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Abstract

Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations
and they are widely used for the solution of problems stemming from the discretization of Partial Differential
Equations (PDEs). The most severe limitation of AMG methods is the dependence on parameters that
require to be fine-tuned. In particular, the strong threshold parameter is the most relevant since it stands at
the basis of the construction of successively coarser grids needed by the AMG methods. We introduce a novel
Deep Learning algorithm that minimizes the computational cost of the AMG method when used as a finite
element solver. We show that our algorithm requires minimal changes to any existing code. The proposed
Artificial Neural Network (ANN) tunes the value of the strong threshold parameter by interpreting the sparse
matrix of the linear system as a black-and-white image and exploiting a pooling operator to transform it into a
small multi-channel image. We experimentally prove that the pooling successfully reduces the computational
cost of processing a large sparse matrix and preserves the features needed for the regression task at hand. We
train the proposed algorithm on a large dataset containing problems with a highly heterogeneous diffusion
coefficient defined in different three-dimensional geometries and discretized with unstructured grids and
linear elasticity problems with a highly heterogeneous Young’s modulus. When tested on problems with
coefficients or geometries not present in the training dataset, our approach reduces the computational time
by up to 30%.

Key words: algebraic multigrid methods, partial differential equations, finite element method, elliptic
problems, linear elasticity, deep learning, convolutional neural networks.

AMS subject classification: 65N22, 65N30, 65N55, 68T01

1 Introduction

Multigrid methods [14, 60] are among the state-of-the-art solvers for large linear systems that come from the
discretization of Partial Differential Equations (PDEs). They are applicable to a wide range of discretizations
such as polyhedral discontinuous Galerkin [5, 9] and virtual elements methods [7]. However, their drawback
is that they rely on a sequence of coarser grids to solve the problem. The algebraic multigrid (AMG) methods
are a highly scalable [11] generalization that is capable of building this hierarchy of grids algebraically. The
main challenge behind the algebraic construction of a coarser mesh is the selection of the prolongation
operator, which in turns relies on seeing the sparse matrix of the linear system as a weighted graph and
defining a strong threshold parameter to partition the aforementioned graph.

The AMG was first introduced in the 80s [16, 17, 18, 51] and gained momentum very quickly is the
subsequent years [20, 24, 54, 57]. In recent year modifications have been proposed to the AMG to improve
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its efficiency, like smoothed aggregation [55, 56] and extend its range of application to different discretization
techniques, like discontinuous Galerkin [8] and Ritz-type finite element methods [19, 21, 36], and to different
physics equations like Maxwell’s equations [13, 38], magnetohydrodynamics [1], Navier-Stokes equations
[47, 59], linear elasticity [29] and multiphase poromechanics [61]. There is also a wide literature that tackles
the AMG from a theoretical point of view, the foundation was laid down in [15, 25, 62, 63] and the most
recent survey is found in [64]. In particular, we consider the finite element (FE) [46] discretization of diffusion
and linear elasticity problems with highly heterogeneous coefficients in 3D. These problems represent a
challenging benchmark since they feature a large number of unknowns and a very ill-conditioned system
matrix. Consequently, the efficient application of the AMG method is the key to obtain fast and robust
convergence.

In this work, we propose to use Deep Learning (DL) [42] techniques to find the optimal value of the strong
threshold parameter, depending on the problem we want to solve. In particular, Artificial Neural Networks
(ANNs) have gained widespread popularity for a variety of applications. They are versatile tools that are
progressively being used in scientific computing [40, 44, 58], particularly in the numerical approximation of
PDEs and model order reduction [27, 48]. ANNs can also be utilized within a data-driven framework to
provide alternative closure models, which involve learning input-output relationships in complex physical
processes [49, 50]. Since we treat the sparse matrix of the linear system like an image, part of the ANN
that we employ is comprised by a Convolutional Neural Network (CNN). CNNs are among the most applied
neural architectures to analyze visual imagery and achieved breakthrough results [30, 34, 35, 39, 41]. Today,
they are only surpassed by visual transformer [22], which however have a much more complex architecture
and are much more difficult to optimize. Moreover, CNNs have already been successfully applied in the field
of scientific computing [12, 23].

The combination of multigrids methods and machine learning has already been used in literature. For
instance, in [28, 37] there is the first attempt of optimizing the multigrid parameters, in [2, 3, 6] DL is used to
perform grid refinement ad agglomeration, in [43, 45] Graph Neural Networks (GNNs) are used to learn the
prolongation operator and in [53] reinforcement learning is used to perform graph coarsening, in [32, 33] DL
is used to enhance domain decomposition. In this paper, we propose a DL-based algorithm that is able to
tune on-the-fight the strong threshold parameter so as to minimize the computational time needed to solve
the linear system at hand. The main difference with the previous works is that our algorithm is completely
non intrusive: following the approach described in [4], it does not require any change to existing code (neither
to the FE nor the AMG solver). This guarantees a wider range of applicability and means that we can rely
on all the classical theoretical results regarding convergence. Indeed, we show that our algorithm is able to
perform a fine tune of the AMG parameters just by analyzing the sparse matrix of the linear system we
want to solve. In particular, we train an ANN to predict the expected computational cost of solving a linear
system given as input a certain value of the strong threshold parameter and a small multi channel image
representing the sparse matrix of the linear system. In order to build this representation we propose to
employ the pooling operator used in CNN. We show that the pooling operator allows for a cheap evaluation
that does not lose relevant information for the task at hand. We found that the proposed ANN-enhanced
AMG method allows to reduce significantly the computational cost (elapsed time) needed to solve the linear
system compared to employing the pre-defined choice of the parameters based on trial-and-error, experience,
and literature.

