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Abstract

Tissue Engineering (TE) is a field at the crossroad between Medicine, Life Sciences
and Engineering, aimed at understanding the principles of tissue growth, and apply-
ing them to produce biologically functional replacements for clinical use. To achieve
such an ambitious goal, complex biophysical phenomena must be mastered and
related to the appropriate environment (nutrient delivery, fluid-mechanical load-
ing and structural support) to be provided to cells. The TE problem is inherently
multiphysics/multiscale, as it is characterized by material heterogeneities and inter-
playing processes occurring within a wide range of temporal and spatial scales. The
concept we pursue in this paper is to use computational modelling of the TE prob-
lem to gain a quantitative and comprehensive understanding of phenomena often
difficult to be accessed experimentally. The present model represents, to our knowl-
edge, the first example of a self-consistent high-resolution description of coupled
nutrient mass transport, fluid-dynamics and biomass production in TE constructs.
We specifically focus on articular cartilage regeneration based on dynamically per-
fused bioreactors and we investigate three issues critical in this application. First,
we study oxygen distribution in the construct, since achieving an optimal level
throughout the construct is a main tool to improve tissue quality. Second, we pro-
vide a quantitative evaluation on how interstitial perfusion can enhance nutrient
delivery and, ultimately, biomass production, compared to static culture. Third,
we perform a sensitivity analysis with respect to biophysical parameters related to
matrix production, assessing their role in tissue regeneration.

Key words: Tissue engineering, multiscale model, mass transfer in heterogeneous
media, model of biomass synthesis, interstitial perfusion bioreactor.
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1 Introduction

In vitro cultivation of functional tissues for body repair, the so–called “Tissue
Engineering”, is investigated as a promising technique able to improve life con-
ditions of millions of patients worldwide (see, e.g., [22,39,1]). Yet, at present,
to bridge the gap between being a concept and a clinical applicable procedure,
a definite need arises for improved control over the functional properties and
composition of the cultivated tissue.

A major application of TE is found in the regeneration of articular cartilage,
a tissue with very poor capabilities of self repair. Portions of cartilage tissue
have been grown in bioreactors starting from donor chondrocyte cells attached
to polymeric scaffolds in mixed flasks, rotating wall or direct perfusion biore-
actors [11,25,37]. Cells, initially seeded so to yield a quasi uniform thin layer
on the scaffold walls [40], undergo a first period of rapid proliferation during
the early culture time (5–7 days), after which they secrete (2–4 weeks) the
typical highly hydrated matrix comprising proteoglycan monomers assembled
with GAGs anchored to hyaluronic acid chains and collagen [30,11]. In order
to ensure cell viability and efficient metabolic activity, a properly tuned level
of nutrients must be delivered to cells. This is not an easy task, since nu-
trient mass transfer is significantly limited by the progressive obstruction of
the scaffold due to biomass growth [28,11]. Direct perfusion bioreactors have
been shown to be able to deliver more efficiently nutrient to cells and for this
reason they are the reference devices in this work. The specific experimental
setting we consider (described in detail in [33,32]), consists in scaffolds with
average porosity 77%, interstitially perfused by the culture medium through
a pumping system. The medium flow rate at the inlet is kept constant overall
the experiment and the flow direction is inverted cyclically every 40 minutes.
The presence of an interstitial flow has the side effect of introducing further
mechanical and biophysical processes which must be as well analyzed and
mastered.

This paper stems from the concept that an advanced computational model
can significantly help in gaining knowledge in this complex scenario, giving
access to pieces of information that are experimentally difficult or impossible
to obtain. The biophysical phenomena occurring during in vitro tissue regen-
eration encompass a wide range of embedded scales. Fig. 1 shows five distinct
scales at which (at least) the considered problem can be modeled. Several
computational models in literature focus on the Macroscale. These studies
numerically evaluate the fluid-dynamical field and/or the nutrient profile in
the construct as if the system were tout court homogeneous [28,29,9], or use
homogenized approaches including effective transport parameters [41,6,36].
Even if adopting the Macroscale perspective provides a significant insight on
the overall performance of the bioreactor, the actual local distribution of the
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fields of interest remains unknown. A change of perspective implies to zoom
down to the smaller scales, entering the microscopic behavior of the system,
an approach strongly motivated by recent improvement of experimental mea-
surements based on micro–imaging techniques, which provide high–resolution
time–continuous data [38]. CFD models of interstitially perfused bioreactors
coupled with oxygen mass transport equations solved in microdomains com-
posed of a few pores, corresponding to the Mesoscale, have been proposed
in [33,31]. The problem is solved on realistic configurations as well as on ideal-
ized simplified geometries. In both cases, the CFD analysis is carried out on the
uncellularized scaffold, that is, completely neglecting the presence of the grow-
ing biomass. An improvement to this latter approach is obtained in [23] where
CFD computations are performed on a series of different “frozen” simplified
geometries representing the pattern of deposition of the biomass extracted
from experimental images at the pore size for different time levels.

A first attempt for including multiple scales in a mathematical model of TE
can be found in [7], where an axial symmetric model is solved at the Macroscale
to compute boundary conditions which are used to drive the solution of a 3D
CFD model in a Microscale domain constituted by the uncellularized scaf-
fold geometry. In this model, no feedback from the Microscale model to the
Macroscale model was introduced. In the present article, we construct a gen-
uine multiscale/multiphysics model characterized by:

• a self–consistent coupling among nutrient distribution, cell metabolic activ-
ity and geometry evolution;

• a biophysical description of biomass evolution;
• a structure of modular sub–blocks, whose modelling/computational com-

plexity can be properly tuned to the problem at hand without affecting the
overall structure;

• an affordable computational cost;
• the possibility of a direct integration with experimental data obtained from

microscopical images of histological sections of tissue engineered constructs.

