Localization of P-S and Cerami sequences in a mountain pass geometry.

Charles A. Stuart

Abstract Let X be a real Banach space. For $\Phi \in C^1(X, R)$ and $e \in X \setminus \{0\}$, set $\Gamma = \{f \in C([0, 1], X) : f(0) = 0 \text{ and } f(1) = e\}$ and then $c = \inf_{f \in \Gamma} \max_{t \in [0, 1]} \Phi(f(t))$.

Suppose also that there exists $r \in (0, ||e||)$ such that $\inf_{||u||=r} \Phi(u) \ge \max{\{\Phi(0), \Phi(e)\}}$, a situation which is usually referred to as a mountain pass geometry for Φ .

Under these hypotheses, it is well-known that there exists a Palais-Smale sequence of approximate critical points of Φ converging to the level c:

there exists $\{u_n\} \subset X$ such that $\Phi(u_n) \to c$ and $\Phi'(u_n) \to 0$.

Indeed, there is even a Cerami sequence:

there exists $\{v_n\} \subset X$ such that $\Phi(v_n) \to c$ and $(1 + ||v_n||) \Phi'(v_n) \to 0$.

Let S be a closed subset of X such that $\{0, e\} \in S$ and $c_S = c$ where $c_S = \inf_{f \in \Gamma_S} \max_{t \in [0,1]} \Phi(f(t))$ and $\Gamma_S = \{f \in \Gamma : f(t) \in S \text{ for all } t \in [0,1]\}$. In this case, one might expect to find approximate critical points converging to level c close to S.

We show that this is true for P-S sequences, but not necessarily for Cerami sequences

Section de mathématiques Ecole Polytechnique Fédérale Lausanne Station 8, EPFL, CH 1015 Lausanne, Suisse charles.stuart@epfl.ch