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SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY 

1 I n t r o d u c t i o n  

These notes are the outcome of a Ph.D. course I gave in the Spring 
1999 at the Dipartimento di Matematica, Universit5 degli Studi di Mi- 
lanoo The main aim was to int roduce the Ph.D. students to some mod- 
ern aspects and methods of projective geometry. The lectures have 
been  conceived to touch three impor tant  themes: the connect ion be- 
tween projective geometry and deformations of quasi-homogeneous 
singularities, cohomological d imension and connecti~iW results, and 
applications of formal geometry to projective geometry. 

As far as the first theme is concerned,  I started with the classical 
problem of classifying the extensions in pn+l of a given subvariety Y 
in ~n, by proving a remarkable result  due to Zak-L'vovsky ( theorem 
2.1)o The method of the proof given here relies on another  funda- 
menta l  result due to Mori-Sumihiro-Wahl ( theorem 2.2) which is also 
interest ing in itself. The first three sections provide the proofs of 
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these two resul ts  and  give some appl icat ions,  c o m m e n t s  and exam- 
ples. The condi t ion  involved in the  Zak-L'vovsky t heo rem (the sur  o 
jectivity of  the  Zak map)  is bet ter  u n d e r s t o o d  in the case of  curves 
in te rms of  the  so-called Gaussian m a p s  (see sect ion 5). The s tudy  
of the Gaussian m a p s  has  been  ini t ia ted in 1987 by J. Wahl ~ t h  the  
main  mot iva t ion  of  u n d e r s t a n d i n g  the  geomet ry  of  the  curves lying 
on K3-surfaces.  In sect ion 6 we prove  a resul t  of  Schlessinger which 
relates the de fo rma t ion  theory of the vertex of  the affine cone Cy over 
a s m o o t h  project ively normal  subvar ie ty  Y in ~n wi th  the project ive 
geomet ry  of  Y. In particular,  it b ecomes  t r ansparen t  that  the surjec ~ 
tivity of  the Zak map  is natural ly  in t e rp re t ed  in te rms  of  de fo rmat ions  
of the vertex of the cone Cy~ 

The second  theme  is p r e sen t ed  in sect ion 8. First we prove a spe- 
cial case of  a resul t  of Har t shorne-Lichenbaum which  says that  the 
cohomologica l  d imens ion  of a quasi-project ive variety U of d imen-  
s ion n is _< n - 1 if and  only if U is no t  a project ive variety. This 
resul t  is t hen  appl ied to prove a genera l iza t ion  to weighted  projec- 
tive spaces  of  the Ful ton-Hansen connect ivi ty  theorem.  Then  some  
appl icat ions  of  this connect ivi ty  resul t  are given. 

Unfor tunately ,  there was no t ime to deal with  formal  geomet ry  and  
its appl ica t ions  to project ive geometry .  However, in sect ions 7 and  
9 we p resen t  two resul ts  whose  p roofs  involve in an essential  way 
cons ider ing  the first infinitesimal n e i g h b o u r h o o d  in ~n of a c losed 
subvariety X c ~n. The first one, due  to Van de Ven, character izes  
the l inear subspaces  as the only i rreducible s m o o t h  subvariet ies of 
pn for which  the normal  sequence  splits. The second  result,  due  to 

El l ingsrud-Gruson-Peskine-Stromme, gives necessary  and s u ~ c i e n t  
condi t ions  for  a curve Y lying on a comple te  in tersect ion surface X in 
~n to be the scheme- theore t ic  in tersec t ion  of  X with a hypersur face  
of pn (see t heo rem  9.1). The m e t h o d s  of  proving this latter resul t  
also ~ e | d  a geometr ic  p roof  of a resul t  of Barth which asser ts  that  

n + 2  
Pic(X) = 7] for every s m o o t h  subvarie ty  X of pn of  d imens ion  > 2 " 

We hope  that  the m e t h o d  of us ing the  first inf imtesimal  neighbour-  
h o o d  will convince the reader  less familiar with  formal  m e t h o d s  that  
formal  g e o m e t r y  deserves to be s tud ied  and applied to projective ge- 

ometry.  
Finally, I a m  grateful  to Antonio  Lanteri for inviting me at the  
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University of Milan to give this "corso di dot tora to  INDA/VI", to Pro- 
fessor  Leonede De Michele for suppor t i ng  this idea, and  to the Ist i tuto 
Nazionale di Alta Matematica (Roma) for financial support .  I en joyed  
the pleasant  and  s t imula t ing  a t m o s p h e r e  of the whole group of alge- 
braic geometers  of Milan: Alberto Alzati, Marina Bertolini, Elisabetta 
Colombo, Antonio Lanteri, Marino Palleschi, Cristina Turrini, and  Al- 
fonso Tortora.  I thank  t h e m  all. I a m  grateful  to Paltin Ionescu who 
read carefully the text and  sugges t ed  a n u m b e r  of i m p r o v e m e n t s  of 
the presenta t ion.  Last bu t  no t  least, m y  thanks also go to Francesco 
Russo and  his family for their  f r i endsh ip  and warm hospi tal i ty  I en- 
joyed dur ing  my stay in Milan (Rho). 

2 E x t e n s i o n s  o f  p r o j e c t i v e  v a r i e t i e s  

We shall fix t h roughou t  an algebraically closed g round  field k (of ar- 
bi t rary characteristic, unless  o therwise  specified). 

Let Y be a s m o o t h  connec ted  c losed subvariety of d imens ion  >_ 1 
of the n -d imens iona l  project ive space pn over k. 

DEFINITION 2.1 An irreducible closed subvariety X o f  the (n + 1)-di- 
mensional  projective space Dn+l is said to be extension o f  Y (in p n+l) 

i f  the following two conditions are satisfied: 

i~ dim(X) = dim(Y) + 1. 

. There exists a linear embedding  i : pn ~ pn+l such that  Y = 

X r~ H, where H := i (P n) and the intersection is taken in the 
scheme-theoretical sense. 

EXAMPLE 2.1 FLx Y C Frt as above and a linear embedd ing  i : pn  ~. 
pn+l,  and  set H := i (pn) .  Pick an arbitrary point  x ~ pu+l \ H, and  

let us denote  by X the projective cone in pn+l over Y of ver tex x. 
Clearly, X is an extension of  Y in ~n+ 1 These kind of extens ions  will 
be called trivial extensions. 

One of  the fundamen ta l  p rob lems  of the classical project ive geom- 
etry is to classify all extensions  in F n+l of a given subvariety Y c F n. 

We shall prove a remarkable  resul t  due to Zak-L'vovsky in connec t ion  
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with  this problem.  In order  to state it we need  to cons ider  two exact 
sequences.  First let us fix some  notat ion.  For every algebraic variety 
Z we shall deno te  by O R the  sheaf  of differential  fo rms  of  degree one 
on  Z (over k). Then  we shall define the tangent  sheaf  T z  of Z as the  

dual  (OR)* = Homz(O~,  O z )  of ~ .  If Z is s m o o t h  t hen  T z  is locally 
free, i.e. is a vector  bund le  on  Z. Moreover, if Z is a c losed subscheme  
of  a scheme W of  ideal sheaf  2, t hen  the  Oz-module  2/2 2 is called the 
conormal  sheaf  of  Z in W. The normal  sheaf  N z l w  of  Z in W is by  
defini t ion the dual  (2/~2) �9 = Homz (2/2 2, OZ) of 2/2 2. If Z is s m o o t h  
and  W is s m o o t h  along Z (i.e. at each po in t  of  Z) then  N z l w  is locally 
free, i.e. is a vector  bundle  on Z. 

Coming back to our  si tuation,  let 

0 , Ty  ~ T e . [ Y  a . Nyl~,~ . . . .  0 

be the no rma l  sequence  of  Y in ~n. Consider  also the Euler sequence  
of  ~n res t r ic ted  to Y: 

b 
0 . O y  , ( n + l ) O y ( 1 )  , T ~ . I Y  . . . . . .  O, 

where Oy(1) is the sheaf  of hyperp lane  sect ions of Y (with respect  to 
the  e m b e d d i n g  Y ~-- pn), and  (n  + 1)Oy(1) denotes  the direct s u m  of  

n + 1 copies of Oy(1).  
In particular,  we get the  surject ive m a p s  

a ( - 1 )  : ~ v - ( - 1 ) l Y  -- NyI~ - ( -1 )  

and 
b ( - 1 )  : (n  + 1 )Or  ~ T~-( -1) IY,  

and therefore  the surjective map  of  vector  bundles  

c := a ( - 1 )  o b ( - 1 )  : ( n  + 1 ) O y  - NyI~, ,(-1) .  

Passing to global sect ions we get the following map  of k-vector spaces 

z := H ~  : H~ (n  + 1)Oy) ~ H ~  N y t e . ( - 1 ) ) ,  (2.1) 

which we call the  Z a k  m a p  of Y in pn 
Now, we can state the following f u n d a m e n t a l  result:  
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THEOREM 2.1 (ZAK-L'vOVSKY [55], [35]) In the above situation, assume 
furthermore that Y is o f  codimension r > 2 and non-degenerate in ~n 
and that the Zak map (2.1) is surjective. Then every extension o f  Y in 
~n+l is trivial. 

Theorem 2o 1 is valid in arbitrary characteristic,  even unde r  more  
general  hypo theses  (see e.g. [4]). The p roo f  we shall give below is one 
of the proofs  of [4] and  is valid only in characterist ic zero. This p roof  
is based  on the following fundamen ta l  resul t  (which will be p roved  in 
the next  section): 

THEOREM 2.2 (MORI-SUMIHIRO-WAHL [52]) Let (X,L) be a normal  po- 
larized variety (i.e. a normal  projective variety X endowed with an 
ample line bundle L) o f  dimension >_ 2. Assume  that  the characteristic" 
o f k  is zero and that H~ Tx | L -1) ~= Oo Then there exists an effec- 

tive divisor E in the complete linear system tLI such that X is isomor- 
phic to the projective cone over the polarized scheme (E, LE :-- LIE). 

o L~)~ with In other words, X ~ Proj(A[T]),  where A := ei=oH (E, 
T an indeterminate over A~ and the gradation o f  A[T] is given by 
d e g ( a T  m) = deg(a)  + rn whenever  a E A is a homogeneous element. 

Moreover, L ~ OProj(A[T]) ( 1 ). 

We shall also make  use  of  the fo l low~g  two e lementary  resul ts  
(which will also be p roved  later): 

PROPOSITION 2.1 (SCHLESSINGER [44]) Let X be a normal variety over 

k o f  dimension > 2, Y a closed subvariety o f  X o f  codimension > 2, 

and F an Ox-module which is the dual o f  a coherent Ox-module  G. 
Then the restriction map H ~  ~ H ~  \ Y ,F)  is an isomorphism 
o f  k-vector spaces. 

PROPOSITION 2.2 (BERTINI-SERRE) Let E be a vector bundle o f  rank r 
on an algebraic variety X over k. Assume that V is a finite dimensional 

k-vector subspace o f  H 0 (X, E) which generates E (this means  that  for 
every x E X the Ox,x-module Ex is generated by V). Then there is 
a non-empty Zariski open subset Vo o f  V such that cod imx(Z(s ) )  > 
r for every s ~ Vo, where Z(s) denotes the zero locus o f  s, and 
cod imx(Z(s ) )  > dim(X) means Z(s)  = Oo 
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PROOF OF THEOREM 2.1. The p roo f  which follows is t aken  f rom [4] 
and works only in characterist ic  zero (because it makes  use  of theo- 
r e m  2.2 which  is in general  false in posi t ive characteristic).  However, 
t h e o r e m  2.2 is valid in arbi trary characterist ic  (see [4], for ano the r  
p roo f  which is characterist ic free)~ 

CLAIM 2.1 (MUMFORD [38]) In the hypotheses o f  theorem 2.1, for  every 
i >_ 2 one h a s H ~  N y l w , ( - i ) )  = O. 

Indeed, since N y t ~  ( - i  - 1) ___ Nvi~n ( - i )  for all i (via the  multipli-  
cat ion by a global equa t ion  of a hyperp lane  in ~n), it will be sufficient 
to prove the s t a t emen t  for i = 2. A s s u m e  that  there exists a non-zero  
sect ion s ~ H~  NyIw~(-2)) .  Since Y is non-degenera te  in F n the 
k-linear m a p  of  vector  spaces 

H~ n,O~n(1)) ~ H~ Ny l~n( -1 ) ) ,  given by h - hs,  

is injective. Moreover, the surjectiviW of  the Zak map  (2.1) implies  
that  the second  space is of d imens ion  < n + 1. Since the first space 
is of  d imens ion  n + 1 it follows tha t  this map  is an i somorph i sm.  In 
particular,  every global sect ion of  N r l ~  ( - 1 )  is of the fo rm Its, with 
h r H ~ (pn,  O~,~ (1)), whence  the zero locus of  every global sect ion of 
N y l ~  ( - 1 )  conta ins  the suppo r t  of  a non-zero  divisor of  Yo 

On the  o ther  hand,  the surjective m a p  c : (n + 1)Oy ~ N y l ~  ( - 1 )  
cons ide red  above shows that  the vector  bund le  IVy F ~, ( -  1) of rank  r = 
codim~,  (Y) > 2 is genera ted  by its global sections.  Then, by propo-  
si t ion 2.2, the  zero locus of a general  sect ion of  H~ N y I ~ , ( - 1 ) )  

shou ld  be of  cod imens ion  >_ r _> 2, a contradict ion.  The claim is 
proved.  

Let X be an arbitrary extens ion  of  Y in ~n+l. The hypo theses  
imply  tha t  Y is a Cartier divisor on  X. Since Y is smooth ,  it follows 
that  X is s m o o t h  at each point  of Y. In other  words,  Y is conta ined  in 
the s m o o t h  locus V := Reg(X) of  X. Moreover, since Y is a hyperp lane  
sect ion of  X, Sing(X) = X \ V is a finite (possibly empty)  set of  points .  

On the  o ther  hand,  the equali ty Y = X n H (scheme-theoretically) 
tells us  that  Y is the p rope r  in tersec t ion  of X with H. Then  a general  
p rope r ty  of  p roper  in tersect ions  implies  that  

NXt~n+I | (gy ~ Nylon. (2.2) 
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Let f : X' ~ X be the  normal i za t ion  of X (in its field of  rat ional  
functions).  Clearly, f l f  -1 (V) : f - 1  (V) -~ V is an i somorph i sm.  In 
o ther  words, V can be ident i f ied wi th  a Zariski open  subse t  of  X', 
deno ted  again by V; in particular,  Y is conta ined  bo th  in X and in X' 
as an ample  Cartier divisor (Ox,(Y) = f *  (Ox(Y))  is ample  because  
Y is ample  on X and ampleness  is p rese rved  under  inverse images  of 
finite morphisms)~ Note also that  Ox, (Y) is genera ted  by its global 
sect ions because it is the inverse image of the very ample  line bund le  

Ox(Y)  = Ox(1). 
Set Nx, := f*(Nxtn, n+x)** (bidual). Clearly, Nx, IV -~ Nxl~,n+llV. 

Set Nx, (i) := Nx, | Ox' (iY) for all i e 71. Now, us ing (2.2) and  all 
these  observations,  for every i >_ 1 we get the exact sequence  

h r 

0 - ~ N x , ( - i - 1 )  ,. N x , ( - i )  .. N r l ~ - ( - i )  , O, 

which yields the exact sequence  

0 ~ H ~  1)) ~ H ~  ~ H~ N y I e . ( - f ) ) .  
(2.3) 

Here h' E H~ ', Ox, (Y)) is a global equat ion of Y in X'o By the 
above claim the last space is zero for every i >_ 2, therefore  the first 
m a p  (between the H~ is an i s o m o r p h i s m  for all i _> 2. 

On the o ther  hand, since Ox, (1) is ample, by a general  s imple 
s ta tement ,  H ~  = 0 for every i >> 0. Therefore  by in- 
duc t ion  on i we get that  H~ ( - i ) )  = 0 for all i >_ 2. Then  the 
exact sequence (2.3) (with i = I), the claim a n d  the surjectivity of  the 
Zak map  yield 

d imk(H~  <_ dimk(H~ Nrt~,,(-1))) _< n + 1. (2.4) 

On the other  hand, since X' is normal ,  V _c X', codimx, (X' \ V) > 2 
and  l ~ ,  is reflexive, by p ropos i t ion  2.1 we get 

dimk H ~  = dimk H~ Nxt~n-~(-1)). (2.5) 

Then  (2.4) and (2.5) yield 

dimk H~ Nxt~,,§ ( -1 ) )  _< n + 1. (2.6) 
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Now look at the  c o m m u t a t i v e  d i ag ram 

, ,, 

0 0 

1 1 
id 

Ov �9 OF 

1 1 
F , (n  + 2 ) O r ( l )  

t I 
Tv ~ Tg,. + I l V 

1 t 
0 0 

....... , 

Nxl~,,§ . . . . .  0 

~ -  Nxlr IV - -  o 0 

in which  the last  row is the  n o r m a l  s e q u e n c e  of  X in F "+l  r e s t r i c t ed  

to V = Reg(X),  the s e c o n d  c o l u m n  is the  Euler s e q u e n c e  of  pn+l  

r e s t r i c t ed  to V, and F := K e r ( ( n  + 1 ) O v  ~ Nxtu,,,+llV). By p r o p o s i  o 

t ion 2.1 we have 

dimk H ~  ( n  + 2 ) O r )  = dJmk H ~  ', ( n  + 2 ) O x , )  = n + 2~ 

The top  row yields the exact  s e q u e n c e  

0 ~ H ~  - H ~  ( n  + 2 ) O r )  --. H ~  NxI~ , .+I ( -1 ) ) ,  

where  for  every  cohe ren t  O x , - m o d u l e  G we  pu t  G ( -  1 ) := Go Ox, ( - Y)o 

There fo re  the last  equal i t ies  toge the r  wi th  the  inequality. (2.6) yield 

H ~  O. Then  f r o m  the first  c o l u m n  of  the  above diagram,  

taking into accoun t  that  

H ~  O K ( - 1 ) )  = H ~  ', O x , ( - 1 ) )  = 0, 

it fo l lows that  H ~  T v ( - 1 ) )  q: 0. Recall ing that Tx, (f21,) *, X'  is 

no rma l  and  codimx,  (X' \ V) > 2, this las t  fact  t rans la tes  - via p ropo-  

s i t ion 2.1 - into 

H ~  . O. (2.7) 
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Now, (2.7) allows one to apply theorem 2.2 to the normal polarized 

variety (X',  Ox, (Y))  (in which Ox, (Y) is not  only ample, but  also gen- 

erated by its global sections) to deduce  that X' is isomorphic to the 

projective cone over (E, O x , ( Y )  | OE) for some E ~ IOx,(Y) l .  This 
implies that X' is in fact i somorphic  to the cone over (Y, Oy (Y ) ) .  

Finally, a simple s tandard a rgument  shows that this implies that X 
mus t  be the cone over Yo [] 

PROOF OF PROPOSITION 2.1o We shall make use of the following 

well-known general facts (see [25]): 

a) Let X be a scheme, Y a closed subscheme of X, and set U := 

X \ Y. Let F be a coherent  Ox-module.  Then one can define the 

cohomology spaces H ~ ( X , F ) ,  V i  >_ O, with support  in Y such that 

there is a canonical exact sequence (called the exact sequence of local 
cohomology) 

0 -- H ~  - H ~  ~ H ~  ~ H~,(X,F) . . . .  

. . . . . . . .  ~ r q  + 1  r - H q ( X , F )  H q ( X , F )  Hq(U,F)  ~ y  tA, F) . . . .  , 

where the maps Hq (X, F) - Hq (U, F) are the restriction maps. 

b) Assume now that X = Spec(A) is affine and Y = V(I)  is given 

by the ideal I of the commutat ive  Noetherian ring Ao Let M be a 

finitely generated A-module, and let F := /r  the coherent  sheaf 

on X associated to M. Let f l , . . . ,  fp  ~ A be p arbitrary elements  of 

I. f t  . . . . .  f p  is said to be an M-sequence if .fl is not a zero divisor 
in M (i.e. f l m  = 0, with m ~ M, implies m = 0), and f i+l  is not 

a zero divisor in M / ( f l M  + o.. + f i M )  for all i = 1 . . . . .  p - 1o The 

maximal non-negative integer p such that there is an M-sequence 

f l  . . . . .  f p  ~ I is called t h e / - d e p t h  of the A-module M (denoted by 

/-depth(M)).  One can prove that the following equality holds: 

I -  d e p t h ( M )  = inf {depth(Mp)}, 
pEV(I) 

where V(I )  := {p ~ Spec(A) [ I c p}, 

and depth(Mp) := pAp  - depth(Mp).  

c) Let ~" > 0 be a non-negative integer. Then the following two 
s ta tements  are equivalent: 
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I - depth(M) > r ,  i.e. p A p  - d e p t h ( M p )  >_ r for all p ~ V ( I ) ,  (2.8) 

H ~ ( X , F )  = 0  V i < r ,  w h e r e X = S p e c ( X ) , Y = V ( I ) ,  andF=2C/ ,  

(2.9) 

In particular, i f / -dep th (M)  >_ 2 then the restriction map H~ F) 

H ~  F) is an isomorphism, where  X = Spec(A), Y = V ( I )  a n d  

F = ~ ~  

d) IfA is a normal ring (i.e. a Noetherian domain which is integrally 

closed in its fraction field) and if I is an ideal of A of height  > 2 (which 

by definition means  that every minimal  prime ideal of  A containing I 

has height > 2), t hen / -dep th (A)  > 2. This follows f rom a well known 

criterion of normali ty due to S e r e  (see eog. [48]). 

