
DIPARTIMENTO DI MATEMATICA
“Francesco Brioschi”

POLITECNICO DI MILANO

Elastic structures in adhesion

interaction

Maddalena, F.; Percivale, D.; Tomarelli, F.

Collezione dei Quaderni di Dipartimento, numero QDD 102

Inserito negli Archivi Digitali di Dipartimento in data 21-6-2011

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)



ELASTIC STRUCTURES IN ADHESION INTERACTION

FRANCESCO MADDALENA, DANILO PERCIVALE, FRANCO TOMARELLI

Abstract. We study a variational model describing the interaction of
two 1-dimensional elastic bodies through an adhesive layer, with the
aim of modeling a simplified CFRP structure: e.g. a concrete beam or a
medical rehabilitation device glued to a reinforcing polymeric fiber. Dif-
ferent constitutive assumptions for the adhesive layer are investigated:
quadratic law and two kinds of softening law. In all cases properties of
the equilibrium states of the structural system are analytically deduced.
In the case of adhesion with softening, the minimum length of the elastic
fiber avoiding debonding failure is estimated in terms of glue carrying
capacity and the constitutive parameter of the fiber.
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Introduction

One goal of modern structural engineering relies in understanding and
modeling the improvement of several characteristics of structural members,
such as the load capacity, ductility and durability. The request of upgrad-
ing inadequate or damaged structures stimulates the study of suitable tools
to deal with non-conventional design issues such as debonding problems in
fiber reinforced elements. Indeed, the application of fiber reinforced polymer
(FRP) sheets as an externally bonded reinforcement is generally accepted
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as an efficient technique to reinforce concrete structures. Though numerical
techniques based on classical elastic models are very often considered as a
quantitative tool helping the design process, the lack of a qualitative un-
derstanding of the mechanical and /or analytical aspects of the phenomena
hide the fundamental facts regulating these intriguing mechanical interac-
tions.
It is generally accepted that the essential mechanical behavior of FRP
strengthened structural elements relies in the stress transfer between the
fiber and the concrete beam through bonding interface (see for instance [4],
[6], [11], [12], [23]). Therefore the overall mechanical behavior crucially de-
pends on the interfacial bonding and its governing laws.
Here we pursue an energetic approach by exploiting a unifying perspective
for the problems of adhesion and reinforcement of elastic thin structures
([8], [9], [10], [13], [14], [17], [18]) and show that reinforcement reduces to
adhesion when the stiffness of one of the structures involved becomes arbi-
trarily large (for adhesion problems see also [2], [3], [5], [7], [20], [21], [22]).
In this paper, we study a variational model describing two 1-dimensional
material bodies (typically a reinforcement fiber and a concrete beam) which
interact through an adhesive layer (typically a soft material) under pre-
scribed displacement conditions. Both the reinforcing fiber and the matrix
are described as elastic bodies, while different constitutive assumptions on
the adhesive layer are investigated.
In Section 1 we assume that the adhesive layer reacts elastically to the slip
of the reinforcing fiber with respect to the matrix, while in Section 2 the in-
terfacial bond is modeled with a governing law exhibiting a softening branch
for the slip exceeding a maximum value.
The analysis of the solutions suggests that the quadratic interaction de-
scribed in of Section 1 is not able to capture the essence of adhesion and
this fact justifies the assumption of a softening law for the slip constitutive
behavior.
In Section 2 we obtain a full characterization of equilibrium states when
the matrix has elastic behavior, by studying two different constitutive as-
sumptions: both discontinuous and smooth softening behavior for the ad-
hesive layer. Moreover we deal with the limit case of rigid matrix (concrete
beams): the main result are presented in Theorem 2.29, Corollary 2.9 and
Remark 2.10 which provide a length estimate of the elastically detached
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portion of the beam; such estimate depends on the carrying capacity of the
glue and the constitutive parameter of the fiber.