With the aid of such a model, we investigate in three distinct studies the
coupled phenomena of nutrient mass transfer and biomass growth. A first
study stems from the observation that cartilage cells are in vivo physiologi-
cally subjected to low levels of oxygen tension (pO2 ranging from 2 to 10%),
but a widespread practice in TE is to supply “hyper-physiological” conditions
(pO2 = 20%) at the bioreactor inlet [17,8]. We carry out simulations to relate
a given inlet nutrient concentration with the time evolution of the correspond-
ing distribution inside the construct and we explore how inlet concentration
can be tuned to optimize local oxygenation levels. In a second study, we inves-
tigate the effect of perfusion on nutrient mass transfer. Perfusion, enhancing
nutrient delivery, allows for a more uniform development of biomass across the
construct thickness. This results, in general, in a shorter culture time to reach
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a certain biomass production level with respect to the static case. However,
our simulations show that, while the transient behavior to reach steady-state
is significantly different from static culture conditions, the final level of oxygen
is definitely influenced by diffusion barriers. Eventually, in a third study, we
further assess the role of diffusion barriers, carrying out a sensitivity analysis
on the biomass production rate and extracellular matrix inhibition effect with
respect to biomass growth. The general conclusion of this analysis is that dif-
fusion barriers always play against, but, due to the nonlinear nature of the
problem at hand, there are some combinations of the design and biophysical
parameters which are more favorable than others in ultimately improving the
bioreactor performance.

2 Mathematical Model

We consider the typical configuration of a disc-shaped scaffold consisting of the
union of interconnected scaffold pores, culture medium and biomass. We let x
be the coordinate vector, t the time variable and It := [tstart, tend] the temporal
interval of engineered tissue cultivation, tstart and tend being the starting and
final culture times. Fig. 2 shows the construct geometry and introduces the
corresponding notation used throughout the paper.

2.1 Full Scale Analysis

The full scale approach we advocate in this work consists of the coupled solu-
tion for every t ∈ It of the following differential systems.

Fluid Subdomain Model

a) advection–diffusion problem for nutrient concentration c = c(x, t) in Ωfl:
∂c

∂t
+∇ · J = 0,

J = −Dfl∇c + vc,

(1)

where v is the fluid velocity determined by system (2), J is the nutrient
mass flux and Dfl is the nutrient diffusivity in the fluid phase.

The equation system (1) is supplied with the initial condition c(x, 0) =
c0 and the boundary conditions c = c0 on ∂Ωfl ∩ ∂Ωin and J · n = 0 on
∂Ωfl ∩ ∂Ωl and on ∂Ωfl ∩ ∂Ωsc, where c0 is the (constant) inlet nutrient
concentration.

4



b) Navier–Stokes equations [21] for fluid velocity v = v(x, t) and fluid pres-
sure p = p(x, t) in Ωfl:

∇ · v = 0,

ρfl

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + µfl4v,

(2)

where ρfl and µfl are the density and the dynamic viscosity of the
medium, respectively.

The equation system (2) is supplied with the initial condition v(x, 0) =
0 and the boundary conditions v = vin on ∂Ωfl ∩ ∂Ωin, v = 0 on ∂Ωfl ∩
∂Ωsc, and ∂v/∂n = 0 on ∂Ωfl ∩ ∂Ωl.

Biomass Subdomain Model

a) diffusion–reaction problem for nutrient concentration c = c(x, t) in Ωb:
∂c

∂t
+∇ · J = Q

J = −Db∇c,

(3)

where Db is the nutrient diffusivity in the biomass phase and the func-
tion Q = Q(c) represents mass consumption due to cellular metabolism,
expressed by the Michaelis–Menten kinetics

Q = − R c

K1/2 + c
, (4)

where R = Ψmaxξcells, ξcells being the number of cells per unit biomass
volume and Ψmax the maximal nutrient consumption rate, respectively,
while K1/2 is the half saturation constant. The equation system (3) is sup-
plied with the initial condition c(x, 0) = c0 and the boundary conditions
c = c0 on ∂Ωb ∩ ∂Ωin and J · n = 0 on ∂Ωb ∩ ∂Ωl and on ∂Ωb ∩ ∂Ωsc;

b) model for fluid velocity: v = 0 in Ωb;

c) model for biomass growth:

Ωb = Ωb(t; c,v|∂Ωfl∩∂Ωb
, other biophysical parameters). (5)

Fluid-Biomass Interface Model

At the fluid-biomass interface, the following conditions must be satisfied:

c|∂Ωb
= κc|∂Ωfl

, J|∂Ωfl
· n = J|∂Ωb

· n, v|∂Ωfl
= 0. (6)
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The first condition expresses local mass equilibrium, with positive constant κ ≤
1 [43]; the second condition represents mass flux continuity and the third con-
dition is the standard adherence of a fluid at a solid wall.

We will refer in the following to the above coupled system of equations as the
3D Full Scale (3DFS) model.

Modeling assumptions
The following assumptions in the mathematical description of engineered tis-
sue growth will be adopted in the present work.

1) Nutrient mass transfer can be described by a sequence of quasi-stationary
steps, because the time scale of nutrient transport is much faster than biomass
growth [29,36]. This corresponds to neglecting the term ∂c/∂t in Eqns. (1)1

and Eqns. (3)1. Notice that the temporal dependence of the fields c and v is
however retained through the coupling with biomass growth.
2) The left–hand side of (2)2 can be neglected because the Reynolds number
of the fluid–dynamical problem is very small. For example, assuming an inlet
velocity |vin| = 50 µms−1, a scaffold porosity of 77% [34] and L = 1mm [36],
we have that the microscopic Reynolds number (i.e., computed at the pore
size scale) is of the order of 5 · 10−4, while the macroscopic Reynolds number
(i.e., computed at bioreactor scale) is of the order of 6 · 10−2.
3) Biomass growth is described according to the fact that, after seeding, cells
undergo a first proliferative phase, followed by an intense phase of ECM se-
cretion. Since proliferation is a time-limited but highly complex mechanism,
which should deserve on its own an accurate modeling work, we limit ourselves
to consider here a “post–initial” condition where cells have already reached
their maximal number N tot

cells (see [29,27] for a similar approach). Moreover,
we consider cells and biomass to have the same mass density ρb, which will be
assumed to be equal to the clear fluid density ρfl.

