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SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY

1 Introduction

These notes are the outcome of a Ph.D. course I gave in the Spring
1999 at the Dipartimento di Matematica, Universita degli Studi di Mi-
lano. The main aim was to introduce the Ph.D. students to some mod-
ern aspects and methods of projective geometry. The lectures have
been conceived to touch three important themes: the connection be-
tween projective geometry and deformations of quasi-homogeneous
singularities, cohomological dimension and connectivity results, and
applications of formal geometry to projective geomelry.

As far as the first theme is concerned, I started with the classical
problem of classifying the extensions in P"*! of a given subvariety Y
in P", by proving a remarkable result due to Zak-L'vovsky (theorem
2.1). The method of the proof given here relies on another funda-
mental result due to Mori-Sumihiro-Wahl (theorem 2.2) which is also
interesting in itself. The first three sections provide the proofs of
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these two results and give some applications, comments and exam-
ples. The condition involved in the Zak-L'vovsky theorem (the sur-
jectivity of the Zak map) is better understood in the case of curves
in terms of the so-called Gaussian maps (see section 5). The study
of the Gaussian maps has been initiated in 1987 by J. Wahl with the
main motivation of understanding the geometry of the curves lying
on K3-surfaces. In section 6 we prove a result of Schlessinger which
relates the deformation theory of the vertex of the affine cone Cy over
a smooth projectively normal subvariety Y in P" with the projective
geometry of Y. In particular, it becomes transparent that the surjec-
tivity of the Zak map is naturally interpreted in terms of deformations
of the vertex of the cone Cy.

The second theme is presented in section 8. First we prove a spe-
cial case of a result of Hartshorne-Lichenbaum which says that the
cohomological dimension of a quasi-projective variety U of dimen-
sion n is < n — 1 if and only if U is not a projective variety. This
result is then applied to prove a generalization to weighted projec-
tive spaces of the Fulton-Hansen conmnectivity theorem. Then some
applications of this connectivity result are given.

Unfortunately, there was no time to deal with formal geometry and
its applications to projective geometry. However, in sections 7 and
9 we present two results whose proofs involve in an essential way
considering the first infinitesimal neighbourhood in P™ of a closed
subvariety X c P". The first one, due to Van de Ven, characterizes
the linear subspaces as the only irreducible smooth subvarieties of
P" for which the normal sequence splits. The second result, due to
Ellingsrud-Gruson-Peskine-Stromme, gives necessary and sufficient
conditions for a curve Y lying on a complete intersection surface X in
P" to be the scheme-theoretic intersection of X with a hypersurface
of P" (see theorem 9.1). The methods of proving this latter result
also vield a geometric proof of a result of Barth which asserts that
Pic(X) = Z for every smooth subvariety X of P" of dimension = 1%3
We hope that the method of using the first infinitesimal neighbour-
hood will convince the reader less familiar with formal methods that
formal geometry deserves to be studied and applied to projective ge-
ometry.

Finally, I am grateful to Antonio Lanteri for inviting me at the
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University of Milan to give this “corso di dottorato INDAM", to Pro-
fessor Leonede De Michele for supporting this idea, and to the Istituto
Nazionale di Alta Matematica (Roma) for financial support. I enjoyed
the pleasant and stimulating atmosphere of the whole group of alge-
braic geometers of Milan: Alberto Alzati, Marina Bertolini, Elisabetta
Colombo, Antonio Lanteri, Marino Palleschi, Cristina Turrini, and Al-
fonso Tortora. I thank them all. I am grateful to Paltin lonescu who
read carefully the text and suggested a number of improvements of
the presentation. Last but not least, my thanks also go to Francesco
Russo and his family for their friendship and warm hospitality I en-
joved during my stay in Milan (Rho).

2 Extensions of projective varieties

We shall fix throughout an algebraically closed ground field k (of ar-
bitrary characteristic, unless otherwise specified).

Let Y be a smooth connected closed subvariety of dimension > 1
of the n-dimensional projective space P" over k.

DEFINITION 2.1 An irreducible closed subvariety X of the (n + 1)-di-
mensional projective space P**1 is said to be extension of Y (in P"+1)
if the following two conditicns are satisfied:

1. dim(X) = dim(Y) + 1.

2. There exists a linear embedding i : P* — P™! such that Y =
X 0 H, where H := i(P") and the intersection is taken in the
scheme-theoretical sense.

ExampLE 2.1 Fix Y € P™" as above and a linear embedding i : P"
P+l and set H := i(P"). Pick an arbitrary point x € P"**! \ H, and
let us denote by X the projective cone in P?*1 over Y of vertex x.
Clearly, X is an extension of Y in P"*1, These kind of extensions will
be called trivial extensions.

One of the fundamental problems of the classical projective geom-
etry is to classify all extensions in P! of a given subvariety Y < P".
We shall prove a remarkable result due to Zak-L'vovsky in connection
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with this problem. In order to state it we need to consider two exact
sequences. First let us fix some notation. For every algebraic variety
Z we shall denote by Q} the sheaf of differential forms of degree one
on Z (over k). Then we shall define the tangent sheaf T7 of Z as the
dual (Q})* = Hom,(Q}, ©z) of Q3. If Z is smooth then T7 is locally
free, i.e. is a vector bundle on Z. Moreover, if Z is a closed subscheme
of a scheme W of ideal sheaf 7, then the ©z-module 7/72 is called the
conormal sheaf of Z in W. The normal sheaf Nzjw of Z in W is by
definition the dual (7/7?)* = Hom,(7/7%,©z) of 1/7%. If Z is smooth
and W is smooth along Z (i.e. at each point of Z) then Nz is locally
free, i.e. is a vector bundle on Z.
Coming back to our situation, let

a

0 Ty Tpr|Y Ny|pn 0

be the normal sequence of Y in P™. Consider also the Euler sequence
of P" restricted to Y:

b

0 Oy (n+1)0y(1) Tpn]Y —— O,

where @y (1) is the sheaf of hyperplane sections of Y (with respect to
the embedding Y — P"), and (n + 1)Oy(1) denotes the direct sum of
n + 1 copies of Oy(1).

In particular, we get the surjective maps

a(=1): Tpn(~1)|Y — Nyjpn(-1)

and
b(-1): (m+ 1Oy — Tpn(-1)]Y,

and therefore the surjective map of vector bundles
ci=a(~1)ob(~1): (n + 1)Oy — Nyjpn(~1).
Passing to global sections we get the following map of k-vector spaces
z:= H%c) : HOY, (n + 1)@y) — H(Y, Nyjpn (-1)), (2.1)

which we call the Zak map of Y in P".
Now, we can state the following fundamental result:
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THEOREM 2.1 (ZAXK-L'VOVSKY [55], {35]) In the above situation, assume
furthermore thatY is of codimensionr = 2 and non-degenerate in P",
and that the Zak map (2.1) is surjective. Then every extension of Y in
P+ s trivial.

Theorem 2.1 is valid in arbitrary characteristic, even under more
general hypotheses (see e.g. [4]). The proof we shall give below is one
of the proofs of [4] and is valid only in characteristic zero. This proof
is based on the following fundamental result (which will be proved in
the next section):

THEOREM 2.2 (MORI-SUMIHIRO-WAHL [52]) Let (X, L) be a normal po-
larized variety (ie. a normal projective variety X endowed with an
ample line bundle L) of dimension = 2. Assume that the characteristic
of k is zero and that HO9(X, Tx ® L™1) = 0. Then there exists an effec-
tive divisor E in the complete linear system |L| such that X is isomor-
phic to the projective cone over the polarized scheme (E,Lg := L|E).
In other words, X = Proj(A[T]), where A := &2 HO(E,LL), with
T an indeterminate over A, and the gradation of A[T] is given by
deg(aT™) = deg(a) + m whenever a € A is a homogeneous element.
Moreover, L = Opgojaitp(1).

We shall also make use of the following two elementary results
(which will also be proved later):

PROPOSITION 2.1 (SCHLESSINGER [44]) Let X be a normal variety over
k of dimension > 2, Y a closed subvariety of X of codimension = 2,
and F an Ox-module which is the dual of a coherent ©x-module G.
Then the restriction map HO(X,F) — HY(X \ Y, F) is an isomorphism
of k-vector spaces.

PROPOSITION 2.2 (BERTINI-SERRE) Let E be a vector bundle of rank v
on an algebraic variety X over k. Assume that 'V is a finite dimensional
k-vector subspace of H°(X, E) which generates E (this means that for
every x € X the Oy x-module Ex is generated by V). Then there is
a non-empty Zariski open subset Vo of V such that codimx(Z(s)) =
v for every s € Vy, where Z(s) denotes the zero locus of s, and
codimy (Z(s)) > dim(X) means Z(s) = 9.
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PROOF OF THEOREM 2.1. The proof which follows is taken from [4]
and works only in characteristic zero (because it makes use of theo-
rem 2.2 which is in general false in positive characteristic). However,
theorem 2.2 is valid in arbitrary characteristic (see [4], for another
proof which is characteristic free).

CrLAIM 2.1 (MUMFORD [38]) In the hypotheses of theovem 2.1, for every
i > 2 one has HO(Y, Ny|pn(—1)) = 0.

Indeed, since Nyjpn(—i—1) € Nypa(—1) for all i (via the multipli-
cation by a global equation of a hyperplane in P"), it will be sufficient
to prove the statement for i = 2. Assume that there exists a non-zero
section s € HY(Y, Ny|pn(~2)). Since Y is non-degenerate in P" the
k-linear map of vector spaces

HO(P™, Opn(1)) — HO(Y,Nypn(-1)), givenby h — hs,

is injective. Moreover, the surjectivity of the Zak map (2.1) implies
that the second space is of dimension < n + 1. Since the first space
is of dimension n + 1 it follows that this map is an isomorphism. In
particular, every global section of Ny pn(—1) is of the form hs, with
h e HO(P", Opn (1)), whence the zero locus of every global section of
Nyp»(—1) contains the support of a non-zero divisor of Y.

On the other hand, the surjective map c: (n + 1)Oy — Nyjpn(—1)
considered above shows that the vector bundle Nyp»n (—-1) of rank v =
codimpn (Y) > 2 is generated by its global sections. Then, by propo-
sition 2.2, the zero locus of a general section of HO(Y, Nypn(-1))
should be of codimension = v = 2, a contradiction. The claim is
proved.

Let X be an arbitrary extension of Y in P**1. The hypotheses
imply that Y is a Cartier divisor on X. Since Y is smooth, it follows
that X is smooth at each point of Y. In other words, Y is contained in
the smooth locus V := Reg(X) of X. Moreover, since Y is a hyperplane
section of X, Sing(X) = X \V is a finite (possibly empty) set of points.

On the other hand, the equality ¥ = X n H {scheme-theoretically)
tells us that Y is the proper intersection of X with H. Then a general
property of proper intersections implies that

NXHP"” ® Oy = Nyupm. (2.2)
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Let f: X’ — X be the normalization of X (in its field of rational
functions). Clearly, f1f~1(V) : f~3(V) — V is an isomorphism. In
other words, V can be identified with a Zariski open subset of X',
denoted again by V; in particular, Y is contained both in X and in X’
as an ample Cartier divisor (Ox(Y) = f*(Ox(Y)) is ample because
Y is ample on X and ampleness is preserved under inverse images of
finite morphisms). Note also that @x/(Y) is generated by its global
sections because it is the inverse image of the very ample line bundle
Ox(Y) = Ox(1).

Set Nx' = f*(Nypn+1)** (bidual). Clearly, Nx |V = Nyjpn+1|V.
Set Nx(i) := Ny ® Oy (iY) for all i € Z. Now, using (2.2) and all
these observations, for every i = 1 we get the exact sequence

hl

0 Ny (-i-1) Nx/ (—1) Nyjprn(-i) —— 0,

which vields the exact sequence

0 - HY%X',Nx (i~ 1)) — HY(X’,Nx (—1)) = HO(Y, Nyjpn (—1)).
(2.3)

Here h' € HY(X’,0x (Y)) is a global equation of Y in X'. By the
above claim the last space is zero for every i = 2, therefore the first
map (between the H%'s) is an isomorphism for all i > 2.

On the other hand, since Ox (1) is ample, by a general simple
statement, H%(X’,Nx-(~1i)) = O for every i >> 0. Therefore by in-
duction on i we get that H%(X’,Nx(~i)) = 0 for all i > 2. Then the
exact sequence (2.3) (with ¢ = 1), the claim and the surjectivity of the
Zak map yield

dimy (H (X', Ny (-1))) < dimp (HO(Y,Nyjpn (1)) < n + 1. (2.4)

On the other hand, since X" isnormal, V ¢ X', codimy (X' \V) = 2
and Ny is reflexive, by proposition 2.1 we get

dimy H(X', Nx' (-1)) = dimy H*(V, Ny pn-1(~1)). (2.5)
Then (2.4) and (2.5) vield

dimg HO(V, Nyjpne1 (~1)) < n + 1. (2.6)
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Now logk at the commutative diagram

0 0
l l
Oy id Oy
l l
0 F (n+2)0v(1) lepn+llv — (}
1 l Ja
O TV Tp'nﬂlv NX”pn-'rl]V —— O
J i
0 0

in which the last row is the normal sequence of X in P"**! restricted
to V = Reg(X), the second column is the Euler sequence of P"+1
restricted to V, and F := Ker((n + 1)Oy — Nxpn+1|V). By proposi-
tion 2.1 we have

dimy HO(V, (n + 2)Oy) = dimg HO(X', (n + 2)Ox') = n + 2.
The top row vields the exact sequence
0 — HY(V,F(-1)) — HY(V, (n + 2)Oy) — H(V,Ngjpn+1(-1)),

where for every coherent Ox--module G we put G(—1) := GeOx (-Y).
Therefore the last equalities together with the inequality (2.6) yield
HO(V,F(~1)) = 0. Then from the first column of the above diagram,
taking into account that

HO(V,0p(-1)) = HY(X',0x (-1)) = 0,

it follows that H(V, Ty (~1)) # 0. Recalling that Tx- = (Q})*, X" is
normal and codimyx (X’ \ V) = 2, this last fact translates - via propo-
sition 2.1 - into

HO(X', Ty (~1)) = 0. (2.7)
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Now, (2.7) allows one to apply theorem 2.2 to the normal polarized
variety (X", Ox-(Y)) (in which @y (Y) is not only ample, but also gen-
erated by its global sections) to deduce that X’ is isomorphic to the
projective cone over (E,Ox (Y) ® Of) for some E € |Ox (Y)|. This
implies that X’ is in fact isomorphic to the cone over (Y,Oy(Y)).
Finally, a simple standard argument shows that this implies that X
must be the cone over Y. 0l

PROOF OF PROPOSITION 2.1. We shall make use of the following
well-known general facts (see [25]):

a) Let X be a scheme, Y a closed subscheme of X, and set U :=
X \Y. Let F be a coherent Ox-module. Then one can define the
cohomology spaces H§, (X,F), Vi = 0, with support in Y such that
there is a canonical exact sequence (called the exact sequence of local
cohomology)

0 — HY(X,F) - HY(X,F) — H(U,F) — HM{(X,F) — - - -

- — H}(X,F) -~ HY(X,F) -~ HY(U,F) - H} " (X,F) = - - -,
where the maps H4(X,F) — H49(U, F) are the restriction maps.

b) Assume now that X = Spec(A) is affine and Y = V(I) is given
by the ideal I of the commutative Noetherian ring A. Let M be a
finitely generated A-module, and let F := M be the coherent sheaf
on X associated to M. Let fi,..., fp € A be p arbitrary elements of
I. fi,...,fp is said to be an M-sequence if f is not a zero divisor
in M (ie. fim = 0, with m € M, implies m = 0), and f;.1 is not
a zero divisor in M/(fiM + ...+ f;M) foralli = 1,...,p — 1. The
maximal non-negative integer p such that there is an M-sequence
Si,.... fp € Iis called the I-depth of the A-module M (denoted by
I-depth(M)). One can prove that the folowing equality holds:

- h(M) = inf 1,)1,

I — depth(M) pévm{depth(]‘/p)}
where V(I) := {p € Spec(A) | I < p},
and depth(My) := pA, — depth(Mp).

¢) Let ¥ = 0 be a non-negative integer. Then the following two
statements are equivalent:
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I —~depth(M) z 7, ie. pA, —depth(Mp) = v forall p € V(I), (2.8)

HL(X,F) =0 Vi<rv, where X = Spec(X),Y = V(I), and F = M,
(2.9)

In particular, if I-depth(M) = 2 then the restriction map H%(X, F)
- HO%(U,F) is an isomorphism, where X = Spec(4), Y = V(I) and
F=M.

d) If A is anormal ring (i.e. a Noetherian domain which is integrally
closed in its fraction field) and if I is an ideal of A of height = 2 (which
by definition means that every minimal prime ideal of A containing I
has height > 2), then I-depth(A) = 2. This follows from a well known
criterion of normality due to Serre (see e.g. [48]).

Now we can prove proposition 2.1. The conclusion of our propo-
sition is local, so we may assume X = Spec(A) affine, Y = V(I),
with I an ideal of A, and F = M, with M an A-module of the form
M = Homu{N, A), with N an A-module. Since A is normal of dimen-
sion = 2 and codimy(Y) > 2, a well known criterion of normality due
to Serre (see [48, IV-44, Théoréme 11]) implies that pAp-depth(A) = 2
for every p € Y = V(I). By what we have said above it follows that
[-depth(A) = 2, i.e. there is an A-sequence fi, f» € I. Using the
properties recalled above, the conclusion of the proposition is a con-
sequence of the following:

CLAIM 2.2 fi, f2 is an M-sequence, i.e. I-depth(M) = 2.

To prove claim 2.2 observe that since fj is not a zero divisor in A
we have the following exact sequence

L4 B:= A/fiA

0 A 0,

in which the map fi is the multiplication by fi. Since the functor
Hom is left exact we get the exact sequence

f1

0 Homyu (N, B).

Hom, (N, A)

HomA (N, A)
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Since M = Homu4 (N, A), this shows first that f; is not a zero-divisor
in M, and second, that

M/ fiM < Homa (N, B) = Homg (N, B),

where N := N/ fiN (it is immediate to see that N becomes a B-module
and that there is the above identification of B-modules).

Now we can apply the same argument to B = A/f1 A and to the
non-zero divisor f' := f» mod f1iA in B to prove that f> is not a
zerc divisor in Homg (N, B), whence, a fortiori, not a zero divisor in
the B-submodule M/ fi M. The claim (and thereby proposition 2.1) is
proved. O

PROOF OF PROPOSITION 2.2. {See [20] for a more general formula-
tion.) Since V generates E, the canonical evaluationmap ¢ : XxV — E
defined by @(x,s) = s(x), is a surjective smooth morphism such
that every fibre of @ is a k-vector subspace of V of dimension v — 7,
where v := dimy (V). Let C be the zero section of the canonical projec-
tion 7t : E — X, so that C = X, and in particular, dim(C) = dim(X) =:
d. It follows that @~1(C) = {(x,s) | s(x) = 0} is a closed irreducible
subset of X X V of dimensiond +v - 7.

Let p: X XV — V be the second projection of X x V, and let us
denote by Y the closure of p(@~1(C)) in V. Then there are two cases
to be considered:

1. Y # V. Then setting Vj := V\ Y = §, we get that for every s € Vy

we have
pls)ne HC) = {xe X |s(x)=0} =0,
ie. Z(s) = {, whence codimy (Z(s)) = r.