1. Adhesion of elastic structures

We consider a system composed by two elastic 1-dimensional structures
which are bonded through an adhesive layer. One structure is the fiber, the
other one is the matrix and both are parameterized by the variable x in the
interval [0, L]. The fiber and the matrix are endowed respectively with the
elastic energies Ef , Em:

Ef(vf)=
1

2

∫ L

0

kf |v′f |2 dx, kf > 0; Em(vm)=
1

2

∫ L

0

km|v′m|2 dx, km > 0 (1.1)

where the functions vf , vm : [0, 1] → R denote the axial displacements re-
spectively in the fiber and in the matrix respectively, while the strictly
positive constants kf , km are the extensional stiffnesses (the Young modulus
times the area of the transverse section). The adhesion material layer which
bonds together the two elastic structures is energetically represented by the
functional

Ead(s) =
1

2

∫ L

0

kad|s|2 dx, kad > 0 (1.2)

where kad is a constitutive parameter characterizing the adhesion material
and the slip function s is given by

s(x) = vf(x) − vm(x). (1.3)

The slip s measures the difference of the elastic displacements occurring
at the interface separating the two different materials. We introduce the
notation v = (vf , vm) and examine a total potential energy

E = Ef + Em + Ead

of the following form

E(v) := E(vf , vm) =
1

2

∫ L

0

(
kf |v′f |2 + km|v′m|2 + kad|vf − vm|2

)
dx. (1.4)

We assume the displacement d > 0 is given. Then the admissible configura-
tions belong to the set

A = {v = (vf , vm) ∈ H1((0, L); R2), vf(L) = d, vm(0) = 0}. (1.5)
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The equilibrium states of the system are the solutions the following varia-
tional problem:

min{E(v) | v ∈ A}. (1.6)

The existence of solutions of (1.6) follows by a straight application of the
direct methods of the calculus of variations. To this purpose we observe that

E(v) ≥
∥∥v′

f

∥∥2

L2 +
∥∥v′

m

∥∥2

L2 for every v ∈ A, hence the functional E enjoys the
coercivity property due to Poincaré inequality and the boundary conditions
in A. Moreover, the convexity of E with respect to v′ ensures the weak
lower semicontinuity in H1(0, L).

By employing a standard variation argument we get that any minimizer
of (1.6) satisfies the following Euler-Lagrange equations






−kfv
′′

f (x) = kad(vm − vf) ∀x ∈ (0, L)

−kmv
′′
m(x) = kad(vf − vm) ∀x ∈ (0, L)

v′f(0) = 0, vf(L) = d

vm(0) = 0, v′m(L) = 0.

(1.7)

The unique solution of (1.7) is explicitly given by

vf(x) = µ(c2 − c1)x+ k(c2 + c1) + c1e
µx + c2e

−µx

vm(x) = µ(c2 − c1)x+ k(c2 + c1) − k(c1e
µx + c2e

−µx)
(1.8)

where we have set

µ =

√
kad

km

(k + 1)

k
, k =

kf

km

. (1.9)

and

c1 = d
(k + eµL)

1 + 4keµL + k2 − µkL+ e2µL(1 + k2 + µkL)
,

c2 = d
eµL(1 + keµL)

1 + 4keµL + k2 − µkL+ e2µL(1 + k2 + µkL)
.

(1.10)

Then

vf (x) − vm(x) = (1 + k)(c1e
µx + c2e

−µx) > 0 ∀x ∈ [0, L], (1.11)
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hence vf is strictly convex and vm is strictly concave, moreover vf − vm

attains its minimum value

m = vf(x̄) − vm(x̄) = 2(1 + k)
√
c1c2

at the point

x̄ =
1

2µ
ln
c2
c1

∈ (0, L).

In the limit case when the supporting matrix becomes rigid , say km → ∞,
we have

x̄→ 0, µ →
√
kad

kf

, m→ m∞ :=
d

cosh
(
L
√

kad

kf

) .

