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A CLASS OF P -CONVEX SPACES LACKING NORMAL STRUCTURE

ELISABETTA MALUTA

Abstract. We prove that, for any β > 1, the space Eβ = (l2, ‖ · ‖β) where ‖ · ‖β =

max{‖ · ‖2, β‖ · ‖∞} is P -convex. It is known that, for β ≥
√

2, Eβ lacks normal
structure.

Introduction

The problem whether every superreflexive Banach spaces enjoys the fixed point pro-
perty (fpp in short) for nonexpansive mappings is a classical open problem in Fixed Point
Theory. Two subclasses of superreflexive spaces, both defined by geometric properties
of the unit ball, in which the fpp has been widely studied are the class of uniformly
nonsquare spaces and the class of P -convex spaces. Each of them includes uniformly
convex spaces as well as uniformly smooth spaces.

While the fpp for nonexpansive mappings in uniformly nonsquare spaces has al last
been proved by Garćıa-Falset, Llorens-Fuster and Mazcuñán-Navarro in [5], the problem
is still open in P -convex spaces.

The notion of P -convex space has been introduced by Kottman in [7] as an evaluation
of the efficiency of the tightest packing of balls of equal size in the unit ball of X.
Kottman proved that the condition is weaker at the same time than uniform convexity
and uniform smoothness, but still guarantees reflexivity: moreover he characterized the
dual property, called F -convexity.

Naidu and Sastri [11] proved that P - and F -convexity are actually different, that
neither one implies uniform nonsquareness nor is implied by uniform nonsquareness, and
that both P -convexity and uniform nonsquareness imply a weaker property, that they
called O-convexity, which in turn implies superreflexivity.

Recently, the fpp for nonexpansive mappings has been established in the duals of P -
convex spaces (F -convex spaces) by Saejung [13], and then in the wider class of duals of
O-convex spaces by Dowling, Randrianantoanina and Turett [4]. It is worth noting that
Saejung obtained his result proving that duals of P -convex spaces have uniform normal
structure, a property which assures the fpp for nonexpansive maps.

Therefore the question naturally arises whether P -convex spaces must have uniformly
normal or at least normal structure (it is known that these properties are not self-dual).

Here we show that this is not true, even for normal type properties which, though still
assuring the fpp, are weaker than normal structure. Precisely we prove that a family of
renormings of l2, the spaces Eβ = (l2, ‖ · ‖β) where ‖ · ‖β = max{‖ · ‖2, β‖ · ‖∞} are all
P -convex. It is known that these spaces have (uniform) normal structure if and only if
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β <
√

2. When
√

2 ≤ β < 2 they have asymptotic normal structure, a weaker property
still assuring the fpp for nonexpansive mappings, and for β ≥ 2 they lack any kind of
normal structure. Therefore the spaces Eβ for β ≥

√
2 provide, as far as we know, the

first examples of P -convex spaces without normal structure.

As it was proved (see [6], [2] for
√

2 ≤ β ≤ 2 and [8] for β > 2) that all the Eβ’s do
have the fpp for nonexpansive mappings, our result does not provide any answer about
the fpp for nonexpansive mappings in P -convex spaces.

1. Notation and definitions

Throughout this paper, X denotes an infinite dimensional real Banach space, BX and
SX its unit ball and unit sphere respectively, B(x, r) the ball centered in x with radius
r.

For a set A we denote by |A| the cardinality of the set and by diam(A) its diameter
and we denote by ⌊a⌋ the integer part of a real number a.

We recall the relevant definitions.

For β > 1 let Eβ = (l2, ‖ · ‖β) be the space l2 renormed according to

‖x‖β = max{‖x‖2, β‖x‖∞}
where ‖x‖2, ‖x‖∞ denote respectively the l2 and l∞ norms of x.

For each cardinal α, let

P (α,X) = sup{r : there exist α disjointB(xα, r) ⊂ BX}
(set 0 = sup ∅).

Following Kottman [7], we say that a space is P -convex if P (n,X) < 1
2

for some
positive integer n.

For a set A, the separation of A is the number

sep(A) = inf{‖x − y‖ : x, y ∈ A}
Considering sequences {xn} ⊂ X, Kottman [7] defined

K(X) = sup{sep ({xn}) : {xn} ⊂ SX}.
K(X) is called Kottman’s separation constant of X and it is actually the separation
measure of noncompactness of SX .

Clearly P (n,X) ≥ P (n + 1, X) ≥ P (ℵ0, X).

It follows from [7] and [12] that P (ℵ0, X) = 1
2

if and only if K(X) = 2. Therefore
P -convexity implies K(X) < 2.