Idealized geometry
A realistic geometry of the construct can be extracted from µ-CT data and
used, upon segmentation and post–processing, for simulations. Since this is
not the focus of this work, we rather consider the idealized geometry shown in
Fig. 3A, referred to the experimental setting of [32] and already numerically
investigated by several authors [34,7,23]. The simplified bioreactor domain is
described by a regular mosaic of “cubic pores” (Fig. 3A,B), obtained inter-
secting a cube of size 2b with a sphere of diameter larger than the pore side.
Letting then Vcub = (2b)3 the volume of the cubic pore, we define the construct
design porosity Φ0 as the ratio between the initial void volume and Vcub.
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2.2 Multiscale Model

Even with the introduction of the above simplifications, the computational
challenge of solving the 3DFS model is still a too demanding task even for the
more advanced numerical techniques and powerful machine resources. This
difficulty is principally represented by the need of using a very high scale res-
olution, say, up to the Microscale/Cellular scale, further complicated by the
presence of internal moving boundaries due to biomass growth. A change of
modelling perspective is thus required. The idea we pursue in this work is to
use a scale separation argument and localize the 3DFS model at two distinct–
but interacting– scales, the Macro and Micro scales. At the Macroscale level,
a homogenized form of the 3DFS model is used for the gross characterization
of internal fields and inclusion of technological input parameters, while at the
Microscale level a decoupled solution of the 3DFS model is carried out on dis-
joint computational domains of strongly reduced size for the characterization
of fine biomass growth phenomena and direct interaction with high–resolution
experimental measurements. The two scales are coupled and interact through
bridging variables, which for Micro to Macro transition represent effective–
averaged parameters, while for Macro to Micro transition represent appropri-
ate boundary conditions.

To mathematically identify in the rest of the paper each of the two scale
levels introduced above, we will denote by the subscripts m and M quantities
and operators defined at the Microscale and Macroscale, and by (m, M) and
(M, m) quantities obtained from Micro to Macro and Macro to Micro scale
transitions, as described below.

The Microscale Model
The Microscale model is formulated at a characteristic size corresponding to
the functional sub–unit constituted by the single pore. Despite the strong size
reduction with respect to the 3DFS problem, the difficulty of computationally
handling moving interfaces in a 3D domain remains unsolved. A possible es-
cape to this difficulty relies on the experimental evidence that biomass growth
mainly occurs in the void spherical space symmetrically along the pore radial
direction [23]. This suggests to introduce in the mathematical description of
Microscale phenomena the assumption of spherical symmetry. With this as-
sumption the intrinsic 3D nature of the biomass growth is maintained at the
benefit of a drastic reduction of computational complexity because all problem
variables depend only on the radial coordinate. To work under this hypothesis,
we introduce an “equivalent spherical pore” (Fig. 3C) consisting of a sphere of
radius rw whose volume Vw = 4πr3

w/3 is equal to the void volume of the pore,
which yields rw = b(6Φ0/π)1/3. The spherical pore is adopted as the compu-
tational domain Ωm, and is composed of the union of the time-varying fluid
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and biomass micro–regions Ωm,fl and Ωm,b (Fig. 3C). The origin of the radial
system is located at the centroid xP of the considered pore P . To simplify the
notation, the dependence on xP of all the quantities in the Microscale model
will be understood, if not otherwise specified.

The 3DFS model localized at the Microscale level amounts to solving the
following coupled differential sub-systems for every t ∈ It:

a) model for Microscale nutrient concentration cm = cm(r, t):
1) in the Microscale fluid subdomain Ωm,fl: cm = c(M,m), where c(M,m) is

the Macro-Micro scale bridging concentration computed as described
in SI Methods.

2) in the Microscale biomass subdomain Ωm,b:
1

r2

∂(r2Jm(cm))

∂r
= Q(cm),

Jm(cm) = −Db
∂cm

∂r
.

(7)

The equation system (7) is supplied with the following interface and
boundary conditions:

cm = κc(M,m) at r = rb,

Jm(cm) = 0 at r = rw.

(8)

b) model for the radial component of the Microscale fluid velocity vm =
vm(r, t):

1) in the Microscale fluid subdomain Ωm,fl: the only admissible spherically
symmetric solution of the Stokes equation

vm = α/r2, (9)

where α = α(t) is a function to be determined enforcing the continuity
of the nutrient flux at r = rb, that is

α

r2
b

c(M,m) = Jm(cm)
∣∣∣
r↓rb

. (10)

Notice that condition (10) establishes a constraint between the radial
component of the velocity at the fluid–biomass interface and the inter-
face position itself.

2) in the Microscale biomass subdomain Ωm,fl:
vm = 0.
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c) model for biomass radial thickness and interface displacement:
secretion of biomass from cells causes the medium–biomass interface to
move due to the increase of the width of the region Ωm,b at the expense of
a reduction of Ωm,fl. In radial symmetry, the biomass region is identified
by the evolution of the quantity hb := rw − rb, which represents the time
dependent thickness of the biomass and consists of cells and accumulated
extracellular matrix.

Before describing the model in detail, we need to establish some no-
tation and fundamental relationships. Let Vb = Vb(t) = Vw − 4π(rw −
hb(t))

3/3 denote the volume occupied by the biomass in the spherical
pore at time t. Then, the amount of biomass present at time t in pore
P is mb(t) = ρbVb(t). We assume the biomass at time t = 0 to be
purely composed of a layer of N tot

cells cells - which according to the pre-
vious assumption on the “post–initial” condition is a fixed given value
- forming an equivalent annular region of thickness h0, so that mb(0) =
ρb(Vw − 4π(rw − h0)

3/3).
To monitor biomass secretion, we follow the standard experimental

and theoretical pratice of choosing GAG as a marker of ECM accumula-
tion. For modeling simplicity, we focus only on the evolution of the GAG
“bound” fraction (see also [42]); we refer to [10,19] for a more general
and detailed description including unbound, bound and degraded GAG
fractions. Denoting by mGAG = mGAG(t) the GAG mass contained at
time t in Ωm,b, we assume the following 0D lumped model of the GAG
synthesis process [29,27]:

dmGAG

dt
= kGAG ξcells cm

(
1− mGAG

mGAG,inh

)

mGAG(0) = 0,

(11)

where kGAG is the GAG synthesis rate, ξcells(t) = N tot
cells/Vb(t) the time-

dependent volumetric density of cells secreting biomass, and cm = cm(t)
the average Microscale nutrient concentration in the biomass. Product
inhibition is taken into account by including the right-hand side in (11)1

dependence on a saturation GAG level mGAG,inh. This term represents
in a simplified way the inhibitory feedback effect exerted by cell surface
hyaluronan receptors and integrins in the assembly of the matrix, which
“sense” the location and quantity of GAG and collagen and send messages
to maintain homeostatic concentrations [20]. To close the problem, we
need to connect the GAG mass production to the whole biomass amount.
With this aim, we assume the following constitutive relation

mb(t) = mb(0) + E mGAG(t), (12)

where the parameter E > 1 keeps into account the fact that the nat-
ural cartilagineous ECM is composed for the 70-80% of its wet weight
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of water, while in the remaining fraction of the wet weight the 10-15%
are collagen fibrils and the 5% are GAG components, respectively [5].
Upon solving problem (11) supplied with Eq. (12), we get the following
functional relation between the biomass thickness and the secreted GAG
mass: 

hb(t)

rw

:= 1− y(t),

y(0) = 1− h0/rw,

y(t) = y(0) 3

√
1− E mGAG(t)