Notice that, if kad is of the same order of kf , then the value m∞ is smaller
than d but it is of the same order of d when d → 0. This last remark may
suggests some inadequacy of the constitutive assumption (1.2). Nevertheless
in problems arising in structural engineering typically the ratio kad/kf is
very large and so for any d the value m∞ goes to zero much faster than d.
It follows that the quadratic interaction described in this section is able to
capture the essence of adhesion only in the case kad/kf is very large. For this
reason in the next section we examine a different constitutive assumption
assumption given by (2.2) and (2.3) (or (2.35) and (2.36)).

Remark 1.1. Notice that, if kf = km, then the unique minimizer v = (vf , vm)
exhibits a graph which is symmetric with respect to the point (L/2, d/2),
that is 





vf(x) = d
2
− vm(L

2
− x)

vm(x) = d
2
− vf(

L
2
− x)

(1.12)

Relationship (1.12) is a consequence of the uniqueness and the following
invariance property of the energy:

E

(
d

2
− vm(

L

2
− x), (

d

2
− vf(

L

2
− x)

)
= E(vf , vm), ∀(vf , vm) ∈ A.
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Figure 1.1. kf = 210000 MPa; km = 30000 MPa; kad = 10000

MPa; L = 5 m; d = 0.01 m ([1]).

Figure 1.2. CFRP plate: kf = 165000 MPa; Concrete: km = 25000

MPa; Epoxy adhesive: kad = 4500 MPa; L = 5 m; d = 0.01 m ([6]).

2. Adhesion with softening

In this section we will examine two constitutive softening laws for the
adhesion layer. The first one (discontinuous softening, subsections 2.1, 2.2)
presents a sudden transition of the stress which goes to zero discontinuously
while the second one (smooth softening, subsection 2.3) exhibits a smooth
decay of the stress after a certain value of the slip. About the first one we
consider also the limit case when the supporting matrix becomes rigid.

2.1. Elastic supporting matrix with discontinuous softening glue.

In this section we assume the interface law governing the constitutive be-
havior of the glue behaves elastically up to a given value of the slip, while
beyond such a threshold the stress discontinuously drops to zero. More pre-
cisely, we assume

{τ : R+ → R+ continuous and weakly increasing in [0, S∗],

τ(0) = 0, τ(s) > 0 ∀s ∈ (0, S∗], τ(s) = 0 ∀s > S∗.}
(2.1)
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Figure 2.1. Energy and constitutive law for discontinuous softening.

The function τ represents the stress-slip constitutive relationship of the ad-
hesive material and we assume for the adhesion energy the following density
function defined for every σ ≥ 0:

T (σ) = G

∫ σ

0

τ(t)dt, (2.2)

where G > 0 represents the stiffness of the glue.
Notice that T is continuous and convex in [0, S∗], since τ ∈ BV (0, S∗) and
T ′′ = τ ′ ≥ 0 in (0, S∗). We set

Êad =

∫ L

0

T (|s(x)|)dx, (2.3)

where s(x) = vf(x) − vm(x).

The total energy of the system takes the form

Ê(v) := Ef(v) + Em(v) + Êad(v), v = (vf , vm) (2.4)

where the elastic energies Ef and Em are defined in (1.1) and Êad is defined
in (2.3).

Remark 2.1. Note that, if d > S∗ then v0 = (d, 0) ∈ A corresponds to the
completely detached state of the two structures.

Motivated by the above remark, we analyze only the nontrivial case
occurring when

0 < d < S∗. (2.5)
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All along this subsection we assume (1.1), (2.2)-(2.5) and we select the same
admissible set of displacements A defined in (1.5). The effective role played
by (2.5) and the consequences of its failure will be clarified at the end of
this section.
The equilibrium states of the system are the solutions the following varia-
tional problem.

min{Ê(v) | v ∈ A}. (2.6)

Let us note that v0 = (d, 0) ∈ A, i.e. v0 is an admissible displacement and,
by taking into account (2.5), we have the following energy estimate

Ê(v) ≤ Ê(v0) ≤ LT (S∗), ∀ v ∈ argminA Ê. (2.7)

Lemma 2.2. Assume (1.1),(1.5), (2.2)-(2.5) and v ∈ argminA Ê.
Then 0 ≤ vf ≤ d and 0 ≤ vm ≤ d.

