on the other hand we require that,

in even-labelled blocks, at least one particle of the fixed subset visits the origin. It is easy to see
17



that, mimicking the proof of Theorem 3.5, the best choice for the subsets B in each block is the

one which minimizes the summands. �

Lemma 6.1. Let {αi}i∈N and {ki}i∈N be such that αi ∈ (−∞, 1) and ki ≥ 0 for all i ∈ N.

(1)
∑

i∈N

kiαi < +∞ ⇐=
∏

i∈N

(1− αi)
ki > 0;

(2) moreover if αi ∈ [0, 1) and ki ≥ 1 eventually as i → ∞ then
∑

i∈N

kiαi < +∞ ⇐⇒
∏

i∈N

(1− αi)
ki > 0;

(3) If αi(j) ∈ [0, 1− ǫ] (for some ǫ > 0) and ki(j) ≥ 1 for all i, j ∈ N then

sup
j∈N

∑

i∈N

ki(j)αi(j) < +∞ ⇐⇒ inf
j∈N

∏

i∈N

(1− αi(j))
ki(j) > 0.

Proof. Clearly
∏

i∈N(1− αi)
ki > 0 if and only if

∑
i∈N ki log(1− αi) > −∞.

(1) Observe that log(1− x) ≤ −x for all x < 1 hence
∑

i∈N

kiαi ≤ −
∑

i∈N

ki log(1− αi) < ∞. (6.12)

(2) In this case, since ki ≥ 1 both sides imply αi → 0. Thus log(1− αi) ∼ −αi and
∑

i∈N

ki log(1− αi) > −∞ ⇐⇒
∑

i∈N

kiαi < ∞.

(3) If infj∈N
∏

i∈N(1−αi(j))
ki(j) > 0 then using the first inequality in equation (6.12) we obtain

supj∈N
∑

i∈N ki(j)αi(j) < +∞. Conversely, it suffices to note that there exists δ ∈ (0, 1)

such that −δαi(j) ≤ log(1− αi).

�

Lemma 6.2. Let {αi}i be a sequence of nonnegative numbers. Define ᾱn := min{αi : i ≤ n}; the
following are equivalent:

(1) there exists an increasing sequence {ni} such that
∑

i(ni+1 − ni)αni < +∞;

(2) it is possible to define recursively an infinite, increasing sequence {rj}j by
{
r0 = 0

rn+1 = min{i > rn : αi ≤ αrn}
(6.13)

and
∑

i(ri+1 − ri)αri < +∞;

(3) there exists an increasing sequence {n̄i} such that {αn̄i} is nonincreasing and
∑

i ᾱi < +∞.

Moreover if αi > 0 for all i ∈ N then the previous assertions are equivalent to

(4)
∑

i ᾱi < +∞.

18



Proof. (1) =⇒ (2). If (1) the previous inequality hold then limi εi = 0− hence it is possible to

define recursively the sequence {rn} and clearly we have

αi ≥ αrn , ∀i < rn+1. (6.14)

We show now that for all increasing sequences {ni}i we have
∑

i

(ni+1 − ni)αni ≥
∑

i

(ri+1 − ri)αri

which implies easily (2). Indeed, note that if we define γj = αri for all j ∈ [ri, ri+1) then
∑

i

(ri+1 − ri)αri =
∑

j

γj ; (6.15)

similarly if γ′j = αni for all j ∈ [ni, ni+1) then
∑

i

(ni+1 − ni)αni =
∑

j

γ′j .

Let us fix j ∈ N and suppose that j ∈ [ri, ri+1) ∩ [nl, nl+1), then nl < ri+1 whence equation (6.14)

implies that

γ′j = αnl
≥ αri = γj .

Thus γ′j ≥ γj for all j ∈ N.

(2) =⇒ (1). It is straightforward.

(2) =⇒ (3). Let us define n̄i = ri and let {γi} as before. The sequence {αn̄i} is clearly

nonincreasing. Using equation (6.15), we just need to prove that γn = ᾱn for all n. Indeed, if

n ∈ [n̄i, n̄i+1) then

γn = αri = αn̄i ≤ αj

for all j < ri+1 = n̄i+1. Hence, γn = αn̄i = min{αj : j ≤ n} = ᾱn.

(3) =⇒ (1). It is straightforward.

(3) =⇒ (4). Clearly if αi > 0 for all i ∈ N and
∑

i ᾱi < +∞ then there exists an increasing

sequence {n̄i} such that {αn̄i} is nonincreasing. �
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