2. Y = V. Then we get the dominant morphism q := pqul(C) :
@~ Y(C) - V of irreducible varieties. By the theorem of the
dimension of fibres (see e.g. [50, page 60, theorem 7)) there is a
non-empty open subset Vg of V which is contained in g (@ =1 (C))
= p(@~1(C)) such that

dim(q~*(s)) = dim(p~1(s) n@~H(C))
= dim(p 1)) - dim(V)
=(d+v-ry~-v=d-7r, VseV,.
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In other words, codimy(Z{(s)) = + for all s € V. Proposition 2.2 is
proved. [

We end this section by a generalization of theorem 2.1 of Zak-
L'vovsky. First we shall need a definition.

DEFINITION 2.2 Let Y be a smooth connected closed subvariety of P*
of dimensiond = 1. Let m = 1 be an integer. A closed irreducible
subvariety X of P**™ of dimension d + m is called extension of Y in
P™M jfthere is a linear embedding i : P* — P "™ suchthatY = XnH
(in the scheme-theoretic sense), where H := i(P"). If there exists an
extension X of Y in P**™ which not a cone, we sometimes also say
that Y extends non-trivially m steps.

THEOREM 2.3 LetY be a smooth connected non-degenerate subvariety
of codimension = 2 of P". Assume char(k) = 0, dim(Y) = 1, and
HO(Y,Nypn(—2)) = 0. Set dim(HO(Y,Nyjpn(-1))) =:n+7 + 1 (by
proposition 4.1 below, v > 0). If m = ¥ + 1 then every extension of Y
in Pn*™ js g cone over a subvariety of P m-1,

NOTE. By the claim in the proof of theorem 2.1, the surjectivity of the
Zak map (2.1) implies that HO(Y, Nypn(—2)) = 0. Therefore theorem
2.3 is a generalization of theorem 2.1 in characteristic zero.

PrROOF. We shall proceed in a similar way as in the last part of the
proof of theorem 2.1. Since dim(X) = dim(Y) +mand Y = X n
H (scheme-theoretically), Ny;x = mOy(1) and Nxjpr+m|Y = Nyq.
(Note that since X is smooth at each point of Y, Nxpn+m is a vector
bundle along Y.) Let f : X’ — X be the normalization of X. Then,
exactly as in the proof of theorem 2.1, Y ¢ X’ and Ny y' = mOy(1).
Moreover, Ny := f*(Nyprn+m)** is a vector bundle along Y such that
Nx/|Y = Ny Since f is a finite morphism, Ox (1) := f*(Ox(1)) is
an ample line bundle on X’ generated by its global sections. For every
coherent sheaf F on X’ and for every integer i, set F(i) := F® Ox' (i).
Fix an integer i > 0 and consider the exact sequences (p > 0) coming
from these isomorphisms

0 — 771 @ Ny (=i) — 77 @ Ny (—i) — 77 /77*! @ Ny (-i) = 0,
(2.10)
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where 7 is the ideal sheaf of Y in X. Moreover, we have
7P 1P @ Ny (—i) = SP (mOy(~1)) ® Ny (~i)

= (’” “pl * p)NYIH(~i - p). (2.11)

The hypothesis that HO(Y, Nyjp=(—-2)) = 0 implies that, for every
i> 2, H%(Y,Nyjpn(~i)) = 0. Then by (2.11) we get HO(Y,77/17+1 @
Nx/(=1)) = 0forall p = 1. Therefore (2.10) implies that the canonical
maps

HO(X',7°*Y @ Nx: (~1)) — H(X',77 © Nx/(~1))

are isomorphisms for every p = 1. This yields
HY(X',7® Ny (-1)) = HY(X',77 ® Nx (=1)), Vp=1l. (2.12)
On the other hand we have the following:

CLamM 2.3 Let Y = @ be a closed subvariety of the normal projective
variety X' defined by the ideal sheaf 1. Assume that Y meets every
hypersurface of X'. Let F is a coherent torsion free Ox -module such
that the canonical maps HY(X',7°F) — HY(X',F) are isomorphisms
for every p = 1. Then HY(X’,F) = 0.

To prove claim 2.3 pick an arbitrary point y € Y. Then the hypoth-
esis implies that s, € 75F, forall p = 1. Since Fy is an Oy ,,-module
of finite type and 7, is contained in the maximal ideal of the local
ring Ox y, by a well known theorem of Krull (see [48]) we get

() BF, =0.
p=1

It follows that s, = 0. Since ) was an arbitrary point of Y, s vanishes
along Y, whence s|V = 0 for a certain open neighbourhood V of Y in
X. By hypothesis codimy’ (X’ \ V) = 2. On the other hand, since F is
torsion free the canonical map F — F** into the bidual is injective,
whence s is also a section of the reflexive sheaf F**, By proposition
2.1 it follows that the restriction map HO(X', F**) — HO(V,F**) is
an isomorphism. Since s|V = 0, we infer that s = 0 as a section of
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F** whence also as a section of F because F < F**, This proves the
claim.

Coming back to the proof of theorem 2.3, in claim 2.3 we take
F =17® Nx(~1). Since Ny’ is reflexive F is torsion free. Moreover,
(2.12) says that F satisfies the hypotheses of the claim. Therefore by
claim 2.3 we get

H%(X',7® Nx(-=1)) = 0. (2.13)

Taking i = 1 and p = 0 in (2.10) and using (2.13) we infer that
the restriction map HY(X’,Nx:(-1)) — HO(Y, Ny\5(~1)) is injective,
whence by hypotheses we get

dim(HY (X', Ny (-1)) sn+r+1<n+m. (2.14)

At this point, if we set V := Reg(X) we have Y ¢ V ¢ X'. Then
a diagram completely similar to the diagram considered in the proof
of theorem 2.1 (with (n + 2)Ovy (1) replaced by (n + m + 1)Oy), and
the inequality (2.14) yield H'(V, Ty (—~1)) = 0. Since X’ is normal and
codimy (X' \ V) = 2 we get

HOY(X', Tx' (-1)) = HY(V, Ty (~1)) = 0.

Now the conclusion of our theorem (modulo the claim 2.3) follows
applying theorem 2.2. O

REMARK 2.1 Under the hypotheses of theorem 2.3, the subvariety Y of
P" cannot be extended non-trivially more than r steps. In this sense
the hypothesis that H*(Y, Ny|pn (-2)) = 0 is essential. For, let Y is a
smooth complete intersection in P" of multi-degree (d1,..., d»), such
that2 s v <nm-landd; = 2, Vi=1,...,v. Then HO(Y,Nypn(-2)) =
0, and clearly Y can be extended non-trivially in P**™ for every
m = 1. We also note that by a result of Barth (see [8]), every smooth
closed subvariety Y of P" of dimension = 1 which can be extended
smoothly in P**™ for all m > 1 is necessarily a complete intersection.
Examples of subvarieties Y ¢ P" satisfying H O(Y, Nyjpn(—2)) = 0 are
given by the following:
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PROPOSITION 2.3 (WAHL [53]) Let Y be a smooth closed projectively
normal subvariety of P" of dimension = 1. Let I be the saturated ho-
mogeneous ideal defining Y in the polynomial k-algebra P := k[T, T},
..., Tnl, and denote by A := P/I the homogeneous coordinate k-alge-
bra of Y in P". Assume furthermore that there is an exact sequence

uP(-3) - sP(-2) -1 -0, with s,t = 1, (2.15)

where P(i) is the graded P-module such that P(i); = Pj,j, Vi,j € Z,
and aP(i) is the direct sum of a = 1 copies of P(i). (This means that
the ideal I is generated by s independent homogeneous polynomials
of degree 2, and relations among them are generated by independent
linear ones.) Then HO(Y, Ny pn (—2)) = 0.

We shall prove this result in section 6 after we shall interpret the
vanishing of H(Y, Ny (—2)) in terms of the deformation theory of
the vertex of the affine cone over Y in P". The next result produces
examples satisfying the hypotheses of proposition 2.3.

THEOREM 2.4 (MUMFORD-GREEN [40], {23], SEE ALSO [33]) LetL be ali-
ne bundle of degree = 2g + 3 on a smooth projective curve Y of genus
g. LetY c P:= P(HO(Y,L)*) be the linearly normal projective em-
bedding of Y given by the complete linear system |L|. ThenY is projec-
tively normal in P and there is an exact sequence of the form (2.15).

REMARK 2.2 In fact, Mumford proved in [40] that there is a surjective
map sP(-2) - I — 0 (if deg(L) = 2g + 3) and subsequently M. Green
refined Mumford’s result in [23] in the above form (see [23] for a more
general result, or also [33] for a simpler proof of Green’s result).

3 Proof df theorém 2.2

We shall prove theorem 2.2 under the additional hypothesis that L is
generated by its global sections. Note that we used theorem 2.2 in the
proofs of theorems 2.1 and 2.3 only under this additional hypothesis.

Set R := @ ;H(X, L"). Since L is ample and X projective, there
exists a canonical isomorphism X = Proj(R) such that L = Oprgj(r) (1).
Moreover, since X is normal, R is a normal finitely generated k-algebra
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{see EGA III [26]). Consider the normal affine cone Spec(R) over the
polarized variety (X, L), and let mp := 2 | HO(X, L") be the irrelevant
maximal ideal of R which corresponds to the vertex of Spec(R). Set
U := Spec(R) \ {mg}. Then there is a canonical morphism 7w : U — X.
Since L is generated by its global sections, 1r is the projection of a
locally trivial G,,-bundle, where G, = k \ {0} is the multiplicative
group of the ground field k. The next lemma and its proof take care
of the structure of 1 more closely.

LEMMA 3.1 In the hypotheses of theorem 2.2, assume furthermore that
L is generated by its global sections. Then there is a canonical exact

sequence
0-0y— Ty — m*(Tx) — 0.

PROOF OF LEMMA 3.1. There is a general canonical exact sequence
associated to the morphism m : U — X (this exact sequence makes
actually sense for every morphism f : V — W of algebraic varieties
over k, see [28, proposition 8.11, page 176])

T (k) =~ Qe — Qix = O

which upon dualizing gives the exact sequence

0 Tyix Ty —— ¥ (Tx). (3.1)

Here Ty x is the relative tangent sheaf of 7 : U — X. To prove lemma
3.1 it will be sufficient to check the following two facts:

Tyx = Oy, and (3.2)

The map «is surjective. (3.3)

Let us first fix some notations. For every s € Ry \ {0} = HO(X, L)\
{0}, let R, be the ring of fractions of R with denominators in the
multiplicative subset {1,s,s2,...,,5",...}. Since s is homogeneous, R;
becomes a graded k-algebra by setting deg( ;%) = deg(t)—n whenever
t € S is homogeneous. Then we may consider the subring R() of
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R whose elements are all fractions ;tﬁ € Ry; such thatt € Ry =
HO(X,L™) is a homogeneous element of degree n, i.e. deg(;%;) = (.
Clearly, Rs) is a k-subalgebra of R;. Moreover, since s € Rj, the
inclusion R(5) C Ry is identified with the inclusion of R in the R(s)-
algebra R(5)[T, T~!] of the Laurent polynomials in the indeterminate
T. This is done by sending T — s and T~! — —} as is easily checked.
Since L is generated by its global sections,

X =Proj(R) = | J Di(s), where D, (s) := Spec(R(y)).
seR\{0}

U= |J D(s), where D(s):= Spec(R;).
s€R1\{0}

Then w* (D, (5)) = D(s) for all s € Ry \ {0} (and in particular, 7
is an affine morphism). Moreover, the restriction m|D(s) : D(s) —
D, (s) corresponds to the inclusion Ry C Ry, and since there is an
isomorphism of R -algebras Ry = R(s)[T, T~1], we see that D(s) =
D, (s) X Gy,. This gives explicitly the local structure of the (locally
trivial) Gy -bundle m: U — X,

Let A be a commutative ring, B a commutative A-algebra, and M
a B-module. Denote by Dery(B, M) the set of all A-derivations D :
B — M. One can define the sum D + D’ of two derivations D,D’ €
Dera(B, M) and the multiplication bD (with b € B) in an obvious way
and one easily checks that D + D', aD € Der4(B,M). In other words,
Dera(B, M) becomes a B-module in a natural way. If M = B, we shall
also denote Dera(B) := Dery (B, B).

The restriction of the exact sequence (3.1) to the affine open subset
D(s) corresponds to the obvious exact sequence

0 ””—‘?rDerR(s)-(Rs) Derg(Ry) L Derg(R(s), Rs), (3.4)

where ; associates to any k-derivation D € Der,(R;) the restriction
DI|R¢s) € Derg(Rs), Rs).

Now, itis clear that the map « is surjective {i.e. that condition (3.3)
holds). Indeed, since this verification is local, it is sufficient to check
that the map «; (of (3.4)) is surjective for every s € R; \ {0}. In fact,
if 6 € Derg(R(s),Rs) then we can define D € Derg(R;) by DIR(5) = &
and D(T) = u for an arbitrary u € R, (via the above isomorphism of
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R(s)-algebras R = R()[T, T~'1). Then, of course, D(3) = —#%. This
proves (3.3).

It remains to prove (3.2). To this end, consider themap D :R - R
defined by D(7) := deg(r)r, for every homogeneous element v € R.
It is obvious that D is a k-derivation such that D(Ry) € R, for every
n = 0. Since char{k) = 0, it is also clear that D is surjective. Then
by the universal property of Q}u k> there is a unique homomorphism
w € Homg(Qg,, R) of R-modules which composed with the canon-
ical derivation d : R — Q}” x coincides to D. Since D is surjective, w
is also surjective. Passing to sheaves on Spec(R) and restricting to U
we get the surjective map of Oy-modules w : Q},,k - Op.

If we denote by B : Qf, — Qfx the canonical surjection, we
claim that there exists a unique map of Oy-modules w’ : Q;x — Ou
such that w' o B = w. To check this, observe that D|R(;y = 0 for
every s € Ry \ {0}, whence D € Derg,,, (Rs), so that the existence of
w'’ comes from the universal property of Q}m Res (taking into account
that U = Usep, 10y D (5)). The surjectivity of w implies the surjectivity
of w’' : Qf;y — Ou. But since 1 : U — X is a smooth morphism of
relative dimension one, Qjy is an invertible @y-module. Therefore
w’ is a surjective map between two invertible Oy-modules, whence
w’ is necessarily an isomorphism.

This proves condition (3.2), and thereby lemma 3.1. 0

LEMMA 3.2 In the hypotheses of lemma 3.1, for every coherent Ox-
module F and for every p = 0 there is a natural isomorphism of graded
R-modules
HP(U,*(F)) = D HP(X,F o L").
ieZ

PROOF OF LEMMA 3.2. In the proof of lemma 3.1 we already ob-
served that the morphism r is affine (r~1(D4 (s)) = D(s) for every
s € Ry \ {0}). In particular, for every coherent @x-module F,

HP (U, m*(F)) = HP (X, r (TT*(F))), Vp =2 0.

To conclude the proof of lemma 3.2, it will be sufficient to show
that for every coherent @x-module F one has a canonical identifica-
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tion

e (T*(F)) = P Fo L% (3.5)
ez
To check this, since R is a finitely generated k-algebra such that X =
Proj(R) = Usegr,\jo} D+ (s), the sheaf F is the sheaf M associated to a
finitely generated graded R-module M. Then by the proof of lemma
3.1, Ry = Rg»lT, T-1], whence we get canonical isomorphisms of
R(sy-modules

Ms=M®R; = Me@RIT,T 1= P MyT.
iez
Since this happens for every s € R; \ {0}, these local isomorphisms
patch together to give the isomorphism (3.5). O

The tangent sheaf Tspec(r) of the cone Spec(R) corresponds to the
graded R-module

Tr = B Tr (i),
ieZ

where Tg := Derg(R), and the piece Tr(i) of weight i is given by
Tr(i) ;= {D € Derg(R) | D(Ry) € Ryyi VN = 0}.
Now, the next step in the proof of theorem 2.2 is the following:

LEMMA 3.3 Inthe above hypotheses, the k-vector space HO (X, Tx®L™1)
can be canonically identified to the k-vector space Tr(~1), foralli = 1.

PROOF OF LEMMA 3.3. Since R is normal of dimension = 2 and U =
Spec(R) \ {mg}, we can apply proposition 2.1 to deduce a canonical
isomorphism of graded R-modules Ty = H%(U, Tyy). Then the exact
sequence of lemma 3.1 yields the cohomology exact sequence of R-
modules

0 - H°(U,0p) — HO (U, Ty) - HY(U, 7t (Tx)) — H' (U, Op). (3.6)
By lemma 3.2, for every p = 0,

HP(U,0y) = G HP (X, LY,

ieZ
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and
HOU,m*(Tx)) = P HO (X, Tx ® LY).
ieZ
Now, by Mumford’s vanishing theorem (see [39]), H? (X,L!) = 0, for
everyi < 0 and p < 1 (because dim(X) = 2 and char(k) = 0; note that
this vanishing for p = 0 is trivial). Therefore the above identification
and the exact sequence (3.6) yield

Tr(i) = HYX, Ty ® L), Vi<D0.
Lemma 3.3 is proved. O

In view of lemma 3.3, theorem 2.2 will be proved if we prove the
following:

PROPOSITION 3.1 Let (X,L) be a normal polarized variety of dimen-
sion = 2 over k, with char(k) = 0. Assume that there is a non-zero
k-derivation D : R — R of weight -1, ie. D(R;) € R;-1 for alli = 0,
where R = ef‘;OHO(X,Li), If L is generated by its global sections then
the conclusion of theorem 2.2 holds true.

To prove proposition 3.1 we need another two lemmas.

LEMMA 3.4 (ZARISKI) Let R be a graded k-algebra such that char(k) =
0 and there is a k-derivation D : R — R of weight —1 and an element
t € Ry with the property that D(t) = 1. If A= {r € R | D(r) = 0}
then A is a graded k-subalgebra of R, t is transcendental over A and
R = A[t). Moreover, D = 'aQE on Alt].

PROOF OF LEMMA 3.4. The fact that A is a graded k-subalgebra of
R is immediate. Let A[T] be the polynomial A-algebra in the indeter-
minate T. Grade A[T] by deg(aT™) = deg(a) + m for every a € A
homogeneous and m = 0. Consider the homomorphism of graded
k-algebras @ : A[T] — R such that @|A = ids and @(T) = t. Then it
is immediate that the following diagram is commutative:

AlT] —2— R

% [p

AlT] 5 R
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So, it will be enough to show that ¢ is bijective.

Injectivity of : Assume that there exists a non-zero polynomial f(T)
= Y oa;Tt € A[T] such that @(f(T)) = 0. We may assume that
f(T) is homogeneous in A[T] and of minimal degree. Thus a; €
An_i € Ry-i. Then i’-g—(TIl is a polynomial of smaller degree and still
in Ker(g). Thus 9—%;—) = 0, and since char(k) = 0, f € A. Since
@ (f) = 0 it follows that f = 0, a contradiction.

Surjectivity of : We proceed by induction on n, the case n = 0 being
clear. If ¥ € Ry, (n > 0) then D(r) € Ryy—1, whence D(r) = Z{:Ol a;tt,
with a; € A,_1-i, Vi (by induction hypothesis). Thus

n~-1
ai i+1
D . Rl N A o —
r Z i+ lt ) =0,
i=0
ie v -3 ALtitl ¢ A, Lemma 3.4 is proved. -

LEMMA 3.5 Let (X,L) be a normal polarized variety over k such that
L is generated by its global sections and char(k) = 0. Assume that
there is a non-zero k-derivation D : R — R of weight -1, where R =
2o HO(X, L), Then there exists an element t € Ry = H%(X, L) such
that D(t) = 1.