This work is organized as follows. Section 2 introduces the mathematical framework of the AMGmethods,
in particular we define and show the importance of the strong threshold parameter. In Section 3 we present
our algorithm. We describe the architecture of the ANN and show how to apply the pooling operator to
a large sparse matrix. Section 4 is devoted to the numerical validation on our method. We first make
preliminary sensitivity analysis of the hyperparameters of the ANN. We then apply our algorithm to a
family of elliptic problems with a highly heterogeneous diffusion coefficient on structured and unstructured
meshes and to a family of linear elasticity problems with a highly heterogeneous Young’s modulus. Finally,
in Section 5 we draw our conclusions with future developments.
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Algorithm 1 One Iteration of the V-cycle of the AMG method

u(k) = vcyclek(u(k), f (k), {(A(j),B
(j)
1 ,B

(j)
2 )}Mj=k, {(I

j+1
j , Ijj+1)}

M−1
j=k , ν1, ν2)

1: if k = M then
2: u(M) = gaussian elimination(A(M), f (M))
3: else
4: u(k) ← smoothν1(A(k),B

(k)
1 ,u(k), f (k))

5: r(k+1) ← Ik+1
k (f (k) −A(k)u(k))

6: e(k+1) ← vcyclek+1(u(k), f (k), {(A,B1,B2)
(j)}Mj=k+1, {(I

j+1
j , Ijj+1)}

M−1
j=k+1, ν1, ν2)

7: u(k) ← u(k) + Ikk+1e
(k+1)

8: u(k) ← smoothν2(A(k),B
(k)
2 ,u(k), f (k))

9: end if

2 AMG methods

To start, we will explain the fundamental concepts and methods that make up AMG. For further information,
refer to [51, 65]. Our goal is to solve the linear system Au = f where A ∈ Rn1×n1 is a symmetric positive
definite (SPD) matrix with entries aij and u, f ∈ Rn1 are vectors with entries (u)i. We define a smoothing
scheme as a linear iterative method

uk+1 = uk +B(f −Auk), k ≥ 0 (1)

where B ∈ Rn1×n1 and the initial guess u0 are given. We denote ν applications of (1) as smoothν(A,B,u0, f).
The idea of multigrid methods is that after a certain number of iterations ν of Eq. (1), the error is more
efficiently reduced by projecting the residual equation Ae = r = f−Auν on a coarser space, and interpolating
the solution back to the original space to apply the correction uν + e. If we suppose to have a sequence of
interpolation operators Ik−1

k ∈ Rnk−1×nk , restriction operators Ikk−1 ∈ Rnk×nk−1 and grid operators A(k) ∈
Rnk×nk for k = 2, ...,M with A(1) = A, and of smoother B(k) for k = 1, ...,M with n1 > n2 > ... > nM , and
a number of pre-smoothing iterations ν1 and post-smoothing ν2, the V-cycle multigrid iteration is defined
as in Algorithm 1 (notice the usage of the superscript (k) to indicate the different levels). The AMG method
aims at finding the operators needed for this task by just relying upon the original matrix A. Since A is
SPD we assume that

Ik+1
k = (Ikk+1)

⊤, A(k+1) = Ik+1
k A(k)Ikk+1, ∀k = 1, ...,M − 1. (2)

Hence, all the operators are defined once we have a recipe to build the interpolation operator.

2.1 Interpolation operator and coarse-grid selection

We consider the interpolation operator between the level k and k + 1. We assume that we can split the
variable into two sets: the one that needs interpolation at the fine level k and the one that are kept at the
coarse level k + 1, namely:

(Ikk+1x)i =

{
(x)i if i ∈ Ck,∑

k∈Ck
i
ωk
ij(x)j if i ∈ Fk,

(3)

where x ∈ Rnk+1 is a generic vector, Ck/Fk is a coarse/fine partition of the set Nk = {1, ..., nk}, Cki = {j ∈
Ck : aij ̸= 0} is a subset of Ck that depends on i and ωk

ij is a set of weights.
Since we are working between two levels, from now on, we will omit the superscript k. Before being able

to define the value of ωij we need to define when the unknown (u)j is important in determining the value of
(u)i.

Definition 2.1 Given a threshold parameter 0 < θ ≤ 1, the set of of variables on which the variable i
strongly depends on is

Si = {j ̸= i : −aij ≥ θ max
l ̸=i
{−ail}, j = 1, ..., nk}.
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Algorithm 2 AMG algorithm

u = AMG(u,A, f , θ, {(B(j)
1 ,B

(j)
2 )}Mj=k, ν1, ν2, Nmax, tol)

1: build {Ck,Fk}Mk=1 using θ by means of CLJP

2: build the operators {Ijj+1}
M−1
j=k employing Eq. (3) and Eq. (4)

3: build the operators {Ij+1
j }M−1

j=k and {(A(j)}Mj=k by means of Eq. (2)
4: while k < Nmax and ∥Au− f∥ / ∥f∥ < tol do

5: u← vcycle1(u, f , {(A(j),B
(j)
1 ,B

(j)
2 )}Mj=k, {(I

j+1
j , Ijj+1)}

M−1
j=k , ν1, ν2)

6: k ← k + 1
7: end while

We also define the set of variables j that are influenced by the variable i

S⊤i = {j : i ∈ Si, j = 1, ..., nk}.