ρbVw(y(0))3
,

(13)

where y(t) represents the normalized radius of the fluid domain. Rela-
tion (13)3 shows that y(t) is a decreasing function of the accumulated
GAG mass (and hence hb(t) an increasing function). Since y(t) must be
a non-negative quantity, this implies the following upper bound on the
GAG mass that can be accumulated due to sole geometrical restrictions

0 ≤ mGAG(t) ≤ ρbVw

E

(
1− h0

rw

)3

:= mGAG∗ ∀t ≥ 0.

At the same time, contact inhibition effects included in model (11) imply
that mGAG(t) ≤ mGAG,inh, ∀t ≥ 0. Putting together the two bounds,
we obtain that the maximum theoretical value of the biomass thickness,
denoted by hb,max, is given by

hb,max = rw min

(
1, 1−

(
1− h0

rw

)
3

√
1− mGAG,inh

mGAG∗

)
. (14)

The Macroscale Model
The Macroscale problem is formulated in the idealized bioreactor domain

ΩM ≡ Ω shown in Fig. 3A. The main modeling assumption to reduce the com-
plexity of the 3DFS model is to consider a homogenized continuum version
of the corresponding equations, that is uniformly valid in the whole domain
ΩM . To further reduce the computational cost, we also assume that nutrient
mass transport across neighboring pores in the (y, z) plane can be neglected
and that boundary effects on the lateral walls of the construct can be ignored
as well. Let us denote by PH the collection of NL cubic pores P of size 2b
that constitute an ordered stack composing ΩM : due to the above hypothesis,
the stack is a 1D (x-dependent) domain, over which solutions requiring a low
computational effort will be sought. Moreover, even if each stack has in prin-
ciple its own dynamics, in the present device configuration it is reasonable to
assume that all the pores located in the same (y, z) plane are indistinguish-
able, i.e., they are supplied with the same amount of nutrient and they exhibit
the same cellular metabolic activity, so that they have the same bio–physical
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behavior. The global bioreactor behavior is thus the overall contribution of
the parallel of the NS indistinguishable stacks. Moreover, because of the peri-
odically alternating direction of the medium inlet velocity, we can assume the
concentration profile to be a symmetric function with respect to x = L/2 := `
All the above hypotheses are supported by our computational experience with
multi–dimensional numerical simulations [36] and by several other simulations
reported in the literature (see, e.g., [7]).

The 3DFS model localized at the Macroscale level amounts to solving in ΩM

the following coupled differential sub-systems for every t ∈ It:

a) model for nutrient concentration cM = cM(x, t):


∂JM(cM)

∂x
= QM(cM),

JM(cM) = −D(m,M)
∂cM

∂x
+ vM cM ,

(15)

where vM is the Macroscale velocity field determined from system (16)
and QM(cM) = R(m,M)cM/(K1/2 + cM). The coefficients D(m,M) and
R(m,M) are the effective nutrient diffusivity and consumption rate, respec-
tively, computed as described in SI Methods. The equation system (15) is
supplied by the boundary conditions cM = c0 at x = 0 and−D(m,M)

∂cM

∂x
=

0 at x = `. This latter condition expresses the symmetry of the concen-
tration profile at x = `.

b) Darcy model for fluid velocity vM = vM(x, t) and piezometric head pM =
pM(x, t): 

∂vM

∂x
= 0,

−∂pM

∂x
+ BM = 0,

BM = −
µfl Φ(m,M)

K(m,M)(Φ(m,M))
vM ,

(16)

where K(m,M) is the effective hydraulic permeability, computed as de-
scribed in SI Methods. The equation system (16) is the 1D homogenized
macroscale version of the Navier–Stokes system (2) under the assumption
of neglecting inertial terms (see [18] for a complete derivation). The body
force term BM represents the total drag force per unit volume exerted
on the perfusion fluid particles by the scaffold/biomass component of the
bioreactor. The equation system (16) is supplied by the boundary condi-
tions pM = p0 at x = 0 and pM = 0 at x = `. The boundary term p0 is
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determined by enforcing the global balance

−pM(`)− pM(0)

`
=

p0

`
=

µfl Φ0

K(m,M)(Φ0)
vin.

c) biomass growth: included through the effective coefficients obtained from
Micro to Macro scale bridging.

2.3 Computational Algorithm

We partition the time interval It into Nt ≥ 1 subintervals It,n := [tn, tn+1]
of uniform width ∆t = It/Nt, in such a way that tn = tstart + n∆t, n =
0, . . . , Nt − 1. For any function f = f(x, t), we set fn := f(x, tn). At each
time level tn+1, n = 0, . . . , Nt−1, the Microscale and Macroscale problems are
solved in sequence in a staggered fashion. Moreover, both the Microscale and
Macroscale sub–systems are internally linearized. The resulting computational
algorithm is shown in Fig. 4. Details on the solution of the sub–problems
appearing in Fig. 4 are given in SI Methods.

3 Results of the Simulations

Simulations are carried out using the reference values of the biophysical param-
eters listed in Tab.S1 (if not otherwise specified). Moreover, we set NS = 1000,
b = 70µm, NL = 16, so that L = (2b)NL = 0.224cm. We let [tstart, tend] =
[0, 30]days and we use a space discretization parameter in the Macroscale
simulations (see SI methods) h = 1µm and a time discretization parame-
ter ∆t = 1.5h.