Proof. The thesis follows by observing that for every (vf , vm) ∈ A, by setting
ṽf = min(vf , d) and ṽm = min(vm, d) we have

(vf
+, vm

+) ∈ A, (ṽf , ṽm) ∈ A, (2.8)

T (|vf
+ − vm

+|) ≤ T (|vf − vm|) (2.9)

and the inequality in (2.9) is strict if |{x | vf(x) < 0 or vm(x) < 0}| > 0,

T (|ṽf − ṽm|) ≤ T (|vf − vm|), (2.10)

and the inequality in (2.10) is strict if |{x | vf(x) > d or vm(x) > d}| >
0. �

Theorem 2.3. Assume (1.1),(1.5), (2.2)-(2.5). Then problem (2.6) admits
a unique solution v ∈ C2([0, L]; R2). Moreover v fulfills vf(x) ≥ vm(x)
∀x ∈ [0, L] and the Euler-Lagrange equations






kfv
′′

f (x) = Gτ(vf − vm ), x ∈ (0, L)

−kmv
′′
m(x) = Gτ(vf − vm), x ∈ (0, L)

v′f(0) = 0, vf(L) = d

vm(0) = 0, v′m(L) = 0.

(2.11)
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Moreover, the following Compliance Identity holds true

Ê(v) =

∫ L

0

[
G

2
τ(vf(x) − vm(x))(vf(x) − vm(x)) + T (vf(x) − vm(x))

]
dx+

+ kfd v
′
f(L).

(2.12)

The previous theorem will be proved through a pair of lemmas.

Lemma 2.4. Assume (1.1),(1.5), (2.2)-(2.5). Then the variational problem

(2.6) admits solutions and if v ∈ argminA Ê, then v ∈ C2([0, L]; R2) and
satisfies the following Euler-Lagrange equations in (0, L)





−kfv
′′

f (x) = Gτ(|vf − vm|)sign(vm − vf),

−kmv
′′
m(x) = Gτ(|vf − vm|)sign(vf − vm),

v′f(0) = 0, v′m(L) = 0

(2.13)

together with boundary conditions

vm(0) = 0, vf(L) = d. (2.14)

Proof. Notice that Ê(v) ≥
∥∥v′

f

∥∥2

L2 +
∥∥v′

m

∥∥2

L2 for every v ∈ A, hence the

functional Ê enjoys the coercivity property due to Poincaré inequality and

the boundary conditions in A. Moreover, the convexity of Ê with respect
to v′ ensures the weak lower semicontinuity in H1(0, L). Then existence of
solutions for the minimization (2.6) follows by a straight application of the
direct method of the calculus of variations.

The usual computation shows that the Euler-Lagrange equations (2.13)
and the boundary conditions (2.14) are satisfied in D′(0, L) and by recalling
Lemma 2.2 and assumptions on τ we have that τ(|vf − vm|)sign(vm − vf) is
continuous in [0, L] hence v ∈ C2([0, L]; R2). �

Lemma 2.5. Assume (1.1),(1.5), (2.2)-(2.5) and v ∈ argminA Ê. Then

vm(x) ≤ vf(x), ∀x ∈ [0, L] (2.15)

and equality may occur only in a (possibly empty) closed interval [a, b] s.t.

[a, b] $ [0, L].
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Proof. Two alternatives may occur : either vm ≥ vf in the whole [0, L] or
there exists x̄ ∈ [0, L] such that vm(x̄) < vf(x̄).
In the first case by Lemma 2.2 we get vf(0) = vm(0) = 0, vm(L) = vf(L) = d
and by the Euler-Lagrange equations we have that vm is convex and vf is
concave hence vm − vf is convex and therefore vm ≤ vf that is vf ≡ vm,
which is in contradiction with the boundary conditions in (2.13).
We prove now that if there exists x̄ ∈ [0, L] such that vm(x̄) < vf (x̄) then
vm ≤ vf in the whole [0, L] .
We set x1 = inf{x ≤ x̄ : vm(x) < vf(x) in (x, x̄)}, x2 = sup{x ≥ x̄ :
vm(x) < vf(x) in (x̄, x)} and we may consider the following cases:

i) 0 < x1 < x2 < L : then by E-L equations we get vf − vm convex in
[x1, x2] and vm(x1) − vf (x1) = vm(x1) − vf (x1) = 0 that is vf ≤ vm

in [x1, x2], a contradiction.