The underlying assumption of AMG (see [51]) is that the error satisfies∑
j∈Ci

aij(e)j +
∑
j∈Ds

i

aij(e)j +
∑
j∈Dw

i

aij(e)j = 0, ∀i = 1, ..., n,

where Ds
i = F ∩ Si and Dw

i = {j ∈ N : aij ̸= 0, j /∈ Si}. This yields the formula for the weights

ωij = −
1

aij +
∑

l∈Dw
i
ail

aij +
∑
l∈Ds

i

ailâlj∑
m∈Ci

âlm

 where âij =

{
0 if aijaii > 0,
aij otherwise.

(4)

The last ingredient that we need to build the interpolation operator is the C/F splitting. Among the
several techniques that can be used, we outline the CLJP (Cleary-Luby-Jones-Plassman) algorithm. First,
we construct the graph of variable dependencies G = (V,E) with vertices V = {1, ..., n} and edges E =
{(i, j) ∈ V × V : j ∈ Si}. For each vertex, we define the measure η(i) = |S⊤i | + η̃, where η̃ is a random
number in (0, 1) used to break ties. Then, we update η and G in the following way until all vertexes are
designed as either C or F . Whenever a update to η(j) is such that η(j) < 1, j is flagged as F .

1. Build the independent set D = {i ∈ V : η(i) > η(j)∀j ∈ Si ∩ S⊤i } for the graph G.
2. For each i ∈ D

2.1. For each j ∈ Si, decrement η(j) and remove the edge (i, j) from E.
2.2. For each j ∈ S⊤i , remove (j, i) from E

2.2.1. For each k ∈ S⊤j ∩ S⊤i , decrement η(j) and remove (k, j) from E.

3. Every point in D is flagged as C.
This algorithm is applied at each level until the size of the grid operator nk is smaller than a certain given
value nmin, that we fix equal to two. Thus, given the strong threshold θ we are able to construct the
succession of operators needed for the V-cycle. Algorithm 2 showcases the full AMG method.

3 ANN-enhanced AMG

We now introduce the ideas behind the proposed AMG-ANN algorithm. We have shown that the strong
threshold parameter θ heavily conditions the construction of the interpolation operator that stands at the
basis of the AMG method. In literature, this value is usually fixed to 0.25 and 0.5 when applying the AMG
to the solution of linear systems that stem from the discretization of 2D and 3D PDEs, respectively. Our
algorithm aims at making an accurate choice of θ so as to minimize the computational cost of the AMG
method. To this end, we devise an algorithm that exploits DL techniques to predict the value of θ that
minimizes the elapsed CPU time needed to solve the given linear system Au = f . Namely, we propose to
use an ANN F to predict the computational time t, that is the number of seconds needed to solve a linear
system with the AMG method (including the setup phase), and its confidence of that prediction σ2, that is
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Figure 1: Architecture of the proposed ANN used to predict the optimal value of the strong threshold parameter θ.

the square of the committed error, given as input a small multi-channel image V extracted from the matrix
A, the FE degree p, the logarithm of the size of A and the value of the strong threshold parameter θ. Then,
online, we perform a 1D optimization to find the optimal θ∗ that minimizes the predicted cost t̃ (we use the
tilde to denote quantities approximated by the ANN). The architecture of the ANN is shown in Figure 1.

We start by briefly reviewing how we collect data and explaining how the extraction of V from A is
performed. We then describe in details our approach in Algorithm 4 and we introduce a way to measure its
performance. To make the article self-contained we discuss the basics of DL in Appendix A.

3.1 Gathering and smoothing data

Since the measurements of t are affected by error, we repeat the measurements r times with r between two
and 100, where r is chosen inversely proportional to the mean elapsed time in the first two measurements.
Indeed, the uncertainty in the measurements is caused by the tasks scheduled by the operating system in
concurrence with the AMG solver that perturb the CPU load, hence if t is larger the uncertainty is smaller
since these perturbations average out. This hypothesis is supported by our measurements, indeed we have
observed that the sample variance of our measurements is inversely proportional to t (fixed r). The elapsed
CPU time t is then defined as the mean of the measurements.

Moreover, we regularize data using Savitzky-Golay filter [52]. Namely, we fit a polynomial to a successive
sub-sets of adjacent data points (called window) by means of least squares. We use a window of size 21
and polynomial degree 7 for uniformly sampled values of θ. The two parameters were selected through a
process of manual tuning, whereby various combinations were tested and assessed for their performance on
a subset of problems within the dataset. The selection was guided by visual inspection of the resulting fits,
with consideration given to balancing model complexity and accuracy. To further validate the result of the
filtering we have checked that the filter maintains the positive sign of the data and we manually reviewed
the cases where the difference between the minimum of the filtered and unfilterd (raw) data is larger than
a certain threshold. In these cases we checked if it would be appropriate to increase the degree of the
polynomial or change the size of the window. Indeed, the smoothing sometimes changes the position of the
minima in sharp valleys. For consistency all simulations where carried out on the same Intel Xeon Gold
6238R node of the HPC cluster at MOX.