Now we can prove proposi t ion 2.1o The conclusion of our propo- 

sition is local, so we may assume X = Spec(A) affine, Y = V(I), 

with I an ideal of A, and F = ~I, with M an A-module of the fo rm 

M = H o m A ( N , A ) ,  with N an A-moduleo Since A is normal  of dimen- 

sion > 2 and codimx(Y) > 2, a well known criterion of normali ty due 

to Serre (see [48, IV-44, Th~or~me 11]) implies that p A p - d e p t h ( A )  > 2 

for every p ~ Y -- V ( I ) .  By what we have said above it follows that  

I-depth(A) >_ 2, i.e. there is an A-sequence f l , f 2  ~ I. Using the 

propert ies  recalled above, the conclusion of the proposit ion is a con- 

sequence of the following: 

CLAIM 2.2 f l ,  f2 is an  M - s e q u e n c e ,  L e o / - d e p t h ( M )  _> 2. 

To prove claim 2.2 observe that since f l  is not a zero divisor in A 

we have the following exact sequence 

0 , A f l  ~ A . . . .  B : = A / f l A  ~ O, 

in which the map f l  is the multiplication by f l .  Since the functor  

Horn is left exact we get the exact sequence 

0 ~ H o m A ( N , A )  f~ , H o m A ( N , A )  , H o m A ( N , B ) .  
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Since M = H o m j  (N, A), this s h o w s  first  that  f l  is no t  a zero-d iv isor  

in M, and  second,  that  

M / f l M  ~ H o m A ( N , B )  ~ HomB(N,B) ,  

where  N := N ~ f i n  (it is i m m e d i a t e  to see  that  N b e c o m e s  a B-modu le  

and  that  there  is the  above  ident i f ica t ion  of  B-modules)~ 

Now we can app ly  the s a m e  a r g u m e n t  to B = A / f l A  and  to the  

non-ze ro  divisor  f '  := f2 m o d  f l A  in B to prove  tha t  f2  is no t  a 

zero  divisor  in HomB(N,B), whence ,  afortiori, not  a ze ro  divisor  in 

the  B - s u b m o d u l e  M / f l M .  The claim (and the reby  p r o p o s i t i o n  2.1) is 
p roved .  []  

PROOF OF PROPOSITION 2.2~ (See [20] for  a m o r e  genera l  formula-  

tion.) Since V genera tes  E, the  canonical  eva lua t ion  map  cp �9 X x V  ~ E 
def ined  b y  ( p ( x , s )  := s (x) ,  is a sur jec t ive  s m o o t h  m o r p h i s m  such  

that  every  fibre of  qo is a k-vec tor  s u b s p a c e  of  V of  d i m e n s i o n  v - r ,  

where  v := dimk(V).  Let C be the zero  sec t ion  of  the  canonica l  pro jec-  

t ion Tr " E -- X, so that  C ~ X, and  in part icular ,  d im(C)  = d im(X)  =: 

d. It fo l lows that  (p- i (C) = { (x,  s) ] s (x)  = 0 } is a c losed  i r reducib le  

s u b s e t  of  X x V of  d i m e n s i o n  d + v - r .  

Let p �9 X x V - V be  the s econd  p ro j ec t ion  of  X • V, and  let  u s  

deno te  b y  Y the c losure  of  p (cp -1 (C)) in V. Then  there  are two cases  

to be  cons idered:  

1. Y :~ V. Then  se t t ing V0 := V \ Y :~ 0, we get  tha t  for  every  s ~ V0 
we have 

p - l ( s )  n q o - l ( c )  ~ {x  E X t s(x) = 0} = 0, 

i.e. Z(s) = 0, whence  codimx(Z(s)  ) >_ r. 

2. Y = Vo Then  we get  the  d o m i n a n t  m o r p h i s m  q := p l c p - l i c )  - 

qo- l (C)  - V of  i r reducib le  varieties.  By the t h e o r e m  of  the  

d imens ion  of  f ibres (see e.g. [50, page 60, t h e o r e m  7]) there  is a 

n o n - e m p t y  o p e n  s u b s e t  V0 of  V which  is con ta ined  in q (qo- 1 (C)) 
= p(cp- l (c ) )  such  tha t  

d i m ( q - l ( s ) )  = d i m ( p - l ( s )  n ( p - l ( c ) )  

= dim(~p-1 (C)) - d im(V) 

= ( d + v - r ) - v = d - r ,  Vs ~ VOo 
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In other  words, codimx(Z(s ) )  = r for all s E Vo. Proposition 2.2 is 

proved. [] 

We end this section by a general izat ion of theorem 2.1 of Zak- 

L'vovsky. First we shall need a definition. 

DEFINITION 2.2 Let Y be a smooth connected closed subvariety of  ~ n 

of  dimension d >_ 1. Let m > 1 be an integer. A closed irreducible 

subvariety X of  ~n + m of  dimension d + m is called extension of  Y in 
~n+m if there is a linear embedding i : ~n ~ ~n+m such that Y = X c~H 

(in the scheme-theoretic sense), where H := i(~n).  I f  there exists an 

extension X of  Y in ~n+m which not a cone, we sometimes also say 

that Y extends non-trivially m steps. 

THEOREM 2.3 Let Y be a smooth connected non-degenerate subvariety 

o f  codimension >_ 2 of  ~ n. Assume char(k) = 0, dim(Y) _> 1, and 

H~  NyI~n(-2))  = O. Set d im(H~ Nyf~n(-1)) )  =: n + r + 1 (by 

proposition 4.1 below, r >_ 0). I f  m >_ r + 1 then every extension of  Y 
in ~n+m is a cone over a subvariety o f ~  n+m-1. 

NOTE. By the claim in the proof of theorem 2.1, the surjectivity of the 

Zak map (2.1) implies that H ~ ( Y, Nyi ~ ( - 2 ) ) = 0. Therefore theorem 

2.3 is a generalization of theorem 2.1 in characteristic zero. 

PROOF. We shall proceed in a similar way as in the last part  of the 

proof  of theorem 2.1. Since dim(X) = dim(Y) + m and Y = X n 

H (scheme-theoretically), Nrlx  ~ re |  and Nxl~+m[Y ~- NrlH. 
(Note that  since X is smooth  at each point of  Y, Nxl~+m is a vector 

bundle  along Y.) Let f : X' ~ X be the normalizat ion of X. Then, 

exactly as in the proof  of theorem 2.1, Y c X'  and Nyix, ~- re |  

Moreover, Nx, := f *  (Nxl~,~§ ~ )** is a vector bundle along Y such that 

Nx, I Y ~ NYiu. Since f is a finite morphism,  Ox, (1) := f *  (Ox(1)) is 
an ample line bundle on X' generated by its global sections. For every 

coherent  sheaf  F on X' and for every integer  i, set F(i) := F | Ox, (i). 

FLx an integer i > 0 and consider the exact sequences (p _> 0) coming 

f rom these isomorphisms 

0 ~ ~p+X | ~ ~P | ~ ~p/~p+1 | ~ O, 

(2.10) 
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where  J is the  ideal shea f  of  Y in X. Moreover,  we have 

251 

IP/J p+I | Nx , ( - i )  ~ SP(rnOy(-1))  | NyIH(-i) 

_~ N y i H ( - i -  p)o (2.11) 
P 

The hypo thes i s  that  H~ NYl~,(-2)) = 0 implies  that,  for  every  
i >_>_ 2, H ~  = O. T h e n  by  (2.11) we get  H~ JP/J p+I | 
Nx, ( - 1) ) = 0 for all p >_ 1. The re fo re  (2.10) implies  that  the canonical  

m a p s  
HO(x ,,Jp+l | N x ' ( - 1 ) )  -- H ~  | N x , ( - 1 ) )  

are i somorph i sms  for every  p _> 1. This yields 

H~ | Nx,(-1))  -~ H~ | Nx,(-1)) ,  Vp >_ l. (2.12) 

On the  o the r  hand  we have the  following: 

CLAIM 2.3 Let Y ~: 0 be a closed subvariety of the normal projective 
variety X' defined by the ideal sheaf J. Assume that Y meets every 
hypersurface of X'. Let F is" a coherent torsion free Ox,-module such 
that the canonical maps H~ - H~ are isomorphisms 
for every p >_ 1. Then H 0 (X', F) = O. 

To prove claim 2.3 pick an  a rb i t ra ry  point  y r Y. T h e n  the hypoth-  
esis implies that  sy ~ JPFy for  all p > 1. Since Fy is an Ox, y-module 
of  finite type and Jy is con ta ined  in the  maximal  ideal of  the  local 

r ing Ox,,y, by a well k n o w n  t h e o r e m  of  Krull (see [48]) we get  

0 0  

p=I  

It fol lows that  Sy = 0. Since y was an arbi t rary  poin t  of  Y, s van ishes  

a long Y, whence  s]V = 0 for  a cer ta in  open  n e i g h b o u r h o o d  V of  Y in 

X. By hypo thes i s  codimx,  (X' \ V) > 2. On the o ther  hand,  since F is 
t o r s ion  f ree  the  canonical  map  F ~ F** into the  bidual  is injective, 

w h e n c e  s is also a sec t ion  of  the reflexive shea f  F**.  By p ropos i t ion  

2.1 it fol lows that  the res t r ic t ion  m a p  H~ **) ~ H~ **) is 

an i somorph i sm.  Since s lV = 0, we infer  that  s = 0 as a sec t ion  of  



2 5 2 L. BZd3ESCU 

F**,  whence  also as a sect ion of  F because  F _ F**. This proves  the  
claim. 

Coming back to the p roo f  of  t h e o r e m  2.3, in claim 2.3 we take 
F = :/| Nx, ( -1 ) .  Since Nx, is reflexive F is tors ion free. Moreover, 
(2.12) says that  F satisfies the  h y p o t h e s e s  of the claim. Therefore  by 
claim 2.3 we get 

H~ | N x , ( - 1 ) )  = O. (2.13) 

Taking i = 1 and p = 0 in (2.10) and  using (2o13) we infer  that  
the res t r ic t ion map  H~ , ( - 1 ) )  ~ H~ NyIH(-1)) is injective, 
whence  by hypo theses  we get  

dim(H~ < n + r + l  <_ n + m. (2.14) 

At this point ,  if we set V := Reg(X) we have Y c V c X'. Then  
a d iagram complete ly  similar to the  d iagram considered  in the p roo f  

of  t heo rem  2.1 (with (n  + 2)Ov(1)  rep laced  by (n  + m + 1)Or), and  
the inequa l iw (2.14) yield H 1 (V, Tv ( -  1 ) ) ~ 0. Since X' is normal  and  
codimx,  (X' \ V) >_ 2 we get 

H~ ', Tx , ( -1 ) )  ~ H~ T v ( - 1 ) )  * 0. 

Now the conclus ion  of our  t h e o r e m  (modulo  the claim 2.3) follows 

applying t heo rem  2.2. [] 

REMARK 2.1 Under  the hypo theses  of t h e o r e m  2.3, the subvariety Y of  
~n cannot  be ex tended  non-trivially more  than  r steps.  In this sense  

the  hypo thes i s  that  H~ NYI~,, ( - 2 ) )  = 0 is essential. For, let Y is a 
s m o o t h  comple te  in tersect ion in p n of  mult i -degree (dl  ..... dr), such  
t h a t 2  < r _< r t - 1  a n d d i  >_ 2, Vi = 1,~ ThenH~ Ny l~( -2 ) )  
0, and  clearly Y can be ex t ended  non-trivially in ~n+m for every 
m > 1. We also note  that by a resul t  of  Barth (see [8]), every s m o o t h  
closed subvariety Y of  ~n of  d imens ion  >_ i which can be ex t ended  
smoo th ly  in [~n+m for all m > i is necessar i ly  a complete  intersect ion.  

Examples of subvarieties Y c ~n sat isfying H ~ ( Y, Nt i s -  ( -  2)) = 0 are 

given by the following: 



SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY 253 

PROPOSITION 2.3 (WAHL [53]) Let Y be a smooth closed projectively 
normal subvariety of  P n of  dimension > 1. Let I be the saturated ho- 

mogeneous ideal defining Y in the polynomial k-algebra P := k[ To, T1, 
�9 .. ,Tn], and denote by A := P / I  the homogeneous coordinate k-alge- 
bra of  Y in pn Assume furthermore that there is an exact sequence 

u P ( - 3 )  -, s P ( - 2 )  ~ I ~ O, with s , t  > 1, (2.15) 

where P(i) is the graded P-module such that P( i ) j  = P~+j, Vi ,  j ~ 2~, 
and aP(i)  is the direct sum of  a >__ 1 copies o f  P(i)o (This means that 
the ideal I is generated by s independent homogeneous polynomials 
of  degree 2, and relations among them are generated by independent 

linear ones.) Then H~ N y I ~  ( - 2 ) )  = O. 

We shall prove this resul t  in sec t ion 6 after we shall in te rpre t  the 
vanishing of H ~ (Y, NyI~,,~ ( -2 ) )  in te rms  of the  de fo rmat ion  theory  of 
the vertex of the  affine cone over Y in p n  The next  resul t  p roduces  
examples  satisfying the hypo these s  of p ropos i t ion  2.3~ 

THEOREM 2.4 (MUMFORD-GREEN [40], [23], SEE ALSO [33]) LetL be a li- 
ne bundle of degree > 2g + 3 on a smooth projective curve Y o f  genus 
g. Let Y c P := P(H~ *) be the linearly normal projective em- 

bedding of  Y given by the complete linear system ILl. Then Y is projec- 
tively normal in P and there is an exact sequence of  the form (2.15). 

REMARK 2.2 In fact, Mumford  p roved  in [40] that  there is a surjective 
m a p  s P ( - 2 )  - I ~ 0 (if deg(L) _> 2g + 3) and  subsequent ly  M. Green 
ref ined Mumford ' s  resul t  in [23] in the above fo rm (see [23] for a more  
general  result,  or also [33] for a s impler  p roof  of Green's result). 

3 P r o o f  o f  t h e o r e m  2.2 

We shall prove theo rem 2.2 unde r  the addi t ional  h ~ o t h e s i s  tha t  L is 
genera ted  by its global sections. Note that  we used  theo rem 2.2 in the 
p roofs  of theorems  2.1 and  2.3 only unde r  this addit ional  hypothes is .  

Set R := e.~=oH~ Li). Since L is ample  and X projective, there 
exists a canonical  i s o m o r p h i s m  X ~ Proj (R) such  that  L ~ Oproj (R) (1). 
Moreover, since X is normal,  R is a normal  finitely genera ted  k-algebra 
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(see EGA lII [26]). Consider the normal  affine cone Spec(R) over the 

polarized variety (X, L), and let m R :=  ~ ~  ~ L i) be the irrelevant 

maximal ideal of R which corresponds  to the vertex of Spec(R). Set 

U := Spec(R) \ {mR}.  Then there is a canonical morph i sm rr : U - X. 

Since L is generated by its global sections, rr is the project ion of a 

locally trivial Gin-brindle, where ~3m = k \ {0} is the multiplicative 

group of the ground field k. The next lemma and its proof  take care 

of the structure of rr more  closely. 

LEMMA 3.1 /n the hypotheses o f  theorem 2.2, assume fur thermore  that  

L is generated by its global sections. Then there is a canonical exact 

sequence 

0 -, OF - TU ~ rr* (Tx)  -- O. 

PROOF OF LEMMA 3.1. There is a general  canonical exact sequence 

associated to the morphism rr : U - X (this exact sequence makes  

actually sense for every morph i sm f : V - W of algebraic varieties 

over k, see [28, proposit ion 8.11, page 176]) 

_ 1 

which upon  dualizing gives the exact sequence 

0 " TUIX " Tu a , Tr*(Tx). (3.1) 

Here Tulx is the relative tangent  sheaf  of rr : U - Xo To prove l emma 

3.1 it will be sufficient to check the following two facts: 

Tulx ~- Ou, and (3.2) 

The map er is surjective. (3,3) 

Let us first fLx some notations. For every s ~ R1 \ {0} = H ~  \ 

{0}, let Rs be the ring of fractions of R with denominators  in the 

multiplicative subset {1, s, s 2 ..... s n, ...}. Since s is homogeneous,  Rs 

becomes a graded k-algebra by setting d e g ( ~  ) = deg(t)  - n whenever  

t E S is homogeneous.  Then we may  consider the subring R(s) of  



SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY 2 5 5 

t Rs whose elements are all fractions ~-~ r Rs such that t ~ Rn = 

H~ n) is a homogeneous  e lement  of degree rt, i.e. d e g ( ~ )  = 0. 

Clearly, R(s) is a k-subalgebra of Rs. Moreover, since s E R1, the 

inclusion R(s) c Rs is identified with the inclusion of R(s) in the R(s)- 
algebra R(s)[T, T -1 ] of the Laurent polynomials in the indeterminate  

T. This is done by sending T ~ s and T-1 ~, as is easily checked. 

Since L is generated by its global sections, 

X = Proj(R) = U D+(s), where D+(s) := Spec(R(s))~ 
S~RI\{0} 

U = U D(s),  where D(s) := Spec(Rs)~ 
sERI\{O} 

Then Tr*(D+(s)) = D(s) for all s ~ R1 \ {0} (and in particular, Tr 

is an affine morphism)o Moreover, the restriction wID(s) : D(s) 
D§ corresponds to the inclusion Rts) c Rs, and since there is an 

i somorphism of R(s)-algebras Rs ~- Rts)[T, T- l] ,  we see that D(s) 
D+ (s) • Gin. This gives explicitly the local structure of the (locally 

trivial) 5m-bundle Tr : U ~ X. 

Let A be a commutat ive ring, B a commutative A-algebra, and M 

a B-module. Denote by DerA(B,M) the set of all A-derivations D : 

B ~ M. One can define the sum D + D' of two derivations D, D' 

DerA(B, M) and the multiplication bD (with b ~ B) in an obvious way 

and one easily checks that D + D', aD ~ DerA(B,M). In other words, 

Derj(B, M) becomes a B-module in a natural  way~ If M = B, we shall 

also denote Derj(B) := Derj(B,  B). 

The restriction of the exact sequence (3.1) to the affine open subset  

D(s) corresponds to the obvious exact sequence 

0 --  ~ DerRi~(Rs) ~ Derk(Rs) .... a s  Derk(R(s),Rs), (3.4) 

where ~Xs associates to any k-derivation D ~ Derk(Rs) the restr ict ion 

DIR(s) ~ Derk(R(s),Rs). 
Now, it is clear that the map e~ is surjective (i.e. that condition (3.3) 

holds). Indeed, since this verification is local, it is sufficient to check 

that the map OCs (of (3.4)) is surjective for every s ~ R1 \ {0}. In fact, 

if ~ E Derk(R(s),Rs) then we can define D ~ Derk(Rs) by DIR(s) = 6 
and D(T) = u for an arbitrary u ~ Rs (via the above i somorphism of 
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R(s)-algebras Rs ~ R(s)[T, T-i ] ) .  Then,  of  course,  D ( 1 )  = u -~-z- This 

proves  (3.3)~ 
It remains  to prove (3.2)�9 To this end, consider  the map  D : R - R 

def ined  by D(r )  :-- d e g ( r ) r ,  for every h o m o g e n e o u s  e lement  r ~ R~ 
It is obvious that  D is a k-derivat ion such  that  D(Rn) c Rn for every 
n >_ 0. Since char(k)  = 0, it is also clear that  D is surjective. Then  

1 by the  universal  p roper ty  of  f~Rtk, there  is a unique  h o m o m o r p h i s m  

w E HomR(f2~lk,R) of R-modules  which  c o m p o s e d  with the canon- 

ical der ivat ion d �9 R - f~Ik  coincides  to D. Since D is surjective, w 
is also surjective. Passing to sheaves  on Spec(R) and restr ict ing to U 

we get  the surjective map  of Ou-modu le s  w �9 ~11r - Ou. 

If we denote  by fi 1 �9 f~ul/r ~ f~blx the canonical  surjection,  we 

claim that  there exists a un ique  m a p  of Ou-modules  w '  "f~btx ~ OF 
such  that  w '  o fl = w.  To check this, observe that  DIR(s) = 0 for 
every s ff R1 \ {0}, whence  D E DerR~ (Rs), so that  the existence of  
w '  comes  f rom the universal  p rope r ty  of  f ~  IR~ (taking into account  
that  U = Us~R~ \{0}D (s)). The surdectivity of w implies the surjectivity 
of w '  �9 f21utx - Ou. But since Tr " U ~ X is a s m o o t h  m o r p h i s m  of 
relative d imens ion  one, f~blx is an invertible Ou-module.  Therefore  
w '  is a surjective m ap  be tween  two invertible OF-modules,  whence  

w '  is necessari ly an i somorphism~ 
This proves condi t ion  (3.2), and  thereby l emma 3.1. [] 

LEMMA 3.2 In the hypotheses o f  l emma 3.1, for every coherent Ox- 

module F and for every p > 0 there is a natural  isomorphism o f  graded 

R -modules 
H p (U ,~* (F) )  -~ 0 H p ( X ' F  | Li). 

PROOF OF LEMMA 3.2. In the p roo f  of l emma 3.1 we already ob- 
served that  the m o r p h i s m  Tr is affine (Tr-I(D+(s)) = D(S) for every 
s E R1 \ {0}). In particular, for every coherent  Ox-module F, 

HP(U, rr*(F)) _~ HP(X,  rr,(Tr*(F))),  V p  >_ O. 

To conclude  the proof  of  l e m m a  3.2, it will be sufficient to show 
that  for every coherent  Ox-module  F one has  a canonical identifica- 
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rr, (Tr* (F) ) ~ @ F | Li. (3.5) 

To check this, since R is a finitely genera ted k-algebra such that X = 
Proj(R) = UseR1\{0} D+ (s), the sheaf F is the sheaf/~I associated to a 
finitely generated graded R-module M. Then by the proof of l emma 
3.1, Rs -~ R(s)[T,T-1], whence we get canonical  i somorphisms of 
R(s)-modules 

Ms -~ M | Rs ~ M | R( s ) [T ,T-1 ]  ~ @ M ( s ) T  i. 
iE2 

Since this happens for every s E Ri \ {0}, these local i somorphisms 
patch together to give the i somorphism (3.5). [] 

The tangent sheaf Tspec(R ) of the cone Spec(R) corresponds to the 
graded R-module 

rR-- O rR(i), 

where  TR := Derk(R), and the piece TR (i) of weight i is given by 

TR(i) := {D a Derk(R) t D(Rn) c. Rn+i Vn > 0}. 