PROOF OF LEMMA 3.5. Let ¢y, ..., Ly, be a basis of the k-vector space
HO(X,L). Since L is generated by its global sections we get a mor-
phism u : X — P" such that u*(Opr(1)) = L, and since L is also
ample, u is a finite morphism (otherwise there would exist a curve C
such that w(C) is a point, whence L|C cannot be ample). If for some
i, D(t;) = 0, then we can take t = &~ 1¢t;, with ot := D(t;) € k\ {0},
and therefore D(t) = 1.

Assume therefore that D(f;)} = 0 for every i = 0,1, ..., n. We shall
show that this leads to a contradiction. Consider the map of graded
k-algebras

k[To, ... Tn] = €@ HO(P", 0pn(i)) — R = B HO(X, L),
i=0 i=0
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which sends T; to 5, j = 0,1,...,n. Since u is finite the morphism of
affine varieties u=1(D.(Ty)) — D (Tp) is finite, whence the map of
k-algebras

k[To, ... Tnl(rp) = Rueo)

is finite. In particular, every homogeneous element t € R satisfies a
non-trivial algebraic equation

apt™ +ait™ '+ .. +am =0, with a; € k[tg, ....tn], m > 1.

We may assume m minimal with this property. Since the derivation
D vanishes on k[ty, ..., t; ] (by our assumption), we get by derivating

(magt™ !+ (m - Dat™ 2 + ..+ am-1)D(t) = 0.
If D(t) # 0, since R is a domain, we get
maot™ 1+ (m - Dat™ %+ ...+ am-1 = 0.

Recalling also that char(k) = 0, this contradicts the minimality of m.
Therefore D(t) = O for every homogeneous t € R, whence D = 0,
a contradiction. O

The lemmas 3.4 and 3.5 imply the following:

COROLLARY 3.1 In the hypotheses of lemma 3.5, there exists t € Ry
such that D(t) = 1, R = A[t], and t is transcendental over A := {v €
R | D(r) =0}

PROOF OF PROPOSITION 3.1. By corollary 3.1, R = A[t], with t €
HY9(X,L) such that D(t) = 1 and ¢ is transcendental over A = {r €
R | D(r) = 0}. Since R is normal it follows that A is also normal. Set
E = divy(t) € |L], ie. L = @x(E), and consider the canonical exact
sequences (1 = 0) ’

0 AL S Op(nE) = L} — 0

Taking cohomology we get

0—R—~R~—PHUE L} ~ P HX, L"), (3.7)

n=0 n=0
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We claim that H1(X,L" 1) = 0, Vn € Z. Assuming the claim, the
proof of proposition 3.1 is finished, because from the exact sequence
(3.7) it follows that

D HO(E,L}) = R/tR = A[t]/tA[t] = A.
n=_0

It remains therefore to prove the claim. Since A is normal, 14~
depth(A) > 2, whence mg-depth(R)= mg-depth(A[t]) = 3. f U :=
Spec(R) \ {mg}, we can write the local cohomology exact sequence

0 = H'(Spec(R), Ospec(r)) — H (U, Oy) — (3.8)

- HE”R (SDEC(R), OSpec(R)) e HZ(SDEC(R), OSpec(R)) = ).

By lemma 3.2,

HYU,0p) = € HUX, LY. (3.9)

1= --00

Since mpg-depth(R) = 3, H,ZnR(Spec(R), Ospec(r)) = O (see property ¢)
in the proof of proposition 2.1), whence from (3.8) and (3.9) we get
HYX,LY) = HY(X,0x(iE)) =0 for all i € Z.

In this way proposition 3.1 and thereby theorem 2.2 (under the
extra hypothesis that L is generated by its global sections) are com-
pletely proved. O

NOTE. The proof of theorem 2.2 without the hypothesis that L is
generated by its giobal sections follows the same main ideas, but
technically is more involved (see [52]).

4 Counterexamples and further consequences
of theorem 2.2

First we show by counterexamples that theorem 2.2 is in general false
in positive characteristic.
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4.1 A counterexample in characteristic 2

Let X ¢ P2" (n = 2) be the hyperquadric in P?" of equation
f = TOZ -+ TlTn_+1 -+ TZTn+2 + o+ TnTZn

over an algebraically closed field k of characteristic 2, and set L :=
Ox(1) = Op2n (1)|X. Then X is a smooth hyperquadric in P?”, and in
particular, X cannot be isomorphic to a cone over a polarized variety
(E,Lg). Set

R=PHX,0x(1) = k[To, ..., Ton1/ (f)
i=0

(being a smooth hypersurface, X is projectively normal in P?"),

Observe that because char(k) = 2, all the derivatives of the poly-
nomial f vanish at the point P = [1,0,...,0] (and only at this point).
In other words, all the projective tangent spaces at X have the point
P in common, i.e. X is a strange variety. Moreover, the derivative

d
é—j—g . k[T01 esey TZTL] - k[TOl comay T27’L]

has the property that éa_{% = (. Therefore

ogf) _ .09 .3
3Ty -—faTO, Vg € klTy,..., Tnl, ie. aTO((f)) s ().

In other words, ‘a'aT_o yields a non-zero k-derivation D : R — R of weight
-1.

On the other hand, since X is a hypersurface in P?" (n = 2),
HP(X,L™%) = 0 for all p = 0,1 and for all i € Z. Therefore the
arguments in the proof of lemma 3.3 can be carried out to prove that
HY%X, Tx(~1)) # 0 (due to these vanishings, we don’t have to appeal
to Mumford’s vanishing theorem).

This shows that (X, L) is a smooth polarized variety of dimension
> 3 (in particular is not a cone), such that HO(X, Ty ® L™!) = 0.
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4.2 A counterexample in characteristic 3

Let k be an algebraically closed field of characteristic 3 and in p3
consider the surface X of equation

f=T3+TWT? + T TS + T3T%.

We have —a%j% = (, % = Tg‘ + 20113 = TZZ - 1713, _38_%"5 = T§ - TiT>,
%% = Tf — T»T3. The subvariety in P3 of equations

TP -ThG=T~-TiTs=T: -T1T2 =0
is (at least set-theoretically) the line

L= {{AuuuleP3|[A ulePl},

as one can easily see. Thus Sing(X) is the point A = [0,1,1,1] and
all other points of L \ {A} are strange points of X (i.e. points in the
intersection of all projective tangent spaces at all smooth points of X).
In particular, X is a normal surface. Observe that B :=[0,0,0,1] € X,
but the line AB has in common with X only the points A and B. In
particular, it follows that X cannot be a cone.

On the other hand, as in example 4.1, since "a@TLO = (0, we have

Q—(a%@ = f#&, whence the derivation

0
= k[T, T1, T2, T3] — k(To, T1, T2, T3]
2Ty

yields a non-zero k-derivation D : R — R of weight —1, where
R =P HUX, 0x(1)) = k[To, T1, T2, T3/ (f)-
i=0

As above we get that HO(X, Tx ®L~1) = 0, where L := Ox(1). In other
words, the normal polarized surface (X,L) is a counter-example to
theorem 2.2 in characteristic 3.

Here is another consequence of theorem 2.2.
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PROPOSITION 4.1 LetY be a smooth, connected, non-degenerate closed
subvariety of codimension = 2 of P". Assume dim(Y) = 1 and char(k)
= 0. Then the Zak map z : HO(Y, (n + 1)Oy) — HO(Y,Ny\pn(-1)) is
injective. In particular, dimy (H°(Y, Ny)pn(=1))) = n + 1, with equal-
ity if and only if the map z is surjective.

PrOOF. Consider the following commutative diagram with exact rows
and columns

0 0

J, l

Oy(-1) —9  Op(-1)

1 1

0 —— F(~1) —— (n+1)0y Nypn(-1) —— 0

1 l Lie

Ty (-1) Tpn(-1)]Y Nypn(=1) —— 0

i l

0 0

0

0

(which is an analogue of the diagram used in the proof of theorem
2.1). The first long row implies that Ker(z) = H(Y, F(~1)) (the func-
tor HY is left exact!). On the other hand, the first column yields the
exact sequence

0 — HO%Y,0y(-1)) — HYY,F(-1)) — H(Y, Ty (-1)).

Since @y(1) is ample and dim(Y) > 1, HO(Y,0¢(-1)) = 0. We
claim that Ho(Y,Ty(-1)) = 0. Indeed, assume first dim(Y) = 2;
if this space is = 0, by theorem 2.2 Y would be a cone. But since
Y is smooth, this is possible only if Y is a linear subspace, and by
non-degeneratedness, Y = P", contradicting codimpn(Y) = 2. If
dim(Y) = 1, HY(Y,Ty(-1)) # 0 immediately implies that Y is a
line or a conic, which again contradicts codimen(Y) = 2. Therefore
HO(Y,Ty(-1)) = 0, which implies Ker(z) = HY(Y,F(-1)) =0.
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NOTE. Proposition 4.1 is in general false in positive characteris-
tic. The examples 4.1 and 4.2 above also yield counterexamples for
proposition 4.1 in positive characteristic.

COROLLARY 4.1 In the hypotheses of proposition 4.1 (but here the char-
acteristic of k can be arbitrary), assume furthermore that dim(Y) =
2, HL(Y,Oy(-1)) = HY(Y,Ty(~1)) = 0 (the first vanishing always
holds in char zero by Kodaira vanishing theorem). Then the Zak map
z:HOY, (n + 1)0y) — HO(Y, Nyjpn (—1)) is surjective.

PROOF. Indeed, the first column of the diagram from the proof of
proposition 4.1 yields the exact sequence

0=HYY,O0p(~1)) — HY(Y,F(-1)) = HY{(Y, Ty(-1)) = 0.

It follows that H(Y,F(-1)) = 0. On the other hand, from the coho-
mology sequence associated to the first row of the same diagram we
get

HOYY, (n+1)0y) = H(Y,Nyjpn(~1)) — HYY,F(-1)) =0,

ie. z is surjective. .

EXAMPLE 4.1 Let vg: P — P15 be the s-fold Veronese embedding
of P, with n(7,s) = (r;’s) —1. Set Y := v4(P"), and assume r, s = 2.

Then Oy (1) := Opniro (1)]Y coincides to Opr (5).

CLAIM 4.1 HYY,Ty(=1)) = O for everyr = 3 or forrv = s = 2.
Moreover, HL(Y,0y(=1)) = 0 for everyr = 2.

Indeed, the second statement comes from the explicit cohomology
of the projective space. For the first, the Euler sequence for P" yields
the cohomology sequence

HYP", (r + DNOpr (1 ~5)) —
— HY P, Tpr (-5)) = HU(Y, Ty (=1)) — H*(P", Opr (—5)).

The first space is zero because ¥ = 2, while the last one is zero either
ifr=3,orifr=s5=2.
Therefore by corollary 4.1, the Zak map of Y in P is surjective.
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REMARK 4.1 If in example 4.1 we assume v > 3, we actually have
HYY,0¢v({) = HU(Y,Ty(i)) =0 foralli e Z.

EXAMPLE 4.2 Leti: P! x P* — P?"*+1 with 7 = 2, be the Segre embed-
ding of P x P". SetY = i(P! x P"). Then Oy (1) = O(1, 1), where

0(1,1) := p}(Op (1)) ® p} (Opr (1)),

where p; and p; are the first and the second projections of P! x P”
respectively.

CLAIM 4.2 HY(Y, 0y (1)) = HYNY, Ty(i)) = 0 for every i € Z.

Again the first statement is trivial. For the second we have Ty =
pi(Tp) ® p3 (Tpr) = py(Op:(2)) ® p3(Tpr). Then the conclusion
follows easily from Kiinneth's formula and from the Euler sequence
of P”.

In particular, by corollary 4.1 the Zak map of Y in P2"*! is surjec-
tive.

Another application of theorem 2.2 is the following result.

THEOREM 4.1 (FUJITA [10]) Let Y be a smooth projective variety over
C wich is embedded in the normal projective variety X as an ample
Cartier divisor. Assume that dim(Y) = 2 and H*(Y, Ty ® Ny/y) = 0
for every i = 1, where Ny |x is the normal bundle of Y in X. Then X is
isomorphic to the cone over the polarized variety (Y,Nyix).

PROOF. Set L := Nyx. The normal sequence of Y in X
0—-Ty - TxlY - L~-0
yields the cohomology sequence (i = 1)
HYY, Ty ® L7} — HY(Y, Tx|Y ® L") — HY(Y,L'79). (4.1)

For every i = 2 the first space is zero by hypotheses, and the third
space is also zero by Kodaira vanishing theorem (dim(Y) = 2). It



SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY 267

follows that H}(Y,Tx|Y ® L~%) = O for every i = 2. Therefore the
exact sequence

0-Tx®Ox(—(i+1)Y) = Tx ® Ox(~i¥) — Tx]Y @ L™t - 0 (4.2)
yields for every i = 2 a surjection
HYX, Tx ® Ox(—(i+ 1)Y)) - HY(X, Tx ® Ox(—-iY)). (4.3)

On the other hand, since X is normal of dimension = 2, Y is an ample
Cartier divisor on X, and Tx is a reflexive sheaf, a lemma of Enriques-
Severi-Zariski-Serre shows that

HY (X, Tx ® Ox(—iY)) = 0 for every i >> 0. (4.4)

Then (4.3) and (4.4) and an induction on i yield HY (Tx @ Ox(-2Y)) =
0. Therefore the exact sequence (4.2) (for i = 1) yields the surjection

HYX, Tx ® Ox(-Y)) - HY(Txly o L 1) — 0. (4.5)

Finally, the exact sequence (4.1) (for i = 1) vields the cohomology
sequence

HO(Y, TxlY o LY — HO(Y,0y) = HY(Y, Ty o L™1), (4.6)

in which the last space is zero by hypothesis. Therefore the first
map of (4.6) is surjective. Recalling also the surjection (4.5), we get a
surjection

HY(X, Tx ® Ox(=Y)) — HO(Y,0y) # 0,

and in particular, H2(X, Ty ® Ox(-Y)) # 0. At this point we can
apply theorem 2.2 to the normal polarized variety (X, Ox(Y)) to get
the conclusion. 0

Inall these examples we shall assume that char(k) = 0.

EXAMPLE 4.3 (Y,L) = (P",Opn(s)), withn = 3 and s = 1. Then by
the remark following 1, H' (Y, Ty ® Li) = 0 for every i € Z.

ExAMPLE 4.4 LetY be an abelian variety of dimension d = 2. Then for
every ample line bundle L on Y, we have HI(Y, Ty ® L) = O for every
i = 1. Indeed, in this case Ty is isomorphic to the trivial bundle of
rank d, and the assertion follows from the Kodaira vanishing theorem
for example.
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EXAMPLE 4.5 Let Y = Y; X Y» be a product of two smooth projective
varieties Y; with dim(Y;) > 2, i = 1, 2. Let L; be an ample line bundle
onY;,i=1,2andset L:=p;(L1) ® py(Ly), where p; : Y — Y; is the
canonical projection on Y;, i = 1, 2. Then L is ample on Y. Moreover,
Ty = p{ (Tv,) @ p5 (Ty,). Then for every i > 0,

HYY, Ty o L)) =HYY,p{(Ty, s LT") ® p3 (L3")) @
® HU(Y,pF(LTY) ® p}(Ty, ® L31)),

and using Kiinneth’s formulae we get H! (Y, Ty ® L™%) = 0 for every
i>1.

EXAMPLE 4.6 Let Y = Y| x ¥» X Y3 be a product of three smooth
projective varieties Y1, Y» and Y3 each of dimension = 1, and let
L := p¥(L1) ® pf(L2) ® p3(L3), with L; an ample line bundle on
Y;, i = 1,2,3. Then by arguments similar to those in the previous
example we have HI(Y, Ty ® L™%) = O for all i > 1.

EXAMPLE 4.7 Let Y be a hyperelliptic surface. This is a surface with
invariants by = 2, pg = 0, g = 1 and x(0Oy) = 0. Moreover, there are
two elliptic curves By and By, a finite subgroup A C Bj, an injective
homomorphism « : A — Aut(Byp), and a free action of A on B; X By
of the form a(by, bg) = (b1 + a, x(a)(bg)) (see e.g. [7, 10.25]). Then
Y = (By X Bg)/A. Let f : Z := B; X Bp — Y be the canonical étale
morphism. Then f*(Ty) = Tz = 207 (since Z is an abelian surface),
and f*(L) is ample on Z. Since char(k) = 0 the vanishing of H! (Ty ®
L=%) (for i = 1) follows from the vanishing H1(f*(Ty) @ f*(L~1)) =
HYZ,2f*(L~1%)) = 0 (Z is an abelian surface and f*(L) is ample on
Z, see example 4.4).

To give another application of theorem 4.1 we need the following
result (see [29, page 110]):

THEOREM 4.2 Let Y be an effective Cartier divisor on a complete al-
gebraic variety X such that the normal bundle Nyx is ample. Then
there exists a birational projective morphism f : X — Z such that there
exists an open subset U < X with the property that fiU : U — f(U) is
an isomorphism and Y' = f(Y) is an ample Cartier divisor on Z. In
particular, X is a projective variety.
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PROOF. We claim that the following three statements hold for every
n>> 0:

1. Nyjx = Oy(nY) is very ample,
2. The restriction map HY(X, ©x(Y)) — HO(Y,N},y) is surjective,
3. The complete linear system [nY| has no base points.

(1) is obvious. For (2) and (3) we adjust part of the proof (due
to Kleiman) the Nakai-Moishezon criterion, see e.g. {29]. Since Ny x
is ample and Y is a complete scheme, H! (Y, N}, y) = 0 for n >> 0.
Therefore from the cohomology exact sequence

HY(X,0x((n - 1)Y)) =22 HU(X,O0x(nY)) —— HUY,NPy)
associated to the exact sequence
0-0x((n-1)Y) - Ox(nY) — Ny x — 0,

the map «y is surjective for n >> 0. Since X is complete, H} (X, Ox
({n — 1)Y)) is a finite dimensional vector space, it follows that the
maps « actually become isomorphisms for n >> 0. Therefore the
cohomology exact sequence of the above short exact sequence yields
(2). Then (1) and (2) immediately imply (3).

Now let @ = @ny; : X — P = P(HY(X,0x(nY))*) be the mor-
phism defined by the base-point-free complete linear system |nY|
for n >> 0. Set Z; = @(X). Then Y = @*(Y;), with Y; a very am-
ple divisor on Z;. By the above claim it follows that @Y : Y = 1
and Yred = @ 1((Y1)red). Let @ = g o f be the Stein factorization of
the projective morphism @, with f : X — Z a proper morphism with
S«(Ox) = Oz, and g : Z — Z; a finite surjective morphism (see [26,
4.3.3]). Notice that f|Y : Y — Y’ := g*(Yy) is an isomorphism and
Yrea = f71(Yyeq), SO by Zariski’s Main Theorem (see [26, 4.4.1]), f is
an isomorphism in a neighbourhood of Y onto an open subset of Z.
Moreover since @ = g o f is a projective morphism, f is also projec-
tive by a simple general property (see [26, 5.5.5]). Finally, Y’ = g*(Y1)
is an ample Cartier divisor on Z because Y) is ample on Z, and g is
finite. O]
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DEFINITION 4.1 Leti:Y « X andi : Y — X be two closed embed-
dings of the projective varieties Y and Y’ into the projective varieties X
and X’ respectively. We shall say that i and i’ are Zariski equivalent
if there exist two Zariski open subsets U < X and U’ < X' contain-
ingY and Y’ respectively, and an isomorphism @ : U = U’ such that
p(Y)=Y".

