Intertwining semiclassical solutions to a Schrödinger-Newton system

Mónica Clapp
Universidad Nacional Autónoma de México

We consider a Schrödinger-Newton system in \mathbb{R}^{3}, obtained by coupling together a magnetic linear Schrödinger equation with Newton's gravitational law, which was proposed by Penrose in 1998. It leads to the problem

$$
\left\{\begin{array}{l}
(-\hbar i \nabla+A)^{2} u+V(x) u=\hbar^{-2}\left(W *|u|^{2}\right) u \\
u \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right) \\
\hbar \nabla u+i A u \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{3}\right)
\end{array}\right.
$$

where $\hbar>0$ is Planck's constant, $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a magnetic potential, $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is an electric potential, and the convolution kernel is the Coulomb potential $W(x)=|x|^{-1}$. We assume that A and V are compatible with the action of a group G of linear isometries of \mathbb{R}^{3}. Given a group homomorphism $\tau: G \rightarrow \mathbb{S}^{1}$ into the unit complex numbers, we prove the existence of semiclassical solutions $u_{\hbar}: \mathbb{R}^{3} \rightarrow \mathbb{C}$ which satisfy

$$
u_{\hbar}(g x)=\tau(g) u_{\hbar}(x)
$$

for all $g \in G, x \in \mathbb{R}^{3}$. We show that there is a combined effect of the symmetries and the electric potential on the number of solutions of this type.

This is joint work with Silvia Cingolani and Simone Secchi.

