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Literature Review and Goal

Q The DPG method with approximate optimal test functions computed with polynomial (of order
p + 1) enriched test space was proposed in (1). 2D numerical experiments for constant
advection were shown w/o any proofs.
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Literature Review and Goal

Q The DPG method with approximate optimal test functions computed with polynomial (of order
p + 1) enriched test space was proposed in (1). 2D numerical experiments for constant
advection were shown w/o any proofs.

Q Broersen, Dahmen and Stevenson (2) analyzed the the advection-reaction problem with a
variable advection vector. The proof of the discrete inf-sup condition for an enriched space
obtained by refining the original element (of enriched order p 4 1) a finite (unspecified)
number of times. However, the authors mention that, in practice, no need for refining the test
element has been observed. This is the first work in the DPG literature on problems with variable
coefficients.

Q Goal of this work: (3) Analyze the stability of the original method.
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Q The Convection-Reaction Problem
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. . HTEXAS
Convection-Reaction Problem

@ Convection-reaction problem

b-Vu+cu=f in (2
u=g onl'_
where advection vector b € H(div, §2), reaction coefficient ¢ and load f are
assumed to be piece-wise smooth, and boundary I' = 0f) is split into three
disjoint parts,

I :={xel:by(x) <0} T'y:={xeTl:by(x)>0} Tp:={xel:by(x)=0}.
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. . HTEXAS
Convection-Reaction Problem

@ Convection-reaction problem
b-Vu+cu=f in (2
u=g onl'_
where advection vector b € H(div, §2), reaction coefficient ¢ and load f are

assumed to be piece-wise smooth, and boundary I' = 0f) is split into three
disjoint parts,

I :={xel:by(x) <0} T'y:={xeTl:by(x)>0} Tp:={xel:by(x)=0}.
@ Integration by parts

/Q<w)”:/”(— diV(bv)+cv)+/anuu.

>
=:Au « :?Ar*v
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©TEXAS
Theory of Adjoints within the Closed Operators Theory

@ Graph spaces (identical)
Ha(Q) :={u e L?(Q): Aue L*(Q)} = {uec L*(Q):b- Vue L*(Q)}

Ha-(Q) :={v e L*(Q) : A*v € L*()} = Ha(Q)
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@ Density assumption:
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@TEXAS
Theory of Adjoints within the Closed Operators Theory

@ Graph spaces (identical)
Ha(Q) :={u e L?(Q): Aue L*(Q)} = {uec L*(Q):b- Vue L*(Q)}
Ha-(Q) :={v e L*(Q) : A*v € L*()} = Ha(Q)
@ Density assumption:
————Hj,
C(Q) " = Ha(9).
@ Trace Operator: There exists a continuous frace operator,

v @ Ha(Q) — L2(T)

where the weight w = | by|.
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Theory of Adjoints within the Closed Operators Theory

@ Domains of operators

D(A) :={u € Ha(Q2) :qyu=0onT_}
D(A*) :=={v € Ha+(Q) :qyv=0o0onT4}.
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@TEXAS
Theory of Adjoints within the Closed Operators Theory

@ Domains of operators

D(A) :={u € Ha(Q2) :qyu=0onT_}
D(A*) :=={v € Hp+(Q) :qyv=0o0onT,}.

@ Lemma: Operators A : D(A) — L?(2) and A* : D(A*) — L?(2) are adjoint
to each other.
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@TEXAS
Theory of Adjoints within the Closed Operators Theory

@ Domains of operators

D(A) :={u € Ha(Q2) :qyu=0onT_}
D(A*) :=={v € Hp+(Q) :qyv=0o0onT,}.

@ Lemma: Operators A : D(A) — L?(2) and A* : D(A*) — L?(2) are adjoint
to each other.

@ Boundness below assumption:
We assume that, with appropriate additional assumptions on coefficients b, c,
both operators A, A* are bounded below.

[Auf| = aflull  uwe D(A)
[A™0]| = affv] ve D(AY)

Closed Range Theorem for Closed Operators implies that constant «v is the
same for both operators.
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Ultraweak (UW) Variational Formulation

u e L*(Q)
{ (u,A*v) = l(v) v € D(A") a1.n

Qo
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®TEXAS
Ultraweak (UW) Variational Formulation

Q
u € L*(Q) an
(u,A*v) = l(v) v e D(AY) '
@ Theorem: Let A, A* be bounded below with constant .. Then the bilinear form
in (1.1) satisfies the inf-sup condition with

y=(a?+1)

and the UW formulation is well-posed.

