Quasilinear and semilinear singular elliptic equations and systems

Nonlinear Differential Equations - Verbania, 26.9.2010

Lucio Boccardo

Università di Roma 1

Consider the functional

$$
J_{r}(v)=\frac{1}{2} \int_{\Omega}\left(a(x)+|v|^{r}\right)|\nabla v|^{2}-\int_{\Omega} f(x) v(x),
$$

where

- Ω is a bounded open set in R^{N},
- $f \in L^{2}(\Omega)$ is the datum,
- $0<\alpha \leq a(x) \leq \beta$,
- $r>0$.

It is easy to prove the existence of a minimum u in $W_{0}^{1,2}(\Omega)$. Moreover the Euler-Lagrange equation (with the lower order term having natural growth w.r.t. the gradient) is, if $r>1$,

$$
u \in W_{0}^{1,2}(\Omega):-\operatorname{div}\left(\left(a(x)+|u|^{r}\right) \nabla u\right)+\frac{r}{2}|u|^{r-2} u|\nabla u|^{2}=f(x) .
$$

Furthermore it is possible to prove the existence [B-Gallouet 93] of a solution $u \in W_{0}^{1,2}(\Omega)$, even if f belongs only to $L^{1}(\Omega)$: regularizing effect of the lower order term (for a complete draw about existence and nonexistence with right hand side measure see [Brezis-Nirenberg 97] and [B-Gallouet-Orsina 97]).

On the other hand, if $0<r<1$, the Euler-Lagrange equation (for positive f) is not evident; formally we have
(1) $0<u$ in $\Omega, \in W_{0}^{1,2}(\Omega):-\operatorname{div}\left(\left(a(x)+|u|^{r}\right) \nabla u\right)+\frac{r}{2} \frac{|\nabla u|^{2}}{u^{1-r}}=f(x)$.

In the first "hour" of the talk, I will present some existence results for quasilinear elliptic equations (variational or nonvariational) which become singular as the solution approaches zero and whose model is the above Euler-Lagrange equation (see [B2008-60JPP]).

Consider now the functional

$$
I_{r}(v)=\frac{1}{2} \int_{\Omega} a(x)|\nabla v|^{2}-\frac{1}{r} \int_{\Omega} f(x)|v(x)|^{r}, \quad 0<r<1 .
$$

Again it is easy to prove the existence of a minimum u in $W_{0}^{1,2}(\Omega)$, but it is not so easy to write the Euler-Lagrange equation, which, formally,
is the semilinear elliptic boundary value problem $(f \geq 0)$

$$
\text { (2) }\left\{\begin{array}{cl}
-\operatorname{div}(a(x) \nabla u)=\frac{f(x)}{u^{1-r}}, & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

In the second "hour" of the talk, I will present some existence results (in Sobolev spaces depending on r and on the summability of f) for semilinear elliptic equations (variational or nonvariational), which become singular as the solution approaches zero and whose model is the above Euler-Lagrange equation (see [BO2010]).

I will also discuss the relationships between the two problems (1) and (2).

Then, in the third "hour" of the talk, using some of the previous results, I will present some existence results for variational systems of the type

$$
\left\{\begin{array}{cl}
-\Delta u=p z^{\theta} u^{p-1} & \text { in } \Omega, \\
-\Delta z=\frac{\theta u^{p}}{z^{1-\theta}} & \text { in } \Omega, \\
u=z=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

where $0<\theta<1<p$ (work in progress with Luigi Orsina).