For sets A,B ⊂ X and x ∈ X we set

r(A, x) = sup{‖y − x‖; y ∈ A} and r(A, B) = inf{r(A, x); x ∈ B}
r(A,B) is called the Chebyshev radius of A with respect to B.

A space X has normal structure if for each nonempty, closed, bounded, convex set C

r(C, C) < diam(C) and uniform normal structure if there exists N(X) < 1 such that,
for each such C, r(C, C) < N(X) diam(C)
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For ε ∈ [0, 2] we call modulus of convexity of X the function

δX(ε) = inf

{

1 − ‖x + y‖
2

: x, y ∈ SX ; ‖x − y‖ ≥ ε

}

.

A space X is uniformly convex if δX(ε) > 0 for each ε > 0, and uniformly non square
if limε→2 δX(ε) > 0.

2. Results

In the next two lemmas, we prove that the existence in the unit ball of Eβ of sets
and sequences with large separation implies the existence of similar sets, with related
cardinality, in the unit ball of (l2, ‖ · ‖∞).

Lemma 2.1. Let X = Eβ (β > 1), 0 < ε < 1
16β4 and x1, x2, ..., xn ∈ SEβ

such that

(1) ‖xi − xj‖β > 2 − βε ∀i, j = 1, ..., n; i 6= j :

then there exist ⌊n
2
⌋ indexes {ij} such that ‖xij−xik‖∞ > 2

β
−ε ∀j, k = 1, 2, ...⌊n

2
⌋; j 6= k.

Proof. As a first step we remark that, in SEβ
, (1) implies that for each i there exists at

most one index j such that ‖xi − xj‖2 > 2 − βε.
In fact, from

‖xi − xj‖2
2 + ‖xi + xj‖2

2 = 2‖xi‖2
2 + 2‖xj‖2

2 ≤ 4

we obtain

‖xi + xj‖2
2 < 4 − (2 − βε)2 < 4βε.

Assume that there exist two distinct indexes j, k such that

‖xi − xj‖2 > 2 − βε and ‖xi − xk‖2 > 2 − βε :

then

‖xj − xk‖2 = ‖xj + xi − xi − xk‖2 ≤ ‖xj + xi‖2 + ‖xi + xk‖2 ≤ 4
√

βε

and

‖xj − xk‖β ≤ max{4
√

βε, 4β
√

βε} = 4β
√

βε < 2 − βε

for ε sufficiently small (in particular for ε < 1
16β4 ), a contradiction proving our claim.

Now start with x1 and let xj̄1 be the only element (if any exists) such that ‖x1−xj̄1‖2 >

2 − βε; we drop xj̄1 thus obtaining a set containing x1 and (at least) n − 2 elements
xj, j 6= 1, such that

‖x1 − xj‖2 ≤ 2 − βε ∀j and ‖xi − xj‖β > 2 − βε ∀i 6= j.

The first inequality implies that

‖x1 − xj‖∞ >
2

β
− ε.

Set x1 = xj1
and let j2 be the first of the remaining indexes. Drop the element xj̄2 , if

any, such that ‖xj2 − xj̄2‖2 > 2 − βε. Iterating the procedure, after K steps, K ≤ ⌊n
2
⌋,

we have obtained K elements xjk
∈ SEβ

such that

‖xjk
− xjl

‖∞ >
2

β
− ε ∀k, l = 1, 2, ..., K
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and at least n − 2K residual elements xl which satisfy

‖xjk
− xl‖∞ >

2

β
− ε ∀k = 1, 2, ..., K and ∀l > jK .

We can proceed in this way for at least ⌊n
2
⌋ steps; after ⌊n

2
⌋ steps drop the remaining

elements and consider the set xj1 , xj2 , ..., xj⌊n
2
⌋
; each element has ‖xjk

‖∞ ≤ 1
β

and the set

is ( 2
β
− ε)-separated with respect to ‖ · ‖∞. ¤

Lemma 2.2. Let X = Eβ (β > 1), 0 < ε < 1
16β4 and {xn} a (2−βε)-separated sequence

in SEβ
; then there exists a subsequence {xnj

} such that {βxnj
} is (2 − βε)-separated in

B(l2,‖·‖∞).

Proof. Note that, starting with an infinite sequence, we can iterate the process in the
proof of lemma 2.1 infinitely many times. ¤

Now we state our main result, and we prove that, for β > 1, Eβ is P -convex (for
β ≤ 1, Eβ coincides with l2).

Theorem 2.3. Eβ is P -convex for each β.