3.2 Applying the pooling operation to large sparse matrices

Relying on the properties of the pooling operation that made it so widely used (see Appendix A), we aim to
apply the pooling to the sparse matrix A. Indeed, A can be seen as a large black and white image and we want
to apply the pooling operation (before the training) to reduce the computational cost associated with handling
such a large amount of data, and to prune unimportant features. We call V = pooling(A,m) ∈ Rm×m×4

the result of the pooling of A of size m. We report the details in Algorithm 3. Here, we are assuming that
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Algorithm 3 Pooling algorithm V = pooling(A,m)

1: access A in COO form and extract its: size n1, val, row, col
2: initialize V to an m×m× 4 dense tensor with all zero entries vijl = 0
3: q ← n1/m, p ← n1 mod m, t ← (q + 1)p
4: for k = 0 to val.size()− 1 do
5: i ← row[ k ]/(q + 1) if (row[ k ] < t) else (row[ k ] − t)/q + p
6: j ← col[ k ]/(q + 1) if (col[ k ] < t) else (col[ k ] − t)/q + p
7: vij1 ← max{max{0, val[ k ]}, vij1}
8: vij2 ← max{max{0,−val[ k ]}, vij2}
9: vij3 ← vij3 + val[ k ]

10: vij4 ← vij4 + 1
11: end for

the sparse matrix A is stored in coordinate list format, however the algorithm can be easily generalized to
other sparse storage formats. The only difference with the pooling operation usually applied in CNNs is that
instead of extracting the maximum, we extract the following features (always in a rectangular neighborhood):
maximum of the positive part, maximum of the negative part, the sum, the number of non-zeros (nnz ) entries.
The insight behind extracting these features is the following: the positive part, the negative part and the
sum are relevant in the definition of the weights of the interpolation operator Eq. (4), the nnz count is an
indicator of the sparsity of the neighborhood. The algorithm has low complexity, namely O(nnz), that in
the case of FE means O(p · n1). Moreover, we have experimentally proved that its elapsed CPU time is
negligible with respect to the one to solve the linear system. This is a necessary condition for this algorithm
to be worthwhile. We remark that Algorithm 3 could be easily generalized to work in parallel.

3.3 The AMG-ANN algorithm

We now have all the ingredients to describe the proposed algorithm in detail. We employ an ANN F to
predict, as target the computational cost t and the square of the error committed by the ANN itself σ2.
The insight behind σ is that, since the elapsed CPU time t is polluted with noise due to the measurements,
in this way we are able to know when the ANN is confident on its own prediction. We employ as inputs
of the ANN the vector formed by the pooling of the matrix a V = pooling(A,m), where the size m is an
hyperparameter that we tune (see Section 4.1.1), the FEM degree p, the logarithm of the size of A log2(n1)
and the strong threshold θ. Namely,

F (V, p, log2(n1), θ;γ) = (t̃, σ̃)

and we optimize (the superscript i indicates the i-th sample of the dataset of size T ):

min
γ

1

T

T∑
i=1

MSE(ti, t̃i) +MSE(σ̃i
2
, (ti − t̃i)2).

Let us remark that p is not needed as input of the neural network. Indeed, the information about p is
embedded into the matrix A: empirical results show that if we add p as input of the network, we need a
lower number of epochs to reach the same loss, but it is still possible to effectively train the network without
p. Hence, our algorithm is not limited to problems stemming from FE discretizations.

Given the matrix A associated to the linear system we want to solve, then our algorithm prescribes the
default literature value of the strong threshold θ every time the weighted average variance σ̂ of the map
A 7→ θ,

σ̂ =
1

181

190∑
j=10

(1− t̃j)σ̃j , where (t̃j , σ̃j) = F (V, p, log2(n1),
j

200
;γ)

is greater than a certain threshold σ̄. This weighted average ensures that the variance of the prediction is
more relevant if closer to the (expected) minima. The value σ̄ is calibrated offline on the validation dataset

6



once after the training of the ANN. For each matrix Ai in the dataset we compute the relative error indicator
σ̂i. Then we propose to choose σ̄ as the ordinate of the elbow point of the sorted errors indicators σ̂i. On the
other hand, if σ̂ < σ̄, the algorithm prescribes as θ the value θ∗ found by solving the optimization problem

θ∗ = argmin
θ∈(0,1]

(F (V, p, log2(n1), θ;γ))1. (5)

However, we empirically found that by solving the discretization of the above with two hundreds linearly
spaced points, we have an estimate of θ∗ that, for our aim, is indistinguishable from the solution of the
continuous problem with gradient descent. There are two reasons to use this approach instead of predicting
directly θ∗: we can quantify the expected improvement with respect to using the standard literature value
of θ, and we do not have to solve a new optimization problem just to add one sample to the dataset.
The architecture of F is comprised by two components. The first one leverages a CNN to extract the
relevant features from the matrix V. These features are flattened in a intermediate dense layer, where they
are concatenated with the other features p, log2(n1) and θ and fed into a dense feed forward network, which
predicts the computational cost t. On the output layer we clip the prediction of the normalized computational
cost between zero and one and use a softplus activation function for the variance estimate.

3.3.1 Evaluating the performance of the algorithm

A small loss is not a good indicator of the performance of our algorithm. Indeed, the choice of θ is subordinate
to the map A 7→ θ∗ defined by Eq. (5). With this in mind, we introduce the following quantities of interest.
Let A be fixed, and let:

• tANN be the computational time of the AMG-ANN algorithm

• t0.25 be the computational time of the AMG method for θ = 0.25

• tMIN be the computational time of the AMG method with

θ∗ = argmin
θ∈dataset for A

t(θ; A).

• P = 1− tANN

t0.25
be the performance index of the AMG-ANN algorithm

• PMAX = 1− tMIN

t0.25
be the best performance of the AMG-ANN algorithm (according to the dataset).

Moreover, we can compound the quantities over different A and define PB as the percentage of cases where
P ≥ 0, Pm as the average of P and PM as the median of P . The ratio P/PMAX gives a measure of how well
the ANN has learned the data.