Now, the next step in the proof  of theorem 2.2 is the following: 

LEMMA 3.3 In the above hypotheses, the k-vector space H ~ (X, Tx | L- i) 
can be canonically identified to the k-vector space TR ( -  i), for all i > 1. 

PROOF OF LEMMA 3.3- Since R is normal  of dimension > 2 and U = 
Spec(R) \ {mR}, we can apply proposi t ion 2.1 to deduce a canonica] 
i somorphism of graded R-modules TR ~ H~ Tu). Then the exact 
sequence of lemma 3ol Fields the cohomology exact sequence of R- 
modules  

0 ~ H~ Ou) -- H~ Tu) ~ H~ rr*(Tx)) -~ Hl(U,  Ou). (3.6) 

By l e m m a  3.2, for every p _> 0, 

HP(U, Ou) ~- ( ~ H P ( X ,  Li), 
f r  
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Ho(U,  rr* (Tx) ) ~_ @ H ~  Tx | L i). 

Now, by Mumford's  vanishing theo rem (see [39]), H p (X, L i) = 0, for  

every i < 0 and p < t (because dim(X) ___ 2 and char(k) = 0; note that  

this vanishing for p = 0 is trivial). Therefore  the above identification 

and the exact sequence (3.6) yield 

TR(i) ~ H ~  Tx | Li), V i  < Oo 

Lemma 3.3 is proved. [] 

In view of lemma 3.3, theorem 2.2 will be proved if we prove the 

following: 

PROPOSITION 3.1 Let (X,L)  be a normal  polarized variety  o f  d imen-  

sion > 2 over  k, with char(k) = 0. A s s u m e  that  there is a non-zero 

k-derivation D : R ~ R o f  weight  - 1 ,  Le. D(Ri)  ~ Ri-1 for  all i > O, 
where  R = e~=0H~ L i ) . I f  L is genera ted  by  its global sections then 

the conclusion o f  theorem 2.2 holds true~ 

To prove proposit ion 3.1 we need  another  two lemmas. 

LEMMA 3.4 (ZARISKI) Let R be a graded  k-algebra such that  char( k ) = 

0 and  there is a k-derivation D : R --. R o f  weight  - 1  and an e lement  

t E R1 with the property that  D( t )  = 1. I f A  := {r ~ R I D(Y) = 0} 
then A is" a graded  k-subalgebra o f  R, t is transcendental  over A and  

R = A[ t] .  Moreover, D = ~t on A[ t] .  

PROOF OF LEMMA 3.4. The fact that A is a graded k-subalgebra of 

R is immediate.  Let A[T]  be the polynomial  A-algebra in the indeter- 

minate  T. Grade A[T] by deg(aT  m) = deg(a)  + m for every a ~ A 

homogeneous  and m _> 0. Consider the homomorph i sm of graded 

k-algebras q) : A[T]  ~ R such that qglA = ida and q)(T) = t. Then it 

is immedia te  that the following diagram is commutative: 

cp 
A[T]  ,, R 

A i r ]  ,, R 
cp 
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So, it will be  e n o u g h  to s h o w  that  q9 is bi jective.  

Injectivity ofep: A s s u m e  that  there  exis ts  a non-ze ro  po lynomia l  f ( T )  
n = Zi=0 ai Ti ~ A[T] such  that  qg( f (T) )  = 0. We m a y  a s s u m e  that  

f ( T )  is h o m o g e n e o u s  in A[T] and  o f  min imal  degree~ Thus  a t  

An- i  c Rn-i .  Then  ~ is a po lynomia l  o f  smal ler  degree  and still 
Of(T) in Ker(~p). Thus  ~ = O, and  s ince char(k)  = O, f E Ao Since 

cp ( f )  = 0 it fo l lows that  f = O, a cont rad ic t ion .  

Surjectivity of(p:  We p roceed  b y  induc t ion  on  n, the case n = 0 be ing  
n -  1 

clear. I f r  ~ Rn (n > O) then  D ( r )  ~ Rn- t ,  whence  D(r)  = Y~=o at ti, 
with  a t  ~ An-l-i, Vi (by induc t ion  hypothes is ) .  Thus  

D ( r -  2 / @ I  t i+l )  
i=0 

= 0 ,  

n - 1  ai  t i + l  i.e. r - ~ i=o  / - ~  e A. L e m m a  3.4 is proved~ [] 

LEMMA 3-5 Let (X, L) be a normal  polarized variety over k such that  
L is generated by its global sections and char (k)  = 0o Assume that  

there is a non-zero k-derivation D : R ~ R o f  weight - 1 ,  where R = 

Zi~=oH~ Li)~ Then there exists an element  t E R1 = H~  such 

that  D( t )  = 1. 

PROOF OF LEMMA 3.5. Let to, .o, tn be  a bas i s  of  the k-vector  space  

H~ Since L is gene ra t ed  b y  its global  sec t ions  we get  a mor-  

p h i s m  u : X - ~n such  that  u * ( O ~ , ( 1 ) )  = L, and  since L is also 

ample ,  u is a finite m o r p h i s m  (o therwise  there  wou ld  exist  a curve  C 

s u c h  tha t  u(C)  is a point ,  whence  LIC canno t  be  ample).  If for  s o m e  

i, D( t i )  ~ O, then  we can take t = c~-lti, with  a := D(ti)  ~ k \ {0}, 

a n d  the re fo re  D(t)  = 1. 

A s s u m e  there fore  that  D(t i )  = 0 for  every i = O, 1, ..., n.  We shall 

s h o w  that  this leads  to a cont rad ic t ion .  Cons ider  the map  of  g raded  

k-a lgebras  

o a  c o  

k[To ..... Tn] ~ @ H ~  n, 0~,-( i ) )  - R = @ H~ Li), 
i=0 i=O 
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which  s e n d s  Ty to t j ,  j = 0, 1 ..... n .  Since u is finite the m o r p h i s m  of  

affine var ie t ies  u - l ( D + ( T 0 ) )  ~ D+(To) is finite, whence  the m a p  of  

k-a lgebras  

k[To ..... Tn](To) -- R(to) 

is finite. In part icular ,  every h o m o g e n e o u s  e lement  t ~ R sat isf ies  a 

non-tr ivial  a lgebraic  equa t ion  

a o t  m + a l t  m - l + . . . + a m = O ,  w i th  a i c k [ t o , . . . , t n ] ,  m>_ 1. 

We m a y  a s s u m e  m minimal  wi th  this  proper ty~ Since the der iva t ion  

D van i shes  on  k[to .... , tin] (by o u r  a s sumpt ion ) ,  we get  b y  der ivat ing 

( m a o t  m-1 + {m - 1 ) a l t  m-2 + ... + a m - 1 ) D ( t )  = O. 

If D ( t )  ~ 0, since R is a domain ,  we  ge t  

m a 0 t  m-1 + ( m -  1 ) a l t  m-2  + ... + am~l  = 0. 

Recall ing also that  char(k)  = 0, this con t r ad i c t s  the minimal i ty  of  m .  

The re fo re  D ( t )  = 0 for  every  h o m o g e n e o u s  t ~ R, whence  D = 0, 

a con t rad ic t ion .  []  

The l e m m a s  3.4 and 3.5 imply  the following: 

COROLLARY 3.1 In the hypotheses o f  l e m m a  3.5, there exists t ~ R1 

such that  D ( t )  = 1, R = A[t] ,  and  t is transcendental  over A := {r  

R I D ( r )  = 0}. 

PROOF OF PROPOSITION 3.1. By coro l la ry  3.1, R = A[t],  with  t 

H ~  such  that  D(t )  = 1 and t is t r anscenden ta l  over A = {r  

R [ D ( r )  = 0}. Since R is no rma l  it fo l lows  that  A is also normal .  Set 

E := d i v x ( t )  ~ ILl, i.e. L = Ox(E) ,  and  cons ide r  the canonical  exact  

s e q u e n c e s  (n >_ 0) 

0 .. L n _  1 t . . . . .  L n ~ -  OE(nE) = L~ - O. 

Taking c o h o m o l o g y  we get  

oo oo 

O - - R  - - R -  ( ~ H ~  ( ~ H I ( X ,  Ln-L). (3.7) 
n=0 n = 0  
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We claim that HI(X,L n-l)  = O, V n  E ~~ Assuming the claim, the 

proof of proposit ion 3.1 is finished, because f rom the exact sequence 

(3.7) it follows that 

OO 

@ H~ ~- R / tR  = A[t]/ tA[t]  ~- A. 
n=O 

It remains therefore to prove the claim. Since A is normal,  mA- 
depth(A) > 2, whence mR-depth(R)= mu-depth(A[t]) >>_ 3. If U := 
Spec(R) \ {mR}, we can write the local cohomology exact sequence 

0 = H1 (Spec(R), OSpec(R ) ) ~ HI(u, Ou) (3.8) 

H2~ (Spec(R), OSpec(R )) ~ H2(Spec(R), Ospec(/O) = 0o 

By lelnma 3.2~ 

CO 

HI(U, Ou) ~- ( ~  HI(X,  Li)o (3.9) 

Since mR-depth(R) > 3, H2R (Spec(R), OSpec(R )) = 0 (see proper ty  c) 
in the proof  of proposit ion 2.1), whence  from (3.8) and (3.9) we get 
HI(X,L i) = HI(X, Ox(iE)) = 0 for all i ~ 71o 

In this way proposit ion 3.1 and thereby theorem 2.2 (under the 
extra hypothesis  that L is genera ted  by its global sections) are com- 
pletely proved. [] 

NOTE. The proof of theorem 2.2 without  the hypothesis that  L is 
generated by its global sections follows the same main ideas, but  
technically is more involved (see [5 2]). 

4 C o u n t e r e x a m p l e s  a n d  f u r t h e r  c o n s e q u e n c e s  

o f  t h e o r e m  2.2 

First we show by counterexamples that theorem 2.2 is in general false 
in positive characteristic. 
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4.1 A c o u n t e r e x a m p l e  in  charac te r i s t i c  2 

Let X c ~2n (n _> 2) be the hyperquadr ic  in ~2n of equa t ion  

f = Tg + T1Tn+I + T2Tn+2 + ... + TnT2n 

over an algebraically closed field k of characterist ic 2, and set L := 
Ox(1) = O~2, (1)iX. Then  X is a s m o o t h  hyperquadr ic  in ~2n, and  in 
particular,  X cannot  be i somorphic  to a cone over a polar ized variety 
(E, L~). Set 

oo 

R = ( ~  H~ Ox(i))  ~ k[To, ..., T2n] / ( f )  
i=0 

(being a s m o o t h  hypersurface,  X is project ively normal  in ~2n). 

Observe that  because  char(k) = 2, all the derivatives of the poly- 
nomial  f vanish  at the point  P = [ 1, 0 .... , O] (and only at this point).  
In o ther  words,  all the projective t angen t  spaces at X have the po in t  
P in c o m m o n ,  i.e. X is a s trange variety. Moreover, the derivative 

a 
aTo " k[  To, ..., T 2 n ]  - k[  To .... . .  T2,~] 

has the  p rope r ty  that  ~ = 0. Therefore  

a (g f )  ag 
DTo = f~oo '  Vg ~ k[To,..., Tn], i.e. ((f))  _c (f).  

a yields a non-zero k-derivation D �9 R ~ R of weight  In o ther  words,  Woo 
- - 1 .  

On the o ther  hand,  since X is a hypersurface  in ~2n (n >_ 2), 
H r ( X , L  - i)  = 0 for all p = 0,1 and for  all / E 27~ Therefore  the  

a rgumen t s  in the p roof  of l emma 3.3 can be carried out  to prove that  
H~ T x ( - 1 ) )  :# 0 (due to these vanishings,  we don ' t  have to appeal  

to Mumford ' s  vanishing theorem). 

This shows  that  (X, L) is a s m o o t h  polar ized varie~" of  d imens ion  
>__ 3 (in par t icular  is no t  a cone), such  that  H~ Tx | L - i )  #: O. 
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4.2 A coun te rexample  in charac ter i s t ic  3 

Let k be an algebraically closed field of characteristic 3 arid in p3 
consider  the surface X of equat ion 

of = 0, of = T22+2T1T3 = T 2 - T 1 T 3 '  a--~2 We have a-~o aT1 
a.f aT3 -- T2 - T2T3o The subvariety in p3 of equations 

is (at least set-theoretically) the line 

L := {[,%U,U,U] e ~3 I [A,u]  a P~}, 

as one can easily see. Thus Sing(X) is the point A = [0, 1, 1, 1] and 

all other  points of L \ {A} are strange points of X (i.eo points in the 

intersect ion of all projective tangent  spaces at all smooth points of X). 

In particular, X is a normal surface. Observe that B := [0, 0, 0, 1] ~ X, 

but  the line A B  has in common with X only the points A and B. In 

particular, it follows that X cannot  be a cone. 

On the other hand, as in example 4.1, since ~ = 0, we have 

atfg) ~ a_~_q aTo = J aTo, whence the derivation 

aTo 
- - " k [ T o ,  T1, T2 , T3 ] - k { To , T1, T2 , T3 ] 

yields a non-zero k-derivation D " R - R of weight - 1, where 

CO 

R = @ ~ ~  o x ( i ) )  - - k [ ro ,  T1,T2, T 3 ] / ( f ) .  
i=0 

As above we get that H~ Tx | -1 ) :~ 0, where L := Ox(1). In other  

words, the normal polarized surface (X,L) is a cotmter-example to 

theo rem 2.2 in characteristic 3. 

Here is another  consequence of theorem 2.2~ 
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PROPOSITION 4.1 Let Y be a smooth, connected, non-degenerate closed 
subvariety o f  codimension >_ 2 o f~  n. Assume  dim(Y)  > 1 and char(k) 
= O. Then the Zak map z : H ~  (rt + 1 )Oy)  - H~ Nylen(-1) )  is 
injective. In particular, dim k ( H 0 ( Y, Nyt~n ( -  1 )) ) >_ n + 1, with equal- 

ity i f  and only i f  the map z is surjective. 

PROOF. Cons ide r  the fol lowing c o m m u t a t i v e  d iagram with exact  rows  

and  c o l u m n s  

0 0 

l 1 
0 , O y ( - 1 )  id , O y ( - 1 )  

l i 

0 ~ F ( - 1 )  . . . .  ( n +  1)Or 

l t 
0 . . . . . .  T y ( - 1 )  ~ r~,- ( - 1 ) I Y  

l i 
0 0 

, Nylon(-1)  , 0 

lid 

(which is an  ana logue  of  the d i ag ram u s e d  in the p r o o f  of  t h e o r e m  

2.1). The f i rs t  long row implies  that  Ker (z )  = H ~ ( Y, F ( - 1 ) ) (the func- 

tor  H ~ is le f t  exact!). On the o the r  hand,  the  first co lumn yields  the  

exact  s e q u e n c e  

0 ~ H ~  Oy( -1 ) )  ~ H ~  ~ H~ Ty( -1 ) ) .  

Since O y ( 1 )  is ample  and d im(Y)  _> 1, H~ O y ( - 1 ) )  = 0. We 

claim tha t  H~ Ty( -1 ) )  = 0. Indeed ,  a s s u m e  first d im(Y) > 2; 

if this space  is u= 0, by  t h e o r e m  2.2 Y w o u l d  be  a cone. But s ince 

Y is s m o o t h ,  this is poss ib le  only if Y is a linear subspace ,  and  b y  

n o n - d e g e n e r a t e d n e s s ,  Y = ~n, con t r ad ic t ing  cod im~, (Y)  > 2. If 

d im(Y)  = 1, H~  T y ( - 1 ) )  :r 0 i m m e d i a t e l y  implies  that  Y is a 

line or  a conic,  which  again con t rad ic t s  codim~n (Y) >_ 2. There fore  

H~ T y ( - 1 ) )  = O, which  implies  Ker (z )  = H ~  = O. [] 
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NOTE. Proposition 4.1 is in general  false in positive characteris- 

tic. The examples 4.1 and 4.2 above also yield counterexamples for 

proposi t ion 4.1 in positive characteristic.  

COROLLARY 4.1 In the hypotheses o f  proposition 4.1 (but here the char- 
acteristic o f  k can be arbitrary), assume fur thermore that dim(Y) > 
2, H t ( Y ,  O y ( - 1 ) )  = H I ( Y ,  T y ( - 1 ) )  = 0 (the first vanishing always 

holds in char zero by Kodaira vanishing theorem). Then the Zak map 
z : H~ (n  + 1)Oy) ~ H~ N y I ~ ( - 1 ) )  issurjective. 

PROOF. Indeed, the first column of the diagTam from the proof  of 

proposi t ion 4.1 yields the exact sequence 

0 = H I ( y ,  O y ( - 1 ) )  ~ H t ( Y , F ( - 1 ) )  -~ H I ( Y ,  T y ( - 1 ) )  = O~ 

It follows that H i ( Y ,  F ( - 1 ) )  = 0. On the other hand, f rom the coho- 

mology sequence associated to the first row of the same diagram we 

get 

H ~  (n + 1)Or) z Ho(y ,  N y l ~ ( _ l )  ) ~ H I ( Y , F ( _ I ) )  = O, 

i.e. z is surjective. [] 

EXAMPLE 4.1 Let Vs : ~r ~ ~n(r,s) be the s-fold Veronese embedding 

of ~ r  with n ( r , s )  = (r~s) _ 1. Set Y := Vs(~r),  and assume r , s  > 2. 

Then Oy(1) := O~n~r.~ (1)lY coincides to O~,r(s). 

CLAIM 4.1 H I ( Y , T ~ ( - 1 ) )  = 0 for e v e r y Y  > 3 or f o r t  = s = 2~ 

Moreover, H I ( Y ,  O y ( - 1 ) )  = 0 for e v e r y r  > 2~ 

Indeed, the second s ta tement  comes f rom the explicit cohomology 

of the projective space. For the first, the Euler sequence for pr  yields 

the cohomology sequence 

HI(p r, ( r  + 1)O~, (1 - s)) 

H I ( ~  r, T~r(-S)) ~- H i ( Y ,  T y ( - 1 ) )  ~ H2(pr ,  o~r ( -S ) ) .  

The first space is zero because r _> 2, while the last one is zero either 

i f r  >_ 3, o r i f r  = s = 2. 
Therefore  by corollary 4.1, the Zak map of Y in pn(r,s) is surjective. 
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REMARK 4.1 If in example 4.1 we a s s u m e  r > 3, we actually have 
H 1 (Y, Oy(i)) = Hi (Y ,  Ty(i)) = 0 for all i r 2~. 

EXAMPLE 4.2 Let i : p1 x pr  ~ ~2r+1, wi th  r > 2, be the Segre embed-  
ding of  P~ x ~ r  Set Y = / ( ~ 1  • ~r).  T h e n  Oy(1) = O(1, 1), where  

O(1,1)  := p~(O~, (1) )  | p~(O~r (1)), 

where  Pl  and  P2 are the first and  the second  projec t ions  of  p1 • p r  
respectively.  

CLAIM 4.2 HI(Y ,  Or(i)) = Hi (Y ,  Tr ( i) ) = 0 for every i c ~. 

Again the  first s t a tement  is trivial. For the  second we have Ty _~ 
p~(T~l) �9 p ~ ( T ~ )  = p f ( O ~ l ( 2 ) )  �9 p~(T~r). Then  the conc lus ion  
follows easily f rom Ktinneth's  fo rmula  and  f rom the Euler sequence  
of p r  

In part icular ,  by corollary 4.1 the Zak m a p  of Y in ~2r+1 is surjec- 

tive. 

Another  appl icat ion of t h e o r e m  2.2 is the following result~ 

THEOREM 4.1 (FUJITA [19]) Let Y be a smooth projective variety over 
C wich is embedded in the normal projective variety X as an ample 
Cartier divisor. Assume that dim(Y) > 2 and Hi (Y ,  Ty | Ny~ x)  = 0 
for every i > 1, where Nyix is the normal bundle of  Y in X. Then X is 
isomorphic to the cone over the polarized variety ( Y, Nyix ). 

PROOF. Set L := Nylx. The no rma l  sequence  of  Y in X 

O ~  Ty - T x l Y -  L -- O 

yields the cohomology  sequence (i >_ 1) 

H I ( y ,  T y |  -i) - H I ( Y ,  T x l Y |  -i) - -H~(Y ,  LI-i).  (4.1) 

For every i >_ 2 the first space is zero by hypotheses ,  and  the third 
space is also zero by Kodaira vanishing t h e o r e m  (dim(Y) _> 2). It 
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follows that Hi(Y,  Tx]Y | L -i) = 0 for every i > 2. Therefore the 

exact sequence 

O-. T x |  l ) Y ) ~  T x |  Tx lY |  - i ~ O  (4.2) 

yields for every i > 2 a surject ion 

HI(X, T x |  I)Y)) ~ H t ( X ,  T x |  (4.3) 

On the other hand, since X is normal  of d imension > 2, Y is an ample 

Cartier divisor on X, and Tx is a reflexive sheaf, a lemma of Enriques- 
Severi-Zariski-Serre shows that 

H 1 (X, Tx | O x ( - i Y ) )  = 0 for every i >> 0. (4.4) 

Then (4.3) and (4.4) and an induct ion on i yield H ~ (Tx | Ox( -2Y) )  = 
0. Therefore the exact sequence (4.2) (for i = 1) yields the surjection 

H~ T x |  ~ H ~ 1 7 4  -1) ~ O. (4.5) 

Finally, the exact sequence (4.1) (for i = 1) yields the cohomology 
sequence 

H~ TxIY | L -1) ~ H~ Oy) -- HI(y ,  Ty | L-t), (4.6) 

in which the last space is zero by hypothesis.  Therefore the first 

map of (4.6) is surjective. Recalling also the surjection (4.5), we get a 

surject ion 

H~ Tx | O x ( - Y )  ) ~ H~ Oy) =~ 0, 

and  in particular, H~ Tx | Ox( -Y ) )  ~= O. At this point we can 

apply theorem 2.2 to the normal  polarized variety (X, Ox(Y)) to get 
the conclusion. [] 

In all these examples we shall assume that char(k) = 0. 