Proof: Let u € L?((2). Take solution of the adjoint problem:

v € D(A*), A*v = u. Boundedness below implies ||v]| < a~!||A*v|| and, in
turn, |[v]|pay < (@2 + 1)1/2||A*v||. This gives:

(u, A*v)

A*
[ollv < sup (u,A"v)

lul* = (u,A") = = —
’ [vllv vep(as) |Ivllv

(a2 +1)72ul.
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Broken UW Variational Formulation

Q
{uELQ(Q),ﬂEU,iL:uOonF_ (1.2)
(u, Av) + (@, v)r, = U(v) v € Ha+ (Tn), '

where 1 = (f,-) € (Ha=(Ty))’. Additional boundary integrals can be added to the load.
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Broken UW Variational Formulation

Qo

{ueLQ(Q),ﬂeU,ﬂ=uoonF— (1.2

(u, Av) + (@, v)r, = U(v) v € Ha+ (Tn),
where 1 = (f,-) € (Ha=(Ty))’. Additional boundary integrals can be added to the load.

Q Theorem unpacked: (4)
Step 1: Test with a conforming v € D(A*) to estabilish stability of the fields:

_ JA®
lul - <7t supepany U

=~ WA+ (@), -1
=7 SUPuep(ar) Tollv ST S

(u,A*v)+<&,v)rh
[lollv

Step 2: Use the stability of fields to establish the stability of traces in the dual norm:

(Lo)r, (u,A*v)Jr(ﬁ,U)Fhf(u,A*v)
SUPveH e (7 Tolly . T SUPveH e (7 To]

v
o u,A"v)+ (i,
<1+~ l)supveHA*qh) M.

llvllv

4c. Carstensen, L. Demkowicz, and J. Gopalakrishnan, *‘Breaking spaces and forms for the DPG method and
applications including Maxwell equations,”” Comput. Math. Appl., vol. 72, no. 3, pp. 494-522, 2016
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HTEXAS
Broken UW Variational Formulation

@ Step 3: Use the
Dudlity lemma: Let v be the solution of the element variational Neumann

problem,

v € Ha+(K)

(A*v, A"0v)k + (v, dV)k = /6 b,iudv v € Hp-(K).

K
Then w = —A*v is the solution to the Dirichlet problem,
{ w € Hp(K), w= twon JK — 0Ky
(Aw, Adw)k + (w,dw)xk =0  dv € Hy+(x) -

and,

1wy @) = V], @) -

to replace the dual norm for fraces with the minimum energy extension norm.
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HTEXAS
Boundedness Below is Critical. A General Stability Result for A* YIEXAS

@ Assumption: b(x) = VV(x).

5. Demkowicz and N. Heuer, “"Robust DPG method for convection-dominated diffusion problems,”” SIAM J. Num.
Anal. vol. 51, pp. 2514-2537. 2013, see also ICES Report 2011/13
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Boundedness Below is Critical. A General Stability Result for A*

@ Assumption: b(x) = VV(x).
Q@ Let v € Hy~ (). Introduce an auxiliary unknown (comp. (5))

w(x) ;= e"@o(x) Vw=e"bv+e"Vu.
Let f := A*v. We have,
e'f =e"(~b- Vv + (c—divb)v) = —div(bw) + (|b]*> + c)w.

Multiplying both sides with w and integrating over (2, we obtain,

—/Qdiv(bw)w—i-/ﬂ(|b|2+c)w2:/Qevfw~

The first term is now integrated by parts,

. w* 2 1 2 1 . 2
— [ div(bw)w= [ b-V(—)— | byw*=—= [ byw*— = [ divhw".
Q Q 2 r 2 Jr 2 Ja

This gives:
1 1
—/bnw2+/(|b|2+c—divb)w2:/evfw.
2 Jr Q 2 Q

=:a

5. Demkowicz and N. Heuer, “*Robust DPG method for convection-dominated diffusion problems,”” SIAM J. Num.
Anal. vol. 51, pp. 2514-2537. 2013, see also ICES Reporf 2011/13
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Boundedness Below. A More General Stability Result for A*

Assumption: a(x) > amin > 0. Use Young's inequality to estimate the right-hand side,
2V

2.

Jw < Su? + S
— 2 2a

This leads to the final estimate,

1 1 2V 1
/ |bn|w2+/ awzg/efZ—i—/ bouw? .
2 T 2 Q QZa 2 Iy

In particular, for v = 0 on I';, we obtain,

eZV
/aezvvzg/—fz.
Q o a

If e;, e, are lower and upper bounds for €2V, we obtain,

€9
aminel/v2§/ae2vvzg/f2.
Q Q Qmin JQ

This gives the final estimate for the boundedness below constant:
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Q Discrete Stability Proof
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Construction of a Local Fortin Operator Fails

Q Without going into details... The existence of

the local Fortin operator provides a sufficient —_—
but not necessary condition for discrete stability.