3.3.2 Normalization

Normalization of data is a necessary step to assure fast convergence in neural networks. To this end we
employ the following logarithmic normalization for each channel of the input V since it has been shown in
[4] to outperform a classical linear normalization in this kind of applications:

v̂ij =
log(|vij |+ 1)

maxi,j | log(|vij |+ 1)|
vij
|vij |

. (6)

One of the main properties of this normalization is to preserve the sparsity pattern of A. In the Appendix B
we shows some examples of the combination of pooling and normalization for some matrices A and confront
them with the relative sparsity pattern. Concerning the output, we normalize the data linearly between zero
and one, independently for each subset of outputs in our dataset defined by fixing a matrix A. Algorithm 4
shows the complete ANN-enhanced AMG.
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Algorithm 4 ANN-enhanced AMG

u = ANN AMG(u,A, f , {(B(j)
1 ,B

(j)
2 )}Mj=k, ν1, ν2, Nmax, tol)

1: V← pooling(A,m) (Algorithm 3)
2: normalize V by means of Eq. (6), obtaining V̂
3: (t̃j , σ̃j)← F (V̂, p, log2(n1),

j
200 ;γ), j = 10, 11, ..., 190

4: σ̂ ← 1
181

∑190
j=10(1− t̃j)σ̃j

5: θ∗ ← argmint̃j
j

200 if σ̂ > σ̄ else 0.5

6: u← AMG(u,A, f , θ∗, {(B(j)
1 ,B

(j)
2 )}Mj=k, ν1, ν2, Nmax, tol) (Algorithm 2)

4 Numerical Results

One of the advantages of our algorithm is that it integrates seamlessly into pre-existing code. We carry out
several numerical experiments using using deal.II [10] for the construction of the linear system and we rely
on BoomerAMG of the library HYPRE [26] as the AMG solver. No changes are made to BoomerAMG, we
use it as a black-box solver and only change the value of the strong threshold parameter θ, all the other
parameters (choice of pre- and post- smoother B, number of pre- and post- smoothing cycles ν, etc.) are left
as default.

Concerning the training of the ANN, we employ a 20-20-60 split of the dataset into training-validation-
test, respectively. The splitting is done among problems, this means that a certain matrix A appears just
in one of the three datasets. This entails that when we evaluate the algorithm on the test (or validation)
dataset, it is making predictions on problems it has never seen before. Notice also that the test dataset is
much larger than the other two: this makes sense only when the dataset is large enough so that the neural
network can generalize well. Training has been performed using the Adam optimizer with default learning
rate 10−3 and minibatch size equal to 32. Moreover, we found that applying a suitable learning rate schedule
is key to accelerate the optimization. Namely, we employ a learning rate schedule that halves the learning
rate with patience 15 epochs.

The convolutional part of the network is composed by either one or two plain convolutional blocks each
one ending with a max-pooling layer. For each test case, we tune the number of convolutional layers, the
size of the filter, the number of filters the number of dense layers and the width of the dense layers.

4.1 Test Case 1: Highly heterogeneous diffusion problem, unstructured Grids

Let us consider the following parametric elliptic problem{
−div(µ∇u) = f, in Ω,

u = 0, on ∂Ω,
(7)

where µ ∈ L∞(Ω) is a highly heterogeneous piecewise positive constant and Ω varies among four geometries:
a simplex, a plate with a hole, a ball and a cylinder. We consider in total eight different discretization of
the four domains and their nested refinements. We show the coarsest meshes in the first column of Table 1.
The diffusion coefficient µ is a highly heterogeneous piecewise constant that is conforming with the mesh.
Namely, µ has a different value equal to 10εi on the i-th cell of one of the coarsening of the mesh, where εi
is randomly chosen between [0, εMAX ] and εMAX = 1, 3, 10. Moreover, we again employ four different DoFs
numbering to enhance the dataset. In this way, we build a dataset counting 5873 different configurations
and thus containing 217301 samples.

4.1.1 Study of hyperparameters and pooling features

In this section we analyze the influence of some hyperparameters on the final loss when we employ a subset
of the dataset. This is a preliminary analysis that we made for each test case in order to choose the best
value of m (the size of the pooling V), which of the features of V are relevant (that is which of the four
layers f of vijf should we employ as input of the CNN) and the activation function. Namely we performed
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Picture Geometry Description

Simplex Tetrahedron inscribed in the unit ball centered in (0, 0, 0).

Plate with hole
The (−2, 2)× (−2, 2)× (− 1

2
, 1
2
) plate with a centered hole

of radius 0.4 along the z axis. Discretizations with two or
eight slices in the z-direction are considered.

Ball Unit ball centered in zero.

Balanced ball
A variant of the unit ball centered in zero that has a bet-
ter balance between the size of the cells around the outer
curved boundaries and the cell in the interior.

Cylinder
Cylinder of unit radius and height two centered in zero.
We consider three different discretizations with one, two
or eight slices along its height.

Holes
3 × 2 replica of the “Plate with hole” geometry on the x
and y. Only test dataset.

Torus
Torus of circle radius 2 and inner radius 1

2
. The axis of

the torus is the y-axis. Only test dataset.

Table 1: Test case 1: list of meshes used in the dataset.

a grid search over different network architectures. Figure 2 shows the results. The ReLU activation function
consistently reaches the smallest loss, hence we employ ReLU activation functions in conjunction with He
initialization [31]. The ANN that uses all four the features of the pooling has the smallest loss, thus the
whole tensor V is relevant for this task. The pooling size m = 75 gives the best trade-off between accuracy
and computational cost.