ii) x1 = 0 < x2 < L : then vf(x2) = vm(x2) = 0 and again either
vm ≥ vf in the whole [x2, L] or there exists x3 ∈ (x2, L] such that
vm(x3) < vf(x3). Therefore either vf ≡ vm in [x2, L] or vf ≥ vm

in [0, x2] ∪ [x3, L] and (vf − vm)(x2) = 0 = (vf − vm)(x3) . By the
minimality of (vf , vm) it is readily seen that vf = vm in [x2, x3] thus
proving the thesis in this case. Since the case 0 < x1 < x2 = L
can be handled as the previous one, the proof of (2.15) is achieved.
By the boundary conditions in (2.13) equality in (2.15) may occur
only in a proper subset of [0, L]: a closed interval [a, b] ⊂ [0, L] with
[a, b] 6≡ [0, L].

�

Proof. (of Theorem 2.3) Assume v ∈ argminAÊ.
By we deduce v ∈ C2([0, L]; R2) and fulfills Euler -Lagrange equations
(2.11). We are left to show the uniqueness which will be obtained through
a technique similar to ([19], Theorem 5). We set

ψ(p,q) = kf(q1)
2 +km(q2)

2 +T (p1−p2), ∀p = (p1, p2), q = (q1, q2). (2.16)

If there exist two solutions v = (vf , vm), w = (wf , wm) with v 6≡ w, then
by recalling (2.15) and

0 ≤ s(x) = vf(x) − vm(x) ≤ d ≤ S∗ ∀x ∈ [0, L],

the convexity of T in [0, S∗] yields

ψ(tv + (1 − t)w, tv′ + (1 − t)w′) − tψ(v,v′) − (1 − t)ψ(w,w′) ≤ 0 (2.17)
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hence minimality of v and w implies
∫ L

0

ψ(tv+(1−t)w, tv′+(1−t)w′) dx = t

∫ L

0

ψ(v,v′)dx+(1−t)
∫ L

0

ψ(w,w′)dx

(2.18)
and by (2.17)

ψ(tv + (1 − t)w, tv′ + (1 − t)w′) − tψ(v,v′) − (1 − t)ψ(w,w′) = 0

∀x ∈ [0, L], ∀t ∈ [0, 1].
(2.19)

By differentiating the previous equality with respect to t we get

ψp(tv + (1 − t)w, tv′ + (1 − t)w′) · (v − w)+

ψq(tv + (1 − t)w, tv′ + (1 − t)w′) · (v′ −w′) =

= ψ(v,v′) − ψ(w,w′) ∀x ∈ [0, L], ∀t ∈ [0, 1].

(2.20)

hence by evaluating (2.20) at t = 1 and t = 0

ψp(v,v
′)) · (v − w) + ψq(v,v

′) · (v′ − w′) =

ψp(w,w
′)) · (v − w) + ψq(w,w

′) · (v′ − w′).
(2.21)

Then by taking into account (2.15),(2.16),(2.21) and the fact that τ is not
decreasing, we get

2kf(v
′
f − w′

f)
2 + 2km(v′m − w′

m)2 =

(vf − vm − wf + wm){τ(wf − wm) − τ(vf − vm)} ≤ 0
(2.22)

that is v′f − w′
f = v′m − w′

m = 0. Hence v = w in the whole [0, L].
Eventually, by integrating by parts the elastic energies in (1.1) and taking
into account (2.11) and (2.13), we get the Compliance Identity (2.40). �

A slight modification of the proof of the previous theorem permits to
show also

Theorem 2.6. Assume (1.1),(1.5), (2.2)-(2.5). If the odd extension of τ
is analytic in a neighborhood of the origin then in addition to the thesis of
Theorem 2.3 we have

vm(x) < vf(x) ∀x ∈ [0, L]. (2.23)
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Proof. Since we here all the assumptions of Theorem 2.3 hold true we are
only left to prove (2.41).
If there exists x̄ such that vf(x̄) = vm(x̄) then by v ∈ C2([0, L]; R2) and
Lemma 2.4 we get v′f(x̄) = v′m(x̄) and by using Euler-Lagrange equations we

deduce that v
(j)
f (x̄) = v

(j)
m (x̄) for every j ≥ 0, hence vf(x) ≡ vm(x) in [0, L]

by identity principle of analytic functions, so that

vf ≡ vm ≡ d

L
x

in contrast with Neumann boundary conditions v′f(0) = 0, v′m(L) = 0. �

2.2. Rigid supporting matrix with discontinuous softening glue. In
this subsection we face the case of a rigid matrix, as is the case of concrete
beams.
When assuming the structural assumptions of the previous subsection (say:
(1.1), (1.5), (2.2)-(2.5)), if kf is fixed, km → +∞ and (vf , vm) is the minimizer

of Ê on A, then vm → 0 in H1(0, L).
This claim is a straightforward consequence of estimate (2.7) since we have

0 ≤‖ v′m ‖2
L2(0,L)≤

1

km

Ê(v) ≤ 1

km

L T (S∗).

Then it is natural to describe the rigid supporting matrix by selecting as
admissible axial displacement v only the ones fulfilling vm ≡ 0. Moreover,
in this case we can assume without any restriction, that the length of the
matrix is greater than the length L of the fiber. To simplify notation we set
v ≡ vf and so we reduce to study the energy

H(v) =

∫ L

0

(
kf

2
|v′|2 + T (|v|)

)
dx. (2.24)

Precisely we deal with the problem

min{H(v) | v ∈ H1(0, L), v(L) = d}. (2.25)

Theorem 2.7. Assume (2.1),(2.2),(2.5),(2.24). Then:

i) The problem (2.25) admits a unique solution v ∈ C2([0, L]). More-
over 0 ≤ v(x) ≤ d ∀x ∈ [0, L] .
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ii) The solution v of (2.25) fulfills the Euler-Lagrange equation
{
kfv

′′(x) = G τ(v(x)), x ∈ (0, L)

v′(0) = 0, v(L) = d.
(2.26)

iii) The solution v of (2.25) fulfills the following Compliance Identity

H(v) =

∫ L

0

[
G

2
τ(v(x))v(x) + T (v(x))

]
dx+ kfd v

′(L). (2.27)

iv) The solution v of (2.25) fulfills the following equation (first integral)

T
(
v(x)

)
− kf

2
(v′(x))2 is constant in [0, L]. (2.28)

v) If v is the solution of (2.25) then either v(x) > 0 ∀x ∈ [0, L] or there
exists ξ ∈ [0, L), with ξ = ξ(d), such that v(x) = 0 ∀x ∈ [0, ξ] and v
is strictly increasing in [ξ, L].

Proof. Statements i), ii) iii) and the fact that v 6≡ 0 can be proved as in the
proof of Theorem 2.3.

iv) Since H(v) =
∫ L

0
f(v, v′)dx we get d

dx
[f − pfp] = 0 hence (2.28).

v) The fact that the null set of v, when not empty, is connected and con-
tains x = 0 is true since otherwise we could modify v by setting v = 0
in the interval [0, ξ] and strictly reduce the energy, in contradiction to the
minimality of v. Then, by (2.26) since τ(0) = 0 and τ(s) > 0 ∀s ∈ (0, S∗)
we get the thesis. �

Theorem 2.8. Assume (2.1), (2.2),(2.5)(2.24), v is the solution of (2.25)
and set ξ = inf{x ∈ [0, L] | v(x) > 0}. Then

L− ξ =

√
kf

2

∫ d

v(ξ)

dt√
T (t) − T (v(ξ))

. (2.29)

