ITA

  • Corso di Studi in Ingegneria Matematica, nuovo progetto di doppia laurea con EPFL
    Double degree Master Program between Politecnico di Milano and EPFL

Laboratory of Modeling and Scientific Computing
MOX
Laboratory of
Modeling and
Scientific Computing
Laboratory of Mathematics Education and Scientific Experimentation
EFFEDIESSE
Laboratory of
Mathematics Education and
Scientific Experimentation
differential equations at polimi
differential equations
at polimi
Quantitative Finance LAB
Quantitative Finance
LAB
Game Theory And Computation (Group)
Game Theory And Computation
(Group)


Upcoming Events

  • sep
    28
    wed
    2016
    Seminar
    09-28-2016, 11:30 Computational study of the risk of restenosis in coronary bypasses
    Bruno Guerciotti

    • SEMINAR ON
    • Computational study of the risk of restenosis in coronary bypasses
    • Bruno Guerciotti, MOX – Dipartimento di Matematica, Politecnico di Milano
    • Wednesday, september 28 2016 at 11:30, Aula Seminari Saleri, VI Piano, Mox Dipartimento di Matematica, Ed. 14-Politecnico di Milano
    • Abstract
      Coronary artery disease, which is one of the leading causes of death in the world, is caused by the build-up of atherosclerotic plaques in the vessel walls. The result is a reduction of oxygen supply to the heart, which increases the risk of myocardial infarction, stroke and unstable angina. For high-risk patients, coronary artery bypass graft (CABG) is the preferred treatment. In particular, the gold standard procedure for the surgical treatment
      of the left anterior descending (LAD) coronary artery disease is the left internal mammary artery (LIMA) bypass. However, despite its excellent patency rates, LIMA bypass may fail due to restenosis. Specifically, the long-term patency of LIMA is thought to be related to the degree of stenosis in the native vessel.
      In this context, we present a computational study of the fluid-dynamics in patient-specific geometries with the aim of investigating a possible relationship between coronary stenosis and LIMA graft failure. Firstly, we propose a strategy to prescribe realistic boundary conditions in absence of measured data, based on an extension of the well–known Murray’s law to provide the flow division at bifurcations in case of stenotic vessels and non-Newtonian blood rheology. With the aim of investigating the actual influence of non-Newtonian blood rheology on the hemodynamics of 3D patient-specific stenotic vessels, we also show some results regarding the comparison between Newtonian and non-Newtonian rheology. Then,
      we show the results regarding numerical simulations in patients treated with grafts in which the degree of coronary stenosis is virtually varied, in order to compare the fluid-dynamics in terms of hemodynamic indices potentially involved in restenosis development. Finally, we present some preliminary results concerning fluid-structure interaction simulations in CABGs with the aim of better understanding the influence of the bypass mechanical properties on the risk of graft failure.

      contatto: christian.vergara@polimi.it



    Politecnico di Milano, Dipartimento di Matematica via Bonardi 9, 20133 Milano – Telefono: +39 02 2399 4505 – Fax: +39 02 2399 4568