4.1.2 Calibration of the σ̄ threshold

We discuss how the choice of σ̄ is made and how it impacts the performance of our algorithm. In Figure 4
we plot the accuracy (PB) and average time reduction (Pm) when choosing as σ̄ the n-th largest σ̂ of the
validation dataset. Notice there is an accuracy-performance trade-off, indeed, as σ̄ tends to zero, PB tends
to one but at the same time Pm tends to zero. Moreover, the fact that Pm is not strictly decreasing means
that the error committed by the algorithm is not just due to noisy measurements. However, by using as σ̄
the elbow of the ordered σ̂ we have a gain of 6.1% in terms of accuracy meanwhile the mean performance
decreases of only 0.5%.

4.1.3 Evaluation of the algorithm

Starting from the architecture we found in Section 4.1.1, we fine tuned the number of filters, the kernel size of
the CNN and the width and depth of the dense part. The ANN has a loss of 2.89 ·10−4. The performance of
our algorithm is evaluated by the indexes described in Section 3.3.1 on the test dataset (see Table 2) and by
visualizing the scaling of the AMG with respect to the number of DoFs (see Figure 9). Moreover, we remark
that the scaling shown in the bottom row of Figure 9, ideally, should be constant. Indeed, this is true when
we apply the AMG to problems where maxΩ µ/minΩ µ ∼ 1, however in the cases that we consider is not
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Figure 2: Boxplots of the impact of the choice of the activation function (left), the pooling features (center) and the pooling
size m (right), on the validation loss (MSE) of an ANN trained on a subsample of the dataset described in Section 4.1. The
red line represents the mean.

Figure 3: Test case 1: Prediction of the ANN. Color and
size are proportional to the estimated error σ̃.

Figure 4: Test case 1: performance accuracy trade-off of
the AMG-ANN algorithm depending on the choice of σ̄.
The algorithm is evaluated on the validation set.

possible to achieve this. In any case, the AMG-ANN is able to achieve a much better scaling with respect
to the not tuned AMG version. In particular, the algorithm has an accuracy of 92.51% and an produces
an average reduction of the computational cost of almost 16% in average. Since in this case the median on
PMAX is rather small (82%), there is still margin of improvement for the reduction of the computational
cost by tuning the architecture of the ANN.

Figure 3 shows all the predictions made by the trained ANN, notice that the largest points are the furthest
from the bisector, thus the ANN is successfully predicting where it is inaccurate. In Figure 5 we highly some
relevant predictions. Notice that the map θ 7→ t exhibits many different complex patterns and that θ∗ varies
depending on the problem considered. Hence, it is not possible to find a fixed value θ∗ that works well for all
the problems. In Figure 6, we showcase relevant cases of when the algorithm is not accurate, in particular,
we categorize the errors of the algorithm into three classes (from left to right):

• Noisy measurements: the error is due to the measurement of t. As mentioned before, we reduce this
error by repeating the measurements and regularizing data. Moreover, σ̃ is often a good indicator of
a large error in these cases.

• Generalization error: this takes place when the network is not able to generalize beyond the training
set. You can notice that in this case the prediction is completely wrong.

• ANN error: in this category we classify the errors due to the approximation capacity of the ANN, the
optimization error and the loss of information occurring during the pooling of A. These type of errors
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Figure 5: Test case 1: Predictions made by the ANN for some exemplary values of the diffusion coefficient and domain shape.
On the y-axis the normalized computational cost t, on the x-axis the value of the strong threshold parameter θ. The dots
represent the raw measurements of the computational time.

Figure 6: Test case 1: three representative cases of predictions of the normalized computational cost t made by the ANN that
leads to sub-optimal values of θ∗. The blue area is the ANN error estimate σ̃.

can be mitigated by hyperparameters tuning. However, there are some limitations, for instance, even
if we would like m to be large, in order to lose the least amount of information possible, the cost of
the evaluation of F depends quadratically on it, so it must stay small. Moreover, the error estimate
σ̃ is affected by these kind of errors itself, and it may not be of use in these cases.

4.1.4 Evaluation on unseen domains

We tested the ANN-AMG algorithm by applying it to problems with a diffusion coefficient µ that was not
present in the training dataset, but on a known geometry. To prove the generalization capability of the
algorithm, we now test it using domains and diffusion coefficients it has never seen before. The two domains
we employ are represented in the two last rows of Table 1: a replication of the plate with a hole in the x
and y coordinates and a torus. We build the dataset exactly as done before, in total it counts 445 different
problems. The performance on the “Holes” geometry are similar to a known geometry: PB = 86% and
PM = 18%. Thus, we have shown that the algorithm is able to generalize also on domains with a different
topology w.r.t. the ones in the training dataset. This result is linked to the fact that a (small) subset of
the considered geometry (the plate with the hole) is present in the training dataset. Indeed, the results
on the Torus are much worse: PB = 64% and PM = 6%. The algorithm is still making predictions that
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Algorithm 5 Diffusion µ in a given point x ∈ Ω = (−1, 1)3, having fixed the mode, size and ε ∈ Rsize(mode) .
µ = µ(x; mode, size, ε)

1: j ← 1
2: for k = 0 to mode do
3: j ← j + ⌊((x)i + 1)size/2⌋ sizei−1

4: end for
5: µ ← 10(ε)j

Figure 7: Examples of the diffusion coefficient µ employed in Section 4.2 for some choices of the vector ε depending on the mode
parameter (one to three from left to right) and fixed size=5.

are significantly better than any prediction made “at random”, however this challenging mesh shows the
limitation of our approach. We show the details about the performance in Table 2.