EXAMPLE 4.3 (Y,L) = (pn, o ~ , ( s ) ) , w i t h n  >_ 3 a n d s  ___ 1. Then by 
the remark following 1, Hi(Y,  Tv | L i) = 0 for every i e 7/. 

EXAMPLE 4.4 Let Y be an abelianvariety of dimension d > 2. Then for 
every ample line bundle L on Y, we have H 1 ( Y, Ty eL  -i) = 0 for every 

i > 1. Indeed, in this case Tv is isomorphic to the trivial bundle  of 

rank  d, and the assertion follows f rom the Kodaira vanishing theorem 
for example. 
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EXAMPLE 4.5 Let Y = Y1 x Y2 be a p r o d u c t  o f  two s m o o t h  project ive  

variet ies  Yi wi th  dim(Yi) > 2, i = 1,2. Let Li be an ample  line bund le  

on  Yi, i -- 1,2 a n d  set  L := p~(L1) | p* 2 (L2), where  Pi Y -~ Yi is the  
canonical  p ro jec t ion  on Yi, i = 1, 2. T h e n  L is ample  on  Y~ Moreover,  

Ty = p { ( T y  t) �9 p~(Ty~)o Then  for  every  i > 0, 

H I ( Y ,  Ty |  -i) = H I ( y , p { ( T y 1  | i) o P*(L2 i ) ) 2  ~ 

�9 H I ( y , p ~ ( L 1  i) | p.~(Ty2 | 

and  us ing  Kfinneth 's  fo rmulae  we ge t  H 1 (Y, Ty | L -i) = 0 for every  

i _ > l .  

EXAMPLE 4.6 Let Y = YL X Y2 x Y3 be a p r o d u c t  of  three  s m o o t h  

projec t ive  variet ies  I11, Y2 and  Y3 each  of  d i m e n s i o n  > 1, and  let 

L := p{(L1) | p~(L2) | p~(L3), wi th  Li an ample  line bund le  on 

Yi, i = 1, 2, 3. T h e n  by  a r g u m e n t s  s imilar  to those  in the previous  

example  we have H i ( y ,  Ty | L - i)  = 0 for  all i >_ 1o 

EXAMPLE 4.7 Let Y be a hyperel l ip t ic  surface.  This is a sur face  wi th  

invar iants  b2 = 2, pg = 0, q = 1 and  x (Oy)  = 0. Moreover,  there  are 

two elliptic curves  B0 and  B1, a finite subg roup  A c BI, an injective 

h o m o m o r p h i s m  cx : A -- Aut(B0), a n d  a f ree  act ion of  A on  B1 • Bo 

of  the  f o r m  a(b l ,bo)  = (bl + a, o~(a)(bo)) (see e.g. [7, 10.25]). Then  

Y = (B1 x B o ) / A .  L e t f  : Z := B1 x B o  ~ Y b e  the  canon ica l~ t a l e  

m o r p h i s m .  T h e n  f *  (Ty) = Tz = 2 0 z  (since Z is an  abelian surface),  

and  f *  (L) is ample  on  Z. Since char (k )  = 0 the  vanishing of  H I (Tv | 
L -i) (for i >_ 1) follows f rom the vanish ing  H 1 ( f *  (Ty) | f *  (L-i)) = 

H i ( z ,  2 f * ( L - i ) )  = 0 (Z is an abel ian sur face  and  f * ( L )  is ample  on  

Z, see example  4.4). 

To give ano the r  appl icat ion of  t h e o r e m  4.1 we n e e d  the following 

resu l t  (see [29, page  110]): 

THEOREM 4.2 Let Y be an effective Cartier divisor on a complete al- 
gebraic variety X such that the normal bundle Nylx is ample. Then 
there exists a birational projective morphism f : X - Z such that there 

exists an open subset U c_ X with the property that f J U  : U - f (U) is 
an isomorphism and Y' = f ( Y )  is an ample Cartier divisor on Z. In 

particular, X is a projective variety. 
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PROOF. We claim that  the  fo l lowing  three  s t a t e m e n t s  hold  for  every 
n > >  O: 

1. N~I x = O y ( n Y )  is very  ample ,  

2. The  res t r ic t ion  m a p  H ~ (X, Ox  (Y) ) ~ H ~ (Y,  N~t x) is surject ive,  

3. The comple te  l inear s y s t e m  [nY[ has  no ba se  points .  

(1) is obvious~ For (2) and  (3) we ad jus t  pa r t  of  the p r o o f  (due 

to Kleiman) the Naka i -Moishezon  cri terion,  see  e.g. [29]. Since NyIx  
is amp le  and  Y is a c o m p l e t e  scheme ,  H I ( Y , N ~ I x  ) = 0 for  n >>  0~ 

There fo re  f rom the c o h o m o l o g y  exact  s equence  

H l ( X ,  O x ( ( n  - 1)Y)) ~" ~ H I ( X ,  O x ( n Y ) )  - -  H I ( Y , N ~ I  X) 

as soc i a t ed  to the exact  s e q u e n c e  

0 -~ O x ( ( n -  1)Y) ~ O x ( n Y )  ~ N~l x - O, 

the  m a p  a n  is sur jec t ive  for  n > > 0. Since X is complete ,  H 1 (X, Ox 

( ( n -  1)Y)) is a finite d imens io na l  vec to r  space,  it fol lows that  the 

m a p s  a n  actual ly b e c o m e  i s o m o r p h i s m s  for  n > > Oo There fo re  the 

c o h o m o l o g y  exact  s e q u e n c e  of  the  above  shor t  exact  s equence  yie lds  

(2). Then  (1) and  (2) i m m e d i a t e l y  imply  (3). 

Now let (p = (piny1 " X - P = ~ ( H ~  O x ( n Y ) )  *) be  the  mor-  

p h i s m  def ined b y  the base -po in t - f r ee  comple t e  linear s y s t e m  [nYI 

for  n > >  O. Set Z1 = (P(X). T h e n  Y = (P*(Y1), wi th  Y1 a very  am- 

ple divisor  on Z1. By the above  claim it fol lows that (PlY " Y ~ I/1 

and  Yred = (p-l((Y1)red).  Let (p = g o f be  the  Stein f ac to r i za t ion  of  
the  pro jec t ive  m o r p h i s m  (p, w i th  f �9 X - Z a p rope r  m o r p h i s m  with  

f ,  (Ox)  = Oz, and g �9 Z - Z1 a finite sur ject ive  m o r p h i s m  (see [26, 

4.3.3]). Notice that  f l Y  " Y - Y '  := g*(Y1) is an i s o m o r p h i s m  and 

Yred = f - 1  (Yr'ed), SO b y  Zariski 's  blain T h e o r e m  (see [26, 4.4.1]), f is 
an i s o m o r p h i s m  in a n e i g h b o u r h o o d  of  Y on to  an open  s u b s e t  o f  Zo 

Moreover  since 99 = g o f is a p ro jec t ive  morph i sm,  f is also projec-  

tive b y  a s imple  general  p r o p e r W  (see [26, 5.5.5]). Finally, Y'  = g *  (YI) 

is an  ample  Cartier divisor  on  Z b e c a u s e  Y1 is ample  on ZI and  g is 
finite. []  



270 L. D~d3ESCU 

DEFINITION 4.1 Let  i : Y ~ X a n d  i' : Y '  ~ X '  be two closed embed-  

dings o f  the projective varieties Y a n d  Y '  into the project ive varieties X 

and  X r respectively. We shall  say  that  i and  i' are Zariski  equiva len t  

i f  there exist two Zariski  open subse ts  U c_ X a n d  U r c_ X '  contain- 

ing Y a n d  y ,  respectively, and  an i somorph i sm cp : U ~ U' such tha t  
cp(Y) = yr. 

Now theo rems  4.1 and  4.2 toge ther  imply  the following: 

COROLLARY 4.2 Let  ( Y , L )  be a s m o o t h  polar ized  varie ty  over  C o f  

d imens ion  >_ 2 such  that  H ] (Y,  Ty | L - i )  = 0 for every  i >_ 1. A s s u m e  

that  Y admi t s  two e m b e d d i n g s  Y ~ X a n d  Y ~ X '  in the n o r m a l  

projective varieties X and  X '  as Cartier divisors such  that  Nr t  x ~ L 

Nyix , .  Then  the e m b e d d i n g s  Y ~ X a n d  Y ~. X '  are Zariski  equivalent.  

5 T h e  Z a k  m a p  o f  a c u r v e .  G a u s s i a n  m a p s  

We note  that  the  condi t ion  H I (Ty | -1 ) = 0 in corollary (3.4) is never  
fulfilled for a s m o o t h  project ive curve Y e m b e d d e d  in ~n such  that  
Y is non-degenera te  and of  cod imens ion  > 2. The a im of this sect ion 
is to provide  an in te rpre ta t ion  of  the  Zak map  of a linearly no rma l  
s m o o t h  curve Y c ~n in te rms  of  the so-called Gaussian maps .  The 
advantage of  the Gaussian maps  comes  f rom the fact that in cer ta in 
cases there are m e t h o d s  to check their  surjectivity, see [53], [54], [14] 
and  the references  therein.  

5.1 Genera l  Gauss ian  m a p s  

According to [54], let Y be a s m o o t h  project ive variety, and let L, M 
be two line bund les  on  Y. Consider  the canonical  map  

IJL,M : H O ( y , L )  | H O ( y , M )  -- H O ( y , L  | M) .  (5.1) 

Set R(L,  M) := Ker(/JL,M). We are going to define the Gaussian m a p  

CPL,M " R ( L , M )  - H~ k | L | M)  (5.2) 

assoc ia ted  to (L ,M)  on Y in the following way. Let c~ = ~ i  li | rni 
R ( L , M ) .  Let U be an arbitrary affine open  subset  of Y such  that  
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LIU  -~ O u  �9 S and  M I U  ~ O u  ~ T, so tha t  Cover U), li = a iS ,  m i  = b iT ,  

with  ai ,  bi E F(U, Of ) .  Since a ~ R ( L , M ) ,  we have Y . i a i b i  = O. 

T h e n  we set 

cPL,M(a) iU := X ( a i d b i  - b i d a i ) S  | T E H~ t~llk | L | M). 
i 

(5.3) 

Replacing S by S := u - i S  a n d  T by  I" := v - i T ,  with  u and  v uni ts  

in F(U, Oy),  we have /i = 6itS a n d  m i  = b i T ,  where  cii := u a i  and  

bt := vbio  Then  

i 

= ~ ' ( u a w d b i  + u a i b i d v  - v b i u d a i  - v b i a i d u ) $ t - i v - l S  | T = 
i 

= ~ . ( a t d b i  - b i d a i ) S  | T + ( ~  a i b i ) ( u d v  - v d u )  = 
i i 

= ~ . ( a i d b i  - b i d a i ) S  | T,  
i 

because  Y.i a i b i  = 0. It fol lows that  CPL,U(O~) is i n d e p e n d e n t  of  the 
choices  made ,  whence  is a well  de f ined  e lement  in H ~ (Y, t ~ f  k | L | M) 
as s o o n  as we have checked  the  fol lowing 

l i o m i = O  ~ (PL,M(a) = 0 .  
i 

To this  end, let {nj} be a basis  of  H ~  Then  m i  = ~[j f i i j n j ,  

wi th  f l u  E k. Then  

i i j j i 

w h e n c e  (taking into accoun t  tha t  {n j} is a basis  of  H ~  a n d  of  

the  p roper t i es  of the t ensor  product) ,  Y i g i j l i  = O. Writing n j  = c jT,  

wi th  cj  E F(U, Oy), we have  bi = 5[j ~ijCj a n d  Y.i ~ijai = 0, SO 

E (aidbi-  bidai) = E aifiijdcj - Z 13ijcjdai = E ( 5  &jai)dcj-  
i i,j i,j j i 

-- Z ~i jCj  dcti = -- Z fii jCj dCti = -- Z c j d (  Z ~iJ r = -- E c jdO  -- O, 
i,j i,j j i j 

SO tha t  q~L,~I(a) = O, as requi red .  
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PROPERTY 5.1 Let f �9 X ~ Y be a m o r p h i s m  of  s m o o t h  project ive 
varieties, and  let L, M be two line bundles  on  Y. Then  there  is a natura l  
commuta t ive  d iagram 

R ( L , M )  q~L,M HO(~l lk  | L | M) 

1 l 
R ( f * ( L ) , f * ( M ) )  W.e*~L~,S*~M( HO(~l ik  | f * ( L )  | f * ( M ) )  

PROPERTY 5.2 If N is a third line bund le  on Y, there  is a natura l  com- 
muta t ive  d iagram 

R ( L , M )  | 1 7 6  WL.u| HO(f~lk  | L | M) | H ~  

1 l 
- - .  H O ( ~ t k  0 L | M | N) R(L,  M | N) ~L,M.N 

PROPERTY 5.3 For every two line bundles  L and M on  a s m o o t h  pro- 
jective variety Y we have the following an t i -commuta t ive  square  

R ( L , M )  cPL.M HO(y, f~l lk  | L | M ) 

u I ~v 
R ( M , L )  CPM'L ~ H ~  | M | L) 

i.e. CPM,L o U = --'U o q3L,M, where u and v are the  i s o m o r p h i s m s  
given by the  commuta t iv i ty  of the tensor  product .  In particular,  the 

Gaussian m a p  CPL,M is surjective if and  only if ~PM,L iS surjective. 

PROPERTY 5.4 Assume  L = M and consider  the natura l  map  col : 
A 2 H ~  ~ R ( L , L )  defined by 

WL(ll ix 12) := ll ~ 12 - 12 ~ ll. 

We get a c o m p o s i t i o n  

W L  := qgL,L o COL ~ A 2 H O ( y , L )  ~ H0(y,f~llk | L 2 ) ,  

which is called the Wahl map  associated to L on Y. Then  we have the 

following: 
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CLAIM 5.1 I f  char(k)  ~ 2, Im(WL) = Im(qgL,L), and  in particular, 

Coker  (WL) = Coker ( CPL,L ). 

Indeed,  the inclus ion Im(WL) c Im(qgLL ) is obvious. Conversely,  

let a = Y. i l i  | m i  ~ R(L ,L)o  T h e n  def ine /3 := �89 | m i  + 

~ i ( - m i )  | li]o Clearly,/3 E Im(CoL) and  ~L,L(a)  = CpL,L(/3)o 

Of par t icular  in teres t  is the  Wahl m a p  

Wy := Wwy " A2H0(y,  w y )  H ~  f'2~,lk | W 2) = HO(y ,  60 3) 

assoc ia ted  to a s m o o t h  projec t ive  curve  Y of  genus  g >__ 2. Its in te res t  

comes  f r o m  the fact  that  w y  is a m a p  intr insical ly assoc ia ted  to the 

curve  Y. As we shall see below, one  of  the f u n d a m e n t a l  ques t ions  

re la ted  to w y  is w h e t h e r  w y  is surject ive.  A necessa ry  condi t ion  for 

the  sur ject ivi ty  of  w y  is obviously  the  fol lowing 

d im(A2H~ coy))  _> d im(H~ 603))~ 

Using Riemann-Roch,  this cond i t ion  a m o u n t s  to the  fol lowing one  

1 
~ g ( g  - 1) _> 5 g -  5, 

or  else, g > 10~ 

5.2 Gauss ian  m a p s  for  c u r v e s  

Let Y be  a s m o o t h  project ive  curve  and  L a very  ample  line bund le  

on  Y. Let i = itL1 " Y '-" P := ? ( H ~  *) be the l inearly n o r m a l  

e m b e d d i n g  into the project ive  space  P given by  the comple t e  l inear  

s y s t e m  ILl. In part icular ,  i * (Op(1) )  ~ L~ Consider  the eva lua t ion  

m a p  e ~ H ~  | Oy ~ L. Since L is very  ample,  the  m a p  e is 

sur ject ive.  Moreover,  its ke rne l  is identif ied to f~ lk (1 ) IY = f~Ik  | 

Op (1) | Ov, whence  we get  the  exact  sequence  

0 - f2pllk(1)tY -- H ~  | Oy - L = Or (1 )  -- 0, (5.4) 

wh ich  is no th ing  bu t  the dual  of  the Euler sequence  of  P r e s t r i c t ed  

to Y. Let M be ano the r  line b u n d l e  on  Y. Tens| (5.4) by  M and  

tak ing  cohomology  we get  the exact  sequence  

0 H o ( y , f ~ l p i k ( 1 ) l Y |  ) ~ HO(Y ,L  ) |  VL.M 
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~L,M HO(y,L  | M ) . Hl(y,c~tplk(1)]Y | M ) a ..... 

.... oc . H o ( y , L  ) | H I ( Y , M )  ~ (5~ 

In particular, we get the identification 

R ( L , M )  = H~ | M). (5.6) 

On the other hand, the dual normal sequence of Y in P yields the 
exact sequence 

O ~ N~Ip | L | M b ~ ~ l k ( 1 ) [ y |  M a ~ f2~lk | L | M ~  O, 

whence, taking into account of (5.6), the cohomology sequence 

:R.(L,M) CPL'M=HO(a); H ~  f'l~l k | L | M) --, 

_ H I ( y , N ~ t k | 1 7 4  ) H!.(b) H l ( y , f ~ l k ( 1 ) l Y |  (5.7) 

In particular from (5.7) we get 

Coker(qgL,U) ~ Ker(Hl(b)). (5.8) 

Therefore (5.8) implies the following: 

LEM~A 5.1 In the above hypotheses the Gaussian map  CpL,M is surjec- 

tire i f H l ( Y , N ~ l p  | L | M) = O. 

COROLLARY 5.1 Assume fur thermore  that  H t ( Y , L  -1 | M) = 0 and 
that  the very ample line bundle L is normal ly  presented, i.e. the graded 

k-algebra R(Y ,  L) := e~=oH~ L i) is generated by its homogeneous 

par t  o f  degree one and the ideal 

Ker(S(H~ *) = ~=oH~ Oe(i))  -- R (Y ,L ) )  

is generated by its homogeneous par t  o f  degree two, where S(V)  de- 
notes the symmetr ic  k-algebra associated to a k-vector space V~ Then 

the aauss ian map CPL,M is surjective. 
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PROOF. Since L is normal ly  p r e s e n t e d  there  exis ts  a su r j ec t ion  of  the  
f o r m  

m o p ( - 2 )  ~ ~Iy ~ O, 

where ~w is the  ideal  shea f  of  Y in Op. This yie lds  the  su r j ec t ion  

( m O p ( - 2 ) )  | L | M ~- rn(L -1 | M) ~ Jy o L | M -~ N~I P | L o M ~ O. 

Since Y is a curve  we get  t he re fo re  a su r j ec t ion  

H I ( y , m ( L  -1 | M))  ~ H I ( Y , N ~ t p  | L | M)  ~ O. 

Using the h y p o t h e s i s  tha t  H ~ ( Y , L  -1 | M) = 0 and  l e m m a  5.1 we get 
the conc lus ion  of  our  corollary.  [ ]  

EXAMPLE 5.1 In corol lary  5.1 take Y a non-hypere l l ip t ic  curve  of  genus  

g > 3, wh ich  is ne i ther  trig| nor  a p lane  quintic.  By a t h e o r e m  of  

Max Noether-Pet r i  (see [1]), the  canonica l  class L = oJy is very  ample  

and  no rma l ly  p resen ted .  Take  M of  degree  >_ 4g  - 3. Then  

deg(L -1 | M) = deg(M)  - deg(L)  > (4g  - 3) - ( 2 g -  2) = 2g - 1. 

By Riemann-Roch,  H 1 ( y ,  L -  1 | M) = 0. There fo re  corol lary  5.1 yields: 

THEOREM 5.1 (LAZARSFELD) Let Y be a non-hyperelliptic curve o f  genus  

g >_ 3 which is neither trigonal, nor a plane quintic. Let M be a line 

bundle on Y o f  degree > 4g - 3. Then the Gaussian map  cP~oy,M is 

surjective. 

NOTE. The conc lus ion  of  t heo rem 5.1 still ho ld s  if we take M of  
degree  4g  - 4,_ p rov ided  M ~ | 

COROLLARY 5.2 In the hypotheses o f  theorem 5.1 the map  cpu,uoy is 
surjective.  

PROOF. The conc lus ion  fol lows f r o m  t h e o r e m  5.1 and  f r o m  p r o p e r t y  
5.3. []  
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THIiORE~,I 5.2 (WAHL) Let Y be a smooth projective curve o f  genus  g > 
0 and l e t L  be a very ample  line bundle on Y. L e t i  : Y .~ P = 

(H 0 (Y, L) * ) be the linearly normal  embedding given by I L ] into the 
projective space P. Then there is a canonical isomorphism 

Coker(z)  ~ Coker(q~L,~.)*, 

where z : H ~  * - H ~  N y i p ( - 1 ) )  is the Zak map  o f  Y in P. In 
particular, the Zak map  z is surjective i f  and only i f  the Gaussian m a p  
CPL,ojy is surjective. 

PROOF. Using (5.8) we get  

Coker((pL,wy) ~ Ker(Hl(y ,N~,ip|174 -- H l ( y , ~ l k ( 1 ) l Y |  

or by dual i ty on  Y, 

Coker(q)L,wy)* -~ Coker(H~ Tp( -1) fY)  - H~ N y i p ( - 1 ) ) .  