The required orthogonality conditions make the

construction unique. Showing boundedness of the

Fortin operator reduces to a numerical evaluation

of an inf-sup constant « for a rotated master 0
element shown to the right.
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Construction of a Local Fortin Operator Fails

Q Without going into details... The existence of
the local Fortin operator provides a sufficient LA
but not necessary condition for discrete stability.
The required orthogonality conditions make the
construction unique. Showing boundedness of the
Fortin operator reduces to a numerical evaluation .
of an inf-sup constant « for a rotated master 0
element shown to the right.
Q@ The figure on the right presents value of « for
element of order p = 3 and angle 6 changing

from O to 27. As we can see, whenever one of -

the triangle edges becomes parallel to the x-axis, o ﬂ\

the constant degenerates to zero. Evidently, fdj J" \)‘ \
constant « is not uniformly (in angle) bounded =N N ;' \ N \
away from zero. The result does not prove that .77_ ;’ \‘ ‘(‘ ‘\ ,z“ ‘\ j »\ ’,'N | X\
the DPG method is unstable, it simply reflects the Ny “,‘ ‘\ (“ \\ /j \ /f : ‘;'

limitation of the local construction of the Fortin z;— / \vj \ v \/ \m
operator. " o T n o

CSE 2021
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G TEXAS
Local Fortin Operator for the Conforming DPG Method (Following' (g)

Q@ The element contribution to the bilinear form:
(w, —0xv + cv)k + (NylL, V) ok = (Oxu + cu, V)g + (N (Tt — u), V) ok -

Assumptions: b = const = (1, 0), ¢ = const element-wise, globally bounded.

S|, Demkowicz and P. Zanotti, “*Construction of DPG Fortin operators revisited,”” Comp. and Math. Appl., vol. 80,
2261-2271, 2020, Special Issue on Higher Order and Isogeometric Methods
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T TEXAS
Local Fortin Operator for the Conforming DPG Method (Followin (g)

Q@ The element contribution to the bilinear form:
(w, —0xv + cv)k + (NylL, V) ok = (Oxu + cu, V)g + (N (Tt — u), V) ok -

Assumptions: b = const = (1, 0), ¢ = const element-wise, globally bounded.
Q@ Element orthogonality conditions for the Fortin operator:

(w;HU*U)K:O 1/}€PP—1(K)
<nx¢7HU - U>6K =0 ¢ c ’PP(K) . (23)

Taking ¥ = —0xX, x € PP(K). substituting into (2.3, integrating by parts and utilizing (2.3),,

we learn that (x, Ox(Ilv — v))x = O x € PP(K). 2.9

S|, Demkowicz and P. Zanotti, “*Construction of DPG Fortin operators revisited,”” Comp. and Math. Appl., vol. 80,
2261-2271, 2020, Special Issue on Higher Order and Isogeometric Methods
L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021




T TEXAS
Local Fortin Operator for the Conforming DPG Method (Followin (g)

Q@ The element contribution to the bilinear form:
(w, —0xv + cv)k + (NylL, V) ok = (Oxu + cu, V)g + (N (Tt — u), V) ok -

Assumptions: b = const = (1, 0), ¢ = const element-wise, globally bounded.
Q@ Element orthogonality conditions for the Fortin operator:

(w:HU*U)K:O 1/}€’])P—1(K)
<nx¢7HU - U>6K =0 ¢ c ’PP(K) . (23)

Taking ¥ = —0xX, x € PP(K). substituting into (2.3, integrating by parts and utilizing (2.3),,

we learn that (x, Ox(Ilv — v))x = O x € PP(K). 2.9

Q@ This leads to the idea of defining 0, I1v by L?-projection,

1 ) .
§||6x(HU = V)[[F2 k) — T

IIv € P"(K)
(X, 0c(llv—0))k =0 x € P YK).

In order to secure satisfaction of (2.4), we need to assume thatr — 1 > p,ie..r > p+ 1.
S|, Demkowicz and P. Zanofti, “*Construction of DPG Fortin operators revisited,”” Comp. and Math. Appl., vol. 80,
2261-2271, 2020, Special Issue on Higher Order and Isogeometric Methods
L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021
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or, equivalently, {




© TEXAS
Local Fortin Operator for the Conforming DPG Method

Q@ We have immediately,

[0xITo]| 2 (k) < [[0xll12(r) < || = Oxv+ cv| L2 (k) + Cmax|[Vl]2(x) < V1 + Chax V]l e (k) -
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®TEXAS
Local Fortin Operator for the Conforming DPG Method

Q@ We have immediately,
[0xITo]| 2 (k) < [[0xll12(r) < || = Oxv+ cv| L2 (k) + Cmax|[Vl]2(x) < V1 + Chax V]l e (k) -
Q IlIv has been defined so far up to polynomials that are independent of x, i.e. the subspace

Py(K) :=span{l,y,...,y'}, dim P} (K) =+ 1.
We are presented with the task of defining the undefined P} (K)-component of TTv in such a
way that we satisfy orthogonality conditions (2.3). It is sufficient to satisfy only condition (2.3);.

Indeed, integration by parts reveals that conditions (2.3); and (2.4) imply (2.3)5.