4.2 Test Case 2: Highly heterogeneous diffusion problem, structured grids

Let us consider the same elliptic problem (7) of before. However, here we have Ω = (−1, 1)3 and
µ ∈ L∞(Ω) is a highly heterogeneous piecewise positive constant defined differently from before. Namely,
µ is defined by means of Algorithm 5, where mode = 1, 2, 3 defines if the pattern is either made of slices,
lines or is checkerboard like, size = 1, 2, ... defines how many times the pattern repeats, and the vector

ε ∈ Rsize(mode) defines the value of µ. Figure 7 shows a representation of µ for size = 5 and mode = 1, 2, 3.
The problem is discretized by means of continuous FE of order p on nested Cartesian meshes. The dataset

is built by varying p = 1, 2, 3, mode = 1, 2, 3, size = 2, 3, ..., 10, the mesh size h between
3√2

size
and

3√2
size28−p ,

and choosing at random the components of the vector ε between 0 and εMAX , where εMAX = 1, 3, 10. In
order to test the stability of the algorithm we also use four different DoFs (degrees of freedom) numbering.
Namely, when applying the renumbering, the underlying sparsity graph of the matrix A and thus the optimal
value of θ stays the same, but the pooling V changes, so the ANN should learn to be inveriant with respect
to these changes. The dataset we built counts 5471 different problems and thus contains 202427 samples.

We started by using an architecture with hyperparameters chosen as described in Section 4.1.1 and then
tuned the number of filters and the size of the kernel of the CNN and the width and depth of the dense part
of the ANN. We obtain an ANN with a loss of 1.55 · 10−4. Details about its performance and its scaling are
shown in Figure 9 and Table 2. In particular, our algorithm has a 93% accuracy with an average reduction
of the CPU time of almost 30%, and in half of the cases you can expect a reduction greater than 32%.

4.2.1 What does the ANN learn?

To better understand how the model problem we considered works and what does the ANN learn, we study a
specific subset of the model problems defined in the previous section. Namely we consider a diffusion µ which
is everywhere constant and equal to one apart from one cell of the mesh, where it is equal to µMAX = 10ε

with ε = 2, 4, 8. We stress that this family of problems was not present in the dataset we employed to train
our ANN. Moreover, we define d to be the distance between the cell with the largest diffusion coefficient
µMAX from the center of the domain. Figure 8 (top-left) shows a graphical representation of the problem.
First we analyze the conditioning of the matrix A. As expected it scales with respect to the mesh size h
as h−2 and it is linearly proportional to the ratio between the maximum and minimum value of diffusion
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Figure 8: Study of a special subset of problems of Test case 2. (Top-left) We consider a uniform diffusion µ = 1 apart from one
cell where µ = µMAX = 10ε and ε = 2, 4, 8. This cell has distance d from the origin. (Top-right) Superimposed normalized
computational cost t needed to solve the system with the AMG method depending on the strong threshold parameter θ and
relative predictions made by the ANN. (Bottom) Conditioning number of the matrix A depending on the distance d and the
mesh size h.

coefficient µ in the domain (i.e. is proportional to µMAX). The position of the cell does not affect the
condition number. There is just a small reduction of it when the cell touches the boundaries: this is simply
due to the Dirichlet boundary conditions, see Figure 8 (bottom). We then test our algorithm. Figure 8 (top-
right) shows that the optimal value of θ is almost always in the same range: between 0.5 and 0.9. Moreover,
we see that the ANN is able to capture the overall relation between the normalized computational cost t and
the strong threshold. Hence, in all this cases, the predicted value θ∗ by the AMG-ANN algorithm is near
the true optimum. Finally, to gain some insight on the ANN we computed the feature maps extracted using
the convolutional filters learned by the ANN. In Appendix C we show some of them: we can see that from
a layer to another the CNN is enhancing the features that deems relevant.

4.3 Test Case 3: Linear Elasticity

We consider the following linear elasticity problem{
−div(C∇Su) = f , in Ω,

u = 0, on ∂Ω,
(8)

where Ω = (−1, 1)3 and∇Su = 1
2 (∇u+∇u

⊤) is the symmetric gradient and C is a rank-4 tensor that encodes
the stress-strain relationship. Under the assumptions that the material under consideration is isotropic, by
introducing the two Lamé coefficients λ ∈ L∞(Ω) and µ ∈ L∞(Ω), the coefficient tensor reduces to

C∇Su = 2µ∇Su+ λtr(∇Su)I

where tr is the trace operator and I is the identity matrix. We can rewrite the Lamé parameters in terms of
the Young’s modulus E > 0 and the Poisson ratio ν ∈ (0, 1

2 ); we have G = E/(1+ν) and β = ν/(1−2ν). The
problem has been discretized by means of FE of order p = 1, 2, 3 on a structured cartesian grid of diameter
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Figure 9: (Top) Performance gain P of the AMG-ANN algorithm and maximum theoretical performance PMAX for the three
test cases. (Bottom) Scatter plot with linear regression of the DoF normalized computational cost of the AMG-ANN algorithm
with respect to the number of DoFs and the polynomial degree p. In tones of red the AMG-ANN algorithm and in tones of
blue the standard AMG method.

h =
3√2
2 , ...,

3√2
24−p . We fix the Poisson ration ν = 0.29 and choose a highly heterogeneous Young modulus

E. Namely E has the same pattern of the diffusion coefficient µ described in Section 4.2 and is such that
size is even. We also employ four different DoFs numbering to enhance the dataset. In this way, we build
a dataset counting 5873 different problems and thus containing 217301 samples.