(5.9) 

On the o ther  hand,  by a general  classical s t a t emen t  due  to Petri (see 
[54], or [14]) the map  I~L,wr is surjective (recall that  L is very ample  
and  9 > 0 by hypotheses) .  If in (5.5) we take M - o3y, we get  that  the 
m a p  

tx "Hi(Y,~pilk(1) | toy) - -  H ~  | H i ( Y ,  o3y) 

is injective. Therefore  by dual i ty the m a p  

cr : H ~  * | H ~  Oy) = H ~  * - H~ Tp( -1 ) ]Y )  (5.10) 

is surjective.  Then  the defini t ion of the Zak map,  (5.9) and  the sur- 
ject ivi ty of  the  map  (5.10) yield the conc lus ion  of  our  theorem.  [] 

COROLLARY 5-3 Let Y be a smooth projective non-hyperelliptic curve 
o f  genus g >_ 3 which is neither trigonal, nor a plane quintic. Let L be 
a line bundle on Y o f  degree >_ 4g - 4 such tha tL  ~ o32. Then the Zak 

map  associated to the linearly normal  embedding i =iiL I : Y ~ pn 
with n = h~  L) - 1 = deg(L) - g ,  is surjective. In particular, every 

extension in ~,+1 o f  the embedded curve Y c ~n is a cone. 
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PROOF. Since 4g - 4 > 2g + 1 for g >_ 3, L is very ample on Y. Then 

the corollary is a consequence  of theorem 5.2 and of corollary 5.2. 

For the last s ta tement  apply theorem 2.1. [] 

Now we come back to the Wahl map 

wy  " A2H~ o~r) - H~  oo3) 

of a curve Y of genus g > 2. As we saw above, the surjectivity of wv 

implies g > 10. Then we have the following fundamenta l  result: 

THEOREM 5.3 (CILIBERTO-HARRIS-MIRANDA [14]) For the general cur- 

ve Y o f  genus 8 > 10 and g ~ 11 the Wahl map my is surjective. 

The conclusion of theorem 5.3 is false for 8 = 11 (see [37], via 

theorem 5.4 below). Note that the surjectivity of the Wahl map w v  is 

an open condition in the moduli  space J i g  of i somorphism classes 

of curves of genus 8. For some genera g > 10 Wahl produced  for the 

first time explicit examples of curves Y with wy surjective (see [53]). 

Therefore  for those genera theorem 5.3 is due to Wahl. The method  

of Ciliberto-Harris-Miranda is entirely different, the main idea being 

to s tudy the Wahl map for certain degenerat ions of curves of genus 

8. A consequence of theorem 5.3 via theorem 5.2 and the remarks  

made  at 5.4 is the following: 

COROLLARY 5.4 For a general projective curve Y of  genus 8 >- 10, 

g ~ 11, let Y ~ Pg-1 be the canonical embedding of  Y. Then every 
extension of  Y in Be is a cone. 

PROOF. The first part  follows f rom theorem 5.3, theorem 5.2 (via the 

remarks  made after proper ty  5.4), and f rom theorem 2.1. [] 

Finally, we have the following useful  result: 

THEOREM 5.4 (WAHL) Let Y be a smooth non-hyperelliptic projective 

curve o f  genus g >_ 3 which is contained in a K3 surface S. Then the 
Wahl map ~vv of  Y is not surjective. 
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PROOF. The genus'  formula  and the fact that  the canonical  class 

Ks is trivial yield (y2) > 0, where (y2) = (y2)s  denotes  the self- 

intersect ion of Y on S. It follows that (Y �9 C) > 0 for every irre- 

ducible curve C on S. Assume that there exists an irreducible curve 

C on S such that (Y - C) = 0. Using the Hodge index theorem (see 

e.g. [7]) it follows that (C 2) < 0. Then f rom the genus '  formula  we 

get C ~ p1 and (C 2) = -2 .  The Hodge index theorem also implies 

that there are only finitely many  such (-2)-curves .  Then a projec- 

tive contractibility criterion of M. Artin (see [2], or also [7, chapter  3]) 

shows that there exists a birational morph i sm f : S ~ X, with the 

following properties:  X is a normal  projective surface having finitely 

many  singular points (which are rational double points) such that  the 

canonical divisor Kx of X is Cartier (in particular, all the singularities 

of X are Gorenstein), f *  ( K x )  is a canonical divisor Ks on S, and  the 
canonical map H 1 (X, O x )  ~ H 1 (S,  Os )  is an isomorphism.  In our  

case, since S is a K3-surface, Ks = 0 and q = h 1 (S, Os)  = 0. It fol- 

lows that K x  = 0 a n d  h 1 (X, OX) = 0. In other words, X is a singular 

K3-surface. Moreover, by construction,  f defines an i somorph i sm 

f l U  : U -~ f ( U )  f rom a Zariski open neighbourhood U of Y in S (we 
can take U = S \ E, where E is the union of all irreducible ( -2)-curves  

C such that (Y �9 C) = 0). In particular, Y can also be embedded  (via 

f l Y )  in X as a Cartier divisor. Again by construction, ( Y  �9 D ) x  > 0 

for every irreducible curve D on X. Since f *  (Y) = Y, it also follows 

that (Y2)x = (y2)s  > 0. Then by the Nakai-Moishezon cri terion of 

ampleness  (see e.g. [29], or also [7, chapter  1]) we infer that  Y is an 

ample Cartier dMsor  on X. 

Now the adjunct ion formula  together  with the fact that  w x  = 

O x  ( K x )  ~- O x  yield O x  (Y )  ] Y ~- co y. Therefore for every n >_. 0 we get 

the exact sequence 

0 -- O x ( ( n -  1)Y) - O x ( n Y )  ~ w ~  ~ O, 

whence the cohomology sequence 

0 - H ~  O x ( ( n -  1)Y)) - H ~  O x ( n Y ) )  ~ H ~  cop) -- 

H t (X,  O x ( ( n  - 1)Y)) ~ H 1 (X ,  O x ( n Y ) )  - H 1 (Y ,  w~.) -- 

-- H 2 ( X ,  O x ( ( n  - 1)Y)) -- H 2 ( X ,  O x ( n Y ) )  - O. 
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I claim that  H t ( O x ( n Y ) )  = 0 for every n >_ O. Indeed, since for 

n = 0 we already know this, we may assume n > 0. In characteristic 

zero, by duality this amounts  to H 1 (X, Ox ( - n Y ) )  = 0 which holds by 
Kodaira-Mumford vanishing theorem. However, the assert ion is valid 

in arbitrary characteristic, as one can immediate ly  see by examining 
the above exact sequence (taking into account  that h2(X, Ox) = 1, 
H2 (X, O x ( n Y )  ) ~- H~ O x ( - n Y )  ) = 0 for all n > 0, hl (Y, u)v ) = 1 
and H i ( Y ,  co,~) = 0 for all n > 1). 

Therefore for every n >_ 0 we get the exact sequence 

0 ~ H~ O x ( ( n -  I)Y)) ~ H~ O x ( n Y ) )  - H ~  ~ O. 

In particular, X c Pg and A / t A  _~ R, where A := e~=oH~ O x ( n Y ) ) ,  
and R := e~=oH~ co~), and t ~ Al = H~ Ox(Y))  is a global 

equat ion of Y in X. Now, by a classical theorem of Max Noether, 
the canonical ring R of a non-hyperelliptic curve Y of genus g > 3 is 

genera ted by R 1 (see Ill). Therefore A is also generated by A1 (because 
A / t A  ~ R and deg(t)  = 1). 

In particular, Y is a very ample divisor on X. Recalling that Y c 

~g- t  and X c ~g, we infer that  X is an extension of Y in ~g in the 

sense of section 2. This extension cannot  be trivial because otherwise 

X (and hence also S) would be birationally equivalent to Y • p1. At 

this point we can apply theorem 2.1 to deduce that the Zak map of 

Y in ~ - 1  cannot  be surjective. Therefore by theorem 5.2, the Wahl 
map Wy also cannot be surjective. 

REMARK 5.1 In theorem 5.4 we could have used theorem 4.2 instead 
of the more delicate contractibility theorem of M. Artin. 

REMARK 5.2 The major interest  of theorem 2.1 consists in the fact 

that  it holds also for the case when Y is a curve, in which case the 

cokernel  of the Zak map can be in terpreted (via theorem 5.2 above) 

in terms of the cokernel of a certain Gaussian map. Moreover, the 

theorems  5.1 and 5.3 above produce very interesting examples of 
surjective Gaussian maps. 



280 L. B,~flDESCU 

6 D e f o r m a t i o n s  o f  q u a s i - h o m o g e n e o u s  s i n g t f l a r i t i e s  a n d  p r o -  

j e c t i v e  g e o m e t r y  

Let X be a s m o o t h  variety and  Y a c losed subvarieW having only one 
singulari ty y ~ Y. Then  we may  consider  the  no rma l  sequence  of  Y 
i n X  

0 ..... Ty ' Tx IY  q' ~ NyIx .  

Since Y is s m o o t h  outs ide  y and  X is smooth ,  qo is surject ive ou ts ide  
the poin t  y .  Therefore  

T,~,y := Coker(<p) 

is a coheren t  sheaf  concen t ra t ed  at the po in t  y .  In part icular ,  T~,y 

( somet imes  also d e n o t e d  by Ty 1) is a finitely d imens iona l  vec tor  space 
over k (because it is a coheren t  sheaf  concen t ra t ed  at one  point),  
which  is called the space o f  first order infinitesimal deformat ions  of 
the isola ted singularity.  This space turns  ou t  to be an ex t remely  im- 
po r t an t  intr insic invariant  of  the isolated s ingular i ty  (Y, y ) .  In fact, 
T~,y d e p e n d s  only on the s ingulari ty (Y ,y) ,  and  not  on  the  choice 
of  the e m b e d d i n g  Y ~ X into the s m o o t h  variety X (see corollary 6.1 

and  r emark  6.1 below). 
The def ini t ion of  T~,y = T~ being local, we may  a s s u m e  that  Y = 

Spec (A), wi th  A a finitely genera ted  k-algebra. Then  we may  write A = 
k[T1, ..., Tn]/I ,  where  I is an ideal of  the polynomia l  k-algebra P := 
k[T1, ..., Tn], and therefore  we may  take X = Spec(k[T1 ..... Tn]) = A n, 
and  as Y ~- X the subvariety V(I)  of X def ined by the ideal  I. The 

canonical  exact sequence  

I / P  - @ l k  |  A - - 0 

yields for  every" A-module  M the exact sequence  

0 ~ H o m a ( ~ I k , M )  = Derk(A,M) ~ H o m A ( ~ ) k  | A , M )  = 

= Derk(P,M) r ~ HOmA(i / i2  M) ~ T I ( A ] k , M )  ~ 0 

where  by def ini t ion TI (A Ik ,  M) := Coker(qoM). Taking M = A we get  
that  T~,y is the sheaf  associated to the A-module  T I (Ark ,A) .  
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DEFINITION 6.1 Let A be a commutat ive  k-algebra o f  finite type, and 

M an A-module.  An  extension o f  A over k (or o f  A / k )  by M is an exact 
sequence 

t j (6.1) 0 ~ M  ~ E  , A  ~ 0 ,  

where E is a commutat ive  k-algebra, j is a surjective homomorph i sm 

o f  k-algebras, i (M) = Ker ( j )  is a square-zero ideal o f  E (in partic- 
ular, i (M)  becomes an A-module), and i defines an isomorphism o f  
A-modules  between M and i (M).  

Two ex tens ions  (E) and  (E') of  A / k  b y  M are sa id  to be  equivalent  
if there  exis ts  a k-algebra h o m o m o r p h i s m  u �9 E ~ E' i nduc ing  a 

c o m m u t a t i v e  d iagram 

i j 
M . E . A  

M . . . . . .  E ' ~ , A  
i' j '  

It fo l lows  easi ly that  u m u s t  be  an i s o m o r p h i s m  of  k-algebras .  The 

se t  o f  equiva lence  c lasses  of  ex t ens ions  of  A / k  by  M will b e  d e n o t e d  

b y  Exl(AIk ,  M). 

THEOREM 6.1 With the above definitions and notations, there is a nat- 
ural bijection 

ct" Exl (Alk ,  M) ~ T I (A lk ,  M). 

PROOF. Cons ider  an ex tens ion  

0 - ; M i , E -  j ~ A . . . . . .  0 (E) 

Since P is a po lynomia l  k-algebra  the  canonica l  su r j ec t ion  g : P ~ A = 

P / I  fac to r s  th rough  a (not  necessa r i ly  unique)  k-algebra h o m o m o r -  

p h i s m  f : P ~ E, i.e. j o f = g. Since g ( I )  = O, f ( I )  c_ K e r ( j )  = M. 

However ,  i (M) is a squa re -ze ro  ideal  o f  E, hence  f i nduces  an  ho- 

m o m o r p h i s m  of A-modu les  h : I / I  ~ ~ M, and  thus,  an e l e m e n t  of  
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T I ( A I k ,  M). If f '  �9 P -- E is ano the r  l ift ing of g,  t hen  i - l ( f  - f l ) .  

P -- M is a k-derivation, thus  the  m a p  

a : E x l ( A t k ,  M)  - T I ( A t k ,  M) 

given by (E)-- a(E)  := h is well defined.  
Conversely, let h be an arbi t rary e l emen t  of T 1 (AI k, M), wi th  h an 

e l emen t  of  HOmA ( I / I  2, M), i.e. h : I ~ M a k - h o m o m o r p h i s m  which  
vanishes  on 12. On the p r o d u c t  P x M cons ider  the usual  add i t ion  

and  the mul t ip l ica t ion def ined by 

( x , m ) ( x ' , m ' )  := ( x x ' , x ' m  + x m ' ) ,  V ( x , m ) ,  ( x ' , m ' )  ~ P •  

where  M is regarded  as a P -modu le  by the  res t r ic t ion of  scalars via 
the  canonical  map  of  k-algebras g �9 P - A. With this mult ipl icat ion,  
it is easy to see that  {(x, - h ( x ) )  J x ~ I} is an ideal of  P x M. Set 

Eh := (P x M ) / { ( x , - h ( x ) )  f x ~ I } .  

A 

Let j a b :  Eh ~ A be the m a p  def ined by j h ( x , m )  = x m o d I  ~ A, 
V (x ,  m )  ~ Eh. Clearly, j h ~ w e l l  def ined  surjective h o m o m o r p h i s m  

of  k-algebras. For every ( x , m ) ,  ( x ' , m ' )  ~ Ker(jh) we have 

A A A A 

( x , m ) ( x ' , m ' )  = ( x x ' , x ' m  + x m ' )  = ( x x ' , O )  
A A 

= ( x x ' , - h ( x x ' ) )  = (0,0),  

because  x , x '  e I and  h vanishes  on  12. In o ther  words,  Ker( jh)  is a 
squ~are-zero ideal of  Eh. Moreover, it is easily checked  that  the m a p  
(x ,  m )  ~ m + h ( x )  yields a well def ined  i s o m o r p h i s m  of  A-modules  
Ker( jh)  ~ M. In o ther  words,  in this way we get an ex tens ion  (Eh) of  

A / k  by M. 
We prove now that  if/~ = /~' (with h' ~ HomA(I / I2 ,M))~ the  ex- 

t ens ions  (Eh) and (Eh,) (of A / k  by M) are equivalent.  The equal i ty  
/Tt = h '  means  that  there is a der ivat ion d r Derk(P, M) such  that  
h'  := h + d l I  " I - M (h and  h '  are r ega rded  as k-linear m a p s  which  

van ish  on  I2). Then..._ it is easily checked  that  the func t ion  q9 �9 Eh -- Eh, 

def ined  by qg((x, m ) )  := (x ,  rn + d ( x ) )  yields an i s o m o r p h i s m  of  ex- 

t ens ions  (Eh) -~ (Eh,). 
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Therefore we get a well defined map/~ : T 1 (A} k, M) - E'< 1 (Alk,  M) 

given by fi(/~) := class of (Eh), which is easily checked to be the 
inverse of the map ~x. [] 

COROLLARY 6.1 T I ( A / k , M )  is independent  o f  the choice o f  the pre- 
sentation A = P / I. In particular, i f  (Y, y ) is an isolated singularity, 
T~,y is independent  on the embedding Y ~ A n. 

PROOF. The corollary follows f rom theorem 6.1 because the set 

Exl(Atk, M) is independent  of the presentat ion A = P/I .  [] 

REMARK 6.1 One can prove that the s tructure of A-module of T t (Alk, 

M) is also independent  on the choice of the presentation. Roughly 

speaking, this is done in the following way: one can intrinsically 

define an addition on Ex l (AIk ,M)  and a scalar multiplication A x 

Ext (A[k ,M)  - E x l ( A l k , M )  such that ExL(A}k,M) becomes  an A- 

module (i.e. depending only of A / k  and on M). Then one checks 

that the bijective map a is in fact an i somorphism of A-modules (see 
[44] for details). 

6.1 Quas i -homogeneous  s ingular i t ies  

Assume now that A = ei~oAi is a finitely generated graded k-algebra 
such that Y := Spec(A) has an isolated singularity 3/ at the maxi- 

mal irrelevant ideal m a  := e~=lAi. The singularities ( Y , y )  of the 

form Y = Spec(A) and y = mA,  where A is a finitely genera ted  

graded k-algebra are called quasi-homogeneous. Since A is finitely 
genera ted there are homogeneous  elements a l ,  ..., an E A of positive 

degrees  d l  ..... dn respectively such that  A = k[al , . . . ,  an].  Consider 

the polynomial k-algebra P := k[T1 ..... Tn] graded by the condit ions 

that deg(Ti) = d i ,  Vi = 1, . . . ,n.  Then the map qo :P  - A of graded 

k-algebras such that q~(Ti) = ai, Vi = 1 ..... n,  becomes a surjective 
homom or ph i sm  of graded k-algebras. If I := Ker(qo), then I is a ho- 

mogeneous  ideal of P such that A = P/I .  Let M be a graded A-module. 
By the definition of T 1 (AIk, M) we have the exact sequence 

0 , Derk(A,M) u . Derk(P,M) v=~M 
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v HomA(I/I2,M) . . . .  TI(AIk, M) . . . . .  O, 

in which the first three A-modules are graded and u and v are homo- 
morphisms  of graded A-modules.  It follows that T 1 (AI k, M) becomes  
a graded A-module. 

On the other  hand,  by corollary 6. i  and remark  6.1, the A-module  
T l (AIk, M) is independent  on the presenta t ion  A = P/I, i.e. T 1 (AIk, 
M) is independen t  on the choice of the system of homogeneous  gen- 
erators a~ .... , an of the graded k-algebra A. One can prove that  the 
s t ructure  of graded A-module of TI(AJk, M) thus obtained is also 
independen t  on the choice of homogeneous  presentat ion A = P/I  
(see [421). In particular, the space T~,y = TI(AIk, A) of first o rder  
infinitesimal deformat ions  of the quasi -homogeneous  isolated singu- 
larity (Y, y )  (corresponding to the irrelevant ideal mA) has an intrin- 

sic decomposi t ion  
r ,y = |  1 y,y(i) 

which corresponds  to the s t ructure of the graded A-module of T 1 (Alk, 
A). The subspace T~.y (i) is called the space of first order infinitesimal 
deformations of  weight i of the quasi -homogeneous isolated singu- 
larity ( Y , y ) .  Since the singularity ( Y , y )  is isolated, T~,y is a finite 

dimensional  k-vector space, and in particular TIy ( i )  ,e 0 only for 

finitely many  values of i ~ 7/. 

6.2 Cones  over  p ro jec t ive ly  no rma l  var ie t ies  

Let Y be a closed smooth  subvariety of the n-dimensional  projective 
space pn of dimension _> 1. We recall that Y is called projectively 
normal in pn if the Serre map (see [28]) 

o~" k[Y] -- R(Y)  := ( ~  H~ Oy(i)) 

is an isomorphism,  where k[Y] := k[To, ..., Tn]/I(Y) is the homoge-  
neous  coordinate  k-algebra of Y in ~" (with To ..... Tn n + 1 variables 
over k and  I(Y) the saturated ideal of Y in ~n). Geometrically, this 
means  that  Y is irreducible and for every i > 1 the linear sys tem cut  
out on Y by all hypersurfaces of degree i is complete. The ring R(Y)  
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is normal since Y is smooth.  On the other  hand, the Serre map c~ of 

any closed irreducible subvariety Y c pn is TN-surjective, i.e. the 

maps ~xi : k[Y] i  ~ H ~  Oy( i ) )  are isomorphisms for all i >> 0. 
It follows that (for a non  necessari ly projectively normal subvariety 

y g pn) the ring R ( Y )  is the normalizat ion of k[Y]  in its field of 

quotients. Therefore Y is projectively normal if and only if the ring 

R := k[Y]  is normal. 

Set C := Spec(k[T0 ..... Tn]) = A n+l. Inside C we have the affine 

cone C f  := Spec(R) = Spec(k[Y]) with vertex x = (0, 0 .... ,0) (which 

corresponds to the maximal irrelevant ideal mR). Since Y is smooth  

and projectively normal in p u  Cy is a closed normal subvariety of C 

having an isolated singularity at x. Moreover the gradings of R and 

of k[To ..... Tn] (deg(Ti) = 1, Vi = 0 ..... n) yield obvious Gin-actions 
on Cy and on C such that the closed embedding Cy ~ C becames  

Gm4nvariant. Set Uy := Cy \ {x} and U := C \ {x}. Then Uy and U 

are Cm-invariant open subsets of Cy and of C respectively, such that 

the closed embedding Uy ~ U is also Gm-invariant. We have natural  
projections Try : Uy ~ Y and rr : U -- pn such that the following 

diagram is cartesian 

rr -1 (Y) = Ur . . . . .  U 

~'1 1 Tr (6.2) 

y _ _ o  pn 

in which the horizontal  arrows are the natural inclusions. 

Our aim is to compute  in geometric terms the space T~v = T~v~x 
of first order  infinitesimal deformat ions  of the isolated singularity 

(Cy,x) .  By the definition of T~y we have the exact sequence 

O-- Tcr - TclCY ~ Ncr lc  ~ T ~ y -  O. 

Since Cy is an affine variety, by passing to global sections we get the 

exact sequence 

0 ~ H~ ~ H ~  ~ H~  - H ~  l (RIk,  R ) ~  0 

On the other hand, since Tcr, Tc[Cy and Ncrlc  are ref le~ve shea- 

ves on the normal variety Cy of dimension > 2, and since x is a point  
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of Cy, by p ropos i t i on  2.1 we get 

H~ ~ H~ Tcr),  H ~  -~ H~ Tc tCy) ,  

HO(Ncyfc) ~ H~  Nc~IC). 