Proof. By contradiction, assume Eβ is not P -convex; then, for each positive integer
n, P (n + 1, Eβ) = 1

2
and from [7], Theorem 1.3, for any ε > 0, there exist n points

x1, x2, ..., xn ∈ SEβ
such that

‖xi − xj‖β > 2 − βε ∀i, j = 1, ..., n; i 6= j.

Without loss of generality, we consider an even integer 2n and 0 < ε < 1
16β4 . Lemma 2.1

gives us n points that we denote again by x1, x2, ..., xn ∈ SEβ
such that

(2) ‖xi − xj‖∞ >
2

β
− ε ∀i, j = 1, ..., n; i 6= j

Therefore, for any i, j, i 6= j, there exists kij such that

(3) |xkij

i − x
kij

j | >
2

β
− 2ε.

From ‖xi‖β ≤ 1 we have, for all k ∈ N , |xk
i | ≤ 1

β
hence |xkij

j | > 1
β
− 2ε and, for ε small,

sign x
kij

i 6= sign x
kij

j . Reasoning is symmetric in i and j hence we have proved that

∀i, j, |xkij

i − x
kij

j | > 2
β
− 2ε implies

(4) |xkij

i | >
1

β
− 2ε ∧ |xkij

j | >
1

β
− 2ε ∧ sign x

kij

i 6= sign x
kij

j .

Remark that for ε small and for any i, ‖xi‖2 ≤ ‖xi‖β ≤ 1 implies |xk
i | > 1

β
− 2ε for

at most M distinct indexes k, and having taken ε < 1
16β4 we may choose an M which

depends only on β.

Now fix i; we claim that for no pairs of points xp and xq there exists an index k such
that

(5) |xk
i − xk

p| >
2

β
− 2ε ∧ |xk

i − xk
q | >

2

β
− 2ε ∧ |xk

p − xk
q | >

2

β
− 2ε
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i.e.

(6) |xk
i − xk

p| >
2

β
− 2ε ∧ |xk

i − xk
q | >

2

β
− 2ε =⇒ |xk

p − xk
q | ≤

2

β
− 2ε

In fact, by (4), the first two inequalities in (5) imply

|xk
p| >

1

β
− 2ε ∧ |xk

q | >
1

β
− 2ε ∧ sign xk

p = sign xk
q

which together with |xk
p| ≤ 1

β
and |xk

q | ≤ 1
β

give

|xk
p − xk

q | = max{|xk
p|, |xk

q |} − min{|xk
p|, |xk

q |} <
1

β
− (

1

β
− 2ε) = 2ε

contradicting

|xk
p − xk

q | >
2

β
− 2ε if ε <

1

2β
.

Now start with x1 and for xj with j = 2, ..., n let k1j be as in (3); then by (4) we have

|xk1j

1 | > 1
β
− 2ε for any j. This can be true only for at most M distinct k1j’s, therefore

there exist one index, which we call k1, and a set R1, with cardinality at least ⌊n−1
M

⌋, of

indexes j̃ such that |xk1

1 − xk1

j̃
| > 2

β
− 2ε. By (6) for each couple j̃, k̃ ∈ R1 we have

(7) |xk1

j̃
− xk1

k̃
| ≤ 2

β
− 2ε.

Let j2 be the first index in R1 and, to simplify notation, set x1 = z1 and xj2 = z2. For

any of the ⌊n−1
M

⌋ − 1 remaining j̃’s in R1, let k2j̃ the index associated as in (3) to the

couple z2 and xj̃. Note that, by (7), k2j̃ 6= k1 for all j̃ ∈ R1.

Reasoning as above, we find an index k2 and a set R2 ⊂ R1 with cardinality at least
⌊
(

⌊n−1
M

⌋ − 1
)

1
M−1

⌋ of indexes j̃ such that |zk2

2 − xk2

j̃
| > 2

β
− 2ε for all j̃ ∈ R2. Again, by

(6), for each couple j̃, k̃ ∈ R2 we have |xk2

j̃
− xk2

k̃
| ≤ 2

β
− 2ε, hence

(8) |xkh

j̃
− x

kh

k̃
| ≤ 2

β
− 2ε h = 1, 2.

Iterating this procedure, after K steps we have selected K elements z1, z2, ..., zK among
the x1, x2, ..., xn and K distinct (by (8)) indexes k1, k2, ..., kK such that

(9) |zki

i − zki

k | >
2

β
− 2ε ∀k > i.

In particular, for zK we have K − 1 distinct indexes for which, by (4), |zki

K | > 1
β
− 2ε.