Now theorems 4.1 and 4.2 together imply the following:

COROLLARY 4.2 Let (Y,L) be a smooth polarized variety over C of
dimension = 2 such that H\(Y, Ty @ L™%) = 0 forevery i > 1. Assume
that Y admits two embeddings Y — X and Y — X' in the normal
projective varieties X and X' as Cartier divisors such that Ny x = L =
Ny|x'. Thenthe embeddingsY — X andY — X’ are Zariski equivalent.

5 The Zak map of a curve. Gaussian maps

We note that the condition H! (Ty ® L™1) = 0in corollary (3.4) is never
fulfilled for a smooth projective curve Y embedded in P™ such that
Y is non-degenerate and of codimension > 2. The aim of this section
is to provide an interpretation of the Zak map of a linearly normal
smooth curve Y ¢ P™" in terms of the so-called Gaussian maps. The
advantage of the Gaussian maps comes from the fact that in certain
cases there are methods to check their surjectivity, see [533], [54], [14]
and the references therein.

5.1 General Gaussian maps

According to [54], let Y be a smooth projective variety, and let L, M
be two line bundles on Y. Consider the canonical map

prp s HO(Y, L)y @ HO(Y, M) — HY(Y,L e M). (5.1)
Set R(L,M) := Ker(ur m). We are going to define the Gaussian map
Ly RILM) ~ HO(Y,Qp 8 Lo M) (5.2)

associated to (L, M) on Y in the following way. Let ¢ = > ;[; ® m; €
R(L,M). Let U be an arbitrary affine open subset of ¥ such that
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LU= 0Oy -Sand MU = Oy - T, so that (over U), I; = a;S, m; = b;T,
with a;, b; e I'(U, Oy). Since @« € R(L,M), we have >;a;b; = 0.
Then we set

@Ly()|U = D (aidb; — bida)S® T € HY(U,Qx, @ Lo M).
i

(5.3)

Replacing S by § := u~!'S and T by T := v~!T, with u and v units
in T(U, ®y), we have I; = ¢;§ and m; = b;T, where 4; := ua; and
b;:= vb;. Then

Z(didég - fh&ifli)g oT =
i

= > (wavdb; + ua;b;dv — vbhjuda; - vhijadwu v Se T =
i

= > (aidb;—bida)S o T+ (O ab;)(udv — vdu) =
; i

1

= > (aidb; - bida;))S o T,
i

because > ;a;b; = 0. It follows that @y () is independent of the
choices made, whence is a well defined elementin HO(Y,Q}, ® L& M)
as soon as we have checked the following

Zli em;=0 = @rulx)=0.

i
To this end, let {n;} be a basis of H(Y,M). Then m; = 3, Bijn;,
with B;; € k. Then

2liemi=3Lie (> Bimn) =3O Bl enj =0,
i i J Jod

whence (taking into account that {n;} is a basis of H°(Y,M) and of
the properties of the tensor product), > ; B;;1; = 0. Writing n; = ¢;T,
with ¢; € [(U, Oy), we have b; = 3; Bijc; and 3; Bija; = 0, so
D {aidb; - bida;) = > aifijdc; — > Pijcida; = > (> Bijadej—
i ij i,j i
- > Bijcjda; = - Bijcjda; = - c;d(D Bijar) = - ¢;d0 =0,
iJ LJ J i J
so that @z m{x) = 0, as required.
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PROPERTY 5.1 Let f : X — Y be a morphism of smooth projective
varieties, and let L, M be two line bundles on Y. Then there is a natural
commutative diagram

R(L, M) PL HY(Q) ® L ® M)

l 1

R(f*(L), f*(M)) HO Qe ® f*(L) ® f*(M))

@ F* 1), f5 M)

PROPERTY 5.2 If N is a third line bundle on Y, there is a natural com-
mutative diagram

@Lu®id
e sl

R(L,M) ® H'(Y,N) - HY(Q @ Lo M) e H(Y,N)

J |

R(L,M ®N) HY(Qp®LeMaN)

PLM&N

PROPERTY 5.3 For every two line bundles L and M on a smooth pro-
jective variety Y we have the following anti-commutative square

R(L,M) 22 HO(Y, Qb ® Lo M)

u v

R(M,L) —— HO(Y,Qy, @ M®L)
ML

i.e. @pmrou = ~v o @y, where u and v are the isomorphisms
given by the commutativity of the tensor product. In particular, the
Gaussian map @y u is surjective if and only if @uy 1 is surjective.

PROPERTY 5.4 Assume L = M and consider the natural map wy :
APHO(Y,L) — R(L,L) defined by

wrllial)=Lel-1el.
We get a composition
wy i=@rpowg: APHY(Y,L) — HO(Y,Qpy © L),

which is called the Wahl map associated to L on Y. Then we have the
following:
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CraiMm 5.1 If char(k) = 2, Im{(wy) = Im(@ry), and in particular,
Coker(wy) = Coker(gr,1).

Indeed, the inclusion Im(w;) < Im(y ;) is obvious. Conversely,
let « = 3;1; ® m; € R(L,L). Then define B := 3[Y;l; ® m; +
>.i(—-m;) ® ;1. Clearly, 8 € Im(w;) and @1 (x) = @ ().

Of particular interest is the Wahl map
Wy '= Weoy : APHO(Y, wy) — HY(Y,Qf ® w}) = HOY, w?)

associated to a smooth prcojective curve Y of genus g = 2. Its interest
comes from the fact that wy is a map intrinsically associated to the
curve Y. As we shall see below, one of the fundamental questions
related to wy is whether wy is surjective. A necessary condition for
the surjectivity of wy is obviously the following

dim(A2HO(Y, wy)) = dim(H (Y, w3 ).

Using Riemann-Roch, this condition amounts to the following one

1 _
59(9— 1) = 59 -5,

or else, g = 10.

5.2 Gaussian maps for curves

Let Y be a smooth projective curve and L a very ample line bundle
onY. Leti =iy :Y « P:= P(HY,L)*) be the linearly normal
embedding into the projective space P given by the complete linear
system |L|. In particular, i*(@p(1)) = L. Consider the evaluation
map e : HO9(Y,L) ® Oy — L. Since L is very ample, the map e is
surjective. Moreover, its kernel is identified to 91171 DY = Q},,k ®
Op(1) ® Oy, whence we get the exact sequence

0-— Q},,k(l)xy - HYY,L)® Oy —= L = Oy(1) — 0, (5.4)

which is nothing but the dual of the Euler sequence of P restricted
to Y. Let M be another line bundle on Y. Tensoring (5.4) by M and
taking cohomology we get the exact sequence

[

0 HO(Y,L) e HY(Y,M) ——

HO(Y,Q} (DY @ M)
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LM

HOY, Lo M) —— HUY,Qp, (1Y 8 M) ——

o4

HO(Y,L) ® HX(Y,M). (5.5)
In particular, we get the identification
R(L,M) = HU(Y, Qp (DY & M). (5.6)

On the other hand, the dual normal sequence of Y in P vyields the
exact sequence

b a

0~ NypoLoM Qpp(DIY o M Qy®LeM—0,

whence, taking into account of (5.6), the cohomology sequence

erLu=H%a

R(L, M) L HO®Y,QL, @ Lo M) -

1 -
~HY(Y,Nj e Lo M) L2 gLy, al, (DiYed). (5.7

In particular from (5.7) we get
Coker(@ u) = Ker(H(b)). (5.8
Therefore (5.8) implies the following:

LEMMA 5.1 In the above hypotheses the Gaussian map @y u Is surjec-
tive z‘le(Y,Nfi‘P Lo M)=0.

COROLLARY 5.1 Assume furthermore that HH(Y, L™} @ M) = 0 and
that the very ample line bundle L is normally presented, i.e. the graded
k-algebra R(Y,L) := &3 HO(Y, L") is generated by its homogeneous
part of degree one and the ideal

Ker(S(H®(X,L)*) = 82, H(P, Op(i)) — R(Y,L))

is generated by its homogeneous part of degree two, where S(V) de-
notes the symmetric k-algebra associated to a k-vector space V. Then
the Gaussian map @ M IS surjective.
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PROOF. Since L is normally presented there exists a surjection of the
form
mop(-2) - Iy - 0,

where 7y is the ideal sheaf of Y in @p. This yields the surjection
(mop(-2))eLoMz=m(L™'eM) ~Ty®LeM = N{,8LaM — 0.
Since Y is a curve we get therefore a surjection

HYY,m(@L ' o M)) - H'(Y,N§p, 8 Le M) - 0.

Using the hypothesis that H'(Y,L™' @ M) = 0 and lemma 5.1 we get
the conclusion of our corollary. 0

EXAMPLE 5.1 Incorollary 5.1 take Y a non-hyperelliptic curve of genus
g z 3, which is neither trigonal, nor a plane quintic. By a theorem of
Max Noether-Petri (see [1]), the canonical class L = wy is very ample
and normally presented. Take M of degree = 4g — 3. Then

deg(L™! ® M) = deg(M) — deg(L) = (49 —3) - (2g - 2) =2g - 1.
By Riemann-Roch, H!(Y,L-1® M) = 0. Therefore corollary 5.1 yields:

THEOREM 5.1 (LAZARSFELD) LetY be a non-hyperelliptic curve of genus
g = 3 which is neither trigonal, nor a plane quintic. Let M be a line
bundle on'Y of degree = 4g — 3. Then the Gaussian map Puwy,M IS
surjective.

NOTE. The conclusion of theorem 5.1 still holds if we take M of
degree 4g — 4, provided M # w?.

COROLLARY 5.2 In the hypotheses of theorem 5.1 the map @M, wy IS
surjective.

PROOF. The conclusion follows from theorem 5.1 and from property
5.3.
O
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THEOREM 5.2 (WAHL) Let Y be a smooth projective curve of genus g >
0 and let L be a very ample line bundle on Y. Leti : Y — P =
P(HO(Y,L)*) be the linearly normal embedding given by |L| into the
prajective space P. Then there is a canonical isomorphism

Coker(z) = Coker(@r wy)*,

where z : HO(Y,L)* — H(Y,Nyp(—1)) is the Zak map of Y in P. In
particular, the Zak map z is surjective if and only if the Gaussian map
@PL.wy IS sSurjective.

PROOF. Using (5.8) we get
Coker(@r,wy) = Ker(H(Y,N§ poLewy) — HI(Y, Qb (1)IYowy)),
or by duality on Y,

Coker(gr,wy)* = Coker(HO(Y, Tp(=1)]Y) — HO(Y,Nyp(~1)).
(5.9)

On the other hand, by a general classical statement due to Petri (see
[54], or [14]) the map yr w, is surjective (recall that L is very ample
and g > 0 by hypotheses). If in (5.5) we take M = wy, we get that the
map

o HU(Y, Qb (1) ® wy) — HO(Y,L) @ H'(Y, wy)

is injective. Therefore by duality the map
o* HO(Y, L)* @ HO(Y,Oy) = HO(Y,L)* — HY(Y, Tp (-1)|Y) (5.10)

is surjective. Then the definition of the Zak map, (5.9) and the sur-
jectivity of the map (5.10) yield the conclusion of our theorem.

COROLLARY 5.3 Let Y be a smooth projective non-hyperelliptic curve
of genus g = 3 which is neither trigonal, nor a plane quintic. Let L be
a line bundle on Y of degree = 4g — 4 such that L # w?. Then the Zak
map associated to the linearly normal embedding i = i) : Y « P",
withn = h9(Y,L) - 1 = deg(L) — g, is surjective. In particular, every
extension in P! of the embedded curve Y C P" is a cone.
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PROOF. Since 4g —4 = 2g + 1 for g = 3, L is very ample on Y. Then
the corollary is a consequence of theorem 5.2 and of corollary 5.2.
For the last statement apply theorem 2.1. 0

Now we come back to the Wahl map
wy : A2HY(Y, wy) ~ HY(Y, w})

of a curve Y of genus g = 2. As we saw above, the surjectivity of wy
implies g = 10. Then we have the following fundamental result;

THEOREM 5.3 (CILIBERTO-HARRIS-MIRANDA [14]) For the general cur-
veY of genus g = 10 and g + 11 the Wahl map wy Is surjective.

The conclusion of theorem 5.3 is false for g = 11 (see [37], via
theorem 5.4 below). Note that the surjectivity of the Wahl map wy is
an open condition in the moduli space My of isomorphism classes
of curves of genus g. For some genera g = 10 Wahl produced for the
first time explicit examples of curves Y with wy surjective (see [53}).
Therefore for those genera theorem 5.3 is due to Wahl. The method
of Ciliberto-Harris-Miranda is entirely different, the main idea being
to study the Wahl map for certain degenerations of curves of genus
g- A consequence of theorem 5.3 via theorem 5.2 and the remarks
made at 5.4 is the following:

COROLLARY 5.4 For a general projective curve Y of genus g = 10,
g + 11, let Y — P9~ be the canonical embedding of Y. Then every
extension of Y in P9 is a cone.

PrOOF. The first part follows from theorem 5.3, theorem 5.2 (via the
remarks made after property 5.4), and from theorem 2.1. O

Finally, we have the following useful result:
THEOREM 5.4 (WAHL) Let Y be a smooth non-hyperelliptic projective

curve of genus g = 3 which is contained in a K3 surface S. Then the
Wahl map wy of Y is not surjective,
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PROOF. The genus’ formula and the fact that the canonical class
Ks is trivial yield (Y?2) > 0, where (Y?) = (Y2)s denotes the self-
intersection of Y on S. It follows that (Y - C) = 0 for every irre-
ducible curve C on §. Assume that there exists an irreducible curve
C on S such that (Y - C) = 0. Using the Hodge index theorem (see
e.g. [7]) it follows that (C?) < 0. Then from the genus’ formula we
get C = P! and (C?) = —2. The Hodge index theorem also implies
that there are only finitely many such (-2)-curves. Then a projec-
tive contractihility criterion of M. Artin (see [2], or also [7, chapter 3])
shows that there exists a birational morphism f : § — X, with the
following properties: X is a normal projective surface having finitely
many singular points (which are rational double points) such that the
canonical divisor Kx of X is Cartier (in particular, all the singularities
of X are Gorenstein), f*(Kx) is a canonical divisor K5 on S, and the
canonical map H}(X,Ox) - HY(S,Og) is an isomorphism. In our
case, since S is a K3-surface, Ks = 0 and g = h!(S,0s) = 0. It fol-
lows that Ky = 0 and h! (X, ©x) = 0. In other words, X is a singular
K3-surface. Moreover, by construction, f defines an isomorphism
FIU U = f£(U) from a Zariski open neighbourhood U of Y in § (we
can take U = S\ E, where E is the union of all irreducible (- 2)-curves
C such that (Y - C) = 0). In particular, Y can also be embedded (via
fIY)in X as a Cartier divisor. Again by construction, (Y - D)x > 0
for every irreducible curve D on X. Since f*(Y) = Y, it also follows
that (Y2)y = (Y?)s > 0. Then by the Nakai-Moishezon criterion of
ampleness (see e.g. [29], or also [7, chapter 1]) we infer that Y is an
ample Cartier divisor on X.

Now the adjunction formula together with the fact that wy =
Ox(Kx) = Ox vield Ox(Y)|Y = wy. Therefore for every n = 0 we get
the exact sequence

0— Ox((n-1)Y) ~ O0x(nY) - wg -0,
whence the cohomology sequence
0 — HY(X,0x((n- 1)Y)) - HY(X,0x(nY)) - H'(Y, w}) ~

- HYX,0x((n -1)Y)) - HY(X,O0x(nY)) — H(Y,w}) —
—~ H*(X,0x((n-1)Y)) — H*(X,0x(nY)) — 0.
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[ claim that H1(Ox(nY)) = O for every n = 0. Indeed, since for
n = 0 we already know this, we may assume n > 0. In characteristic
zero, by duality this amounts to H (X, @x(~nY)) = 0 which holds by
Kodaira-Mumford vanishing theorem. However, the assertion is valid
in arbitrary characteristic, as one can immediately see by examining
the above exact sequence (taking into account that h?(X,Ox) = 1,
H%(X,0x(nY)) = HYX,0x(-nY)) =0 foralln > 0, h} (Y, wy) = 1
and H'(Y,w}) =0 forall n > 1).
Therefore for every n = 0 we get the exact sequence

0 - H9X,0x((n~ DY) — HOX, 0x(nY)) ~ HO(Y, w}) — 0.

In particular, X ¢ P9 and A/tA = R,where A := @%_ H(X,Ox(nY)),
and R := o5_HO(Y,w}), and t € A; = HY(X,O0x(Y)) is a global
equation of Y in X. Now, by a classical theorem of Max Noether,
the canonical ring R of a non-hyperelliptic curve Y of genus g = 3 is
generated by R; (see[1]). Therefore A is also generated by A; (because
A/tA = R and deg(t) = 1).

In particular, Y is a very ample divisor on X. Recalling that Y C
P9-1 and X ¢ PY, we infer that X is an extension of Y in P9 in the
sense of section 2. This extension cannot be trivial because otherwise
X (and hence also S) would be birationally equivalent to Y x Pl. At
this point we can apply theorem 2.1 to deduce that the Zak map of
Y in P9-! cannot be surjective. Therefore by theorem 5.2, the Wahl
map wy also cannot be surjective. -

REMARK 5.1 In theorem 5.4 we could have used theorem 4.2 instead
of the more delicate contractibility theorem of M. Artin.

REMARK 5.2 The major interest of theorem 2.1 consists in the fact
that it holds also for the case when Y is a curve, in which case the
cokernel of the Zak map can be interpreted (via theorem 5.2 above)
in terms of the cokernel of a certain Gaussian map. Moreover, the
theorems 5.1 and 5.3 above produce very interesting examples of
surjective Gaussian maps.
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6 Deformations of quasi-homogeneous singularities and pro-
jective geometry

Let X be a smooth variety and Y a closed subvariety having only one
singularity v € Y. Then we may consider the normal sequence of Y
in X

0 Ty TxlY —%— Nyx-

Since Y is smooth outside y and X is smooth, @ is surjective outside
the point y. Therefore

Ty, = Coker(g)

is a coherent sheaf concentrated at the point y. In particular, T }’y
{(sometimes also denoted by T}) is a finitely dimensional vector space
over k (because it is a coherent sheaf concentrated at one point),
which is called the space of first order infinitesimal deformations of
the isolated singularity. This space turns out to be an extremely im-
portant intrinsic invariant of the isolated singularity (Y, ). In fact,
T},y depends only on the singularity (Y, y), and not on the choice
of the embedding Y — X into the smooth variety X (see corollary 6.1
and remark 6.1 below).

The definition of T}’}‘y = Ty being local, we may assume that Y =
Spec(A), with A a finitely generated k-algebra. Then we may write A =
k(Ty,..., Tn1/I, where I is an ideal of the polynomial k-algebra P :=
k[Ti,..., Tn], and therefore we may take X = Spec(k[T1, ..., Tn]) = A™,
and as Y — X the subvariety V(I) of X defined by the ideal I. The
canonical exact sequence

111~ QppepA— Qi —0
yields for every A-module M the exact sequence
0 — Homa(Q,, M) = Dery (A, M) — Homa (Qpy ®p A, M) =

= Dery(P,M) _Z¥. Hom(I/I?,M) — TY(Alk,M) — 0

where by definition T1(Alk, M) := Coker(@y). Taking M = A we get
that Ty ,, is the sheaf associated to the A-module T'(A[k, A).
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DEFINITION 6.1 Let A be a commutative k-algebra of finite type, and
M an A-module. An extension of A over k (or of A/k) by M is an exact
sequence

0 M—twF-L .4 0 (6.1)

where E is a commutative k-algebra, j is a surjective homomorphism
of k-algebras, i(M) = Ker(j) is a square-zero ideal of E (in partic-
ular, i(M) becomes an A-module), and i defines an isomorphism of
A-modules between M and i{M).