Therefore  the  above exact sequence  becomes  

0 ---* H ~  Tcv) ~ H~ Tc[Cy) - H ~  

H~ = T I (R Ik ,  R) ~ Oo (6.3) 

Since Uy c U is a c l o s e d / m m e r s i o n  of s m o o t h  varieties we have the  
no rma l  exact sequence  

0 --, T~y ~ Tu[Uy ~ Nuy tu  ~ O, (6.4) 

whose  c o h o m o l o g y  sequence toge ther  wi th  the exact sequence  (6.3) 

yield in par t icular  the inclusion 

T1 v -_ HO(T~y ) m H I  (Uy, Tuy )~ (6.5) 

Now look  at the  commuta t ive  d iagram with exact rows and  co lumns  

0 ' Our 

0 ........ Our 

0 0 

....... T~u rr~ ( Ty ) 

t 1 
' ~ 0 

NUrlU rr,~ ( Nyj~, ) 
id 

0 0 

The fact that  the  first two rows are exact comes  f rom l emma  3.1 (ap- 
pl ied to Try and  to ~), the equaliW in the second  row f rom the com- 
muta t iv i ty  of  the  d iagram (6.2), the last co lumn  is the pull  back of  the 

TulUv . . . .  rr*(Tj,,,)lUv = rr~(T.j, nlY) . . 0 
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normal  sequence of Y in ~n, and  the  midd le  co lumn  is jus t  (6.4). In 

particular,  Nuyiu ~ rr~, (Nyic, n). Then  (6.3)yields 

HO(Uy, TuIUY) ~x o Ho(Uy, rr~,(Nyl~,~) ) . . . .  T ~  ~ 0 .  (6.6) 

Now we have to u n d e r s t a n d  the m a p  ~x more  closely. 

CLAIM 6.1 There is a canonical identification Tu ~ rr* ( (n  + 1 ) O~n (1) ) 

such that the map 

ai "H~ TuIUy)i ~ H~ rr!~ (NYt~,*))i 

is identified (up to multiplication by a non-zero constant) go the Zak 

map 

z ( i  + 1) :H~ (n  + 1)Oy( i  + 1)) ~ H ~  

twisted by i + 1. 

Then  (6.6) and claim 6.1 yield the following result: 

THEOREM 6.2 (SCHLESSINGER [401, [42]) Let Y c pn be a closed smooth 

projectively normal subvariety o f  P n o f  dimension > 1, and let Cy be 
the affine cone over Y in pn. Then there is a natural identification 

T~r(i) ~ Coker(z ( i  + 1)), 

where z ( i  + I) : H~ (n  + 1)Oy(i  + 1)) ~ H~ is the Zak map 
o f  Y in pn twisted by i + 1. 

It remains  to prove the claim 6.1. To do this we shall make  use  of 
the following special cases of well knovm Bott's formulae:  

H O t ~ n , ~ )  = O, H1(~r t ,Q l . ( i ) )  = O, V i  v= O, a n d H l ( ~ n , ~ . )  ~ k. 

(6.7) 

First observe that the i s o m o r p h i s m  classes of vector bund le  exten- 

sions 

of T ~  by O ~  are classified by H 1 ( P n  ~ , )  which by (6.7) is a one- 

d imens iona l  vector space. Therefore  either E ~ O ~  �9 T?,,  or the 
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above exact sequence is isomorphic (up to multiplication of the sec- 
ond map by a non-zero constant) to the ELder sequence of pno 
On the other hand, the isomorphism classes of vector bundle exten- 
sions of rr* (T~,) by rr* (O~,,) = Ou are classified by H 1 (U, rr* ( f~)) ,  
which by lemma 3.2 and (6.7) is isomorphic to ~ i ~ H  ~ (~n  f2~, (i)) ~- 
H x ( ~ n , ~ l n )  ~- k. We infer that every vector bundle extension of 
rr* (T~,) by rr* (Ou,-) = Ou is the pull back via rr of a vector bundle 
extension of T~,, by O~,~ In particular, considering the exact sequence 
(given by lemma 3.1) 

0 ~ O F  ~ T u  - r r * ( T ~ . )  - -  O, 

it follows that either Tu -=- Ou �9 rr*(T~[), or 

Tu ~- (it + 1)rr*(O~(1)) .  (6.8) 

Notice that Tu ~ (n + 1)Ou, or else f2 b ~ (n + 1)Ou. Then the first 
possibility is ruled out because otherwise lemma 3.2 would imply 
H~ n, (n + 1)O~,) ~ H~ ~n, 0 ~ )  �9 H~ n, f2~n), which contradicts 
the first equality of (6.7). 

Therefore there is an isomorphism of the form (6.8). This fact to- 
gether with the above remarks prove claim 6.1, and thereby theorem 
6.2 completely. 

In view of theorem 6.2, theorem 2.1 implies: 

COROLLARY 0.2 [!I the hypotheses of  theorem 2.1 assume furthermore 
that Y is smooth and projectivety normal in ~n and Tcly(-1) = 0, 
where Cy is the affine cone over Y in ~n. Then every extension of  Y 
in ~n+l is trivial 

Corollary 6.2 is especially interesting because it makes a connec- 
t ionbetween two completely different things: the deformation theory 
of the vertex of the cone Over Y in ~n (which is of local nature), and 
a problem of global projective geometry (i.e. the classification of ex- 
tensions of Y in pn+l). 

DEFINITION 6.2 Let ( Y, y )  be an isolated singularity of  the affine vari- 
ety Y (with Y smooth outside y ). Then ( Y, y )  is called a rigid singular- 
ity ifTty,y = O, i.e. if  the space of  first order infinitesimal deformations 
o f  ( Y, y ) is zero. Clearly, ( Y, y ) is rigid if y is a smooth point of  Y. 
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The following result provides a criterion for the vertex x of the 

affine cone Cy over a smooth  projectively normal  closed subvariety 

Y in pn to be rigid. 

PROPOSITION 6.1 Let Y be a smooth projectively normal  closed subva- 
riety o f P  n o f  dimension > 1 such that  H l  (Y, Or( i ) )  -- H i ( Y ,  Tr(  i) ) = 
0 for all i E Zo Then T~r = O, i.e. the vertex x o f  Cy is a rigid singu- 

larityo 

PROOF. By (6~ it will be sufficient to prove that HI(Uy,  Tur) = O. 
To do tMs consider the following cohomology sequence associated 

to the first row of the diagram of the proof  of theorem 6.2: 

H 1 (Uy, Our) ~ H 1 (Uy, Tur) -- H 1 (Uy, Tr{ (Ty)). 

Therefore the middle space is zero if the first and the last spaces are 

both  zero. But by lemma 3.2 and our assumpt ions  we have 

Hl(Uv ,  Ouy) = O H I ( Y ,  Oy(i))  = O, and 

Hl (Ur ,  rr~ (Ty) ) = ~ )  HI  (y,  Ty( i) ) = O. 
i~TZ 

[] 

By proposit ion 6.1 and the examples 4.1 (and the remark  following 

it) and 4.2, the vertex of the affine cone over the Veronese variety Y = 
vs(pr ) ,  with r > 3 and s _> 2, or over the Segre variety Y = i(P 1 • pr),  

with r > 2, is a rigid singularity~ 

We close this section by proving proposi t ion 2.3. 

PROOF OF PROPOSITION 2.3~ Let / be the saturated homogeneous  

ideal of Y in the polynomial k-algebra P := k[To, T1 ..... Tn], and set 

A = P / I  (the homogeneous  coordinate k-algebra of Y in ~n). Since Y 

is projectively normal in pn we can apply theorem 6.2 to get 

T~r ( -2 )  = Coker(H~ (n + 1 ) O r ( - 1 ) )  , H~ N y I ~ ( - 2 ) ) ) ,  

whence T~y ( -2 )  = H~ N y t ~ ( - 2 ) )  because H~ (n + 1 ) O r ( - 1 ) )  

= 0o Therefore we have to check that Tcly ( -2 )  = TI(Alk ,  A ) ( - 2 )  = O. 
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Every e l emen t  t e T I ( A [ k , A ) ( - 2 )  is r e p r e s e n t e d  b y  a h o m o m o r -  

p h i s m  (p E H o m j ( I / I 2 , A ) ( - 2 )  of  degree  -2~ To p rove  the p ropo-  

si t ion it will be  e n o u g h  to s h o w  tha t  u n d e r  its h y p o t h e s e s  we have  

( p = 0 .  

By our  h y p o t h e s e s ,  there  is a s y s t e m  of  gene ra to r s  f l  ..... f s  ~ I2 

of  I o f  degree  2. We m a y  a s s u m e  tha t  f l ,  ..., f s  is minimal .  A re la t ion  

r a m o n g  f l  ..... f s  is a s y s t e m  of  h o m o g e n e o u s  po lynomia l s  ( r l ,  .-., rs) 

of  the  same  degree  such  that  r l f l  + . . .  +~'sfs = O. The h y p o t h e s e s  a lso 

say  that  there  is a genera t ing  se t  r 1 .... , r  u of  i n d e p e n d e n t  re la t ions  

r i = (r[ ..... ris), with  d e g ( r j )  = 1. 

Then  the  c lasses  f i ,  Vi = 1, ..., s og f i  in I / I  2 f o r m  a s y s t e m  of  

genera to r s  of  I / I  2. There fo re  cp is pe r f ec t ly  d e t e r m i n e d  b y  the con- 

s t an t s  qo(f i )  , V i  = 1 ..... s. Now, a s s u m e  that  q9 ,~ 0. Then  there is an  

i such  that  qp(f i )  =~ 0 (in k). We m a y  a s s u m e  c p ( f  1) ~ 0. Then  for  

every  i = 2 .... , s  we have cp( f i )  = a i c p ( f t ) ,  with  a i ~  k. Replac ing  

f t ,  ..., f s  b y  f l ,  f2  - a l f l ,  f s  - as f l ,  we m a y  the re fo re  a s s u m e  that  

q ) ( f l )  e: 0 and  qo( f  i) = O, V i  = 2 ..... s. 
On the o the r  hand,  we claim that  there  is a l inear  re la t ion  r = 

(r~,..., rs) a m o n g  f t  ..... f s  such  tha t  r l  =~ 0. Indeed,  cons ider ing  the  

obvious  re la t ion  f = (f2, - f l ,  0 ..... 0) a m o n g  f l , . . . ,  f s ,  b y  h y p o t h e s i s  

we k n o w  that  there  are l inear f o r m s  c~ ..... cu ~ PI such  that  f = 

c t r  t + ... + c u r  u. In part icular ,  f~  = c~r~ + ... + c u r ~ ,  which  forces  

r{ :~ 0 for  at leas t  one  i ~ {1 ..... u}  (because  f2  ~: 0). 

Now, fixing a re la t ion r = ( r t  ..... rs)  a m o n g  f l  .... , f s  with  r l  * 0, 

we have  0 = ~p ( r l f l  + ... + rs f s )  = r l cp ( fx ) .  Since ~P(fl)  is a n o n  

zero  cons tan t ,  it fo l lows r l  = 0, a cont rad ic t ion .  In this way  we have 

p r o v e d  tha t  HOmA(I / I  2, A)-2  = 0, wh ich  impl ies  T ~ (Alk,  A) ( - 2 )  = 

0. 

7 A c h a r a c t e r i z a t i o n  o f  l i n e a r  s u b s p a c e s  

In this s ec t ion  we prove  the fo l lowing cha rac te r i za t ion  of  l inear sub-  

spaces:  

THEORE~vi 7.1 (VAN DE VEN [51]) Let Y be a smooth closed irreducible 

subvarie ty  o f  ~ n o f  dimension d > 1 over the field C o f  complex num- 
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bers. Then the normal  sequence 

0 ~ Ty ~ T~,nlY ~ N y l ~  ~ 0 

splits i f  and only i f  Y is a linear subspace o f  ~n. 

One impl ica t ion  is easy~ Namely,  a s s u m e  that  Y is a l inear  sub-  

space  of  ~no Let L be  a l inear s u b s p a c e  of  ~n of  d imens ion  n - d - 1 

such  that  Y nL  = 0. Project ing f r o m  L we get  a m o r p h i s m  7T : ~n \ L 

y = ~d such  that Tr o i = idy,  whe re  i : Y ~ pn is the na tura l  inclusion.  

There fore  we get  a canonical  m a p  T~,\L ~ Tr* (Ty), which  res t r i c t ed  

to Y yields  a map  T~,~ I Y ~ i*r r*  (Ty) = Ty. This  is the des i r ed  split- 

ting of  the  no rma l  sequence .  

The o ther  impl ica t ion  is non-trivial.  The ma in  idea of  the  p r o o f  

be low (which is due  to Musta tS-Popa  [41]) is to make  use  of  the  first  

infini tesimal n e i g h b o u r h o o d  Y(1) = (Y, O ~ , / ~  2) of  Y in p n  where  

is the  ideal shea f  of  Y in O~,~ The first  s t ep  is to in te rp re t  the  

spl i t t ing of  the normal  b u n d l e  in t e rms  of  Y(1).  Precisely, we  have 

the fol lowing general  result:  

LEMMA 7.1 Let Y be a closed subvarie ty  o f  an algebraic varie ty  X,  and 

let :l be the ideal shea f  o f  Y in Ox.  Let 

 /j2 . . . . .  o 

be the dual o f  the normal  sequence o f  Y in X.  Then 6 admits  a left 

inverse (i.e. a map  s " ~ I Y  ~ ~/~2 o f  coherent  Oy-modules  such that  

s o 6 = id) i f  and only i f  the canonical inclusion i : Y ~ Y(1)  (with Y(1) 

the first infinitesimal neighbourhood o f  Y in X)  admits  a retraction, Le. 
there exists a morphism o f  schemes  r : Y (1) - Y such that  r o i = idy.  

PROOF OF LEMMA 7.1. The e ~ s t e n c e  of  a re t rac t ion  rr is equ iva len t  

to the  exis tence of  a map  of sheaves  of  r ings Tr' : Oy = OX/~ ~ OX/J  2 

such  that  the c o m p o s i t i o n  

7 r  t 

O x l ~  , O x / ~  2 canonJc~. Ox/~  

is the  identi ty.  On the o ther  hand,  the  exis tence  of  a map  s ~ s Y 

j / j 2  such  that  s o 6 = id is equ iva len t  to the e,,dstence of  a de r iva t ion  

D : Ox ~ j / j 2  such  that  D tJ co inc ides  to the canonical  m a p  J - j / j 2 .  
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Given D ~ Der(Ox,  ~//~/2) such  tha t  DI: / :  ~ - J /12  is the canonica l  

map,  we def ine  rr '  : Ox ~ Ox/ : l  2 b y  rr '  = q) - D, where  q) : O x  -* 

O x / 1 2  is the  canonical  map.  One checks  easi ly tha t  rr '  is a m a p  of  

r ings and  r r ' l l  = 0. There fore  one ob ta ins  a map  rr'  : Ox/ : l  ~ Ox / : l  2 

which  c o m p o s e d  wi th  the  canonical  m a p  O x / ~  2 - Ox / : l  is the  iden- 

try~ Conversely ,  given rr'  one easily- ge t s  back  D b y  D = cp - rr ' .  

PROOF OF THEOREM 7.1. 

Step  1. We m a y  a s s u m e  tha t  Y is non -degene ra t e  in pn. 

Indeed,  let  L be  the l inear s u b s p a c e . o f  pn gene ra t ed  by  Y. Then  

we have the c o m m u t a t i v e  d iagram of  dual  no rma l  s e q u e n c e s  

* .. . . . .  a , lY " . 0  0 -  ~ Nylen 

0 , N~,I L , f ~ l ] y  �9 gl 1 . . . . .  0 
V 

If s �9 f~, -- s is a m a p  such  tha t  u o s = id, t hen  v o ( a  o s) = 

u o s = id. In o ther  words ,  ff the  top  s e q u e n c e  spl i ts  so does  the  

b o t t o m  one. 

H e n c e f o r t h  we m a y  a s s u m e  that  Y is non -degene ra t e  and we have  

to prove  tha t  Y = [pn. We shall first  cons ide r  the  case d = d im(Y)  _> 2. 

Step  2. H ] ( Y , N ~ I ~ )  = O. 

Indeed,  f r o m  the spl i t t ing of  the dual  o f  the no rma l  s e q u e n c e  of  

Y in pn we get  

H ] ( y , ~ ] y )  - ~ H I ( Y , N ~ . I ~ , , ) ~  H I ( Y ,  fI~).  (7.1) 

On the o the r  hand,  the res t r i c ted  Euler s equence  

0 ~ s IY ~ (n  + 1 ) O g ( - 1 )  -- Og - -  0 

yields the c o h o m o l o g y  sequence  

0 = H ~  ( n  + 1 ) O y ( - 1 ) )  - H ~  Oy)  -~ 

- H I ( Y ,  YI~ , IY)  - H ~ ( Y ,  ( n  + 1)Oy( - .1 ) ) .  
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Since k = C and dim(Y) > 2, by  the Kodaira vanishing theo rem the 
last cohomology  space is zero (because d > 2). Therefore  

d im(H 1 (Y, t ~ ,  I Y)) = 1. 

On the o ther  hand,  d i m ( H l ( Y , ~ ) )  > 1 because  by a t heo rem of 
N6ron-Severi H t (Y, ~1) conta ins  N S ( Y )  | C, where  N S ( Y )  is the 
N6ron-Severi group of Y. These  two observat ions  toge ther  with (7.1) 

prove s tep 2. 

Step 3. H ~  = Oo 

Indeed,  f rom the res t r ic ted Euler sequence  

0 , t2~,IY(1) ~ ( n +  1)Oy /3 . Oy(1) , , ~  0 

we get 

H ~  ~ l n  ]Y(1)) = Ker(~), (7.2) 

the first vertical map  is an i somorph i sm,  the first hor izonta l  m a p  is 
also an i somorph ism,  and the  second  vertical map  is injective (be- 
cause Y is non-degenera te  in pn). It follows that  the m a p  ~ is injec- 
tire. Recalling (7.2), this implies  that  H ~  F~,, [Y(1)) = 0. Using the 
spl i t t ing of the dual normal  sequence  we get 

0 = H ~  -~ H ~  �9 H~ 

This proves  step 3. 

Step 4. Let i : Y ~ Y(1) be the natural  inclusion of Y in its first 
infinitesimal ne ighbourhood  in pn. Then  the map  i* : Pic(Y(1)) 

Pic(Y) is injective. 

H~ ( pn, ( n + 1 ) O ~ )  i s o  HO ( pn, o~n (1) ) 

iso~ linj 
H o ( y , ( n  + l ) O y )  , ~ H o ( y ,  Oy(1))  

where ~ := H~ " H ~  (n  + 1)Oy) ~ H ~  O r ( l ) ) .  On the o ther  

hand,  in the  commuta t ive  d iagram 
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Indeed,  from the  t runca t ed  exponen t i a l  s e q u e n c e  

0 -- N~t~, = ://12 -- O~(1) ~ O~ - 0, 

(where for  any scheme  Z, O~ is the  s h e a f  o f  mul t ip l ica t ive  g r o u p s  

of  g e r m s  of  all nowhere  zero  func t i ons  of  Oz, and  where  the  m a p  
~H2 * Oy(:) is given by  u - 1 + u), we  get  the  c o h o m o l o g y  s e q u e n c e  

H:(Y,N~t~n) ~ Pic(Y(1))  ~ Pic(Y). 

Then  s t ep  4 fol lows f rom H 1 (Y,N{I~n) = 0 (by s tep  2). 

Step 5 (Conclus ion in case d im(Y)  >_ 2). 

By l e m m a  7.1 ou r  hypo thes i s  says  tha t  there  is a r e t r ac t ion  r : 

Y(1) - Y of  the inclus ion i : Y ~ Y(1).  Set L := r*Oy(1). Since 

roi  = id, i* (L) :- Oy(1)  = Oy(1) (1)1Y. Since the map  i* : P i c ( Y ( l ) )  

Pic(Y) is inject ive (step 4), L ~ Oy(1)(1),  i.e. r * ( O r ( 1 ) )  --- Or i1)(1) .  

On the  o ther  hand,  in the exact  s e q u e n c e  

i* 0 ~ HO(y,N~I~n(1)) ~ HO(y(1),Oy(1)(1)) : HO(y, Oy(1)) 

the  first  H ~ is zero  b y  s tep  3. The re fo re  the  m a p  

i* �9 H~  Oy(])(1)) ~ H~ Oy(1) )  

is injective.  Now, let to ..... tn be  a bas i s  o f  H ~ (Pn, O~- (1)),  and  set  

si := r * ( t i I Y )  E H~ Vi = 0 ..... n .  Since i* is injec- 

tive, it fo l lows  that  si = t i lY(1) ,  Vi  = 0 , . . . ,n .  Since Oz( : ) (1)  is ve ry  

ample  we get  that  i o r  = i(1),  where  i(1) : Y(1) ~ ~n is the  canonica l  

inclusion.  But this last  fact is imposs ib le ,  un le s s  Y = pn. This p roves  

t h e o r e m  7.1 in case d im(Y) > 2o 

Step 6. T h e o r e m  7.1 holds  t rue if d im(Y)  = 1. 

The a r g u m e n t  of  this s tep  is t aken  f r o m  [32]. The spl i t t ing of  the  

no rma l  b u n d l e  of  Y in pn impl ies  tha t  T>, [Y ~- Ty ~ Ny!~,. Since T ~  

is an a m p l e  vec tor  bundle ,  its r e s t r i c t ion  T~, ]Y is also ample,  w h e n c e  

Ty is ampte .  Since Y is a curve, this  is poss ib l e  only when  Y g plo Set 

e := deg(Y) .  Then  O F ( l )  ~ O~: (e). It r ema ins  to prove  tha t  e = 1. 
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To this ex tent  look at the c o m m u t a t i v e  d i ag ram wi th  exact rows and  

co lumns  

0 ~< , Nyi,~,~ 

0 , Ny l~ ,n  

0 0 

i 1 
, C2~,IY a , n~ = O ~ ( - 2 )  - �9 0 

1 t 
, ( n  + 1 ) O ~ ( - e )  E ~ 0 

1 i 
O y  id ..... O y  

t [ 
0 0 

in which  the first row is the dual  of  the no rma l  bund le  of  Y in pn, and  

the midd le  co lumn  is the dual  of  the  Euler sequence  of  ?n  res t r ic ted  

to Y. The spl i t t ing of  the top row yields a map  s : Y2~ = Op~ ( - 2 )  - 

F/~, I Y such  tha t  a o s = id. In part icular ,  s is injectiveo The inject ivi ty 

of  s a n d  the above d iagram yield an  injective map  O ~  ( - 2 )  ~ (n  + 

1 ) O y ( - 1 )  = (n  + 1 ) O ~ ( - e ) .  This forces e < 2. 