We first investigate the oxygen distribution throughout the scaffold thickness
for an inlet oxygen tension pO2 = 20%. Fig. 5A shows the concentration pro-
files computed from the Macroscale model as a function of culture time. Each
point on the reported curves represents the average concentration in the scaf-
fold at different depths, identified by the layer number, 1=surface, 8=center.
Results are shown in the static (no perfusion, dotted line) and interstitially
perfused (vin = 50µm/s, solid line) case. Fig. 5B shows the biomass thickness
in the interstitially perfused regime at different layers. Difference ∆h (positive
values!) with respect to the biomass thickness in the static case is represented
in the small inserted figure. Perfusion yields a higher biomass production, this
phenomenon being much more evident for innermost layers, because fluid ve-
locity favorably conveys a larger amount of nutrient to the deepest regions
than in static conditions. However, diffusion barriers tend to smooth out the
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differences for longer culture times, due to the net decrease of permeability
(see also Fig. A1B) and -consequently- of fluid velocity magnitude caused by
pore obstruction.

Referring from now on to the perfused case with vin = 50µm/s, we investigate
more in detail the statistical distribution of oxygen tension experienced by
cells. The common practice in many bioreactor systems is simply to fix the
inlet oxygen concentration at the saturation level csat. In reality, the situation
is more complex, since cartilage cells are in vivo physiologically exposed to
lower oxygen levels. Figs. 6A,B,C show the percentage of cells experiencing a
certain range of oxygen tension at time t = 5, 15, 30days parametrized as a
function of the inlet concentration (bars represented in different colors). Sim-
ulations reveal that different inlet concentrations in the bioreactor result into
significantly different distributions of oxygen levels throughout the construct
and not only in a shift of the distribution. In particular, an inlet concentra-
tion equal to csat gives rise, as culture time advances, to increasingly more
smoothed out distributions (“flattened bars”) of the number of cells receiv-
ing a certain level of oxygen, a point which might contrast with the target of
obtaining uniform oxygen levels throughout the construct.

Eventually, we use the model to investigate the role of the metabolic regu-
lation parameters and their interplay with scaffold matrix porosity. To this
purpose, we first carry out a sensitivity study on effect of the rate of biomass
synthesis kGAG (for a fixed porosity Φ0 = 0.8). We assume for kGAG a depen-
dence on the oxygen tension experienced by the cells in the form a Gaussian
distribution of mean µ and standard variation std (both expressed in oxygen
tension values). Fig. 7A shows the (negative!) percentage variation of biomass
thickness with respect to the case where kGAG is set equal to the reference
value kGAG,ref . Variations are more important for innermost layer, which at-
tain a lower nutrient concentration level. Different parameters for the Gaussian
distribution are considered, in accordance with the indications obtained from
results shown in Fig. 6. Then, we discuss the role of the parameter mGAG,inh,
which is a lumped representation of biomass production inhibition exerted
on cells to maintain a certain homeostatic condition. Beforehand, we need to
investigate more thoroughly the relation between biomass thickness, geome-
try and contact inhibition effects. Relation (14) reveals that for a given pore
geometry and cellular post-initial conditions, there exists a threshold value
mGAG∗ such that if mGAG,inh < mGAG∗ , saturation occurs due to geometrical
factors (pore obstruction) irrespective of biophysical homeostatic effects, oth-
erwise biomass growth is limited by contact inhibition phenomena. Fig. 7B
represents the (theoretical) value of hb,max obtained from Eq. (14) as a func-
tion of mGAG,inh parametrized on different initial porosities. Fig. 7C shows the
biomass thickness computed by the multiscale model, as a function of time
having set tend = 120days (steady state condition). Curves are parametrized
for different values of design porosity Φ0 and different values of mGAG,inh cho-
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sen below and above the threshold value mGAG∗ . Simulations show that if
mGAG,inh ≤ mGAG∗ , biomass growth is always controlled by inhibition effects,
while if mGAG,inh > mGAG∗ , after a first phase of the order of a few weeks,
geometrical effects come into play, definitely limiting the increase of biomass
thickness.

4 Discussion

Tissue Engineering is a strategy of Regenerative Medicine aimed at producing
functional substitutes of tissues and organs, starting from donor cells culti-
vated in a controlled environment (bioreactor) capable of providing adequate
conditions for cell viability and metabolism.

A main challenge in bioreactor optimization is the difficulty of establishing
a relation between local biochemical and biomechanical processes and design
parameters which, properly combined together, lead to achieve specified engi-
neered tissue properties [11,12]. The usefulness of a more quantitative under-
standing of the phenomena occurring in bioreactor-based tissue regeneration
is thus clear. In this perspective, the interaction with computational models
may be profitably exploited to gain information which are often unaccessible
to experimental measurements, for example the effect of a fine tuning of cel-
lular metabolic mechanisms on biomass growth [20,19] in conjuction with a
given scaffold matrix porosity.

There are numerous computational models of engineered tissue regeneration,
many of them based on homogenized averaged approaches [28,14,6,36] or re-
stricted to small portions of the domain including a selection of biophysical
mechanisms with a strong emphasis on CFD [3,15,23].

The model presented in this study, which addresses in particular articular car-
tilage tissue engineered constructs, describes in a coupled framework nutrient
(oxygen) transport and biomass growth. Despite in [7] an attempt was already
made to couple phenomena occurring at different length scales, to our knowl-
edge, the model proposed in this article is the first multiscale approach which
allows to keep into account in a self-consistent manner the effect of barrier to
the nutrient diffusive process caused by the pore obstruction due to biomass
accumulation. The principle of scale separation is the central technique used to
localize the problem at two representative scales: Macroscale and Microscale.
This principle, in conjunction with biophysically consistent geometrical sim-
plifications, allowed us to end up with a simulation tool capable of predicting
bioreactor performance, even for long culture intervals, requiring at the same
time a very limited computational effort.
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What consequences can we draw from our model to improve bioreactor de-
sign? Biological studies indicate that in vivo cartilage is presumably exposed
to “physiologically hypoxic” conditions with an oxygen tension ranging from
10% in the superficial layers to 1% in the deepest layers [17,8]. A widespread
approach in TE practice is however to set a “hyper-physiological” (20%) oxy-
gen tension at the device inlet, in order to prevent from nutrient shortage in the
internal regions of the construct. With the present model, we were able to com-
pute the local distribution of nutrient in the porous scaffold matrix resulting
from a certain inlet oxygen tension. For a 20% inlet oxygen tension, computed
oxygen levels (Fig. 5A) encompass a wide spectrum of values throughout the
device thickness, ranging from nearly hyper-physiological conditions in the su-
perficial layers to strongly hypoxia in the innermost layers [11,12,9]. We also
investigated the spatial dependence of the oxygen distribution as a function of
the inlet oxygen tension. Under hyperoxic inlet conditions, the distribution of
cell percentage as a function of received oxygen tension is more smoothed out
than under hypoxic conditions (Fig 6). Such a detailed knowledge (in contrast
to a simpler read-out approach) of the oxygen tension experienced by cells
can be used as a more sophisticated control parameter for cell’s metabolism
than the sole oxygen inlet tension. This advanced concept is based on the
evidence that a certain oxygen tension -which may, but not necessarily, be
correspondent to the physiological levels - can be used to finely tune the in
vitro synthesis of the various components of the ECM, cell proliferation and
differentiation [8].