CSE 2021
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Local Fortin Operator for the Conforming DPG Method

Q@ We have immediately,
[0xI10|[2(x) < [|0xvl|L2 (i) < || — Oxv+ eVl r2(k) + Cmax[Vll2(x) < V1 + raxl[V]l e (5 -
Q IlIv has been defined so far up to polynomials that are independent of x, i.e. the subspace
Py(K) :=span{l,y,...,y'}, dim P} (K) =+ 1.

We are presented with the task of defining the undefined P} (K)-component of TTv in such a
way that we satisfy orthogonality conditions (2.3). It is sufficient to satisfy only condition (2.3);.
Indeed, integration by parts reveals that conditions (2.3); and (2.4) imply (2.3)5.
@ For p > 3, the subspace of bubbles P§(K) is non-empty. Using x € P§(K) in (2.5), and
integrating by parts, we get,
(O, Iv—v)k =0  x € PYK).

The null space of linear transformation 9y : P (K) — PP~(K) is trivial which implies that

dim 9, (PH(K)) = dim PJ(K) = M :

As dim PP~ 1(K) = w, we are missing p(pg'l) — (p—22(p—1) = 2p — 1 conditions. This
results in the condition for the minimal enriched order r,

r+1>2p—1 & r>2p—2.
L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021




®TEXAS
Local Fortin Operator for the Conforming DPG Method

Q For p < 2, the space of bubbles is trivial, so we need to satisfy:

r+1>dimPP 1K) = w.
Table below presents the minimum value of enriched order r for different polynomial orders p.
As we can see, except forlow p = 1,2, 3, the values are very pessimistic. We emphasize that
they reflect only the deficiency of the local construction of the Fortin operator.
pl1|12|3|4|5] 6
r(2,3|4|6|8]|10

Table: Minimal enriched order r resulting from the local construction of Fortin
operator for different polynomial orders of discretization.

L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021
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Local Fortin Operator for the Conforming DPG Method

Q@ We complete now the definition of ITv by requesting the satisfaction of the orthogonality
conditions. Consider first the case of p > 2 and r = 2p — 2. In this case,

dim P}(K) + dim(9,P§(K)) = dim PP~ (K) .

L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021



OT

Local Fortin Operator for the Conforming DPG Method

Q@ We complete now the definition of ITv by requesting the satisfaction of the orthogonality
conditions. Consider first the case of p > 2 and r = 2p — 2. In this case,

dim P}(K) + dim(8, P (K)) = dim PP~ (K) .
Q Lemma. Let K be a rotated unit master triangle. There exists a continuous right-inverse of
derivative 0y,
R : PP(K) — PPTY(K), O\Rp=¢ V¢ € PP(K)
IR t2(x) < V2|0 2(x) -
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®TEXAS
Local Fortin Operator for the Conforming DPG Method

Q@ We complete now the definition of ITv by requesting the satisfaction of the orthogonality
conditions. Consider first the case of p > 2 and r = 2p — 2. In this case,

dim P}(K) + dim(8, P (K)) = dim PP~ (K) .
Q Lemma. Let K be a rotated unit master triangle. There exists a continuous right-inverse of
derivative 0y,
R : PP(K) — PPTY(K), O.Rp=¢ V¢ € PP(K)
IR |l2(x) < V2|92 (k) -

Q@ Letnow v" = R(0,IIv) € P"(K). We set up the following system of equations for
component vy, € P (K).

v, € PI(K)
y y (2 6)
(b, v+ v —v)k =0 P € PP HK).
We introduce the discrete inf-sup constant corresponding to the bilinear form (2.6),
vr
a:= inf sup ¥, y) Q2.7

oy E€Py(K) pepr—1 (k) 1¥]e2(x) 10)]]2(x)

L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021



Local Fortin Operator for the Conforming DPG Method

Q@ This leads to the L2-stability bound on the master element,
loglleiy < @MD" — Dll 2k
< o™ (1 ey + 1.2 )
and, consequently,
10+ 0oy < (@7t 4 DD 2y + @ 1Dl 2
< (a7 + 1)v2]| 0 (110) | 2 i) + 1||v||Lz<K

L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021



Local Fortin Operator for the Conforming DPG Method

Q@ This leads to the L2-stability bound on the master element,
loglleiy < @MD" — Dll 2k
< o™ (1 ey + 1.2 )
and, consequently,
10+ 0oy < (@7t 4 DD 2y + @ 1Dl 2
< (a7 + 1)v2]| 0 (110) | 2 i) + 1||v||Lz<K
Q A standard scaling argument yields then:
loy + Vo) < Ry + 0l sy
< (@' + D)V2R? 0] o) + ool -

Above, as usual, 0 denotes the pullback of v to master element K. This concludes the proof of
boundedness of the Fortin operator in the Hy« (K)—norm, with an h-independent continuity
constant. The touchy issue with the presented construction is the dependence of inf-sup
constant «c upon the orientation of the element with respect to the advection field. We wiill
resort now o a numerical experiment to study this dependence.