If e = 2, Y is a plane conic. Then  the dual  of  the Eu/er sequence  

0 - ~ .~IY(1)  ~ 3Oy - Ov(1) = O~1(2) ~ 0 

yields the exact sequence  

0 - H~ - H~ 3Oy) ~ H~ 

Since Y is a plane conic, the last  m a p  is an i somorph i sm.  There fore  

H~ FI~21Y(1)) = 0 = H ~  i , ~ / ~ I Y  | O ~ ( 2 ) ) .  

But this cont rad ic t s  the existence of  the injective map  s �9 O~1 ( - 2 )  - 

f/~z ]Y- Therefore  e = 1, so the p roo f  of  step 6 (and thereby  the  p roo f  

of  t h e o r e m  7.1) is complete .  [] 
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REMARK 7.1 The main reason why we included the present  proof of 
theorem 7.1 in these notes consists primarily in the use of the first in- 
finitesimal neighbourhood of a subvariety in an ambient  variety. This 
illustrates very well the phi losophy that  using schemes with nilpo- 
tents in the s tudy of some rather  classical questions of projective 
geometry could sometimes provide natural  proofs. In section 9 we 
shall apply again this method  (of using the first infinitesimal neigh- 
bourhoods)  in connection with a problem of complete intersection. 

8 C o h o m o l o g i c a l  d i m e n s i o n  a n d  c o n n e c t i v i t y  t h e o r e m s  

DEFINITION 8.1 Let Z be an irreducible algebraic variety over k. We 
shall denote by Coh(Z) the category o f  all coherent sheaves Oz-modu- 
leso According to Hartshorne [29] we define the cohomological dimen- 
sion, cd(Z),  of  Z by the following 

cd(Z) = max{rt > 0 [ 3F E Coh(Z) such t h a t H n ( Z , F )  ~ 0}. 

A general result says that 0 < cd(Z) < d im(Z) ;  moreover, a result o f  
Serre asserts that cd(Z) = 0 if and only i f  Z is affine (see e.g. [Hall). 

The aim of this section is to prove the follow~ng special case of 
a basic result  due of Hartshorne-Lichtenbaum (see [25], or also [30]). 
This special form of the theorem will be sufficient to prove a gener- 
alization of the connectivity theorem of Fulton-Hansen (see theorem 
8.4 below). 

THEOREM 8.1 (HARTSHORNE-LICHTENBAUM) Let X be an irreducible 
projective variety o f  dimension rt >_ 1, let Y be a closed subset o f  X, 
and set U := X \ Y. Then cd(U) = rt if  and only i f Y  = Oo 

Before proceeding to the proof (which follows Kleiman [30] closely) 
we need some preparation. 

LEMMA 8.1 For every irreducible quasi-projective variety V .of dimen- 

sion n the following two conditions are equivalent: 

I. H n ( V , F )  = 0 for allF E Coh(V). 
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2. H n ( V , L )  -- 0 for all invertible sheaves  L on V. 

PROOF. Clearly (1) ~ (2). Conversely, assume that (2) holds. Since 

V is a quasi-projective variety, every F E Coh(V) is a quotient of 

direct sum of invertible sheaves. Indeed, pick an ample line bundle 

L on V. Since L is ample, F | L m is genera ted by its global sections 

for m > > 0. Since F is coherent  it follows that there is a surjection 

p O v  ~ F | L TM ~ 0 for some p > 1, and therefore  a surjection E := 

pL - m  -~ F ~ O. In particular, E is a finite direct sum of line bundles. 

In this way we get an exact sequence of the form 

O ~ G ~ E ~ F ~ O ,  

with G a coherent  sheaf  on V. This yields the cohomology sequence 

H n ( V , E )  ~ H n ( V , F )  ~ H n + I ( V , G ) .  

By (2) the first space is zero (the functor  H n commutes  with the direct 

sums), and since n + 1 > dim(V) = n the third space is also zero, 

whence the middle space is zero as well. [] 

LEMMA 8.2 Let W be a closed subvar i e t y  o f  an algebraic var ie ty  V. For 

a fixed integer n > 1 the fol lowing two condit ions are equivalent: 

1. H n ( W , F )  = 0 for  all coheren t  O w - m o d u l e s  Fo 

2. H n ( v ,  F) --- 0 for all quas i -coherent  O v - m o d u l e s  F wi th  Supp(F) 
~ W .  

PROOF. The implication (2) ~ (1) is obvious. Conversely, let F be a 

quasi-coherent Or-module  with suppor t  in W. F is the direct limit of 

all its coherent  Ov-submodules G. Since the functor  H n commutes  

with direct limits, it follows that H n ( V , F )  is the direct limit of the 

H n ( v ,  G)'s. Hence we may assume F coherent.  Now, let Z be the 

closed subscheme of V defined by the annihilator ideal of F. By hy- 

pothesis,  Zred is a closed subvariety of W, where Zred denotes the (re- 

duced) subscheme of Z defined by the nilpotent  radical I of Oz.  Since 

Z is a noetherian quasi-compact scheme, there is an integer m > 0 
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such  that  I m = 0~ Then  for  any c o h e r e n t  O z - m o d u l e  F cons ide r  the 

exact  s e q u e n c e s  

O ~  Ii+lF-~ I i F - ,  I i F / I i + l y ~ o ,  V i = O ,  1 .... , m - l ,  

where  I ~ := Oz. Therefore  we get  the  c o h o m o l o g y  s e q u e n c e s  

H n ( v ,  Ii+IF) -- H n ( v ,  IiF) ~ Hn(V ,  I iF/ I i+lY) ,  V i  = O, 1, .o.,rn - 1. 

(8.1) 

Clearly the  quo t i en t s  Ii F / I t+ t F are O zr~d-modules, and  hence  also Ow- 
modu les .  The re fo re  by  (1), H n ( v ,  I iF/ I i+lF)  = H n ( w ,  I iF/I i+IF) = 

0 for  all i = 0, 1 ..... m - 1o In particular," 

H n ( v ,  Im- IF)  = H n ( v ,  I m - I F / I m F )  = O. 

Using this, (8.1) and an obv ious  d e s c e n d i n g  induc t ion  on i we get  

H n ( V , F )  = 0, as desired.  [ ]  

PROOF OF THEOREM 8.1. A s s u m e  first  tha t  Y = 0, i.e. U = X 

is projec t ive .  We have to find a c o h e r e n t  shea f  F E Coh(U)  such  

that  Hn(U ,F)  :~ O. Choose  an a m p l e  line b u n d l e  L on U. Since U 

is projec t ive ,  H n ( U , L  -m) ~ 0 for  every  m >>  0 (for example  use  

dual i ty  on  U). 
Conversely ,  a s s u m e  Y :~ 0. In this case  we p r o c e e d  by  i nduc t i on  

on n = d im(X) .  If n = 1 then  U is an  affJne curve and  the conc lus ion  

fo l lows  f r o m  a well k n o w n  vanishing resu l t  of  Serre (see [28]). A s s u m e  

the re fo re  n _> 2. By l e m m a  8.1 we  m a y  a s s u m e  that  F is invert ible,  

and  in par t icular ,  a to rs ion  free sheaf .  

Now we n e e d  the following: 

CLAIM 8.1 In the hypotheses o f  theorem 8.1 assume n >_ 2. Then there 

is a closed irreducible subscheme Z o f  U o f  dimension n - i such that  

U \ Z is affine. Moreover, the scheme Z is quasi-projective, but  not  

projective. 

We first  p rove  claim 8.1. Blow u p  X along Y to get  the  b i ra t ional  

m o r p h i s m  f : X'  - X wi th  excep t iona l  locus  Y' = f - l ( y ) .  Then  

Y' is an  effect ive Cartier divisor  on  X'~ Since X is project ive  and  ir- 

reducible ,  X '  is also pro jec t ive  and  i r reducible ,  Choose  a p ro jec t ive  
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e m b e d d i n g  X'  ~ Fro. Since n >_ 2, b y  Bertini we can f ind an irre- 

ducible  hyperp lane  sec t ion  T of  X'o Because  T is a very  ample  Cartier  

divisor  on  X'  (T :~ Y') and  Y' is a Cartier  divisor  on  X' ,  Y'  + a T  is 

very  ample  for  a > >  0. The re fo re  X'  \ (T u Y') is an affine o p e n  

s u b s e t  of  X'.  Set Z'  := f ( T u  Y ' )  and  Z := U c ~ Z ' .  Then  Z is 

i r reducible  because  Z = f ( T )  n U and  T is i r reducible .  Moreover ,  

U \ Z = X \ Z'  ~ X' \ (T u Y'), and  in par t icu lar  U \ Z is affine. Finally, 

Z is no t  projec t ive  b e c a u s e  Z = f ( T )  \ Y and Y n f ( T )  :~ 0 (T c~ Y '  ~ 0 

b e c a u s e  T is a h y p e r p l a n e  sec t ion  on  X'  and  d im(Y ' )  = n - 1 > 0). 

Thus  the claim 8.1 is p roved .  

To conc lude  the p r o o f  of  t h e o r e m  8.1 in case n >_ 2, app ly  the 

claim 8.1 to find Z as above.  Let i : U \ Z --~ U be  the canonica l  in- 

clusion. Then  i is an affine m o r p h i s m  b e c a u s e  for  every  affine o p e n  

s u b s e t  V of  U, i - l ( V )  = Vc~ (U \ Z)  (on a s epa ra t ed  s c h e m e  the  inter- 

sec t ion  of  any two affine o p e n  s u b s e t s  is again affine!). Now, s tar t ing  

wi th  a to r s ion  free cohe ren t  s h e a f  F on  U, cons ider  the canonica l  m a p  

a : F - i . i * ( F ) ~  Since S u p p ( K e r ( a ) )  _c Z, Ker (a )  is a t o r s ion  sub-  

shea f  of  F, and  since F is to r s ion  free, Ke r ( a )  = 0~ There fo re  we  get  

the exact  s equence  

0 - F --. i . i * ( F )  - G - 0 

(where G := Coker(F  - i . i *  (F))) wh ich  yields  the c o h o m o l o g y  se- 

quence  

H n - I ( U , G )  - H n ( U , F )  -- H n ( U , i . i * ( F ) ) .  (8.2) 

Note  that  i . i *  (F) (and hence  also G) is only a quas i -coheren t  Ou- 

modu le .  

Since i is an affine m o r p h i s m  H n ( U ,  i ,  i* (F) ) ~ H n ( U  \ Z, i* (F) ), 

and  the la t ter  space  is ze ro  b e c a u s e  n > 0 and U \ Z is affine, b y  

Serre 's  theorem.  There fo re  

H n ( U , i . i * ( F ) )  = Oo (8.3) 

On the o ther  hand, Supp(G)  _c Zo Since Z is an i r reducible  quasi-  

p ro jec t ive  (but no t  project ive)  var ie ty  of  d imens ion  rr - 1, b y  the  in- 

duc t ive  hypothes i s ,  H n -  t (Z, H ) =  0 for  every coheren t  O z - m o d u l e  Ho 
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Then  by l emma  8.2 we get 

H n - I ( U , G )  = O. 

Then  (&2), (8.3) and  (8.4) yield H n ( U , F )  = O. 

(8.4) 

REMARK 8.1 T h e o r e m  8.1 can be res ta ted  by saying that  cd(U) < rt - 
1 if and only if Y ~ 0~ The above induct ive  p roof  of t heo rem 8.1 
requi red  consider ing effectively the  category of quasi -coherent  (and 

no t  only of coherent)  sheaves. 

We i l lustrate now the use  of the no t ion  of cohomological  d imen-  
s ion by proving the following usefu l  result,  which is going to play a 
crucial role in the p roo f  of the connectiviW theorem of  Fulton-Hansen: 

THEOREM 8.2 I// the hypotheses o f  theorem 8.1 assume n >_ 2 and  

cd(U) < n - 2. Then Y is connected. 

PROOF. A s s u m e  that  Y is no t  connected,  i.e. Y can be wri t ten as Y = 
Y1 u Y2, wi th  Y1 and }'2 non-empty  closed subsets  of Y such that  II1 n 
I72 = 0. Because X is projective of  d imens ion  n, by t heo rem 8.1 and  
l emma  8.1, there  is an invertible sheaf  L on X such that  H n (X, L) ~ 0. 

In the exact sequence  

H n (X,L)  Yi o H n ( X , L )  . . . .  H n ( X \  Yi, L) 

the  last space is zero by t h e o r e m  8.1 because  Yi ~ 0 for i = 1, 2. 
_ h w ( V , F )  := It follows that  h~i(X,L) > h n ( X , L )  for i = 1,2, where i 

dimk (H~v (V, F)) for every coheren t  sheaf  F on an algebraic variety V 
and  for every closed subvariety W of V. Moreover, since Y = Y~ u Y2 

and  Y1 a Y2 = 0, by Mayer-Vietoris we have Hp(X,L)  ~ H~, 1 (X, L) 
H~.2(X,L), and  hence, h~(X,L)  ~ 2 h n ( X , L ) .  

On the o ther  hand,  in the exact sequence  

H n - I ( X  \ Y ,L)  ~ H~,(X,L)  ~ H n ( X , L )  ~ H n ( x  \ Y ,L)  

the the first and  the last spaces are zero by c d ( X \  Y) _< n - 2 ,  
whence  h~ (X, L) = h n (X, L), contradic t ing the inequal iw h E. (X, L) _> 

2 h n ( X , L ) ,  because  h n ( X , L )  >- 1. [] 



SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY 301 

We shall use t h e o r e m  8.2 to prove  the  fol lowing two resu l t s  (corol o 

laries 8.1 and  8.2) due  to Gro thend ieck  (see [27, 6xpos6 XIII])o 

COROLLARY 8.1 Let X be an  irreducible algebraic var ie ty  o f  d imens ion  

n > 2 over  k, and  l e t f : X  ~ Proj(S) be a finite morph i sm,  where  S 

is a finitely genera ted  g r a d e d  k-algebra.  Let  t l  ..... tr  E S+ be homo-  

geneous  e lements  o f  positive degrees.  I f  r <_ n - 1 (resp. ," < n )  then 

f - I  (V+ (t l  ..... t r ) )  is connected  (resp. non-empty) ,  where  V+ ( t l  ..... t r )  
is the locus o f  Proj(S)  o f  equat ions  tl  = .o. = tr  = O. 

PROOF. In the s t a n d a r d  no ta t ions  of  [26], set  Y := f - l ( V + ( t l  .... , t r ) )  

and  P := Proj(S).  Since P \ V+(t l  .... , t r )  = D + ( t l )  u ... u D+( t r ) ,  

D+ (ti)  := Spec(Sti) is affine Vi = 1 ..... r ,  and  f is finite, it fol lows that  
X \ Y is the  ,anion of  the  affine o p e n  subse t s  f - l ( D + ( t i ) ) ,  i = 1 ..... r .  

There fo re  by Cech, cd (X \ Y) < r - 1 _< n - 2 (resp. cd(X \ Y) _< n - 1 

if  r _< n). The conc lus ion  fol lows in this case f r o m  t h e o r e m  8.2 (resp. 
f r o m  t h e o r e m  8.1). []  

The  above corol lary can be sl ightly refined~ First we n e e d  the  fol- 
lowing: 

DEFINITION 8.2 Let V be an algebraic  var ie ty  over  k, and  let d >_ 0 be 

a non-negat ive  integer. V is sa id  to be d -connec ted  i f  every  irreducible 

c o m p o n e n t  o f  V is o f  d imens ion  >_ d + 1 and  i f  V \ W is connec ted  for 

every  closed subvar ie ty  W o f  V o f  d imens ion  < d. 

For example,  every  i r reducib le  var ie ty  X of  d imens ion  rt _> 1 is 

(n  - 1)-connected.  An algebraic  var ie ty  X is O-connected if and  only  if 

X is c o n n e c t e d  and  every  i r reducib le  c o m p o n e n t  of X is o f  d i m e n s i o n  
> 1 .  

EXAMPLE 8.1 Let X be the c losed  algebraic subvar ie ty  o f  the  affine 

space  A 4 having two i r reducible  c o m p o n e n t s  X1 and  X2, w h e r e  X1 is 

the  p lane  of equat ions  x l  = x2 = 0 and  )(2 the plane o f  equa t ions  

x3 = x4 = 0. Then  X1 n X2 = {x}, where  x = (0 ,0 ,0 ,0 ) .  Thus  X is 

0 -connec ted .  On the  o the r  hand ,  X is no t  1-connected  because  X \  {x} 
has  two connec t ed  c o m p o n e n t s  X1 \ {x} and  X2 \ {x}. 
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DEFINITION 8.3 A sequence Zo, Z1, ..~ Zn o f  (not necessarily pairwise 

distincO irreducible components  o f  an algebraic variety  V is called 

a d-join within V i f d i m ( Z i )  >_. d + 1 for  every i = O , l , . . . , n  and  i f  

d i m ( Z j _ l  c~ Zj)  >_ d for every j = 2 ..... n .  

The fol lowing e l emen ta ry  resul t  (whose p r o o f  is lef t  as an exercise 

to the reader)  will no t  be used  in the sequel,  bu t  it explains be t te r  the  

concep t  of  d -connec tedness .  

PROPOSITION 8.1 An algebraic varie ty  X is d-connected if  and only i f  

X = Zo u Z1 u ... u Zn for some d-join Zo, Z1 .... , Zn within X~ 

COROLLARY 8.2 In the hypotheses o f  corollary 8.1 assume that  r < 

n - 1. T h e n f - l ( v + ( t l  .... , t r ) )  is (n  - r - 1)-connected. 

PROOF~ Since S is a finitely gene ra t ed  k-algebra, Proj (S) is a project ive 

s cheme  over  k, whence  X is a project ive  variety because  f is a finite 

m o r p h i s m .  Let X c ~N be an a rb i t ra ry  project ive  embedd ing  of X, 

and  let A be a general  l inear subspace  of  ~N of  d imens ion  N + r -  n + 1. 

Since d im(X)  --- n and  Y := f - l ( V + ( t l , . . . ,  tr))  is locally given by r 

equa t ions  in X, every irreducible c o m p o n e n t  Z of  Y is of  d i m e n s i o n  

> n - r .  It fol lows tha t  d i m ( Z n A )  = d im(Z)  + d i m ( A )  - N  >__ ( n - r )  + 

(N + r - n + 1) - N = 1, and  in par t icular ,  A mee t s  every i rreducible  

c o m p o n e n t  of  Y. 

Set Y' := Y n A. If A is def ined  by  l inear  equa t ions  Sr+~ . . . .  = 

Sn-1 = 0 i n  ~N t h e n X \  Y' is the  u n i o n  of  the n -  1 affine open  

subse t s  f - 1  (D+ ( t l ) )  ..... f - 1  (D+ ( tr)) ,  Ur+l ..... Un-~, where Ui := {x 

X f s i (x )  :e 0}, Vi = r + 1, ..., n - 1. It fol lows tha t  cd(X \ Y') _< n - 2, 

whence  by  t h e o r e m  8.2, Y' is connec ted .  

We saw above that  every i r reducible  c o m p o n e n t  of  Y is of  d imen-  

s ion > n - r .  Therefore  to show tha t  Y is ( n -  r -  1 ) -connected it will be 

suff icient  to check tha t  Y\ W is connec t ed  for  every closed subse t  W of  

Y of  d i m e n s i o n  < n -  r - 1. Assume  the contrary,  i.e. there is a c losed  

s u b s c h e m e  W of  Y of  d imens ion  < n - r - 1 such  tha t  Y \ W is n o t  

connec ted .  Since A is general,  d i m ( W  c~ A) = d im(W) + dim(A) - N < 

(n  - r - 1) + (N + r - n + 1) - N = 0, whence  A does  not  mee t  W. 