Direct perfusion bioreactors have been demonstrated to enhance nutrient con-
vey, while applying hydrodynamic shear to cells, both conditions being be-
lieved to favour in vitro chondrogenesis [7]. With the model, we were able to
quantify the role of perfusion on the local oxygen distribution in the construct.
While the final level of oxygen is strongly influenced by diffusion barriers, the
transient behavior to reach steady-state is significantly different from static
culture conditions (Fig. 5A). As a result, in the same time interval, biomass
production is strongly promoted by interstitial flow, this fact being much more
evident in the innermost layers (Fig. 5B). As for the mechanical stimulus ex-
erted on the cells by the fluid-dynamical field, it is known that moderate values
of shear stress can enhance ECM production [33]. On the one side, shear stress
is not experimentally accessible at the Microscale level, while existing CFD
computational models at this scale do not account in a self–consistent man-
ner for the presence of cells [34]. In the model we propose in this article, the
shear stress information can be extracted either at the Macroscopic level as
the Darcy stress, or estimated using the Microscopic radial velocity field at
the fluid-biomass interface combined with a Coulomb-like friction law to ob-
tain a tangential–like component needed to evaluate the shear stress at the
fluid–biomass interface. This topic is, however, very delicate and needs further
investigations.

15



The regulatory role of biomass production rate is another fundamental bio-
physical mechanism that we were able to explore. The idea was to test the
evolution of biomass growth when not all the cells are subjected to the same
“optimal” environmental conditions. Namely, for a given value of scaffold ma-
trix porosity, a Gaussian distribution depending on the nutrient concentration
is assumed for kGAG and the resulting biomass thickness at the various scaf-
fold levels is compared to that obtained taking kGAG equal to the constant
reference value kGAG,ref (Fig. 7A). The Gaussian distribution causes in general
a reduction in biomass production, due to the fact that oxygen levels in the
scaffold vary significantly. More specifically, the reduction is more important
when the oxygen tension corresponding to the given central value µ of the
Gaussian is experienced by a restricted percentage of cells. A much better
performance is achieved when µ is close to a level of oxygenation that is more
uniformly represented in the scaffold (case µ = 5%). Notice that this latter
value of µ has been selected to reproduce the average oxygen tension experi-
enced by chondrocytes in vivo [24]. For the same reason, given a certain value
of µ, it turns out that tuning metabolic regulation around a narrow range of
the concentration parameter (smaller std) is again more disadvantageous in
terms of biomass production.

Eventually, reduction of biomass production due to cellular contact inhibition
has been investigated in conjunction with different values of scaffold matrix
porosity Φ0, a technologically relevant design parameter [34,23]. The maximum
biomass production that can be obtained in a given scaffold pore depends, in
a non easily predictable manner, on the interplay between contact effects and
available void space. The theoretical results in Fig. 7B indicate that for each
considered porosity, the threshold value mGAG∗ separates a regime where ad-
ditional biomass formation is limited by contact effects (mGAG,inh ≤ mGAG∗)
from a saturation regime at which biomass production is only determined by
pore obstruction (mGAG,inh > mGAG∗). Fig. 7C shows the computed temporal
evolution of the biomass thickness in each layer for a very long culture pro-
cess. Two classes of conclusions can be drawn. First, a higher accumulation
of biomass is attained if mGAG,inh > mGAG∗ , for both porosities, even when
considering medium to short culture times (blue vs. red or magenta vs. green
curves). Second, when the driving parameter is design porosity, a higher poros-
ity produces more uniform results along the whole scaffold depth (spread of
the curves along the y axis at a given time) due to diffusion barriers exerting
a severe influence at later times (blue vs magenta or red vs. green curves).

Further aspects of the problem which deserve consideration for future investi-
gation are: i) the inclusion of more detailed 3D effects while maintaining the
computational cost at an affordable level. In this perspective, inhomogeneities
in the (y, z) plane can be easily accounted for in our multiscale setting by
assuming that the effective parameters are stochastic variables with average
value given by the Micro-Macro transition proposed in the present model and
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a certain variability which can be inferred from experimental data; ii) the in-
clusion of more detailed models of cell life–cycle, distinguishing between pools
of cells in resting, proliferating and secreting states. In this perspective the
change of state of a cell can be monitored via a system of integro–differential
equation depending on age maturity parameters (see, e.g., [2]).
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Appendix

A.1 Scale Transition

We detail in the following sections the computations required to perform scale
transitions.

A.1.1 Micro–Macro Scale Transition

The Micro–Macro scale transition gives rise to effective coefficients that keep
track, in the homogenized macroscopic model, of the microscale phenomena.
Here below we detail the computation of the various coefficients.

Effective Porosity
The initial design porosity of the scaffold Φ0 undergoes significant changes
during culture time due to biomass growth. To compute the value of Φ(m,M) =
Φ(m,M)(xP , t) at each time level t and at the centroid of each pore P ∈ PH , we
refer to the same simplified geometry proposed in [13], consisting of a cubic
hollow box of side 2b and cubic hollow portion of side 2a. The results obtained
for this geometry provide a remarkably accurate approximation of the porosity
of the cubic pore of Fig. 3B [13]

Φ(m,M) =
6(b− a)(2(a− hb))

2 + (2(a− hb))
3

(2b)3
, (A1)

where hb = hb(xP , t) is the biomass thickness predicted from Eq. (13) using
the Microscale model in each pore P ∈ PH and a is determined as the only
admissible solution of the cubic equation ζ3 − 3

2
ζ2 + Φ0

2
= 0, where ζ := a/b,

such that 0 ≤ ζ ≤ 1.