Two extensions (E) and (E") of A/k by M are said to be equivalent
if there exists a k-algebra homomorphism u : E -~ E’ inducing a
commutative diagram

M-—t. F L .4
iy l ui l i
M —— E — A
i Jj

It follows easily that u must be an isomorphism of k-algebras. The
set of equivalence classes of extensions of A/k by M will be denoted
by Ex!(Alk, M).

THEOREM 6.1 With the above definitions and notations, there is a nat-
ural bijection
o ExM(Alk, M) — T (Alk, M).

PrROOF. Consider an extension

0 oM — " E—J .4 ¢ (E)

Since P is a polynomial k-algebra the canonical surjectiong : P — A =
P/I factors through a (not necessarily unique) k-algebra homomor-
phism f: P — E,ie. jo f = g. Since g(I) = 0, f(I) ¢ Ker(j) = M.
However, i(M) is a square-zero ideal of E, hence f induces an ho-
momorphism of A-modules h : I/I° — M, and thus, an element of
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TYHAlk,M). If f' : P — E is another lifting of g, then i"1(f - ') :
P — M is a k-derivation, thus the map

o ExV(Alk, M) — TYH(Alk, M)

given by (E)— «(E) := h is well defined.

Conversely, let i be an arbitrary element of T!(A|k, M), with h an
element of Homu(I/I?, M), i.e. h: I — M a k-homomorphism which
vanishes on I°. On the product P x M consider the usual addition
and the multiplication defined by

(x,m)(x",m'"):=(xx',x'm+xm’), Vix,m), (x’,m')ePxM,

where M is regarded as a P-module by the restriction of scalars via
the canonical map of k-algebras g : P — A. With this multiplication,
it is easy to see that {(x,~h(x)) | x € I'} is an ideal of P x M. Set

= (PXM)/{(x,~h(x)) | x €I}

Let jo : En — A be the map defined by j,(x, m) = xmodl € A,
V(x m) € Ey. Clearly, ju /Ii-i well Elggged surjective homomorphism
of k-algebras. For every (x,m), (x’,m’) € Ker(jn) we have

e e P e ————
(x,m)(x',m') = (xx',x'm+xm’) = (xx',0)

= (xx’ﬁxx')) = ma

because x,x’ € I and h vanishes on I2. In other words, Ker(j,) is a
square-zero ideal of E,. Moreover, it is easily checked that the map
(x,m) — m + h(x) yields a well defined isomorphism of A-modules
Ker(jn) = M. In other words, in this way we get an extension (Ep) of
Alk by M.

We prove now that if h = h' (with b’ € Homa(I/1?,M)), the ex-
tensions (E,) and (En’) (of A/k by M) are equivalent. The equality
h = h’ means that there is a derivation d € Derx(P, M) such that
R :=h+d|l:I - M{(hand h’ are regarded as k-linear maps which
vanish on I?). Then it is easily checked that the function @ : Ep — Ep
defined by @((ﬁ)) = (x,m + d{x)) yields an isomorphism of ex-
tensions (Ep) = (Ep’).



SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY 283

Therefore we get a well defined map 8 : T (Alk, M) — Ex}(Alk, M)
given by B(h) := class of (Ep), which is easily checked to be the
inverse of the map o. .

COROLLARY 6.1 TY(A/k,M) is independent of the choice of the pre-
sentation A = P/I. In particular, if (Y,y) is an isolated singularity,
Ty, is independent on the embedding Y — A™.

PROOF. The corollary follows from theorem 6.1 because the set
Ex!(Alk, M) is independent of the presentation A = P/I. 0o

REMARK 6.1 One can prove that the structure of A-module of T} (A%,
M) is also independent on the choice of the presentation. Roughly
speaking, this is done in the following way: one can intrinsically
define an addition on Ex!(Alk, M) and a scalar multiplication A X
Ex!(Alk,M) — Ex'(Alk,M) such that Ex!(Alk,M) becomes an A-
module (i.e. depending only of A/k and on M). Then one checks
that the bijective map « is in fact an isomorphism of A-modules (see
[44] for details).

6.1 Quasi-homogeneous singularities

Assume now that A = @} (A, is a finitely generated graded k-algebra
such that Y := Spec(A) has an isolated singularity y at the maxi-
mal irrelevant ideal m4 = @2, A;. The singularities (Y, ) of the
form Y = Spec(A) and y = my4, where A is a finitely generated
graded k-algebra are called quasi-homogeneous. Since A is finitely
generated there are homogeneous elements ay, ..., a, € A of positive
degrees d1, ..., dn respectively such that A = k[a;,...,an]. Consider
the polynomial k-algebra P := k[T1,..., T, ] graded by the conditions
that deg(T;) = d;, Vi = 1,...,n. Then the map @ : P — A of graded
k-algebras such that @(T;) = a;, Vi = 1,...,n, becomes a surjective
homomorphism of graded k-algebras. If I := Ker(g), then I is a ho-
mogeneous ideal of P such that A = P/I. Let M be a graded A-module.
By the definition of T!'(Alk, M) we have the exact sequence

U

0

Dery (A, M) Der (P, M) ==
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Y Homu(/I?,M) —— TYAlk,M) 0,

in which the first three A-modules are graded and « and v are homo-
morphisms of graded A-modules. It follows that T!(A|k, M) becomes
a graded A-module.

On the other hand, by corollary 6.1 and remark 6.1, the A-module
T!(Alk, M) is independent on the presentation A = P/I, i.e. T'(Alk,
M) is independent on the choice of the system of homogeneous gen-
erators ai, ..., an of the graded k-algebra A. One can prove that the
structure of graded A-module of T!(Alk, M) thus obtained is also
independent on the choice of homogeneous presentation A = P/I
(see [42]). In particular, the space Ty, = T1(Alk, A) of first order
infinitesimal deformations of the quasi-homogeneous isolated singu-
larity (Y, y) (corresponding to the irrelevant ideal m 4) has an intrin-
sic decomposition

Ty, = D Ty, (i)
i€z
which corresponds to the structure of the graded A-module of T!(A|k,
A). The subspace T},y (i) is called the space of first order infinitesimal
deformations of weight i of the quasi-homogeneous isolated singu-
larity (Y,y). Since the singularity (Y, y) is isolated, T} ,, is a finite
dimensional k-vector space, and in particular T,{y(i) + 0 only for
finitely many values of i € 7.

6.2 Cones over projectively normal varieties

Let Y be a closed smooth subvariety of the n-dimensional projective
space P" of dimension > 1. We recall that Y is called projectively
normal in P" if the Serre map (see [28])

x:k[Y] = R(Y) = P H(Y,0¢(i))
iz
is an isomorphism, where k[Y] := k[T, ..., Tn]/I1(Y) is the homoge-
neous coordinate k-algebra of Y in P" (with Ty, ..., Tn n + 1 variables
over k and I(Y) the saturated ideal of Y in P"). Geometrically, this
means that Y is irreducible and for every i = 1 the linear system cut
out on Y by all hypersurfaces of degree i is complete. The ring R(Y)
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is normal since Y is smooth. On the other hand, the Serre map « of
any closed irreducible subvariety Y ¢ P" is TN-surjective, i.e. the
maps o; : k[Y]; — HO(Y,Oy(i)) are isomorphisms for all i >> 0.
It follows that (for a non necessarily projectively normal subvariety
Y € P™) the ring R(Y) is the normalization of k[Y] in its field of
quotients. Therefore Y is projectively normal if and only if the ring
R := k{Y] is normal.

Set C := Spec(k[Tq, ..., Tn]) = A"*1, Inside C we have the affine
cone Cy := Spec(R) = Spec(k[Y]) with vertex x = (0,0, ...,0) {which
corresponds to the maximal irrelevant ideal mg). Since Y is smooth
and projectively normal in P", Cy is a closed normal subvariety of C
having an isolated singularity at x. Moreover the gradings of R and
of k[To, ..., Tn] (deg(T;) = 1, Vi = 0, ..., n) vield obvious G, -actions
on Cy and on C such that the closed embedding Cy - C becames
Gm-invariant. Set Uy := Cy \ {x} and U = C\ {x}. Then Uy and U
are G, -invariant open subsets of Cy and of C respectively, such that
the closed embedding Uy — U is also Gy, -invariant. We have natural
projections my : Uy — Y and 7 : U — P" such that the following
diagram is cartesian

1Y) = Uy U
m'l ln (6.2)
Y pr

in which the horizontal arrows are the natural inclusions.

Our aim is to compute in geometric terms the space Tg}, = TCI'y,X
of first order infinitesimal deformations of the isolated singularity
(Cy,x). By the definition of Téy we have the exact sequence

0— T¢, = TclCy = Neyic — Téy - 0.

Since Cy is an affine variety, by passing to global sections we get the
exact sequence

0 — H%(T¢,) - H(T¢ICy) —~ HY(Neyic) — HU(TE ) =T (RIk,R) — O

On the other hand, since T¢,, Tc|Cy and N¢, ¢ are reflexive shea-
ves on the normal variety Cy of dimension > 2, and since x is a point
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of Cy, by proposition 2.1 we get
HY(T¢,) = HY(Uy, Tey), HY(TclCy) = HO(Uy, TelCy),
H%(Ne¢yic) = H(Uy, Neyic)-

Therefore the above exact sequence becomes

0 - H%(Uy, Tc,) —~ HY(Uy, Tc|Cy) - H(Uy, Neyic) —

-~ HY(T¢,) = THRIK,R) — 0. (6.3)

Since Uy ¢ U is a closed immersion of smooth varieties we have the
normal exact sequence

0 - Tyy — TylUy — Nyyiv — 0, (6.4)

whose cohomology sequence together with the exact sequence (6.3)
yield in particular the inclusion

T¢, = HO(TE,) < H Uy, Tuy ). (6.5)

Now look at the commutative diagram with exact rows and columns

0 0
| |
0 Ouy Ty, 1ty (Ty) ———
al | !
0 Ouy TylUy - * (Tpn) | Uy = 1y (Tpn|Y) ——— 0
| |
Nuoyw — 1ty (Ny|pn)
| I
0 0

The fact that the first two rows are exact comes from lemma 3.1 (ap-
plied to 7ty and to ), the equality in the second row from the com-
mutativity of the diagram (6.2), the last column is the pull back of the
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normal sequence of Y in P", and the middle column is just (6.4). In
particular, Ny, iy = 1ty (Nyjpn). Then (6.3) yields

HO(Uy, Ty|Uy) —%— HO(Uy, 175 (Ny|pn)) T¢, — 0. (6.6)

Now we have to understand the map « more closely.

CLAIM 6.1 There is a canonical identification Ty = t*{((n+1)Opn (1))
such that the map

«; : H(Uy, Ty|Uy); — HY(Uy, 18 (Nyjpn));

is identified (up to multiplication by a non-zero constant) to the Zak
map

z(i+1) :HYY,(n+1)Oy(i + 1)) — H(Y, Nyipn (i)
twisted by i + 1.
Then (6.6) and claim 6.1 vield the following result:

THEOREM 6.2 (SCHLESSINGER [46], [42]) LetY C P" be a closed smooth
projectively normal subvariety of P" of dimension = 1, and let Cy be
the affine cone over Y in P". Then there is a natural identification

T¢, (i) = Coker(z(i + 1)),

where z(i+1) : H((n + 1)Oy (i + 1)) — HO(Nypn(i)) is the Zak map
of Y in P" twisted by i + 1.

It remains to prove the claim 6.1. To do this we shall make use of
the following special cases of well known Bott’s formulae:

HO(P™, QLy) = 0, HY(P™, Qfn(i)) = 0, Vi =0, and H'(P", Qpn) = k.
(6.7)

First observe that the isomorphism classes of vector bundle exten-
sions

0—0Opn - E—Tpn -0
of Tpn by Opn are classified by H! (P”,Q[}m) which by (6.7) is a one-
dimensional vector space. Therefore either F = Opn @ Tpn, or the
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above exact sequence is isomorphic (up to multiplication of the sec-
ond map by a non-zero constant) to the Euler sequence of P",

On the other hand, the isomorphism classes of vector bundle exten-
sions of 7r* (Tpn) by *(Opn) = Oy are classified by HL(U, r*(Q})),
which by lemma 3.2 and (6.7) is isomorphic to @;cz H (P", Q}a (1)) =
HY(P",Qb.) = k. We infer that every vector bundle extension of
% (Tpn) by m*(Opn) = Oy is the pull back via 1 of a vector bundle
extension of Tpx by Opn. In particular, considering the exact sequence
{given by lemma 3.1)

0—- 0y — Ty — % (Tpr) — 0,
it follows that either Ty = Oy & n*(Tpr;), or
Ty = (n+ 1m*(Opn(1)). (6.8)

Notice that Ty = (n + 1)Oy, or else Q}; = (n + 1)dy. Then the first
possibility is ruled out because otherwise lemma 3.2 would imply
HO(P", (n+1)Opn) = HO(P", Opn) ® HO(P", Qbn), which contradicts
the first equality of (6.7).

Therefore there is an isomorphism of the form (6.8). This fact to-
gether with the above remarks prove claim 6.1, and thereby theorem
6.2 completely.

In view of theorem 6.2, theorem 2.1 implies:

COROLLARY 6.2 In the hypotheses of theorem 2.1 assume furthermore
that Y is smooth and projectively normal in P"* and TgY(‘-l) = 0,
where Cy is the affine cone over Y in P". Then every extension of Y
in P+ s trivial.

Corollary 6.2 is especially interesting because it makes a connec-
tion between two completely different things: the deformation theory
of the vertex of the cone over Y in P” (which is of local nature), and
a problem of global projective geometry (i.e. the classification of ex-
tensions of Y in P7*1).

DEFINITION 6.2 Let (Y, ) be an isolated singularity of the affine vari-
ety Y (with Y smooth outside v). Then (Y, y) is called a rigid singular-
ity if T}ﬁ,y = 0, i.e. if the space of first order infinitesimal deformations
of (Y, y) is zero. Clearly, (Y,y) is rigid if y is a smooth point of Y.
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The following result provides a criterion for the vertex x of the
affine cone Cy over a smooth projectively normal closed subvariety
Y in P" to be rigid.

PROPOSITION 6.1 Let Y be a smooth projectively normal closed subva-
riety of P of dimension = 1 such that H' (Y, Oy (i)) = H}{Y, Ty (i)) =
OforallieZ. Then T}Y = 0, Le. the vertex x of Cy Is a rigid singu-
larity.

PROOF. By (6.5) it will be sufficient to prove that HY(Uy, Ty, ) = 0.
To do this consider the following cohomology sequence associated
to the first row of the diagram of the proof of theorem 6.2:

HY(Uy,Oyy) —~ HY(Uy, Tyy) — HY(Uy, 705 (Ty)).

Therefore the middle space is zero if the first and the last spaces are
both zero. But by lemma 2.2 and our assumptions we have

HY(Uy, Oyy) = D H' (Y, 0y(i)) = 0, and
ieZ
HY(Uy, m§(Ty)) = EQHY(Y, Ty (i) = 0.
icZ

0O

By proposition 6.1 and the examples 4.1 (and the remark following
it} and 4.2, the vertex of the affine cone over the Veronese variety Y =
vs(P7), with# = 3 and s > 2, or over the Segre variety Y = i(P! x P"),
with » = 2, is a rigid singularity.

We close this section by proving proposition 2.3.

PROOF OF PROPOSITION 2.3. Let I be the saturated homogeneous
ideal of Y in the polynomial k-algebra P := k[Ty, T1, ..., Tn], and set
A = P/I (the homogeneous coordinate k-algebra of Y in P"). Since Y
is projectively normal in P" we can apply theorem 6.2 to get

TS, (=2) = Coker(H(Y, (n + 1)0y(-1)) —— H(Y,Nyjpn(-2))),

whence T, (-2) = H(Y, Ny|pn(=2)) because HO(Y, (n + 1) Oy (-1))
= (). Therefore we have to check that T}Y(—Z) = THAlk,A)(-2) = 0.
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Every element t € T!(Alk,A)(-2) is represented by a homomor-
phism @ € Homa(I/I?,A)(~2) of degree —2. To prove the propo-
sition it will be enough to show that under its hypotheses we have
@ = 0.

By our hypotheses, there is a system of generators fi,..., fs € Iz
of I of degree 2. We may assume that f7, ..., fs is minimal. A relation
v among fi, ..., fs is a system of homogeneous polynomials (71, ..., *s)
of the same degree such that r; f1 +...+7sfs = 0. The hypotheses also
say that there is a generating set r!, ..., v* of independent relations
ri=(r},..,v}), with deg(r}') = 1.

Then the classes 7,-, Vi =1,..,s of f; in I/I? form a system of
generators of I/I°. Therefore @ is perfectly determined by the con-
stants qa(}:i), Vi=1,...,5. Now, assume that ¢ = 0. Then there is an
1 such that m(fi) # 0 (in k). We may assume cp(}:l) + 0. Then for
every i = 2,..,s we have @(f;) = a;@(f,), with a; € k. Replacing
fi, - fs by f1, fo —arfi, fs — asf1, we may therefore assume that
@(f1) =0and @(f;) =0, Vi=2,..,5.

On the other hand, we claim that there is a linear relation » =
(r1,...,¥s) among fi,..., fs such that 1 # 0. Indeed, considering the
obvious relation f = (f2,-f1,0,...,0) among fi,..., fs, by hypothesis
we know that there are linear forms cy,...,cy, € P; such that f =
cir! + ... + cyr*. In particular, f> = cnfll + ... + curit, which forces
ri # 0 for at least one i € {1,...,u} (because f> + 0).

Now, fixing a relation v = (r1,...,*s) among fi,..., f¢ with 1 = 0,
we have 0 = @(rf1 + ... + 7o fs) = ri@(f1). Since @(f1) is a non
zero constant, it follows ¥ = 0, a contradiction. In this way we have
proved that Homa(I/I%, A)_> = 0, which implies T!1(Alk,A)(-2) =
0.

7 A characterization of linear subspaces

In this section we prove the following characterization of linear sub-
spaces:

THEOREM 7.1 (VAN DE VEN [51]) Let Y be a smooth closed irreducible
subvariety of P" of dimension d = 1 over the field C of complex num-
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bers. Then the normal sequence
0— Ty — Tpn|Y — Nyjpn — 0
splits if and only if Y is a linear subspace of P™.

One implication is easy. Namely, assume that Y is a linear sub-
space of P". Let L be a linear subspace of P” of dimensionn ~d - 1
such that YNnL = . Projecting from L we get a morphism 77 : P*\L —
Y = P9 such that 1roi = idy, where i : Y — P" is the natural inclusion.
Therefore we get a canonical map Tpn\y — 1% (Ty), which restricted
to Y vields a map Tprn|Y — i*m*(Ty) = Ty. This is the desired split-
ting of the normal sequence.

The other implication is non-trivial. The main idea of the proof
below (which is due to Mustata-Popa [41}) is to make use of the first
infinitesimal neighbourhood Y (1) = (Y, @pn/7%) of Y in P®, where
7 is the ideal sheaf of Y in Opn. The first step is to interpret the
splitting of the normal bundle in terms of Y(1). Precisely, we have
the following general result:

LEMMA 7.1 LetY be a closed subvariety of an algebraic variety X, and
let 7 be the ideal sheaf of Y in Ox. Let

7792 2

QLY Qf 0

be the dual of the normal sequerice of Y in X. Then & admits a left
inverse (i.e. amap s : Q}(IY — 71/1? of coherent Oy -modules such that
so ¢ =id) if and only if the canonical inclusioni:Y — Y (1) (with Y (1)
the first infinitesimal neighbourhood of Y in X ) admits a retraction, i.e.
there exists a morphism of schemesr : Y(1) — Y such thatr o i = idy.