Moreover we are left with a set RK of indexes j̃ such that, by (6), for all j̃, k̃ ∈ RK

(10) |xkh

j̃
− x

kh

k̃
| ≤ 2

β
− 2ε h = 1, 2, ..., K.

RK has cardinality

(11) |RK | ≥
⌊

(|RK−1| − 1)
1

M − K + 1

⌋
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and it can be easily verified by induction on K that

(12) |RK | ≥
⌊ n − 1

M(M − 1)...(M − K + 1)
−

−2

(

1

(M − 1)...(M − K + 1)
+

1

(M − 2)...(M − K + 1)
+

1

M − K + 1

)

⌋

Now take K = M ; by(12),

|RM | ≥
⌊n − 1

M !
− 2

(

M−1
∑

m=1

1

m!

)

⌋

.

Remark that, since n can be taken arbitrarily large while M is fixed, depending only
on β, cardinality of RM can be assumed as big as we need. Actually it is enough that
|RM | ≥ 2.

We know that, for all i = 1, 2, ..., M and any j̃ in RM , |zki

i − xki

j̃
| > 2

β
− 2ε hence, by

(4), |xki

j̃
| > 1

β
− 2ε. We have remarked that for each xj̃ this can be true for at most M

indexes therefore |xk

j̃
| ≤ 1

β
− 2ε for all indexes k different from k1, k2, ..., kM .

Call jM+1 the first of the j̃’s in RM and set zM+1 = xjM+1
. Pick any other j̃ ∈ RM .

|zk
M+1| ≤ 1

β
− 2ε together with |xk

j̃
| ≤ 1

β
− 2ε for all indexes k different from k1, k2, ..., kM

implies that

|zk
M+1 − xk

j̃
| <

2

β
− 2ε ∀k 6= kh, h = 1, 2, ...,M.

while at the same time, from (10),

|zkh

M+1 − x
kh

j̃
| ≤ 2

β
− 2ε h = 1, 2, ...,M.

It follows that

(13) ‖zM+1 − xj̃‖∞ ≤ 2

β
− 2ε ∀j̃ ∈ RM , j̃ 6= jM+1

contradicting our separation condition (2). ¤

Corollary 2.4. Kottman’s separation constant K(Eβ) < 2 for any β.

Proof. Clearly P (n, X) ≥ P (n + 1, X) ≥ P (ℵ0, X). It follows from [7] and [12] that
P (ℵ0, X) = 1

2
if and only if K(X) = 2. Therefore P -convexity of Eβ implies K(Eβ) <

2. ¤

Remark 2.5. It is known that Eβ has normal structure (also uniform normal structure)

if and only if β <
√

2 ([2], [3]). As far as we know, the Eβ’s for β ≥
√

2 provide the
first examples of P -convex spaces without normal structure.

As about the converse problem, i.e.whether some kind of normal structure must imply
P -convexity, the answer is obviously negative for normal structure, which does not even
imply reflexivity. For uniform normal structure, which does imply reflexivity (see [1],[9]),
the answer is nevertheless negative. An example is provided by Bynum’s space l2,1.
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Example 2.6. Let l2,1 = (l2, ‖ · ‖2,1) where ‖x‖2,1 = ‖x+‖2 + ‖x−‖2. Smith and Turett
[14] proved that l2,1 has uniform normal structure. It is easy to see that the canonical basis
{en} is a 2-separated sequence in Sl2,1

, hence K(l2,1) = 2 and l2,1 cannot be P -convex.

Remark 2.7. When δX(1) > 0 P -convexity follows from Theorem 1.9 in [10]. Corollary

4.1 in [3] shows that δEβ
(1) > 0 if and only if β <

√
5

2
hence for these values of β the result

in Theorem 2.3 follows from [10]. The assumption δX(1) > 0 implies at the same time
that X possesses uniform normal structure, therefore [10] does not provide an example
of a P -convex space without normal structure.

References

[1] Bae, J.S., Reflexivity of a Banach space with a uniformly normal structure, Proc. Amer. Math.
Soc., 90, 1984, 269-270

[2] Baillon, J.B. and Schöneberg, R., Asymptotic normal structure and fixed points of nonexpansive

mappings, Proc. Amer. Math. Soc., 81, 1981, 257-264
[3] Casini, E. and Maluta, E., Fixed points of Uniformly Lipschitzian Mappings in Spaces with Uni-

formly Normal Structure, Nonlinear Analysis TMA, 9, 1985, 103-108
[4] Dowling, P.N., Randrianantoanina, B. and Turett, B., The fixed point property via dual space

properties, J.Funct.Anal., 255, 2008, 768-775
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