Proof. Clearly v′(ξ) = 0 and since v′(x) ≥ 0, by (2.28) we get
√
kf

2
v′(x) =

√
T (v(x)) − T (v(ξ)), ∀x ∈ [ξ, L],

L− x =

√
kf

2

∫ d

v(x)

dt√
T (t) − T (v(ξ))

, ∀x ∈ (ξ, L]

and now thesis easily follows by letting x→ ξ. �
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A straightforward consequence of (2.29) is the following statement which,
in the same spirit of [1] where an estimate analogous to (2.29) is deduced
through heuristic arguments, establishes a sharp estimate on the length of
the fiber according to the carrying capacity of the glue and the constitutive
parameters of the reinforcing fiber.

Corollary 2.9. Assume (2.1),(2.2), (2.5),(2.24), v is the solution of (2.25)
and set

L :=

√
kf

2

∫ d

0

dt√
T (t)

. (2.30)

Then

i) If L < L then 0 < ξ = L− L.

ii) If L = L then ξ = 0 and v(0) = 0.

iii) If L > L then ξ = 0 and v(0) > 0.

Proof. We observe that by T (0) = 0 and the convexity of T , we get

T (y − z) + T (z) ≤ T (y), ∀y ∈ [z, d], 0 < z < d,

∫ d

z

dy√
T (y) − T (z)

≤
∫ d

z

dy√
T (y − z)

=

∫ d−z

0

dη√
T (η)

<

∫ d

0

dη√
T (η)

(2.31)
and therefore if L = L then by (2.29) and (2.31) we get ξ = 0, v(0) = 0
and ii) is proved. If L < L then either ξ = 0, v(0) > 0 or 0 < ξ = L − L
but if ξ = 0, v(0) > 0 then by using (2.31) with z = v(0) we get L < L, a
contradiction. iii) is an obvious consequence of (2.29). �

Remark 2.10. Assume (2.1),(2.2), (2.5),(2.24),(2.30).

• If L ≤ L then ξ[d] = 0.
Then the mathematical solution v describes a state in which the
whole fiber is elastically detached from the matrix: v(x) > 0 for ev-
ery x when L < L, v(x) = 0 iff x = 0 when L = L. This suggests
the possibility of structural breakdown. This case includes the case
L = +∞ which corresponds to the non-integrability at 0 of T−

1

2 .
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• If L > L then ξ[d] = L− L > 0.
Then the mathematical solution v describes a state in which the fiber
is only partially elastically detached from the matrix. This suggests
that the structure is able to sustain the traction without breakdown.
This case may happen only if T−

1

2 ∈ L1(0, S∗), hence it is not com-
patible with any linear or superlinear stress-slip law for the adhesive
material.

An interesting outcome of the Corollary 2.9 is the suggestion to study
suitable adhesive property of the glue, say qualitative behavior of τ , in order
to make to make L as small as possible.

Now we prove that when τ is concave near the origin then the displace-
ment in 0 is negligible with respect to d. This result is in good agreement
with the experimental observations (in contrast with the one obtained in
Section 1 in the case of quadratic adhesion law), hence it provides reasons
in favor of the choice of constitutive assumptions (2.1),(2.2).

To make explicit the dependence of the solution v on the Dirichelet
datum d we label the unique v solution of (2.25) by v[d] = v[d](x) and set
ξ[d] = inf{x ∈ [0, L] | v[d](x) > 0} for every d ∈ (0, S∗).

Theorem 2.11. Assume (2.1),(2.2),(2.5),(2.24) and

lim
s→0+

s−1τ(s) = +∞. (2.32)

Then
either v[d](0) ≡ 0 in a neighborhood of d = 0 or d−1v[d](0) → 0 as d→ 0.