Effective Permeability
The homogenized permeability is computed from the Carman-Kozeny rela-
tion [26] as

K(m,M)(Φ(m,M)) = Ki

Φ3
(m,M)

(1− Φ(m,M))2
. (A2)

The intrinsic permeability of the uncellularized scaffold Ki is determined by
adapting the microscopic theory of dilute random array of spherical particles
developed in [18] to the actual geometry of the scaffold, and is given by Ki =

d2
K/150, dK = 2b 3

√
6(1− Φ0)/π being the equivalent particle diameter of the
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solid fraction of the scaffold pore. The effective permeability resulting from
the numerical simulations and obtained using Eq. (A2) is shown in Fig. A1B
as a function of scaffold depth.

Effective Diffusivity
Let us denote by s = s(xP , t) = hb(xP , t)/b the nondimensional thickness of
the biomass layer of pore P . The homogenized diffusivity D(m,M) = D(m,M)(xP , t)
is computed generalizing the ideas of [13] to the multiphase (scaffold/biomass/fluid)
system of the pore

D(m,M)

Dfl

= ((1− ζ)/((ζ − s)2 + s(2ζ − s)Db/Dfl)

+(ζ − s)/((1− (s + 1− ζ)2) + s(s + 2(1− ζ))Db/Dfl)

+s/((ζ − s) + (1− (1− ζ)2 − (ζ − s))Db/Dfl))
−1,

(A3)

where we have supposed the scaffold to be impermeable to nutrient diffusion.

The ratio
D(m,M)

Dfl
resulting from the numerical simulations and obtained using

Eq. (A3) is shown in Fig. A1A as a function of scaffold depth.

Effective Consumption Rate
To characterize the effective consumption rate R(m,M), we require that

∫
Vcub

R(m,M) dV =
∫

Vb

R dV.

The above bridging condition states that oxygen consumption per unit time
referred to the volume of the cubic pore is equal to the consumption per unit
time occurring in the biomass layer at the microscopic scale, and yields

R(m,M) =
ΨmaxN

tot
cells

Vcub

. (A4)

A.1.2 Macro–Micro Scale Transition

The function c(M,m) = c(M,m)(xP , t) is defined at each time t as the average
macroscopic concentration of each pore P ∈ PH , and can be numerically
computed using Eq. (A9).
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A.2 Problem discretization

We detail in the following sections the discretization schemes used to solve the
coupled Micro-Macro scale problem.

A.2.1 Solution of the Microscale Problem at Step A.1

The nutrient problem in Step A.1 is beforehand linearized by replacing in
the biomass domain the consumption term Q(cm) with Q̃(cm) = χncm, where
χn = − Ψmax

K1/2+cn
m

ξn
cells. At each time level tn+1, n = 0, . . . , Nt − 1, the solution

of the linearized Microscale nutrient problem is then the following piecewise
smooth function cm : Ωn

m,fl ∪ Ωn
m,b :→ R:

cn+1
m (r) =


cn
(M,m) for r ∈ (0, rn

b ),

κcn
(M,m)

F (r)

F (rn
b )

for r ∈ (rn
b , rw),

(A5)

where F is the shape function defined as

F (r) =
1

r

((
rw

√
χn

Db

+ 1

)
exp

{
(r − rw)

√
χn

Db

}

+
(
rw

√
χn

Db
− 1

)
exp

{
− (r − rw)

√
χn

Db

})
.

Having determined the new biomass position, one can compute the constant
α that uniquely specifies the admissible fluid velocity in the spherical pore by
enforcing the flux continuity condition (10), to obtain

αn+1 = −κDb
(rn+1

b )2

cn
(M,m)

F ′
(
rn+1
b

)
F
(
rn+1
b

) . (A6)

A.2.2 Solution of the Microscale Problem at Step A.2

In order to compute the new biomass thickness hn+1
b from Eq. (13), we solve

analytically the linearized version of problem (11) obtained using for c(M,m)

the newest available value cn+1
(M,m) computed from point A.1 and for ξcells the

value Vb(tn) computed at the previous time level.
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A.2.3 Solution of the Macroscale Problem at Step C

Let Th be a uniform partition of [0, `] into Nh subintervals T of size h < H
and cM,h, JM,h be the numerical approximations of cM and JM , respectively,
with cM,h piecewise linear continuous and JM,h piecewise constant over Th. At
time level tn+1, the first step is to compute the constant value of the Darcy
velocity, solution of problem (16)

vn+1
M = vin

H(K(Φn+1)/Φn+1)

K(Φ0)/Φ0

in Th, (A7)

H(f) being the harmonic average of the function f over [0, `], defined as
H(f) := (

∫ `
0 f−1(s)ds/`)−1. Then, the next step consists of solving the nutrient

problem (15) using the velocity computed from (A7) and using internal fixed
point iterations to deal with the non-linear consumption term. The Galerkin
approximation of (15) with the exponentially fitted finite element method
proposed and studied in [4,16] is then carried out. This scheme enjoys several
interesting properties. The function cM,h satisfies a discrete maximum principle
irrespective of the value of the local Péclet number [35]. This property prevents
the numerical scheme from the onset of spurious oscillations if the fluid velocity
becomes large, and ensures that the discrete Macroscale nutrient concentration
is strictly positive and uniformly bounded by c0. The function JM,h satisfies
at each (internal) mesh node xi separating elements T−

i and T+
i the following

discrete conservation law

J+
M,h − J−

M,h = Q̃M(cM,i)h. (A8)

Multiplying both sides of (A8) by the cross-section pore area in the trans-
verse (y, z) plane, we obtain the “mass flux” equivalent of a Kirchhoff current
balance with respect to node xi (see also [44] for a discussion of the electrical
analogue of reaction–diffusion systems). The average concentration required
by Macro-Microscale bridging can be computed as