L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021




Numerical Evaluation of the inf-sup Constant o

Q Computation of the inf-sup constant « franslates into the determination of the smallest
eigenvalue for the generalized eigenvalue problem: BTG~ !Bu = o> Mu where

Gﬂ:/wiwj Bjk:/wjyk Mkzz/yiyk i.j=1,dimP"(K), k,1=1,r+1
K K K
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Numerical Evaluation of the inf-sup Constant o
Q Computation of the inf-sup constant « franslates into the determination of the smallest
eigenvalue for the generalized eigenvalue problem: BTG~ !Bu = o> Mu where

G-y-:/wiwj Bjk:/wjy" Mkz:/yiy‘“ i.j=1,dimP"(K), k,1=1,r+1
K K K

Q The figure below presents value of « for element of order p = 3 and angle changing from O
to 27r. As we can see, whenever one of the friangle edges becomes parallel to the x-axis, the
constant degenerates to zero. Evidently, constant av is not uniformly (in angle) bounded away

from zero.

443 alpha
A

398 I

354 /

310 i \

266 ~ ; | { |
- NN \ / c \

[ L

w \‘ |

133

[

od f

000/

000 T 157 [ERES

CSE 2021

L. Demkowicz, N. V. Roberts Discrete Stability Proof



TEXAS
Discrete Stability

We try to emulate the stability analysis for the broken UW formulation at the
continuous level.
@ Given uy, find v such that v € D(A*), A*v = uy. Then,

(up, A*v) 1 (up, A*v)

_ (up, A*v)
< (140 (. A0)
A=

un|| = < (1+a2) 72 sup

[l vev  vllv

2.8)

Challenge: Exact v has to be replaced with a weakly conforming
approximation vy, for which ||A*vy|| > a||vp|| and the Fortin condition
(un, A*(v — vp)) holds.
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Discrete Stability
We try to emulate the stability analysis for the broken UW formulation at the
continuous level.

@ Given uy, find v such that v € D(A*), A*v = uy. Then,

* * k
(up, A*v) 7%(uh,A v) < (140~} sup (up, A*v)
|A%v] [l vev  [[vlly

2.8)

lun]| = < (1+a7?)

Challenge: Exact v has to be replaced with a weakly conforming
approximation vy, for which ||A*vy|| > a||vp|| and the Fortin condition
(un, A*(v — vp)) holds.

Q Idea: Emulate stability proof for the marching DPG method. Divide the domain
and the mesh into layers thl, cey Qh,N defined in a recursive way starting
from the outflow boundary:

Qh,l = U{K S Th . 8K+ C F+}
Qh,n = U{Keﬂl . 8K+ CF+UFh’_7n_1}, Tl:2,...,N

where Fh,_,n denotes the inflow part of the boundary of Qhﬂ.
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Discrete Stability

Q Let vy, be an approximation of v. For each element K from the last layer, K C Qh7 N

oV 2 2V _ 2 e?” 2 2e*” 2 2V, 9
/ e |bn|vh+/e avh+/—|A,*1vh| §/7|A,’;vh| +/ e”" byv;,
OK_ K K a kK a oK,
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Discrete Stability

Q Let vy, be an approximation of v. For each element K from the last layer, K C Qh7 N

oV 2 2V _ 2 e?” 2 2e*” 2 2V, 9
/ e |bn|vh+/e avh+/ — A} vy g/ |Afvn| +/ e”" byv;,
OK_ K K a Kk a OK

Q This motivates introducing a constrained minimization problem:

min  —
v EPPH(K) 2 a

1
{/ E(A*(v;1 —v)?+ / wb, (v, — v)?}, w=é€*",
K OK4
under the constraints:
/ (5uhA*(vh — U) =0 Véu,e€ Pp_l(K),
K

wby, dwp(vhp —v) =0 Viow, € PPTHOK, ).
oK,

The first, Fortin’s constraint allows for replacing in (2.8) v with vy. Indeed, it implies that
(un, A*v) = (up, A*vp). The second constraint enforces weak comformity of vy,.
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A Local Stability Result (Brezzi's Thm Extended)

Q The constrained minimization problem is equivalent to the mixed problem:

Up € ,Pp+l(K)7 up € ,Ppil(K), wy € Pf“((?KJr)

w w
/A*UhA*5Uh + [ upA*ov, + wbwydv, = / —A*vA*Sv,  Ovp € PPHY(K)
K a K K K a

/5uhA*vh :/5uhA*v 5uh€'Pp71(K)

f wb,, Swnpvn = f wb, dwpv  dwy, € PPTYH(OK,)
oK, oK,
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A Local Stability Result (Brezzi's Thm Extended)

Q The constrained minimization problem is equivalent to the mixed problem:

Up € ,Pp+l(K)7 up € ,Ppil(K), wy € Pf“((?KJr)

w w
/A*UhA*5Uh + [ upA*ov, + wbwydv, = / —A*vA*Sv,  Ovp € PPHY(K)
K a K K K a

/5uhA*vh :/5uhA*v 5uh€'Pp71(K)

f wb,, Swnpvn = f wb, dwpv  dwy, € PPTYH(OK,)
oK, oK,

O Let Vi = PPTYK), [|vnlly = [ G1A™ 0> + [ox, whn |vf*, and,

)