PROOF OF LEMMA 7.1. The existence of a retraction 1 is equivalent
to the existence of a map of sheaves of rings ™’ : Oy = Ox /7 — Ox/71?
such that the composition

T’ canonical

Ox/1 Ox/1?

Ox/1

is the identity. On the other hand, the existence of a map 5 : Q%Y —
7/9? such that s o § = id is equivalent to the existence of a derivation
D : Ox — 7/1° such that D|7 coincides to the canonical map 7 — 7/7°.
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Given D € Der(0Oy,1/72) such that D|7 : 7 — 7/1? is the canonical
map, we define v’ : Ox — Ox/12 by ' = @ — D, where @ : Ox —
Ox/72 is the canonical map. One checks easily that 77’ is a map of
rings and 1’|7 = 0. Therefore one obtains amap 7’ : Ox/7 — Ox/1?
which composed with the canonical map Ox /7% — @x/1 is the iden-
tity. Conversely, given 7v’ one easily gets back Dby D = @ — 1",

PROOF OF THEOREM 7.1.
Step 1. We may assume that Y is non-degenerate in P".

Indeed, let L be the linear subspace.of P" generated by ¥. Then
we have the commutative diagram of dual normal sequences

0 Ny pn QpnlY —— O} 0
J, Je Ja
* 1 1

0 N¥, QY —— Qy 0

Ifs:Ql — QL.|Y is a map such that u o s = id, then v o (o 5) =
u o s = id. In other words, if the top sequence splits so does the
bottom one.

Henceforth we may assume that Y is non-degenerate and we have
to prove that Y = P". We shall first consider the case d = dim(Y) = 2.

Step 2. HY(Y, N pn) = 0.
Indeed, from the splitting of the dual of the normal sequence of
Y in P™ we get

HYY,0b:1Y) = HU(Y,N{pn) ® HH(Y, Q). (7.1)
On the other hand, the restricted Euler sequence
0 QLY = (n+1)0y(~1) - Oy = 0
yields the cohomology sequence
0 =H(Y,(n+ 1Oy (-1)) — H'(Y,0y) -

~ HYY, Q1Y) — HU(Y, (n + 1)Oy(~1)).
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Since k = € and dim(Y) = 2, by the Kodaira vanishing theorem the
last cohomology space is zero (because d > 2). Therefore

dim(H (Y, Q}n|Y)) = 1.

On the other hand, dim(H'(Y,Q})) = 1 because by a theorem of
Néron-Severi Hl(Y,Q}/) contains NS(Y) ®z C, where NS(Y) is the
Néron-Severi group of Y. These two observations together with (7.1)
prove step 2.

Step 3. HO(Y, N§;pn (1)) = 0.

Indeed, from the restricted Euler sequence

0 QpnlY (1) —— (n+1)Oy Oy(1) —— 0

we get
HO(Y,051Y (1)) = Ker(), (7.2)

where T := HY(B) : HO(Y, (n + 1)®y) — HO(Y,Oy(1)). On the other
hand, in the commutative diagram

iso

HO(P™, (n + 1) Opn) HO(P", Opn (1))

iso |ini

HO(Y,(n+1)Oy) HO(Y, 0y (1))

the first vertical map is an isomorphism, the first horizontal map is
also an isomorphism, and the second vertical map is injective (be-
cause Y is non-degenerate in P™). It follows that the map T is injec-
tive. Recalling (7.2), this implies that HO(Y, Q1. [Y (1)) = 0. Using the
splitting of the dual normal sequence we get

0=HOY,Qb. 1Y (1) = HUY,N{pn (1)) @ HY(Y,Qp (1)),

This proves step 3.

Step 4. Leti: Y — Y(1) be the natural inclusion of Y in its first
infinitesimal neighbourhood in P”. Then the map i* : Pic(Y (1)) —
Pic(Y) is injective.
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Indeed, from the truncated exponential sequence
0 = Nfjpn = 1/1° = OF 4y — OF — 0,

(where for any scheme Z, @} is the sheaf of multiplicative groups
of germs of all nowhere zero functions of ©®z, and where the map
1/7% — (9)’5(1) is given by u — 1+ u), we get the cohomology sequence

HY(Y,N{pn) — Pic(Y (1)) - Pic(Y).

Then step 4 follows from H' (Y, N{pr) = O (by step 2).
Step 5 (Conclusion in case dim(Y) = 2).

By lemma 7.1 our hypothesis says that there is a retraction 7 :
Y(1) — Y of theinclusion i : ¥ — Y(1). Set L := v*Oy(1). Since
roi =id, i*(L) = Oy (1) = Oy(1)(1)|Y. Since the map i* : Pic(Y (1)) —
Pic(Y) is injective (step 4), L = Oy(1)(1), Le. ¥*(Oy(1)) = Oy (1).

On the other hand, in the exact sequence

0 — HO(Y, N§jpn (1)) — HO(Y(1), Oy () (1)) —— HO(Y, 0y (1))
the first HY is zero by step 3. Therefore the map
i*:HY(Y(1),0v0,(1)) — HY(Y,0¢(1))

is injective. Now, let ty, ..., £, be a basis of H?(P", @pn (1)), and set
si=r*E]Y) € HY(Y(1), 0y (1)), Vi = 0,..,n. Since i* is injec-
tive, it follows that s; = £;]Y (1), Vi = 0, ...,n. Since Oy)(1) is very
ample we get thatior = i(1), where i(1) : Y(1) — P" is the canonical
inclusion. But this last fact is impossible, unless Y = P™. This proves
theorem 7.1 in case dim(Y) = 2.

Step 6. Theorem 7.1 holds true if dim(Y) = 1.

The argument of this step is taken from [32]. The splitting of the
normal bundle of Y in P" implies that Tpr|Y = Ty @ Nypn. Since Tpn
is an ample vector bundle, its restriction Tpn|Y is also ample, whence
Ty is ample. Since Y is a curve, this is possible only when Y = P1, Set
e := deg(Y). Then Oy(1l) = Op1(e). It remains to prove that e = 1.
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To this extent look at the commutative diagram with exact rows and
columns

0 0

l l

0 N§pn — Q.Y 2 Q) =0p(-2) —— 0
Jia l |
0 N pn (n+1)0p(~e) E — 0

l 1

Oy Oy
! |
0 0

in which the first row is the dual of the normal bundle of Y in P”, and
the middle column is the dual of the Euler sequence of P™ restricted
to Y. The splitting of the top row yields a map s : Q%, = Op (-2) —
Qﬂl}m |Y such that a o s = id. In particular, s is injective. The injectivity
of s and the above diagram vield an injective map Op1(-2) = (n +
1)Oy(-1) = (n+ 1)Op:(—e). This forces e < 2.

If e = 2, Y is a plane conic. Then the dual of the Euler sequence

0 - QL|Y(1) - 30y — Oy(1) = Op1(2) = 0
yields the exact sequence
0 -~ H(Y,0L,1Y (1)) — HY(Y,30y) — H(Y, 01 (2)).
Since Y is a plane conic, the last map is an isomorphism. Therefore
HO(Y,QL1Y (1) = 0= HY(PL, QLY ® Opi1(2)).

But this contradicts the existence of the injective map s : Op1 (-2) —
Qﬂl,z |Y. Therefore e = 1, so the proof of step 6 (and thereby the proof
of theorem 7.1) is complete. O
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REMARK 7.1 The main reason why we included the present proof of
theorem 7.1 in these notes consists primarily in the use of the first in-
finitesimal neighbourhood of a subvariety in an ambient variety. This
illustrates very well the philosophy that using schemes with nilpo-
tents in the study of some rather classical questions of projective
geometry could sometimes provide natural proofs. In section 9 we
shall apply again this method (of using the first infinitesimal neigh-
bourhoods) in connection with a problem of complete intersection.

8 Cohomological dimension and connectivity theorems

DEFINITION 8.1 Let Z be an irreducible algebraic variety over k. We
shall denote by Coh(Z) the category of all coherent sheaves © z-modu-
les. According to Hartshorne [29] we define the cohomological dimen-
sion, cd(Z), of Z by the following

cd(Z) = max{n = 0| 3F € Coh(Z) such that H*(Z,F) = 0}.

A general result says that 0 < cd(Z) < dim(Z); moreover, a result of
Serre asserts that cd(Z) = 0 if and only if Z is affine (see e.g. [Hal]).

The aim of this section is to prove the following special case of
a basic result due of Hartshorne-Lichtenbaum (see [25], or also [30}).
This special form of the theorem will be sufficient to prove a gener-
alization of the connectivity theorem of Fulton-Hansen (see theorem
8.4 below).

THEOREM 8.1 (HARTSHORNE-LICHTENBAUM) Let X be an irrveducible
projective variety of dimension n > 1, let Y be a closed subset of X,
and setU := X\ Y. Then cd(U) = n if and only if Y = 0.

Before proceeding to the proof (which follows Kleiman [30] closely)
we need some preparation.

LEMMA 8.1 For every irreducible quasi-projective variety V -of dimen-
sion n the following two conditions are equivalent:

1. HYV,F) = 0 for all F € Coh(V).
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2. H™(V,L) = 0 for all invertible sheaves L onV.

PrOOF. Clearly (1) = (2). Conversely, assume that (2) holds. Since
V is a quasi-projective variety, every F € Coh(V) is a quotient of
direct sum of invertible sheaves. Indeed, pick an ample line bundle
Lon V. Since L is ample, F ® L™ is generated by its global sections
for m >> 0. Since F is coherent it follows that there is a surjection
pOy — F ® L™ — (O for some p = 1, and therefore a surjection E :=
pL™™ — F — 0. In particular, E is a finite direct sum of line bundles.
In this way we get an exact sequence of the form

0-G—-E—-~F—-0,
with G a coherent sheaf on V. This yields the cohomology sequence
H™(V,E) - H™(V,F) - H""(V,G).

By (2) the first space is zero (the functor H™ commutes with the direct
sums), and since n + 1 > dim(V) = n the third space is also zero,
whence the middle space is zero as well. o

LEMMA 8.2 Let W be a closed subvariety of an algebraic variety V. For
a fixed integer n = 1 the following two conditions are equivalent:

1. H™(W,F) = 0 for all coherent Ow-modules F.

2. H™"(V,F) = 0 for all guasi-coherent Oy-modules F with Supp(F)
cW.

Proor. The implication (2) = (1) is obvious. Conversely, let F be a
quasi-coherent Oy-module with supvport in W. F is the direct limit of
all its coherent Oy-submodules G. Since the functor H" comimutes
with direct limits, it follows that H™(V,F) is the direct limit of the
H™(V,G)’s. Hence we may assume F coherent. Now, let Z be the
closed subscheme of V defined by the annihilator ideal of F. By hy-
pothesis, Z.eq is a closed subvariety of W, where Z;.q denotes the (re-
duced) subscheme of Z defined by the nilpotent radical I of ©. Since
Z is a noetherian quasi-compact scheme, there is an integer m > 0
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such that I™ = (. Then for any coherent ®z-module F consider the
exact sequences

0 — I'"*'F — ['F - ['F/I"'F —~ 0, Vi=0,1,..,m -1,
where I® ;= @7. Therefore we get the cohomology sequences

H™(V,I**1Fy — HY(V,I'F) — H™(V,I'F/I"*F), Vi=0,1,...,m — 1.
(8.1)

Clearly the quotients I'F /[**1F are @, ,-modules, and hence also Ow-
modules. Therefore by (1), H*"(V,I'F/I**1F) = HY(W,I'F/I**1F) =
Oforalli=0,1,..,m ~ 1. In particular,

H™(V, "M 1F)y = HY(V, I 1F/TMF) = 0.

Using this, (8.1) and an obvious descending induction on i we get
H"(V,F) = (, as desired. O

PROOF OF THEOREM 8.1. Assume first that Y = @, ie. U = X
is projective. We have to find a coherent sheaf F € Coh(U) such
that H"(U,F) # 0. Choose an ample line bundle L on U. Since U
is projective, H*(U,L™™) + 0 for every m >> 0 (for example use
duality on U).

Conversely, assume Y = . In this case we proceed by induction
onn = dim(X). If n = 1 then U is an affine curve and the conclusion
follows from a well known vanishing result of Serre (see [28]). Assume
therefore n > 2. By lemma 8.1 we may assume that F is invertible,
and in particular, a torsion free sheaf.

Now we need the following:

CLAIM 8.1 In the hypotheses of theorem 8.1 assume n = 2. Then there
is a closed irreducible subscheme Z of U of dimension n — 1 such that
U\ Z is affine. Moreover, the scheme Z is quasi-projective, but not
projective.

We first prove claim 8.1. Blow up X along Y to get the birational
morphism f : X’ — X with exceptional locus Y’ = f~1(Y). Then
Y’ is an effective Cartier divisor on X’. Since X is projective and ir-
reducible, X’ is also projective and irreducible. Choose a projective
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embedding X’ —~ P™. Since n = 2, by Bertini we can find an irre-
ducible hyperplane section T of X’. Because T is a very ample Cartier
divisor on X' (T = Y’) and Y’ is a Cartier divisor on X', Y' + aT is
very ample for a >> 0. Therefore X'\ (T U Y’) is an affine open
subset of X'. Set Z’' := f(TuY)Yand Z := Un Z'. Then Z is
irreducible because Z = f(T) n U and T is irreducible. Moreover,
U\NZ = X\Z' = X'\(TuY’), and in particular U \ Z is affine. Finally,
Z is not projective because Z = f(T)\Yand Y n f(T) = @ (TnY =0
because T is a hyperplane section on X’ and dim(Y’) =n -1 > 0).
Thus the claim 8.1 is proved.

To conclude the proof of theorem 8.1 in case n = 2, apply the
claim 8.1 to find Z as above. Leti: U\ Z —~ U be the canonical in-
clusion. Then i is an affine morphism because for every affine open
subset Vof U, i"1(V) = Vn (U\ Z) (on a separated scheme the inter-
section of any two affine open subsets is again affine!). Now, starting
with a torsion free coherent sheaf F on U, consider the canonical map
o F — i4i*(F). Since Supp(Ker(x)) € Z, Ker(«) is a torsion sub-
sheaf of F, and since F is torsion free, Ker{x) = 0. Therefore we get
the exact sequence

0—-F— iy i*™(F) - G—0

(where G := Coker(F — ixi*(F))) which yields the cohomology se-
quence

H"YU,G) — HYU,F) — H™(U, ixi*(F)). (8.2)

Note that i4i*(F) (and hence also G) is only a quasi-coherent Oy-
module.

Since i is an affine morphism H"™ (U, i,i*(F)) = HM"(U\ Z,i*(F)),
and the latter space is zero because n > 0 and U \ Z is affine, by
Serre’s theorem. Therefore

H™U,ixi*(F)) = 0. (8.3)

On the other hand, Supp(G) ¢ Z. Since Z is an irreducible quasi-
projective (but not projective) variety of dimension n — 1, by the in-
ductive hypothesis, H"*"1(Z, H)= 0 for every coherent ®z-module H.
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Then by lemma 8.2 we get
H"Y(U,G) = 0. (8.4)

Then (8.2), (8.3) and (8.4) yield H™(U,F) = 0.

REMARK 8.1 Theorem 8.1 can be restated by saying thatcd(U) s n —
1 if and only if Y = @. The above inductive proof of theorem 8.1
required considering effectively the category of quasi-coherent (and
not only of coherent) sheaves.

We illustrate now the use of the notion of cohomological dimen-
sion by proving the following useful result, which is going to play a
crucial role in the proof of the connectivity theorem of Fulton-Hansen:

THEOREM 8.2 In the hypotheses of theorem 8.1 assume n = 2 and
cd(U) £ n— 2. ThenY is connected.

PROOF. Assume that Y is not connected, i.e. Y can be written as ¥ =

Y; U Yy, with Y; and Y> non-empty closed subsets of Y such that Y1 n

Y> = (. Because X is projective of dimension n, by theorem 8.1 and

lemma 8.1, there is an invertible sheaf L on X such that H"(X,L) = 0.
In the exact sequence

HY (X,L) H™(X,L) —— H™X\Y;, L)

the last space is zero by theorem 8.1 because Y; = ¢ for i = 1,2.
It follows that h} (X,L) = h™(X,L) for i = 1,2, where hjy, (V,F) =
dimy (H viv (V, F)) for every coherent sheaf F on an algebraic variety V
and for every closed subvariety W of V. Moreover, since ¥ = Y1 U Y>
and Y| N Y2 = @, by Mayer-Vietoris we have Hy(X,L) = Hy (X,L) ®
HY,(X,L), and hence, hy(X,L) = 2h™(X, L).

On the other hand, in the exact sequence

H" (X \Y,L) — H}(X,L) — H™(X,L) — H"(X\Y,L)

the the first and the last spaces are zero by cd{X \ Y} = n -~ 2,
whence h}}(X,L) = h™(X,L), contradicting the inequality h$(X,L) =
2h™(X,L), because h™(X,L) = 1. O
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We shall use theorem 8.2 to prove the following two results (corol-
laries 8.1 and 8.2) due to Grothendieck (see [27, éxposé XIII}).

CoOROLLARY 8.1 Let X be an irreducible algebraic variety of dimension
n = 2 overk, and let f : X — Proj(S) be a finite morphism, where S
is a finitely generated graded k-algebra. Let ty,....t, € S, be homo-
geneous elements of positive degrees. If ¥ < n — 1 (resp. v < n) then
fUVilty, ..., tr)) is connected (resp. non-empty), where V, (t1, ..., tr)
is the locus of Proj(S) of equations t; = ... = t, = 0.

PROOF. In the standard notations of [26], set Y := f~HV, (t1, ..., b))
and P := Proj(S). Since P\ V (ty,...ty) = D,.(F}) U ... U D (t),
D (t;) ;= Spec(Sy,) is affine Vi = 1, ..., 7, and f is finite, it follows that
X\ 'Y is the union of the affine open subsets f~1(D.(¢;)),i=1,...,7.
Therefore by Cech,cd(X\Y)<r—-1<n-2 (resp. cd(X\Y)=n-1
if < n). The conclusion follows in this case from theorem 8.2 (resp.
from theorem 8.1). O

The above corollary can be slightly refined. First we need the fol-
lowing:

DEFINITION 8.2 LetV be an algebraic variety over k, and let d = 0 be
a non-negative integer. V is said to be d-connected if every irreducible
component of V is of dimension = d + 1 and if V\ W is connected for
every closed subvariety W of V of dimension < d.

For example, every irreducible variety X of dimension n = 1 is
(n—1)-connected. An algebraic variety X is O-connected if and only if
Xis Conr;ected and every irreducible component of X is of dimension

= 1.

EXAMPLE 8.1 Let X be the closed algebraic subvariety of the affine
space A* having two irreducible components X; and X,, where X is
the plane of equations x; = x2 = 0 and X the plane of equations
x3 = x4 = 0. Then X; n X» = {x}, where x = (0,0,0,0). Thus X is
O-connected. On the other hand, X is not 1-connected because X\ {x}
has two connected components X \ {x} and X> \ {x}.
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DEFINITION 8.3 A sequence Zy, Z1, ..., Zn Of (not necessarily pairwise
distinct) irreducible components of an algebraic variety V is called
a d-join within V if dim(Z;) = d + 1 for every i = 0,1,...,n and if
dim(Z;.1nZj) 2 d forevery j =2,...,m.