Proof. If dn → 0 and v[dn](0) > 0 then ξ[dn] = 0 and formula (2.29) holds
true, moreover, since v[dn](L) = dn > 0, ξ = 0 and v[dn](ξ) = v[dn](0) > 0,
we have

L =

√
kf

2G

∫ dn

v[dn](0)

dt√∫ t

v[dn](0)
τ(s)ds

. (2.33)

By recalling that τ is increasing, and v[dn](0) < dn we get

2G

kf
L2

(∫ dn

v[dn](0)

dt√
(dn − v[dn](0))τ(v[dn](0))

)2

≤ dn − v[dn](0)

τ(v[dn](0))
,
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2 G τ(v[dn](0)) L2 ≤ kf dn

which together (2.32) yields the thesis. �

2.3. Elastic supporting matrix with smooth softening glue. In this
section we assume the stress-slip law governing the constitutive behavior of
the glue is continuous with compact support.
The scheme includes the case of unimodal law which behaves elastically up
to a given value of the slip and exhibits a softening range beyond such value.
Nevertheless we do not make any assumption about the monotonicity region
of τ̃ . More precisely, let

{τ̃ : R+ → R+ continuous, S∗ > 0,

τ̃ (0) = 0, τ̃(s) > 0 in [0, S∗], τ̃(s) = 0, ∀s ≥ S∗,
(2.34)

τ̃ represents the stress-slip constitutive relationship of the adhesive material
hence the adhesion energy is now defined as follows:

T̃ (σ) = G

∫ σ

0

τ̃ (t)dt, (2.35)

Ẽad =

∫ L

0

T̃ (|s(x)|)dx. (2.36)

The total energy of the system takes the form

Ẽ(v) := Ef(v) + Em(v) + Ẽad(v), v = (vf , vm) (2.37)

where vf , vm are the axial displacements of the fiber and the matrix, the

elastic energies Ef and Em are defined in (1.1) and Ẽad is defined in (2.36).
Referring to (1.5) and (2.37) we face the minimization problem

min{Ẽ(v) | v ∈ A}. (2.38)
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Figure 2.2. Energy and constitutive law for smooth softening

Theorem 2.12. Assume (1.1),(1.5,(2.5), (2.34),(2.35), (2.36),(2.37). Then
problem (2.38) admits solution v ∈ C2([0, L]; R2) and satisfy the Euler-
Lagrange equations





kf v
′′

f (x) = G τ̃(vf − vm ), x ∈ (0, L)

−km v
′′

m(x) = G τ̃(vf − vm), x ∈ (0, L)

v′f(0) = 0, vf(L) = d

vm(0) = 0, v′m(L) = 0.

(2.39)

Moreover, the following Compliance Identity holds true

Ẽ(v) =

∫ L

0

[
G

2
τ̃ (s(x))s(x) + T̃ (s(x))

]
dx+ kfd v

′

f(L). (2.40)

If, in addition to the previous assumptions the odd extension of τ̃ is analytic
in a neighborhood of the origin, then the minimizer v fulfills

vm(x) < vf(x), ∀x ∈ [0, L]. (2.41)

Proof. Lemma 2.4 and Lemma 2.5 can be proved in the same way when τ̃
is substituted to τ . Then the proofs of existence, (2.39) and (2.40) follow
as in Theorem 2.3. The final part of the proof of Theorem 2.3 was based

on the convexity of T in [0, S∗], hence it cannot be adapted to T̃ , therefore
we cannot deduce uniqueness of the minimizer in general. Nevertheless the
inequality (2.41) can be proved exactly as in the proof of Theorem 2.6. �

Remark 2.13. We set τ̃(S0) = maxs∈[0,S∗] τ̃(s), hence ˙̃τ(s) ≥ 0 if 0 ≤ s ≤ S0

and ˙̃τ (s) ≤ 0 if S0 ≤ s ≤ S∗. Let v ∈ argminẼ, for any ϕ ∈ C1
0 ([0, L]; R2)
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we compute the second variation of Ẽ, given by (2.4), at v in the direction
of ϕ, say

δ2Ẽ(v, ϕ) = 2

∫ L

0

(
(kf + km)|ϕ′|2 +G ˙̃τ |ϕ|2

)
dx. (2.42)

By virtue of (2.42) we conjecture instability phenomena may occur since for

large values of the slip, i.e. s > S0, τ
′(s) < 0 and δ2Ẽ(v) could be negative

for some ϕ.
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