Viho = {Uh eV / wb,, 5thh =0 Véwh € P5+1(8K+)}
OK4

Vh700 = {Uh S Vh70 : / 5uhA*vh =0 Véuh S PP_I(K)} .
K
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A Local Stability Result (Brezzi's Thm Extended)

@ Introduce norms for the Lagrange muttiplier u, € PP~ (K), wy, € PP (OK,),

fwnli= [, unl, = [ wbw?
K OK4

and consider the corresponding inf-sup constants,
fQ uhA* Unp . f8K+ wb;, WhLLK
Bn = inf sup

ap = in e —_
un €PP~1(K) vp€Viny0 HuhHK HUhHV w, €PLT (DKL) vn€ Vi HwhH8K+ HUhHV

L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021



A Local Stability Result (Brezzi's Thm Extended)

@ Introduce norms for the Lagrange muttiplier u, € PP~ (K), wy, € PP (OK,),

fwnli= [, unl, = [ wbw?
K OK4

and consider the corresponding inf-sup constants,

upA*v, wby, wrvy
o= inf sup M B = inf sup fafﬂ—n
un €PP~1(K) vp€Viny0 HuhHK HUhHV w, €PLT (DKL) vn€ Vi HwhH8K+ HUhHV

Q@ Lemma: The following estimate holds:

w w
/|A*Uh|2+/ wbn|vh|2§(1+oz;2)/A*U|2+ﬁ,:2 wbn|v|2.
K @ K4 K @ oK
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Discrete Stability - Cont.

Q We obtain the inequality:
o2V

/ e2V|bn|v;21+/ eV avi+ /e—|A,’§vh|2
AKN KN gV a

< (1+o<,;2)/

KN a

2V
| Afv|® + [3,1_2/ eV b2 .
~—

N
OKY

=up
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Discrete Stability - Cont.