As we have done for the previous test case, we start with an architecture found like described in Sec-
tion 4.1.1 and then we fine tuned the number of filters, the kernel size of the CNN and the width and
depth of the dense part. The ANN has a loss of 5.64 · 10−4. Evaluated on the test dataset, the algorithm
has an accuracy of 90.71% and an average reduction of the computational cost of almost 23% in average.
Details about its performance and its scaling are shown in Figure 9 and Table 2. There is still margin of
improvement concerning the reduction of the cost since PMAX is relatively small, however it is possible to
see a remarkable reduction of the scaling of the computational cost in the bottom row of Figure 9.

5 Conclusions

We proposed a DL algorithm to optimize the choice of the strong threshold parameter that stands at the
basis of the construction of the levels needed for the AMG method. We have shown that our algorithm can
be applied to a wide class of challenging problems coming from the FE discretization of PDEs. Namely, we
have provided numerical results for three different test cases concerning a Poisson problem with a highly
heterogeneous diffusion coefficient on (i) structured and (ii) unstructured grids and (iii) a linear elasticity
problem with a highly heterogeneous Young’s modulus. Our algorithm performs better, other than using the
standard literature value, in more than 90% of the cases and reduces significantly the computational cost
(up to 30% on average).

The algorithm hinges upon the pooling operator to compress a large sparse matrix into a small tensor
to feed into an ANN. Indeed, we have proved that the pooling operator reduces the computational cost
and preserves relevant information needed to perform the complex regression task at hand. Moreover, our
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Test case σ̄ PB P (avg/median) P/PMAX (median)

1: Unstructured
∞ 86.58% 16.73% 17.90% 85.54%
σ̃ elbow 92.51% 15.91% 15.46% -

1: Holes
∞ 80.82% 15.09% 18.02% 76.06%
σ̃ elbow 86.01% 15.13% 17.76% -

1: Torus
∞ 63.88% 0.85% 5.69% 45.72%
σ̃ elbow 65.08% 0.01% 3.30% -

2: Structured
∞ 87.97% 30.51% 32.14% 93.50%
σ̃ elbow 93.03% 29.54% 19.42% -

3: Elasticity
∞ 83.72% 24.01% 21.40% 88.59%
σ̃ elbow 90.71% 22.60% 18.54% -

Table 2: Evaluation of the performance of the AMG-ANN algorithm for each test case depending on the choice of the threshold
error σ̄.

algorithm can be introduced with minimal changes into any existing code that uses an AMG solver.
In future works we plan to generalize our algorithm by using one single ANN to make predictions on

linear systems stemming from different underlying PDEs and being able to predict the optimal value of other
parameters of the AMG method such as the type of smoother and the number of smoothing steps. We also
plan to try more advanced computer vision models, such as transformers [22]. Finally, we aim to further
investigate the properties of the pooling operator applied to sparse matrices and gain a better understanding
of what does the CNN learn.
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A Basic concepts of Deep Learning

A deep learning regression model is a function F : RNIN → RNOUT that maps an input x to an output
ỹ and depends on a vector of parameters γ. The parameters γ are chosen by minimizing the error (loss)
evaluated on a training dataset of known input-output couples {(xi,yi)}Ti=1, namely

min
γ

1

T

T∑
i=1

L (yi,F (xi,γ))

where L is the loss function. Namely, we employ the mean squared error (MSE). The optimization is
performed by means of gradient descent updates that uses a mini-batch of the training dataset to compute
∇γF with automatic differentiation.
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Feed-forward neural networks Let y(0) = x and y(L) = ỹ, a dense feed-forward neural network (FFNN)
of depth L is the composition of L functions called layers defined as

y(l) = h(l)(W(l)y(l−1) + b(l)), l = 1, ..., L

where W(l) ∈ RNl×Nl−1 (weights) and b(l) ∈ RNl (biases) are the parameters γ, and h(l) is a scalar non-linear
activation function applied component-wise.

Convolutional neural networks Convolutional neural networks (CNNs) are neural networks that use
convolution instead of matrix multiplication in at least one of their layers. They have great success in com-
puter vision tasks thank to their ability to exploit the structured data format of images. Indeed, convolution
layers enjoy three properties: shared parameters, that is, each parameter is tied to multiple component of
the input; sparse interactions, that is, each component of y(l) depends only on a subset of the components
of y(l−1), (this also entails a lower number of parameters and thus a greater efficiency); equivariance to
translation, that is the application of a translation and a convolution can be interchanged to obtain the same
result. The last ingredient of a CNNs layer is the pooling operator. After several parallel convolutions and
a non-linear activation, we replace the output of the layer at a certain location with a summary statistic
of the nearby outputs. A popular option is the max pooling [39], which reports the maximum value over a
rectangular neighborhood. The aim of the pooling operation is to reduce the computational cost, increase
statistical efficiency and adding invariance to small translations.

B Pooling visualization

Figure 10: Visual representation of the normalized pooling results V̂ that is fed into the ANN for some exemplary problems
taken from the dataset described in Section 4.1.
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C CNN feature maps visualization

Figure 11: Example of feature maps of the CNN layers for the problems described in Section 4.2.1.
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[51] J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods, pages 73–130. SIAM, 1987.

[52] A. Savitzky and M. J. Golay. Smoothing and differentiation of data by simplified least squares procedures. Analytical
Chemistry, 36(8):1627–1639, 1964.

[53] A. Taghibakhshi, S. MacLachlan, L. Olson, and M. West. Optimization-based algebraic multigrid coarsening using rein-
forcement learning. Advances in Neural Information Processing Systems, 34:12129–12140, 2021.

[54] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Elsevier, 2000.
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