The following elementary result (whose proof is left as an exercise
to the reader) will not be used in the sequel, but it explains better the
concept of d-connectedness.

PROPOSITION 8.1 An algebraic variety X is d-connected if and only if
X =2ZguZi V..U Zy for some d-join ZO’.Zl’ wey Zy, Within X.

COROLLARY 8.2 In the hypotheses of corollary 8.1 assume that v <
n—1. Then f~YV,(t1,...,tr)) is (n — v — 1)-connected.

PROOF. Since S is a finitely generated k-algebra, Proj(S) is a projective
scheme over k, whence X is a projective variety because f is a finite
morphism. Let X ¢ PV be an arbitrary projective embedding of X,
and let A be a general linear subspace of PV of dimension N +r-n+1.
Since dim(X) = n and Y := f YV, (t,..., tr)) is locally given by r
equations in X, every irreducible component Z of Y is of dimension
= n—v. Itfollows that dim(ZnA) = dim(Z) +dim(A)-N =z (n—r) +
(N+r—-n+1)~N =1, and in particular, A meets every irreducible
component of Y.

Set Y’ := Y n A. If A is defined by linear equations s,:1 = ... =
Sp—1 = 0 in PY then X \ Y’ is the union of the n — 1 affine open
subsets f~ 1D (£1)) e f7HD 4 (t)), Uity Un—1, where U; := {x €
X |si(x)+0},Vi=r+1,..,n-1 Itfollows that cd(X\Y') = n -2,
whence by theorem 8.2, Y’ is connected.

We saw above that every irreducible component of Y is of dimen-
sion = n—7v. Therefore to show that Y is (n—v—1)-connected it will be
sufficient to check that Y\ W is connected for every closed subset W of
Y of dimension < n—7 - 1. Assume the contrary, i.e. there is a closed
subscheme W of Y of dimension < n —+ — 1 such that Y \ W is not
connected. Since A is general, dim(W n A) = dim(W) +dim(4) - N <
n-r-1)+(N+r-n+1)-N =0, whence A does not meet W.
Moreover, since A meets every irreducible component of Y, the fact
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that Y \ W is not connected implies that Y = Y nA=(Y\W)n Ais
also not connected, a contradiction. O

In the sequel we shall need the following more general version of
corollary 8.2:

THEOREM 8.3 Let S be a finitely generated graded k-algebra, t, ..., t,
€ 8§, homogeneous elements of positive degrees, and U a Zariski open
subset of Proj(S) containing L = V. (ty,...,ty). Let f : X — U be a
finite morphism, with X an irreducible algebraic variety of dimension
noverk. Ifr <m—1 then f~1(L) is (n—r-1)-connected.

PROOF. By passing to the normalization of X we may assume that X
is normal. Let Z’ be the closure of X’ := f(X) in P := Proj(§), and
let g: Z — Z' be the normalization of Z’ in the field K(X) of rational
functions of X (which makes sense because the dominant morphism
X — 7’ yields the finite field extension K(Z') = K(X’) — K(Z)). Then
we get a commutative diagram of the form

2

X ——

fl J'g

X’ —_— zZ'
12
inwhich i and i’ are open immersions (i is an open immersion because
X is normal), and g is a finite morphism. Since L ¢ U and Z’' n
U = X' (X’ is closed in U because f is finite), then X' nL = Z' n L,
whence f~1(L) = g~!(L). Then theorem 8.3 follows from corollary
8.2 applied to the composition of the closed immersion Z’ — P with
the finite morphismg:Z - 2Z'. 0O

8.1 Weighted projective spaces

Let k[Tp, T1, ..., Tn] be the polynomial k-algebra in »n + 1 variables Ty,
Ti,...,Tn (withn = 1). An (n+1)-uple (eg, e1,...,e,) € Z"*! of positive
integers is called a system of weightsif e; > 1, Vi = 0,1, ...,n. Given
a system of weights e = (eqg, ey, ...,ep), grade k[Ty, T1, ..., Tn] by the
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conditions deg(T;) = e;, Vi = 0,1, ...,n. In this way we get a finitely
generated graded k-algebra (depending of e = (¢o, €1, ...n)), and set

P"(e) = P (eg, e1,...,en) = Proj(k[To, T1, ..., Tn])-

Then P"(e) = P"(ey,e1,....exn) is a normal projective variety of di-
mension n which is called the weighted projective space of weights
e = (eg, e1,...,en). P*(1,1,...,1) coincides of course with the usual
projective space P™.

As a non-trivial example of weighted projective space, take ¢ =
(1,..,1,s),with s = 2 and n = 2. Then P"(1,1,...,,1,5) is isomorphic
to the projective cone over the Veronese embedding vs : P*™1 —
PN with N(n,s) := (”‘j”) — 1. Indeed,

P(1,1,...,1,s) = Proj(k[To, ..., Tn 1),

with deg(T;) = 1, Vi =0,1,...,n—1, and deg(T,) = s. Then using the
general elementary properties of Proj (see e.g. [26]), we have canonical
isomorphisms

Proj(k[To, ..., Tnl) = Proj(k[Tg, ... Tu D™
= Proj(k[To, ..., Tn-11[ T,

with T a variable of degree one. We adopted the standard nota-
tion according to which S denotes the graded k-algebra obtained
from a graded k-algebra S by putting S = Spms, Ym = 0. The
above isomorphisms and the definition of the projective cone over
the Veronese embedding v, yield the assertion.

An alternate description of the weighted projective space P"(e) is
the following. P" (e) is the geometric quotient (k" 1\ {(0,..,0)}) /G,
where the action of the multiplicative group G,, = k \ {0} on k"1 \
{(0,...,0)} is given by A(tg, ..., tn) := (A®0ty,...,A%¢,), for all A € Gy
and (fg, ..., tn) € k"1 {(0,...,0)}. Then the orbit of (tg,t},....,tn) €
k"1 {(0,...,0)} (regarded as a point of P"*(e)) will be denoted by
[to, t1, e, Enl.

We refer the reader to-[16] or to [11] for the basic properties of
weighted projective spaces.

Wwith these definitions we can prove the following generalization
of a connectivity theorem of Fulton-Hansen (see [21], or also [22]):
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THEOREM 8.4 Let f : X — P™(e) x P™(e) be a finite morphism from
the d-dimensional irreducible variety X to the product of the weighted
prajective space P"(e) of weights e = (eq,€1,...,en) by itself. If d >
n then f~1(A) is (d — n - 1)-connected, where A is the diagonal of
P"(e) x P"(e).

PrOOE. We shall show that a construction used by Deligne (see [15], or
also [22]) to simplify the proof of Fulton-Hansen connectedness the-
orem can easily be generalized to weighted projective spaces. Having
the system e = (eq, €1, ..., &) of weights fixed, consider the weighted
projective space

P>+1(e, e) = Proj(k[To, ..., Tn; Up, <oy Un1),

of weights (e, e) := (e, €1, ...,€n, €0, €1, ...,€n), Where Ty, ..., Ty, Up, ...,
U,, are 2n + 2 independent indeterminates over k such that deg(T;) =
deg(U;) = e; for every i = 0, 1,..., n. Consider the closed subschemes

Ly =V (Ty,...Tn) and Ly = V. (Up, ..., Uy)

of P := P2"*(e ¢). Then Ly nLy = @. Set U := P\ (L; U Ly). Since
T; — U; is a homogeneous element of degree e;, it makes sense to
consider also the closed subscheme H := V. (Ty — Up,..., Tn — Un)
of P. Clearly, H ¢ U. The two natural inclusions k[T, ..., Tn] C
k[ To, ..., Tn; Uo, ..., Unland k[ Uy, ..., Un] € k[ Ty, .., Tn; Up, ..., Un ] vield
two rational maps g; : P?"**!(e, e)~P"(e), i = 1,2, which give rise to
the rational map

g P l(e @) P (e) x P"(e).
Then g is defined precisely in the open subset U of p2ntl(eg e). Al-

ternatively, if we interpret P"(e) as the geometric quotient (k™*!\
{(0, ...,0)})/G;, mentioned above, then the map g is defined by

g([t09 vang tn; uOv weay un]) = ([t‘)y seny tn]y [uﬂy seey un])-

It is clear that g/H defines an isomorphism H = A. Consider the
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commutative diagram

x 2. X

| 1

U —2— pn(e) x P (e)

T I

H A

where the top square is cartesian, the vertical arrows of the bot-
tom square are the canonical closed immersions, and the bottom
horizontal arrow is an isomorphism. In our situation the variety
X' = X Xpn(eyxpn(ey U is irreducible of dimension d + 1 because X
is irreducible and all the fibres of g (and hence also of g') are isomor-
phic to Gupy,.

Therefore we can apply theorem 8.3 to the finite morphism f’ :
X ~UcPnlee)andL:=H withr =n+1<d+1=dim(X’),
to deduce that f "“Y(H) is (d-n—1)-connected. On the other hand,
since f~1(A) = f~H(H) we conclude the proof of our theorem. =

COROLLARY 8.3 Let f : X — P"(e) X P"*(e) be a proper morphism
from an irreducible variety X such that dim(f (X)) > n. Then f~1(4)
is connected.

PROOF. Let f = g o h be the Stein decomposition of f, with & :
X — X' a proper surjective morphism with connected fibres and g :
X' — P"(e) x P"(e) a finite morphism. Then X’ is irreducible of
dimension equal to the dimension of f(X). By theorem 8.4 g~1(A)
is (dim(X) -~ n — 1)-connected, whence connected. Since h is proper
with connected fibres it follows that f~1(A) = h=1(g~1(4)) is also
connected. O

REMARK 8.2 In the case ¢ = (1,1,...,1) (i.e. in the case of ordinary
projective spaces) corollary 8.3 is just the Fulton-Hansen connectivity
theorem (see [21], or also [22]). However, the above proof is substan-
tially different from the proofs of [21] or [22]. In fact, the present
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proof allowed us to give this generalized version of the result of
Fulton-Hansen.

At least in characteristic zero the weighted projective space P"(e)
appears as the quotient of P" by the action of the finite group G =
Heg X Mgy X -.. X Ue, (Where py, is the cyclic group of all roots of order
wm of 1) via the action given by

()\09 /\15 An) : [tOS tly ceey tn] == [A0t01 Altly pevy Antn]y

YV (Ag,Al,...An) € G, and V{tg, t1,...,tn] € P". One may ask whether
the connectivity theorem (theorem 8.4 or corollary 8.3) is valid for an
arbitrary quotient P*/G of P" by the action of a finite group G. The
following example shows that in general this is not the case.

EXAMPLE 8.2 Consider the action of the group G = us of roots of
order 5 of 1 on P3 (char(k) = 5) given by

g-[to,t1, b2, t3] = [to, gt1,9°t2,9°t31, Yg € G, Vto, t1,t2,13] € P2,

Denote by P the quotient P3/G. Then G acts freely outside the four
points [1,0,0,01], {0,1,0,0], [0,0,1,0] and [0,0,0, 1]. Consider the
Fermat surface Y of equation x3 + xj + x3 + x5 = 0. Then Y is a
G-invariant smooth surface on which G acts freely, and the quotient
S := Y /G (the Godeaux surface) is embedded in P. Letm: Y — S
denote the canonical morphism, andlet f : X ==Y XY — P X P be
the composition of the inclusion § X § — P x P with the morphism
X :YXY — SxS. Then f is a finite morphism, X is irreducible of
dimension 4 and dim(P) = 3. However, as is easily checked, f~1(A)
has five connected components, where A is the diagonal of P x P.

We conclude this section by indicating a few applications of the
connectivity theorem 8.4.

COROLLARY 8.4 LetY and Z be two closed irreducible subvarieties of
the weighted projective space P™(e) such that dim(Y) + dim(Z) > n.
ThenY n Z is (dim(Y) + dim(Z) — n — 1)-connected. More generally,
letu : Y — P"(e) be a finite morphism from the irreducible variety
Y, and let Z be an irreducible closed subvariety of P"(e) such that
dim(Y) > codimpn e (Z). Then w1 (Z) is (dim(Y) +dim(Z) - n—1)-
connected.
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PROOF. Set X := Y x Z and take as f : X — P"(e) x P"{e) the product
of the natural inclusions of Y and Z in P"(e). Then apply theorem 8.4
to get that f~1(A) = Y n Z is (dim(Y) + dim(Z) — n — 1)-connected.

For the second partone takes X ;=Y X Zand f:=uxi: X =
Y X Z — P"(e) x P"'(e), with i : Z — P"(e) the natural inclusion.
Then by theorem 8.4 f~1(A) = w~1(Z) is (dim(Y) + dim(Z) - n —1)-
connected. O

DEFINITION 8.4 Let f : X — Y be a morphism of algebraic schemes
over k. The morphism f is said to be unramified (resp. unramified at
the point x € X) if Q},y = 0 (resp. if (Q}y)x = 0). Since by definition
Q}([Y is 7)1, where 1 is the ideal sheaf of the closed (diagonal) immer-
sion Axy : X — X Xy X, then one sees immediately that saying that f
is unramified is the same as saying that the diagonal immersion Ax|y
is also an open immersion. In other words, if f : X — Y is unrami-
fied then Axy(X) is a connected component of X Xy X. A morphism
f X =Y is said to be étale if f is unramified and flat. As a trivial
observation, if f : X — Y is an étale morphism, with Y irreducible, and
if Z is an irreducible component of X, then the restriction f|Z : Z - Y
is unramified.

COROLLARY 8.5 Let f : X — P™(e) be a finite unramified morphism
from an irreducible projective variety X such that dim(X) > 32’-. Then
[ is a closed embedding.

PROOF. Apply theorem 8.4 to f X f: XXX — P"(e)xP"(e) to deduce
that X Xpn () X is connected. On the other hand, since f is unramified,
Ay is a connected component of X Xpn () X, whence Ay = X Xpn(e) X.
Therefore f is injective. But an injective unramified morphism is a
closed embedding (see [26, IV 8.11.5 and 17.2.6}). .

COROLLARY 8.6 LetY be a closed irreducible subvariety of P (e) such
thatdim(Y) > 5. If'Y is not normal, then the normalization morphism
f Y — Y must be ramified.
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COROLLARY 8.7 LetY be a closed irreducible subvariety of P"(e) such
that dim(Y) > 125 ThenY is algebraically simply connected, i.e. every
finite étale morphism w : Y’ — Y, with Y' connected, is an isomor-
phism.

PROOF. Letwu: Y’ — Y beaconnected finite étale morphism, and let Z
be an arbitrary irreducible component of Y'. f we setv :=ulZ:7Z —
Y, then the morphism v is finite and unramified. By corollary 8.5, it
follows that v is a closed embedding, i.e. v defines an isomorphism
Z = Y. In particular, Z is a connected component of Y’, whence
Z =Y’ because Y’ is connected. ]

The last application of Fulton-Hansen connectivity theorem is the
beautiful theorem of Zak on tangencies. Let Y € P™ be a smooth irre-
ducible closed subvariety of dimension d = 1 of P". Henceforth (until
the end of this section) we shall assume that Y is non-degenerdate in
P™. For every point )y € Y let us denote by T,, the projective tangent
space to Y at y. Let L be a linear subspace of P". One says that L is
tangentto Y at y if T,, < L. It follows-that L is tangent to Y at y if
and only if 'y is a singular point of the (scheme-theoretic) intersection
Y n L. Then Zak’s theorem on tangencies is the following:

THEOREM 8.5 (ZAK) In the above hypotheses, fix a linear subspace L
of P" of dimension e, withd < e < n — 1. Then the closed subset
{y € Y| Ty <L} has dimension < e - d.

PROOF. Assume the contrary: there is an irreducible component
X<c{yeY|T, <L} of dimension > e — d. Then we claim that
there exists a linear subspace V < P” of codimension e + 1 such that
VN (Y uUL) = @ and such that there exist two points x € X and y € Y,
x # y, with ry (x) = 11y () (i.e. the line xy intersects V). Indeed,
since Y is non-degenerate in P", Y ¢ L, and in particular, there exists
a point ¥ € Y\ L; if x € X is an arbitrary point of X then x € L,
whence x = y. Because Ty does not contain the line vx, yx cannot
liein Y. Then picking a point z € yx \ Y, we may take as V a general
linear subspace of P" of dimension n — e — 1 through the point z.
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Since dim(Y xX) > ¢ we may apply the connectedness theorem 8.4
to the finite morphism f := (my|Y) X (1ry|X) : Y X X — P? X P¢ to get
that f~1(A) = Y xpe X is connected. By the choice of V, the diagonal
Ax < Y X X is strictly contained in Y Xpe X. The connectedness
of Y xpe X implies then that there exists a smooth curve T and a
morphism T — Y Xpe X whose image meets, but is not contained in
Ay. In particular (restricting T if necessary), we get a family of pairs
{(ye,x0)}rer € Y Xpe X parametrized by T and a point {5 € T such
that y; # x; forallt € T\ {to}, and y¢, = X¢, =t u. Ast — lo
the secant lines y;x; degenerate to a tangent line w < T, to Y. On
the other hand, for t = ty the secant line y;x; meets the center of
projection V, and hence w also meets V. But w ¢ Ty < L (because
u € X), and L was disjoint from V, a contradiction. 0

Here are two immediate corollaries of theorem 8.5.
COROLLARY 8.8 Under the hypotheses of 8.5, the map
Y — Grass(P", P4)

defined by vy — T, (which is called the Gauss map), is a finite mor-
phism.

PrOOF. Take e = d in theorem 8.5. M

COROLLARY 8.9 Under the hypotheses of theorem 8.5, let X be an ar-
bitrary hyperplane section of Y. Then X is nonsingular in codimension
2d —n - 1. If moreover d = E—zﬂ then every hyperplane section of Y
is irreducible and normal.

ProOOF. For the first part take e = n — 1 in theorem 8.5. If d =
’3—,}3 it follows that every hyperplane section X of Y is nonsingular in
codimension 1, whence normal by Serre’s criterion of normality (see
[48]); in particular, being connected, X is also irreducible. 0

The last consequence of theorem 8.5 is the following result which
gives a lower bound for the dimension of the dual variety of a projec-
tive subvariety of P".
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COROLLARY 8.10 Let Y* < (P™)* be the dual variety of Y < P" (with
Y smooth, irreducible and non-degenerate in P™). Then dim(Y*) = d.

ProOOF. Consider the incidence correspondence
={(y,L) | Ty, s L} = Y x (P")*.

The first projection makes P a P"~4-l.bundle over Y, and in partic-
ular P is smooth, irreducible of dimension n — 1. The dual variety
Y* is the image of P under the second projection. By theorem 8.5 all
fibres of P — Y* have dimension < n — d — 1. Then the conclusion
follows from the theorem of dimension of fibres (see e.g. [50, page
60, theorem 7]). .

9 A problem of complete intersection

9.1 Let X be a closed smooth irreducible subvariety of dimension
> 2 of the smooth irreducible algebraic variety P. Let Y be an effective
Cartier divisor of X. In this section, roughly speaking, we want to
study the following:

ProBLEM. Under which conditions there exists a hypersurface H
of P such that the scheme Y coincides with the scheme-theoretical
intersection X n H?