Q We obtain the inequality:
o2V

/ e2V|bn|v;21+/ eV avi+ /e—|A,’§vh|2
AKN KN gV a

< (1+a,;2)/

KN a

2V
| Afv|® + 6,1_2/ e b
N~~~ OKN

+
=up

Q@ Similarly, for elements KN—! C Qh,N_l, we obtain,
2V

e
Jo ol [ St [
K~ KN— KN~

2 2V
<(1+ah2)/ ¢

KN—1 a

N—1

| Ao > + th/ e b1 .
~~~ 0.

=Un ———
:faxﬁ Vb, (v))?
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Discrete Stability - Cont.

Q We obtain the inequality:
o2V

/ e2V|bn|v;21+/ eV avi+ /e—|A,*1vh|2
AKN KN gV a

—2 2¢V Lo -2 2V, 2
< (14+a,%) —I Ajv |° + 5, e”  byv”.
KN A~ OKY
=up

Q@ Similarly, for elements KN—! C Qh,N_l, we obtain,

2V

e
Jo ol [ St [
K~ KN— KN~

< (1+a2)/ 262V|A*v|2+52/ eZVb U2
— h h h 5 n .

KN—1 a N—1
=Un ———
=[oxn €V ba(u])?
Q@ We want now to add the two inequalities side-wise and cancel the first term in the first
inequality with the last term in the second inequality (a telescoping effect). In order o do so,
we have to premultiply the entire first inequality by factor B,: 2 This leads to a multiplicative

accumulation of constant 3, % The product of such constants can be bounded by a mesh

independent constant provided 8, = 1 — O(h).
L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021




TEXAS
Discrete Stability - cont.

@ Conjecture: We postulate the following behavior of stability constants vy, Sn
2V
under the assumption that weights € and 2<— are uniformly bounded
throughout the domain.

6h21—Ch, ap > ag > 0.

with a mesh-independent constant C > 0.
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Discrete Stability - cont.

@ Conjecture: We postulate the following behavior of stability constants vy, Sn
2V
under the assumption that weights € and 2<— are uniformly bounded
throughout the domain.

Bh21—Ch, ap > ag > 0.

with a mesh-independent constant C > 0.

@ Theorem: Under the conjecture above, the discrete inf-sup condition holds,

U Al v
sup ZKfK hp Yh

vREVY ||vh||HA*

> Cllun|

with a mesh independent constant C. Above, V} stands for the subspace of
weakly conforming broken test functions.
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Support of the conjecture with numerical experiments

O Definition of the enriched test space: In the case of a single outflow edge
Vi(K) = PPTH(K). In the case of a triangle with two outflow edges, the
element is split by the advection vector into two subtriangles, and continuous,
piecewise polynomials of order p + 1 are used.

b

——

K,

Construction of the piece-wise polynomial enriched test space.
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Support of the conjecture with numerical experiments

Q@ Wefix b= (1,0),C = 1 and rotate by angle ¢ a right triangle with size h around the vertex
O. Table below presents numerical values of constant oy, for different values of polynomial
order p and element size h. All values are the minimum values over rotation angles from the
whole range of § € [0, 27 ). Clearly the inf-sup constant stays uniformly bounded away from
zero, and remains of order 1 in the whole range of polynomial orders p and element size h.

p/h 10 0.1 0.01 | 0.001 | 0.0001

2 0.737 | 0.712 | 0.708 | 0.707 | 0.707
0.657 | 0.637 | 0.633 | 0.633 | 0.632
0593 | 0.582 | 0.578 | 0.577 | 0.577
0.545 | 0.539 | 0.535 | 0.535 | 0.535
0.508 | 0.505 | 0.501 | 0.500 | 0.500
0477 | 0476 | 0472 | 0471 | 0.471
0.451 | 0.451 | 0.448 | 0.447 | 0.447

© NO O~ W

Table: Minimal (over angles #) value of inf-sup constant «y, for different values of element size
h and polynomial order p, for advection vector b = (1, 0) and reaction coefficient ¢ = 1.0;
weights a = w = 1.

L. Demkowicz, N. V. Roberts Discrete Stability Proof CSE 2021



. , . , B TEXAS
Support of the conjecture with numerical experiments

Q@ Wefix b= (1,0),C = 1 and rotate by angle ¢ a right triangle with size h around the vertex
O. Table below presents the results. The constant stays very close to one, uniformly in the
polynomial order, and it converges to one as h — O.

p/h 1.0 0.1 0.01 0.001 0.0001

2 0.99492667 | 0.99998878 | 0.99999998 | 0.99999999 | 0.99999999
0.99561802 | 0.99999021 | 0.99999998 | 0.99999999 | 0.99999999
0.99597293 | 0.99999096 | 0.99999999 | 0.99999999 | 0.99999999
0.99618684 | 0.99999143 | 0.99999999 | 0.99999999 | 0.99999999
0.99632916 | 0.99999174 | 0.99999999 | 0.99999999 | 0.99999999
0.99643040 | 0.99999197 | 0.99999999 | 0.99999999 | 0.99999999
0.99650598 | 0.99999214 | 0.99999999 | 0.99999999 | 0.99999999

© NO O~ W

Table: Composite test space of order p + 1. Minimal (over angles 6 ) value of inf-sup
constant 3}, for different values of element size h and polynomial order p, for advection vector
b = (1,0) and reaction coefficient ¢ = 1.0; weights a = w = 1.
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Support of the conjecture with numerical experiments

Q The experiment below demonstrates that the simple polynomial test space prtl (K) fails fo
deliver the correct stability constant 55, uniformly in angle 6. The figure below presents results
for the case of the rotated master friangle of order p = 2, advection vector b = (1,0) and
reaction coefficient ¢ = 1. For all triangles with just one outflow edge the inf-sup constant is
practically equal one. Unfortunately, the results show a clear degeneration of stability for all
triangles with two outflow edges.

] 1 |

bta

|

l

|

|

|

=
S = b e s 2 2 2 s & 8

ngle

(0] s TH 147 16 B

Values of the inf-sup constant /3, for the rotated unit friangle of order p = 2,
b = (1,0),c = 1, and test space constisting of polynomials of order p + 1.
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Q Convergence of Fields and Traces
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Convergence of Fields

Once we have established the stability for fields,
Up A* Uh
llun] < sup LA (3.9