cn+1
(M,m)(xP ) = H−1

∑
T∈P

∫
T

cn+1
M,h dx. (A9)
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Fig. 1. Multiple scale in TE mathematical models. The figure shows a selection
of scales relevant to biophysical phenomena occurring in engineered tissue re-
generation, along with the corresponding significant biotechnological parameters.
Macroscale: it is the scale at which the perfused scaffold is treated as a continuum
and at which the Bioengineer sets the control parameters (inlet velocity, scaffold
porosity); Mesoscale: corresponds to a collection of a few functional units of the
scaffold; Microscale: it is the scale of the single functional unit (here, the pore) of
the polymeric scaffold, of nominal diameter of the order of 100µm; Cellular scale
cells should be treated as discrete entities and phenomena like adhesion and con-
tact forces should be accounted for; Sub-cellular scale: accounts for all the mass
transport and reaction processes that occur at the single cell membrane level.
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Fig. 2. Geometry and notation. A. 3D porous construct. B. 2D cross–section of the
construct, with length L and thickness W . C. Zoomed view of the multiphase com-
position of the construct We denote by Ω the bioreactor domain, with boundary
∂Ω = ∂Ωin ∪ ∂Ωl. The domain Ω is composed by the time–invariant subdomain
Ωsc = Ωsc(t), representing the scaffold, and by its complement Ωe = Ωe(t). This lat-
ter subdomain is, in turn, composed of the time dependent fluid portion Ωfl = Ωfl(t)
and the biomass portion Ωb = Ωb(t), both of which may be, in general, composed
by the union of unconnected domains of complex shape. The interface separating
Ωfl and Ωb is denoted by Γ. Moreover, n indicates the unit normal vector on ∂Ω
and on each material interface.
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Fig. 3. Idealized geometry. A. The bioreactor construct is composed by a regular
mosaic of “cubic pores” which represent the functional sub–units. The cubic pores
are organized in NS stacks. B. Stack of pores. Each stack is partitioned into NL

pores and is aligned along the x axis, along which the coordinate of the centroid of
the pore P is denoted by xP . C. Spherical pore. The origin of the coordinate system
is located at the pore center, the fluid biomass interface at rb = rb(t) and the pore
wall at r = rw, respectively. Biomass is supposed to uniformly grow inwardly along
the radial direction.
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Fig. 4. Computational Multiscale staggered algorithm. Details of the discretization
of each sub–problem are given in the SI text. The initial distribution of nutrient
concentration along the scaffold depth is determined by a first run (outside the time
loop) of the Macroscale model. Notice that the solution of the Microscale problems
at Step A. and Scale transition computations at Steps B. and D. can be carried
out in parallel over the stack for each representative pore of the layer. Macroscale
computations are serial, but their cost is negligible.
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Fig. 5. Effect of perfusion (solid line vin = 50µms−1, dashed line static condition
vin = 0) as a function of time at different scaffold depths (layer 1=surface, 8=center
of the construct) with c0 = csat. A. Macroscale nutrient concentration. B. Evolution
of biomass thickness and difference in thickness with respect to static conditions
(boxed insert). Results clearly indicate that perfusion enhances nutrient availabil-
ity during the culture process, despite the fact that contact inhibition and pore
obstruction give rise to a natural saturation of biomass growth. Perfusion yields a
substantially higher biomass production, this phenomenon being much more evi-
dent for internal layers because fluid velocity favorably conveys a larger amount of
nutrient to the deepest regions than in static conditions.
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Fig. 6. Percentage of cells in the construct experiencing a certain oxygen tension
as a function of the inlet oxygen tensions (20% “hyperoxic” condition, 5 − 10%
“physiological hypoxic” conditions, 1% “strongly hypoxic” condition), computed
at culture times 5, 15, 30 days. Results show the common trend of a decrease in
the oxygen tension experienced by cells as time increases. The distribution of cell
percentages is more peaked under hypoxic to strongly hypoxic conditions, while it
becomes more flattened under hyperoxic conditions. These results give indications
to the Bioengineer of which inlet oxygen tension should be applied in order to
guarantee a desired range of nutrient availability over all the construct.

31



Fig. 7. Sensitivity analysis. A. Effect of variation of the rate of biomass production. The dependence of the

rate of matrix synthesis kGAG on the local oxygen concentration c is assumed to be a Gaussian distribution

kGAG(c) = Ae−(c−µ)2/(2 std2), where A = kGAG,ref is the maximal amplitude, µ is the average and std the stan-

dard deviation (all expressed in oxygen tension units). Different parameters for the Gaussian distribution are considered, in

accordance with the indications obtained from results shown in Fig. 6. Percentage variation (negative values!) of the biomass

thickness obtained at t = 30days is compared to that obtained using the constant value kGAG,ref , as a function of the

layer number (1=surface, 8=center of the construct). Simulations suggest a scenario for which a metabolic optimization on

relatively high oxygen levels (µ = 10%) is disadvantageous, since these levels cannot be attained uniformly in the scaffold

due to diffusion barriers. In the case µ = 5%, if a “too narrow metabolic regulation” is displayed by cells (std = 3.125%),

again biomass secretion could be disadvantaged. B. Maximum biomass thickness. The maximum biomass production depends

on the interplay between inhibition effects and available void space. To investigate this complex biophysical picture, we let

the saturation GAG level mGAG,inh to vary within a physiological interval and compute the theoretical value of hb,max

according to Eq. (13) using as a parameter the scaffold porosity. The threshold value mGAG∗ is identified on each curve

by the abrupt change of slope. The regimes biomass formation limited by contact inhibition (mGAG,inh ≤ mGAG∗ ) or

geometric factors (mGAG,inh > mGAG∗ ) can be clearly distinguished. C. Combined effect of contact inhibition, scaffold

porosity and time evolution of biomass. Computed biomass produced in each layer of the scaffold is shown as a function

of time till long culture periods (120days) for two different values of design scaffold porosity Φ0 and for the two cases

mGAG,inh ≶ mGAG∗ . Most superficial layers correspond in all cases to the uppermost curve of each family. Two classes of

conclusions can be drawn from the graph. First, a higher accumulation of biomass is attained if mGAG,inh > mGAG∗ , for

both porosities, even when considering medium to short culture times (blue vs. red or magenta vs. green curves). Second,

when the driving parameter is design porosity, a higher porosity produces more uniform results along the whole scaffold

depth (spread of the curves along the y axis at a given time) due to diffusion barriers exerting a severe influence at later

times (blue vs magenta or red vs. green curves).
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Fig. A1. Effective parameters computed at different culture times for a design poros-
ity Φ0 = 0.8. A. Effective diffusivity normalized to clear fluid diffusivity computed
from Eq. (A3). Notice that even in the uncellularized condition, the obstruction to
diffusion exerted by the presence of the scaffold phase causes a reduction of 25% of
the diffusivity. The presence of the growing biomass enhances such a reduction up
to 50%. The reduction is not uniform along the scaffold depth due to the different
evolution of biomass growth. B. Effective permeability computed from Eq. (A2).
Logarithmic scale is used on the y axis to emphasize the significant variation (two
orders of magnitude) of the permeability. Analogous comments as in A. apply also
to this case.
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