The main result proved here (theorem 9.1 below) can be found in
[17] (see also [13]). We shall follow these two papers closely. We shall
also apply the techniques of [17] to prove geometrically the following
weaker form of a theorem of Barth (see theorem 9.3 below): Pic(X) =
Z for every closed smooth subvariety X of the complex projective
space P" with dim(X) > %52

Coming back to the above problem, assume that such a hyper-
surface H of P does exist. First we want to find a (rather obvious)
necessary condition in terms of the canonical exact sequence of nor-
mal bundles

0 — Nyjx — Nyjp — NxiplY — 0. (9.1)
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From the equality Y = X n H (in the scheme-theoretical sense) and
from the above assumptions it follows that Y is a local complete in-
tersection in H, hence we also have the canonical exact sequence of
normal bundles

0 — Ny|g — Nyjp —~ NyjplY — 0. (9.2)

By general elementary statements, the fact that Y is a proper inter-
section of X with H implies that there are canonical isomorphisms

Ny = NxiplY and NgpplY = Nyx.

Therefore the exact sequence (9.2) yields a splitting of the exact se-
quence (9.1).

In other words, a necessary condition for the triple (Y, X,P) of
varieties satisfying the hypotheses from the beginning for which there
exists a hypersurface H of P such that Y = X n H (scheme-theoreti-
cally), is the splitting of the exact sequence (9.1).

This is why we begin this section by trying to express the splitting
of (9.1) in terms of the first infinitesimal neighbourhood X (1) of X in
P. Therefore we are going to study a question somewhat similar to
the splitting condition of the normal sequence of a smooth subvariety
of a smooth variety (see lemumna 7.1).

The dual of (9.1) is the following exact sequence

B

0 —— 7/17 7/72 -2~ 1/(J+7?) —— 0 (93)

where 7 = 7y (resp. J = 1x) is the ideal sheaf of Y (resp. of X) in @p.
Since Y C X, J ¢ 7, and the maps « and § are defined as follows: «
is the canonical map induced by the identity of 7 (taking into account
that 72 < 7 + 72), while § is the map induced by the inclusion 7 c 7
(taking into account that 77 < 7).

LEMMA 9.1 Under the hypotheses of paragraph 9.1, the exact sequence
(9.1) splits if and only if there exists an effective Cartier divisor Y’
on the first infinitesimal neighbourhood X(1) of X in P such that
Y' n X =Y (scheme-theoretically).
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REMARK 9.1 If an effective Cartier divisor Y’ on X (1) as in lemma 9.1
does exist one gets the cartesian diagram of natural inclusions
incl

Y X
inclJ’ lincl
Y’ — X(1)

PrOOF. Clearly (9.1) splits if and only if (9.3) does. So, from now
on it will be more convenient to work with the exact sequence (9.3).
Assume first that (9.3) splits, i.e. there exists amap o :7/7% — J/1]
of Oy-modules such that o o B = id. If 7v : 7 — /72 is the canonical
surjection, set y 1= oc o : 71 - J/17 and 7' := Ker(y). Clearly
J? <127 =1, whence 7 /J? < Op/J? = Ox(y) defines a subscheme
Y’ < X(1). We shall prove that Y’ is an effective Cartier divisor on
X(1) and that Y’ n X = Y (scheme-theoretically). The latter property
is equivalent to
7 +9=1,
which is a consequence of the definition of 7’ plus the equality ¢ o
B = id. Tt remains therefore to check that Y’ is a Cartier divisor on
X(1). This is a local calculation. Let x € Y be an arbitrary point and
set R := Opx, I := Iy and J := Jx. Then R is a regular local ring,
and from our hypotheses it follows that there exists an R-sequence
Jiy s fn-ds fn-a-1 such that J = Rf; + .. + Rfp_gand I = Rfy +
we + Rfp-g + Rfp_gs1, with n := dim(P) = dim(R) and d := dim(X).
Then
n-d
J2= 2. Rfifj, P =J+]fn-ani+RfE 401, and IJ = J?+] fnan
ij=1

Set f; = fymod I?, Vi = 1,..n—-d+1and f; := f; mod IJ,
Vi=1,..,n—d. Since fi, ..., fn-d+1 is an R-sequence, 71,...,7.,[%”1 is
a basis of the R/I-module I/I2, and from the hypotheses, fi, ..., fn-d
is a basis of the R/I-module J/I].

Since B(fi) = fu Vi=1l,..,n—-dand oo B =id, o(f,) = fi,
Vi=1,..,1n—d. Moreover,

. n~d -~
0 (Fr-ar1) = 2, Gifi, withG; € R/L

i=1
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CLaM 9.1 Ker(o) = (R/I)E, where F := fp_gi1 — S Gif; € 1/12
(With F € ).

Clearly, F € Ker(o). Conversely, let H € Ker(o), with H =
S AFF, with F; € R/I. Then

n-d n-d _ n-d
O=0c(H) = > Fo(f)= > Fifi+ Fa—an 2. Gifi
i=1 i=1 i=1
n-d .
= Z (Fi + Fu-d+1Gi) fi-
i=1

Since fi, ..., fn-q is abasis of the R/I-module J /1] we get Fi+Fpn—g+1Gi
=0, Vi=1,..,1n —d, and consequently

. n-d+l N n-d .
H= > Fifi=Fn-ar1(Fn-an— 2, Gif)) = Fn-aniF,
i=1 i=1

and claim 9.1 is proved.
CLamM 9.2 I’ = I? + RF.

This is a direct consequence of claim 9.1 taking into account that
I’ = Ker(y).

CLAIM 9.3 I? + RF = J? + RF.
Since 12 = J2 + J fy-a+1 + Rf2_4., the claim is equivalent to
fifn-ai1 €J+RF, Vi=1,.,n-d+1. (9.4)
Taking into account of the formula defining F we have F = f,_441 —

Z’f;ld gifi, where g; € R such that G; = g; mod I. Then

n-d n—d
fiF = filfn-as1 = D 9ifD) = fifn-as1 - > gififi (9.5)
' i=1

i=1

forall j = 1,..,n —d + 1. In particular,

fifn-as1 €JF+RF, Vj=1,.,n~d. (9.6)
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Taking j = n —d + 1 in (9.5) we get

n-d
Sn-ariF = frzt_d_u - Z Jifn-a+1fi,
i=1

whence, using also (9.6) we get f2_,,, € J>+RF. Claim 9.3 is proved.

By the above three claims it follows that I’ = J2 + RF = I? + RF,
where I’ = 7. In particular, the subscheme Y’ of X (1) is locally given
by one equation. It remains to prove that this equation is a non-zero
divisor. Again the verification is local, so that we have to prove that
F is not a zero divisor in R/J%. This can be done in the following
way. Since Y' n X = Y it follows that FmodJ is a local equation
of Y in X, and in particular, Fmod/ is not a zero divisor in R/J. If
FmodJ? would be a zero divisor in R/J?, then FmodJ2 € J/J? (R/J
is a domain) which is not possible because we just remarked that
FmodJ was not a zero divisor in R/ J.

Conversely, assume now the existence of the effective Cartier di-
visor Y’ on X(1) such that Y’ n X = Y (scheme-theoretically). Then
we have to find a splitting of (9.3). This means that we have an ideal
7’ containing 72 such that 7' + 7 = 7, and in particular, 72 ¢ 7' < 7.

CLAIM 9.4 12 c 7.

Again the verification is local. In the above notations, I’ = J2+RF,
with F a non-zero divisor modulo J%. The equality I’ + J = I implies
J + RF = I. Therefore we may assume that F = f,,_4.1 mod J, i.e.

n-d
F= z gifi+ fn-d+1- (9.7)
i=1
Then proving claim 9.4 is equivalent to checking that
fifn-ar1 €J*+RF, Vj=1,..,n-d+1 (9.8)
Multiplying (9.7) by f; we get (9.8).

CraiM 9.5 The exact sequence (9.3) splits.
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Indeed, using claim 9.4 we may consider the map
u1/1%e9/19 - 1/7°

defined by u(f mod 72,9 mod 71J) = f + g mod 72. We claim that
u is an isomorphism. The surjectivity of g comes from 7' + J = 7.
The verification of the injectivity of p is local (along the same lines as
above) and is left to the reader. The splitting o : 7/7% — 7/17 of (9.3)
is then given by the second projection of the direct sum composed
with g1, O

If Y is a projective variety we shall denote by Pic®(Y) (resp. by
Pic"(Y)) the subgroup of Pic(Y) consisting of all isomorphism classes
of line bundles which are algebraically (resp. numerically) equivalent
to zero. Clearly, Pic%(Y) ¢ Pic™(Y), and a theorem of Matsusaka
asserts that Pic™(Y)/Pic®(Y) is a finite group. The Néron-Severi group
of Y is by definition NS(Y) := Pic(Y)/Pic®(Y). By a result of Néron-
Severi, NS(Y) is a finitely generated abelian group. Moreover, we also
set Num(Y) := Pic{Y)/Pic"(Y). By the definition of Num(Y) it follows
that Num(Y') is torsion free, whence Num(Y') is a free abelian group
of finite rank since NS(Y) is a finitely generated abelian group by
Néron-Severi’s result.

LEMMA 0.2 Let X be a closed smooth irreducible subvariety of P" over
C of dimension = 2. Let X(1) be the first infinitesimal neighborhood
of X in P, Then the image of the composition of natural maps

Pic(X(1)) — Pic(X) — Num(X)

is isomorphic to Z.

ProOOF. Consider the (logarithmic derivative) map dlog : Pic(X) -
H'(X,Qk) defined in the following way. If [L] € Pic(X) is repre-
sented by the 1-cocycle {&;;};; of O% with respect to the affine cover
{U;} of X (with &; € I'(U; n Uy, 0%)), then dlog({&;;}) is by defi-

nition the cohomology class of the 1-cocycle { %l}l j of QL. Since

dlog(Pic®(X)) = 0 the map dlog factors to
dlog : NS(X) = Pic(X)/Pic®(X) — H(X,Q)).
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Moreover, since PicT (X)/Pic®(X) is a finite subgroup of NS(X) and
the underlying abelian group of the C-vector space H' (X, Q}() is tor-
sion free, we infer that dlog(Pic™ (X)) = 0, i.e. there is a unique map
o : Num(X) — HY(X,Qk) such that dlog = « o B, where 8 : Pic(X) —
Num(X) is the canonical surjection. Then it is a general fact (see [24,
page 163]) that « induces an injective map «’ := o¢ : Num(X) ®zC —
HY(X,Q}). Using this, to prove the lemma it will be sufficient to
show that the image of Pic(X(1)) in H(X, Q}() (via the map « com-
posed with Pic(X (1)) — Num(X)) is contained in an one-dimensional
complex vector subspace of H! (X, Q%).
To do this we need the following three facts:

1. The canonical surjective map Qpa|X(1) — Q},, vields by re-
striction to X an isomorphism Qpx|X = Q} ) 1X.

2. There is a natural map H'(X, Q. 1X) — H (X, Q).
3. The C-vector space H1 (X, Q4. |X) is one dimensional.

2 is obvious because the map in question is induced by the canonical
(surjective) map Qb»|X — Qk, while 3 is just step 2 of the proof of
theorem 7.1. To prove 1 consider the canonical exact sequence

1%/1% — Qa1 X (1) — O}y, — O,

and observe that after restricted to X the first map becomes zero.
Using 1-3, the fact that the image of Pic(X (1)) in H (X, Q%) is

contained in an one-dimensional complex vector subspace follows

from the injectivity of ¢ and the following commutative diagram

Pic(X (1)) Pic(X)
diog | |
HYUX(1), Q%)) Num(X)
| inai
HY (X, Q5qy 1) Num(X) ez C

isomI J, o’

HY(X,01X) —— HYX, QL)
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Lemma 9.2 is proved. .

THEOREM 9.1 (ELLINGSRUD-GRUSON-PESKINE-STROMME [17], [13]) Let
X be a smooth projective complex surface embedded in P* (n > 3) as
a complete intersection. Let Y be a smooth connected curve in X such
that the exact sequence of normal bundles

0 - Nyjx — Nyjpn —~ Nxjpn|Y — 0

splits. Then there exists a hypersurface H of P"* such that Y = X n H
(scheme-theoretically).

PROOF. Since X is a complete intersection in P" the Lefschetz the-
orem on hyperplane sections (see e.g. [27], or [29], or also appendix
A below) implies that the restriction map Pic(P") — Pic(X) is injec-
tive, Pic™ (X) = 0, and the class of ©@x (1) is not divisible in Pic(X). In
particular, the canonical map Pic(X) — Num(X) is an isomorphism.

By lemma 9.1 the splitting of the above sequence implies that there
is an effective Cartier divisor Y’ on X (1) such that Y'nX = Y (scheme-
theoretically). In particular, the class of Ox(Y) is in the image of
Pic(X (1)) ~ Pic(X) = Num(X), which by lemmma 9.2 is isomorphic to
Z. It follows that there are two non-zero integers s and £ such that
Ox(sY) = Ox(t). Since Ox(1) is not divisible in Pic(X) this implies
that Ox(Y) = Ox(d) for some d > 0,

On the other hand, X being a complete intersection in P, X
is projectively normal in P". This implies that the restriction map
HOY (P, Opn(d)) — HYX,0x(d)) = H%(X,0x(Y)) is surjective. In
particular, there exists a section a € HO(P", Opn(d)) such thatalY €
HOY(X,0x(Y)) is a global equation of Y. In other words, there is a hy-
persurface H of degree d such that X n H = Y (scheme-theoretically).

|

Another application of lemma 9.2 is a weak form of a theorem
of Barth concerning the Picard group of small-codimensional smooth
subvarieties of the complex projective space. In this application we
shall use the following generalization of the Kodaira vanishing theo-
rem due to Le Potier ([34], or also {47]):
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THEOREM 9.2 (LE POTIER VANISHING THEOREM) Let X be a smooth co-
mplex projective variety of dimension d = 2, and let E be an ample
vector bundle of rankr on X. Then HY(X,F*) = 0 foreveryi < d—r.

THEOREM 9.3 (BARTH) Let X be a closed smooth subvariety of the com-
plex projective space P" of dimension = —"—;—3 m = 4). ThenPic(X) = Z.

REMARK 9.2 The Barth theorem on the Picard group also states that
(under the hypotheses of theorem 9.3) Ox (1) generates Pic(X).

PROOF OF THEOREM 9.3. Let 7 be the ideal sheaf of X in @p». Then
the truncated exponential sequence

0~ 12/7% = Njpn = O%(1) = 0% = 0
yields the cohomology sequence
HY(X,N¥jpn) — Pic(X(1)) — Pic(X) — H*(X, N pn).

Since the normal bundle Nxp» of X in P" is a quotient of Tpn|X,
Nyipn is ample of rank = codimpn (X). The hypothesis dim(X) = 1%-3
is equivalent to dim(X) — codimpn (X) = 2, whence by theorem 9.2
the first and the last cohomology groups are zero. It follows that the
restriction map Pic(X(1)) -- Pic(X) is an isomorphism.

The hypothesis dim(X) > %"2 also implies dim(X) > 12’— whence
by corollary 8.5, X is algebraically simply connected. In particular,
q = dim(H!'(X,0x)) = 0. Indeed, otherwise Pic’(X) # 0, and since
Pic?(X) is the underlying group of a complex torus, there exists a
non-trivial line bundle L of finite order m > 2. Then L produces a
connected non-trivial étale cover X’ — X, with X’ = Spec(@™5' LY),
contradicting the fact that X is algebraically simply connected.

Since Pic?(X) = 0, by Matsusaka’s theorem Pic (X) is a finite sub-
group of Pic(X). Again if there is a non-trivial L € Pic"(X), one
gets a connected non-trivial étale cover of X as above. Therefore
Pic" (X) = 0, i.e. Pic(X) = Num(X).

At this point, using the bijectivity of the restriction maps Pic(X (1))
- Pic(X) and Pic(X) — Num(X), we can conclude by applying lemma
9.2. O
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REMARK 9.3 Barth’s theorem asserts that (under the hypotheses of
theorem 9.3) Pic(X) is the (infinite) cyclic group generated by the class
of Ox(1). It would be also interesting to prove geometrically that the
class of ®x (1) generates Pic(X).

9.1 Appendix A

In this appendix we shall show how the following Lefschetz theorem
for the Picard group (which was used in the proof of theorem 9.1):

THEOREM 9.4 Let X be a smooth projective complex surface embedded
in P" (m = 3) as a complete intersection. Then the natural restriction
map a : Pic(P") - Pic(X) is injective and Coker(a) is torsion free.
In other words, a is injective and the class of Ox(1) is not divisible in
Pic(X).

can be deduced from the following special case of the topological
Lefschetz theorem for hyperplane sections (see e.g. Milnor [36]):

THEOREM 9.5 Let X be a smooth projective complex surface embedded
in P"* (n = 3) as a complete intersection. Then the natural maps of
singular integral cohomology H(P",Z) — H(X,Z) are isomorphisms
for i < 2 and injective with torsion free cokernel for i = 2.

PROOF OF THEOREM 9.4. For a complex algebraic variety V de-
note by O (resp. by (03")*, resp. by Zy) the sheaf of holomorphic
functions on V (resp. the sheaf of nowhere vanishing holomorphic
functions on V, resp. the constant sheaf Z on V). Then the commu-
tative diagram of exponential sequences

0 Lpn o5 = (05 —— 0
P P

0 Zx o 2 (OF)* 0
X X

yields the following commutative diagram with exact cohomology se-
quences

HY(P", 02) HY (P, (OF)*) —— HA(P™,Z) —— H?*(P", O3%)

| J, 1

HY(X,0%) HY(X, (OP)*) —— HA(X,D)
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By the GAGA results of Serre [49], Hi(V,0y) = HY(V,0%") for all
i = 0 and Pic(V) = HNV,0¥) = H'(V,(0")*) for every complex
projective variety V. Moreover, H{(P", Opn) = 0 for i = 1,2, and
HY(X,®x) = 0 because X is a complete intersection surface in P".
Therefore the last commutative diagram becomes

0 Pic(P") H2(P",7) 0
«| s
0 Pic(X) H%(X,2)

By theorem 9.5, the map S is injective and Coker(f) has no torsion.
This fact together with the last commutative diagram with exact rows
imply that « is injective and Coker(x) has no torsion.

9.2 Appendix B

In this short appendix we recall briefly some basic facts about cyclic
covers. Let X be an irreducible projective variety of dimension = 1,
and let L € Pic(X) be a line bundle of finite order n = 2. In particular,
there is an isomorphism

L" = 9y. {9.9)

We shall assume that char(k) does not divide n. Using this isomor-
phism, we can endow the Ox-module A = @{‘:”OlLi with a structure
of commutative Ox-algebra in the following way. For any two local
sections s of L? and t of L/ we define the product st as follows:

e st:=s® t which is a local section of Li*J, if i + j < m ~ 1, and

e st is the image of s ® t (which is a section of Li*/) under the
isomorphism L**/ — Li*J=" deduced from (9.9), if i + j = n.

Then taking X’ := Spec(A) and f : X’ — X the structural mor-
phism of Spec(A), we get an irreducible projective variety X’ together
with a canonical finite étale morphism f : X' — X of degree n (here
the fact that the characteristic of k does not divide the order n of L
is essential). By construction, f*(L) = Ox-.
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Then the morphism f is called the cyclic étale cover of X associ-
ated to the line bundle L € Pic(X) of order n.

More explicitly, X" is obtained as follows. Let (§;;);; € Z1 (U, ©%)
be a 1-cacycle of % with respect to a finite affine cover U = (U;);
of X which represents L € Pic(X) = H!(X,0%). Since L" = Oy the
1-cocycle (Ei"j)iy j is a 1-boundary, i.e. we can write

EZ = gi/gj, on U;nUj, with g; Ef(Ui,O)’;).

Then define f : X’ — X locally on U; by taking f; the restriction to
the open subset

Xit={(x,2) € Uy x Al | z; )" = g;(x)}

of the second projection of U; x Al. Then the morphisms f; patch
together to yield the étale morphism f with the above properties.
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