o EVY [lonllv
where V,? is the space of weakly conforming test functions,
V,? = {Uh (SR <Lﬁh, Uh>ph =0 VYo, € Uh},
we can easily show the convergence of the fields, for both conforming and non-conforming versions of the method.
lu—unll < lu—wnl + [Jwn — unll

wp — up, A*p
< lu— whl| + ;" sup (t0n — tn, A70n) (condition (3.9))

oevy llonllv
(wn — up, A*vp) + (r — Un, Vr)1,

= [Ju — wy| +’Y;171 sup ((n — T, vr)r, =0, LR € V,?)

nEV? llonllv

_ A* Ty 1
(wn = tin, A70n) + (b = Gn, o)1, (supremum taken over a bigger set)

< lu—wal +; " sup

VrEVh HUh”V
_ A* Ty — 1]
< ||u — whH + ’Yh_l sup (wh o Dh) hS <wh - Dh>r" (Golerkin or’rhogonolity)
VR E Vi HUhHV

_ _ wp — W, v
< (14— wnl| 4+ sup B oy
VR E Vi th”V

where wy,, Wy, are arbitrary discrete field and trace.
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Convergence of Fields

Note that, for the non-conforming version, the duality pairing has to be understood in the discrete sense,

(Wn, o)1, = Z/ bnnvn

KETs OK

and it makes sense only for discrete test functions v,. Once we use the Galerkin orthogonaility, it is replaced with the
actual duality pairing, provided we assume that i, comes from the conforming subspace flﬁ of space Uh of
non-conforming traces. We can follow with the estimate,

p — U, v wp — 0,0
up N gy 0O g
A [lonllv vev [lollv
where || - || is the minimum energy extension norm. This leads to the a-priori error estimate:

lu—unll < (V) inf flu—wnll + ;" inf [Ji— donle
h & Un o, €U;,

For the non-conforming version, given a sufficient regularity of exact trace i, we can attempt to estimate the best
approximation error in the discrete dual seminorm,

inf Z sup M . (3]0)

€0 57 op €V (K) lonllvx)

N |2
U— 1t
I h|V’/l

We have more discrete traces (b, to approximate with, so the best approximation error should be smaller.
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Convergence of Fields

The results above show that the convergence of fields should not be affected by the loss of stability for fraces in the
minimum energy extension norm discussed next. In order to verify the assertion, we have run an example with a
smooth solution u = 1 + x° + y® with a constant advection field b = (1, 1.1), (1, 1.01), (1, 1.001), (1, 1.0001)
and the degenerated case b = (17 1). Note that in the last case, the diagonal edges are excluded. We investigate
the convergence on a sequence of globally refined meshes starting with the 2 elements mesh shown below. The
convergence curves are sitting literally on top of each other.

L. Demkowicz, N. V. Roberts

0.96E+6tor
0426407
0.18E+01
081E+00
035E+00
0.15E+00
0.68E-01
0.30E-01
0.13E-01
0.57E-02

025E-02
T

SCALES: log(nrdof), log(error)

— (11001
— (1.10001)
— an

Uh

T T SIT T 1448 T 409:

Left: initial mesh. Right: h-convergence results for a smooth exact solution and

b= (1,1.1),(1,1.01),(1,1.001), (1, 1.0001), (1, 1).
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Convergence of Traces

Can we proceed with the Brezzi argument to control traces? The discrete inf-sup constant of inferest is defined as

follows,
bpuv
Lol 5y, e prom) @11
vEV,(K) HU”HA*(K)
where
ol g0 = [ 1A% 1ol = min [ JAUP + [0
K U‘BK:U- K

Figure on the right presents values of constant ¢ for the R
unit friangle rotated by an angle @ € [0, 27|, p = 2.. The o1 | f\

068 |

minimum energy extensions have been computed with \
polynomials of order p + dp,dp = 5. And the same 01| ( \

0.60

results hold for element sze h = 0.1,0.001,0.0001. )

034 |

Y
The constant degenerates to zero whenever one of the 02| / / \ / /
\/

N
\
El L

000 RS AT 2 1628

triangle edges becomes parallel to the advection vector. 017 \ \/

009 |

Clearly, to secure a robust convergence of traces, we

have to impose a minimum angle condition on element
edges with respect to the advection vector.

Constant § for a rotated unit triangle, b = (1,0),¢c = 1
and p = 2.
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Convergence of Traces

With the inf-sup constant dy, in place, we can claim the convergence result for the conforming traces. This follows now
directly from the Babuska - Brezzi Theorem. We can reason as follows,

la— tulle < lla— dlle + [ — lle

R _ Wy — )1,
< o= s + 5" sup \2r = ey

VLEV, HUhHV
. A* i . 7 . . A*
<Jla— ﬁ)hHE-i-(s;fl sup (wn — un, Afvr) + (Wh — Gr)r, — (Wh — Un, A UR)
VR EVy ||UhHV

N N _ wh — up, Afvp) + (on — 4y

S HU.— whHE‘l—(Shl sup ( h hy h) < h h>
VLEV, ||UhHV

(wn — un, Afvp) + (n — Tn)r,

T _
6y |wn — |

<& — donlle + 65 (145 ") sup
v EVy HUh”V

iL— G - - wp — W, Afop) + (lon — W,

< it — donlle + 65 (1 + ;") sup (1o nbn) + (n — Wr
onE Vi llvnllv

<+ 67 1+ NE — dnlle + 671+ v D llu — whl| -

As wy, Wy, above are arbitrary functions, we obtain,
It = tinlle < (140, " (14, ) inf [[& — donle + 6, " (1 + ') inf [|u — wall.
Wp h

The result above holds for non-conforming fraces as well, provided we replace the minimum energy extension norm
with the discrete dual seminorm (3.10). Constant §j, is then equal one by definition.
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Closing Remarks

@ The local construction of Fortin operator ( sufficient but not necessary for
global stability) fails to show robust (in rotation angle) stability for both
polynomial and composite polynomial test spaces.

@ The global stability analysis points to the need of using the composite
polynomial enriched test space.

@ We still have not been able, though, 1o illustrate the necessity of composite
polynomial test space with a numerical example showing a failure of the
original DPG method using the polynomial test space only.

So the jury is still out.

Acknowledgment: Sandia Grant # 2154473 is gratefully acknowledged.

Thank you for your attention !
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