Moreover,  s ince A mee ts  every i r reducible  c o m p o n e n t  of  Y, the  fac t  



SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY 303 

that  Y \ W is no t  c o n n e c t e d  impl ies  tha t  Y' = Y n A = (Y \ W) n A is 

also no t  connected ,  a cont rad ic t ion .  []  

In the  sequel  we shall n e e d  the fo l lowing m o r e  general  ve r s ion  of  
corol lary  8.2: 

THEOREM 8.3 Let S be a finitely generated graded k-algebra, tl ,  ..., tr 

S§ homogeneous elements of  positive degrees, and U a Zariski open 

subset of  Proj(S) containing L := V+(tl ..... tr). Let f : X -~ U be a 

finite morphism, with X an irreducible algebraic variety of  dimension 

n overk .  ! f r  <_ n - i t h e n f - l ( L )  is ( n - r - l ) - c o n n e c t e d  

PROOF. By pass ing  to the  n o r m a l i z a t i o n  of  X we m a y  a s s u m e  that  X 

is normal .  Let Z' be  the c losure  of  X'  := f ( X )  in P := Proj(S) ,  and 

let g : Z - Z '  be  the n o r m a l i z a t i o n  of  Z' in the  field K(X) of  ra t ional  

func t ions  of  X (which m a k e s  s ense  b e c a u s e  the d o m i n a n t  m o r p h i s m  

X ~ Z' yields  the finite field ex t ens ion  K(Z')  = K(X')  - K(Z)). Then  

we get  a commuta t i ve  d i ag ram of  the  f o r m  

i X �84 o Z 

X r ~ Z  ~ 
i' 

in  wh ich  i and  i' are open  i m m e r s i o n s  (i is an o p e n  i m m e r s i o n  b e c a u s e  

X is normal) ,  and g is a finite m o r p h i s m .  Since L c U and  Z'  n 

U = X'  (X' is c losed in U b e c a u s e  f is finite), then  X'  n L = Z'  n L, 

w h e n c e  f - l ( L )  = g - l ( L ) .  T h e n  t h e o r e m  8.3 fol lows f r o m  corol lary  

8.2 app l ied  to the c o m p o s i t i o n  of  the  c losed  i m m e r s i o n  Z'  ~ P wi th  
the finite m o r p h i s m  g : Z ~ Z' .  []  

8.1 W e i g h t e d  p r o j e c t i v e  s p a c e s  

Let k[To, T1 ..... Tn] be the po lynomia l  k-algebra in n + 1 var iables  To, 

TI,.~ (with n _ 1). An ( n +  1)-uple  (eo ,e l  ..... en) e ~n+l of  pos i t ive  

in tegers  is called a system of  weights if ei >- 1, Vi = 0, 1 .... ,n.  Given 

a s y s t e m  of  weights  e = (eo, el  ..... en), grade  k[To, T1 ..... Tn] b y  the 
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condi t ions  deg(Ti)  = ei, Vi = 0, 1 .... , n .  In this way  we get  a finitely 

gene ra t ed  g raded  k-algebra (depend ing  o f  e = (eo, el .... en)), and  set 

~n(e)  = pn(eo, el .... , en)  := Proj(k[To, TI,.oo, Tn])o 

T h e n  ~n(e)  = ~n(eo, el ..... en) is a n o r m a l  project ive  variety of  di- 

m e n s i o n  n which  is called the  w e i g h t e d  pro jec t i ve  space  o f  w e i g h t s  

e = (e0 ,e l , . . . , en) .  ~n(1, 1 .... ,1) co inc ides  o f  course  wi th  the usua l  
projec t ive  space  ~n. 

As a non-trivial  example  of  w e i g h t e d  projec t ive  space, take e = 

(1 ..... 1,s) ,  wi th  s >_ 2 and  n >_ 2. T h e n  ~n(1,  1 ..... 1,s) is i somorph ic  

to the  projec t ive  cone over  the  Veronese  e m b e d d i n g  Us : ~n-1  

pNIn,s), w i t h N ( n , s ) : =  (n-sl+S) - 1 .  Indeed,  

~(1, 1,..., 1,s)  = Proj(k[To .... , Tn]), 

wi th  deg(Ti)  = 1, Vi = 0, 1 ..... n -  1, and  deg(Tn)  = s. Then  using the  

genera l  e l emen ta ry  p roper t i e s  of  Proj (see e.g. [26]), we have canonical  

i s o m o r p h i s m s  

Proj(k[To .... , Tn])  ~- Proj(k[To,..o, Tn]) (s) 

Proj (k[To, o.., Tn-1](S)[T]) ,  

with  T a variable of  degree  one. We a d o p t e d  the  s t anda rd  nota-  

t ion accord ing  to which  S (s) deno t e s  the  g r aded  k-algebra ob ta ined  

f r o m  a g r a d e d  k-algebra S by pu t t ing  S(m s) := Sins, V m  >_ O. The 

above i s o m o r p h i s m s  and  the  def ini t ion o f  the project ive cone over  

the  Veronese  e m b e d d i n g  Vs yield the  asser t ion.  

An  a l te rna te  descr ip t ion  of  the  w e i g h t e d  project ive space pn(e)  is 

the  following. ~n (e) is the geomet r i c  quo t ien t (k n + 1 \ { (0, ..., 0) } ) / (3 m, 

whe re  the  ac t ion  of  the mul t ip l icat ive  g roup  ~3m = k \ {0} on k n+l \ 

{(0 .... ,0)} is given by  A ( t o , . . . , t n )  := (Ae~ o..,3.e~tn), for  a!l 3. 6 ~3,n 

a n d  (to ..... tn )  E k n+l \ {(0,. . . ,0)}. T h e n  the  orbit  of  (to, t l  ..... tn)  E 

k n+l \ {(0 ..... 0)} ( regarded  as a poin t  of  [pn(e)) will be deno t ed  by  

[to, t l  ..... tn]o 
We re fe r  the r eade r  to.[16] or to [11] for  the basic p roper t ies  o f  

we igh ted  project ive  spaces~ 
With these  defini t ions we can  prove  the  following genera l iza t ion  

of  a connec t iv i ty  t h e o r e m  of  Fu l ton-Hansen  (see [21], or also [22]): 
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THEOREM 8.4 Let f : X ~ ~n(e)  • Dn(e) be a finite m o r p h i s m  f rom 

the d -d imens iona l  irreducible var ie ty  X to the product  o f  the we igh ted  

projective space ~n(e)  o f  we igh ts  e = (eo ,e l  .... , en)  by  itself. I f  d > 

n then f - l ( A )  is (d  - n - 1)-connected,  where  ~ is the diagonal  o f  

~n(e)  x ~n(e) .  

PROOF. We shall show that  a c o n s t r u c t i o n  u s e d  b y  Deligne (see [15], or 

also [22]) to s impl i fy  the p r o o f  of  Fu l ton-Hansen  c o n n e c t e d n e s s  the- 

o r em can easily be  genera l i zed  to we igh ted  pro jec t ive  spaces .  Having 

the s y s t e m  e = (eo, el ,  ..o, en) of  weigh ts  fLxed, cons ider  the  we igh ted  

pro jec t ive  space  

~2n+t (e ,e)  = Proj (k[To ..... Tn; Uo, ..., Un]), 

of  weigh ts  (e, e) := (eo, el ,  ..., e~, eo, el , . . . ,  e~), where  To .... , T~, Uo, ..., 

Un are 2 n  + 2 i n d e p e n d e n t  m d e t e r m i n a t e s  over  k such  that  deg(Ti)  = 

deg(Ui)  = ei for  every  i = 0, 1 ..... n .  Cons ider  the c losed  s u b s c h e m e s  

LI = V+(To ..... Tn) and  L2 = V+(Uo ..... Un) 

of  P := ~2n+l (e, e). Then  L1 NL2 = 0. Set U := P \ (El uL2)o Since 

Ti - Ui is a h o m o g e n e o u s  e l emen t  of  degree  el, it m a k e s  sense  to 

cons ide r  also the  c losed  s u b s c h e m e  H := V+(To - Uo ..... Tn - Un) 

of  P. Clearly, H c U o The two  na tura l  inc lus ions  k[To, ..., Tn] c 

k[To, ..., Tn ; Uo, ..., Un] and  k [ Uo, ..., Un] c k [ To ..... Tn; Uo ..... Un ] yield 
two ra t ional  m a p s  gi  : ~2n+l(e,  e) - ' pn (e ) ,  i = 1, 2, which  give r ise to 

the ra t ional  map  

g : ~2n+l(e ,e )  ..... pn(e )  x ~ n ( e ) .  

Then  g is def ined prec ise ly  in the  o p e n  s u b s e t  U of p2n+l(e ,  e). Al- 

ternat ively,  if we in te rpre t  pn (e )  as the  geomet r ic  quo t i en t  (k n+l \ 

{(0 ..... 0)})/~3m m e n t i o n e d  above,  then  the map  g is def ined  b y  

g([to ..... tn ;U0 ..... Un])  = ([to .... , t n ] ,  [u0 .... ,Un] ) .  

It is clear that  g / H  def ines  an i s o m o r p h i s m  H ~ A. Cons ide r  the 
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commuta t ive  d iagram 

X' e' , X 

U ~ . ~  pn(e )  • pn(e)  

T l 

where the top square is cartesian, the  vertical arrows of the bot- 
t om square  are the canonical  c losed immers ions ,  and  the b o t t o m  
hor izonta l  arrow is an i somorph i sm.  In our  s i tuat ion the variety 
X'  = X x~,~(e)• U is i rreducible of  d imens ion  d + 1 because  X 
is i rreducible and all the fibres of g (and hence  also of  g ' )  are isomor-  

phic  to Gin. 
Therefore  we can apply t h e o r e m  8.3 to the finite m o r p h i s m  f '  �9 

X' ~ U c F2n+l(e, e) and  L := H, wi th  r = n + 1 < d + 1 = d im(X' ) ,  

to deduce  that  f ' - l ( H )  is ( d - n - 1 ) - c o n n e c t e d .  On the o ther  hand,  
since f - 1  (zX) -~ f , - 1  (H) we conclude  the  p roo f  of  our  theorem.  [] 

COROLLARY 8.3 Let  f " X -- pn(e)  x pn(e)  be a proper morph i sm 

from an irreducible variety  X soch that  d i m ( f  (X)) > n.  Then f -1 (A) 

is" connected. 

PROOF. Let f = g o h be the  Stein decompos i t i on  of f ,  wi th  h : 
X --, X' a p rope r  surjective m o r p h i s m  with connec ted  fibres and g : 
X'  - pn (e )  x pn(e)  a finite morph i sm .  Then  X' is irreducible of  

d ime ns ion  equal  to the d imens ion  of  f ( X ) .  By theo rem &4 g -1  (A) 
is (dim(X) - n - 1)-connected,  whence  connected.  Since h is p rope r  
with connec t ed  fibres it follows that  f - 1  (A) = h - l ( g - l ( A ) )  is also 

connected .  [] 

REMARK 8.2 In the case e = (1, 1,..., 1) (i.e. in the case of ord inary  
project ive spaces) corollary 8.3 is j u s t  the  Ful ton-Hansen connect ivi ty 
t heo rem (see [211, or also [22]). However, the above proof  is substan-  
tially d i f ferent  f rom the proofs  of  [21] or [22]. In fact, the p re sen t  



SPECIAL CHAPTERS OF PROJECTIVE GEOMETRY 307 

proof allowed us to give this general ized version of the result  of 

Fulton-Hansen. 

At least in characteristic zero the weighted projective space ~n (e) 

appears as the quotient of ~n by the action of the finite group G = 

~e0 x/~e~ • -.. x/Je~ (where/~m is the cyclic group of all roots of order  

m of 1) via the action given by 

(2to,hl,...An) ~ [to, t1 .... , tn]  := [Aoto, h l t l  ..... Antn], 

V(Ao, A1 .... An) ~ G, and V[to, tl, . . . ,tn] E IPn~ One may ask whether  

the connectivity theorem ( theorem 8.4 or corollary 8.3) is valid for an 
arbitrary quotient [pn/G of pn by the action of a finite group G. The 

following example shows that  in general this is not  the case. 

EXAMPLE 8.2 Consider the action of the group G = ~5 of roots  of 

order 5 of 1 on p3 (char(k) ~ 5) given by 

g .  [to, t l , t2 , t3]  = [to, g t l , g2 t2 ,g3 t3 ] ,  Vg E G, V[to,  t l , t2 ,  t3] E ~3. 

Denote by P the quotient p3/G. Then G acts freely outside the four 

points [1,0,0,0] ,  [0, 1,0,0],  [0,0, 1,0] and [0,0,0, 1]. Consider the 

Fermat surface Y of equat ion Xo 5 + x~ + x~ + x~ = 0. Then Y is a 

G-invariant smooth surface on which G acts freely, and the quotient  

S := Y / G  (the Godeaux surface) is embedded  in P. Let rr : Y ~ S 

denote the canonical morphism, and let f : X := Y x Y - P x P be 

the composit ion of the inclusion S x S ~ P x P with the morph i sm 
rr x rr : Y • Y - S x S. Then f is a finite morphism, X is irreducible of 

dimension 4 and dim(P) = 3. However, as is easily checked, f - 1  (2~) 

has five connected components ,  where A is the diagonal of P • P. 

We conclude this section by indicating a few applications of the 

connectivity theo rem 8.4. 

COROLLARY 8.4 Let Y and Z be two closed irreducible subvarieties o f  

the weighted projective space Pn(e) such that dim(Y) + dim(Z) > n. 

Then Y r3 Z is (dim(Y) + dim(Z)  - n - 1)-connectedo More generally, 

let u : Y ~ pn(e)  be a finite morphism from the irreducible variety  

Y, and  let Z be an irreducible closed subvariety o f  Pn( e) such that  

dim(Y) > codime,(e) (Z) .  Then u -1 (Z) is (dim(Y) + dim(Z) - n - 1)- 

connected. 
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PROOF. Set X := Y • Z and  take  as f : X ~ ~n(e) • ~n(e) the  p r o d u c t  

o f  the na tura l  inc lus ions  of  Y and Z in ~n(e).  Then  app ly  t h e o r e m  8.4 

to get  that  f - l ( A )  - Y n Z is (d im(Y)  + d i m ( Z )  - n - 1) -connected.  

For the s e c o n d  par t  one  t akes  X := Y x Z and f := u x i : X = 

Y • Z ~ ~n(e)  x pn(e) ,  wi th  i : Z "-- ~n(e)  the na tu ra l  inclusion.  

Then  b y  t h e o r e m  8.4 f - 1  (A) ~ u -1 (Z) is (d im(Y)  + d i m ( Z )  - n - 1)- 

connec ted .  [ ]  

DEFINITION 8.4 Let f : X ~ Y be a morphism o f  algebraic schemes 

over ko The morphism f is said to be unramified (resp. unramified at  

the point x ~ X)  i f  ~ 1 Y  = 0 (resp. i f  (~x jy)  x = 0). Since by definition 
s is 2/~2, where I is the ideal shea f  o f  the closed (diagonal) immer- 

sion Axty  : X ~ X Xy X, then one sees immediately  that  saying that f 

is unramified is the same as saying that  the diagonal immersion Axl Y 

is also an open immersion. In other words, i f  f : X ~ Y is unrami- 

fled then AxIg(X) is a connected component  o f  X • X.  A morphism 

f : X - Y is said to be dtaIe i f f  is unramif ied and flat. As a trivial 
observation, i f  f : X ~ Y is an dtale morphism, with Y irreducible, and 

i f  Z is an irreducible component  o f  X, then the restriction f l Z : Z ~ Y 

is unramified. 

COROLLARY 8.5 Let f : X -- Fn(e) be a finite unramified rnorphism 
11 f rom an irreducible projective variety X such that dim(X)  > g.  Then 

f is a closed embedding. 

PROOF. A p p l y  t h e o r e m  8.4 to f x f : X • X - pu (e) x ~n (e) to d e d u c e  

tha t  X x ~ (e) X is connected .  On the o the r  hand,  since f is unramif ied ,  

Ax is a c o n n e c t e d  c o m p o n e n t  of  X • X, whence  A,y = X • X. 

The re fo re  f is injective. But an inject ive un rami f i ed  m o r p h i s m  is a 

c losed  e m b e d d i n g  (see [26, 1V 8.11.5 and  17.2.6]). [ ]  

COROLLARY 8.6 Let Y be a closed irreducible subvariety o f  ~ n ( e ) such 
n I f Y  is not normal, then the normalization morphism that  d im(Y)  > 7- 

f : Y' ~ Y mus t  be ramified. 
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COROLLARY 8.7 Let Y be a closed irreducible subvarie ty  o f  PU(e) such 
rL that  d im(Y)  > ~.  Then Y is algebraically s imply  connected, Le~ every 

finite dtale morphism u : Y'  ~ Y,  with Y' connected, is an isomor- 

phism. 

PROOF. Let u : Y' ~ Y be  a c o n n e c t e d  finite ~tale morph i sm,  and  let Z 

be  an arb i t ra ry  i r reducible  c o m p o n e n t  of  Y'. If we set  v := uJZ  : Z 

Y, t hen  the m o r p h i s m  v As finite and  unyamif ied.  By corol lary  8.5, it 

fo l lows  that  v is a c losed  embedd ing ,  i.e. 12 def ines  an i s o m o r p h i s m  

Z ~ Y. In part icular ,  Z is a c o n n e c t e d  c o m p o n e n t  of  Y', whence  

Z = Y' b e c a u s e  Y' is connec ted .  []  

The  las t  appl ica t ion  of  Fu l ton-Hansen  cormect ivi ty  t h e o r e m  is the 

beau t i fu l  t heo rem of  Zak on tangencies .  Let Y c pn be  a s m o o t h  irre- 

duc ib le  c losed  subvar ie ty  of  d i m e n s i o n  d > i o f  pno H e n c e f o r t h  (until 

the  end  of  this section) we shall a s s u m e  that  Y is non-degenerate in 

p n For every  po in t  y ~ Y let u s  d e n o t e  by  Ty the  pro jec t ive  t angen t  

space  to Y at y .  Let L be  a l inear s u b s p a c e  of  ~ n  One says  tha t  L is 

tangent  to Y at y if Ty c L. It fo l lows- tha t  L is t angent  to Y at y if 

and  on ly  if y is a s ingular  po in t  of  the  (scheme-theore t ic)  i n t e r sec t ion  

Y n L. Then  Zak's t h e o r e m  on  t angenc ies  is the following: 

THEOREM 8.5 (ZAK) In the above hypotheses, fix a linear subspace L 

o f  pn o f  dimension e, with d <_ e <_ n - 1. Then the closed subset  

{Y  ~ Y I Ty c L} has dimension <_ e - d. 

PROOF. A s s u m e  the contrary:  the re  is an i r reducible  c o m p o n e n t  

X c { y  ~ y I Ty c L} of  d i m e n s i o n  > e - do Then  we c la im that  

there  exis ts  a l inear subspace  V _q P~ of  cod i mens i on  e + 1 s u c h  that  

V n  ( Y u L )  = 0 and such  that  there  exist  two po in t s  x ~ X a n d y  e Y, 

x ~ y ,  wi th  Try(x) = Try(y)  (i.e. the  line x y  in te rsec ts  V). Indeed,  

s ince  Y is non-degenera t e  in pn, y ~ L, and in part icular ,  there  exists  

a p o i n t  y e Y \ L; if  x ~ X is an  arb i t rary  po in t  of  X then  x ~ L, 

w h e n c e  x =~ y .  Because  Tx does  no t  conta in  the  line y x ,  y x  canno t  

lie in Y. Then  packing a poin t  z ~ y x  \ Y, we m a y  take as V a general  

l inear  s u b s p a c e  of  pn of  d i m e n s i o n  n - e - 1 t h rough  the po in t  z. 
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Since d im(YxX)  > e we may apply the connectedness  theorem 8.4 

to the finite morphism f := (rrv lY) x (Try IX) : Y • X --. ~e x ~e to get 

that f - 1  (&) = y x~e X is connected.  By the choice of V, the diagonal 

&x - Y x X is strictly contained in Y xe ,  X. The connectedness  

of Y x~, X implies then that there exists a smooth  curve T and a 

morph i sm T - Y x~e X whose image meets,  but  is not  contained in 

AX. In particular (restricting T if necessary), we get a family of pairs 

{ ( y t , x t ) } t ~ T  c_ y x~r X paramet r ized  by T and a point to ~ T such 

that Yt  ~ x t  for all t ~ T \  {to}, andYt0 = Xto =: u. As t ~ to 
the secant lines y t x t  degenerate  to a tangent  line w c_ Tu to Y~ On 

the other  hand, for t , to the secant line y t x t  meets  the center  of 

project ion V, and hence w also meets  V. But w c_ Tu c L (because 

u ~ X), and L was disjoint f rom V, a contradiction. [] 

Here are two immediate  corollaries of theorem 8.5. 

COROLLARY 8.8 Under the hypotheses o f  8.5, the map 

y - G r a s s ( p n  ~d) 

defined by y ~ Ty (which is called the Gauss map), is a finite rnor- 

phisrn. 

PROOF. Take e = d in theorem 8.5. [] 

COROLLARY 8.9 Under the hypotheses o f  theorem 8.5, let X be an ar- 

bitrary hyperplane section of  Y. Then X is nonsinguIar in codirnension 

2d - rt - 1. I f  rnoreover d > n~___22 then every hyperplane section of  Y 

is irreducible and normal. 

PROOF. For the first part  take e = n - 1 in theorem 8~ If d > 

n§ it follows that every hyperplane section X of Y is nonsingular  in 2 
codimension 1, whence normal  by Serre's criterion of normali ty (see 

[48]); in particular, being connected, X is also irreducible~ [] 

The last consequence of theorem 8.5 is the follovO_ng result which 

gives a lower bound for the dimension of the dual variety of a projec- 

tive subvariety of ~ n  
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COROLLARY 8.10 Let Y* c_ ( ~ n ) ,  be the dual variety o f Y  c ~n (with 

Y smooth, irreducible and non-degenerate in ~n). Then dim(Y*) > d. 

PROOF. Consider  the incidence co r r e spondence  

P := {(y ,L)  ] Ty c L} c y x ( p n ) ,  

The first projec t ion makes  P a p n - d - i - b u n d l e  over Y, and in partic- 
ular P is smooth ,  irreducible of  d imens ion  n - 1. The dual variety 
Y* is the  image of P unde r  the second  project ion.  By t heo rem 8.5 all 
fibres of  P ~ Y* have d imens ion  < n - d - 1~ Then the conclus ion  
follows f rom the theo rem of  d i m e n s i o n  of fibres (see e.go [50, page 
60, t h e o r e m  7]). [] 

9 A p r o b l e m  o f  c o m p l e t e  i n t e r s e c t i o n  

9.1 Let X be a closed s m o o t h  irreducible subvariety of  d imens ion  
>_ 2 of the s m o o t h  irreducible algebraic varieW P. Let Y be an effective 
Cartier divisor of X. In this section, roughly  speaking, we want  to 
s tudy  the following: 

PROBLEM. Under  which condi t ions  there exists a hypersur face  H 
of  P such  that  the scheme Y coincides with the scheme-theoret ical  
in tersec t ion  X • H? 

The ma in  resul t  p roved  here  ( theorem 9.1 below) can be found  in 
[17] (see also [i3]). We shall follow these two papers  closely. We shall 
also apply the techniques  of [17] to prove geometrically the following 
weaker  fo rm of a t heo rem of Barth (see t heo rem 9.3 below): Pic(X) 

for every Closed s m o o t h  subvarie ty  X of the complex project ive 
n + 2  space pn with dim(X) >_ 2 

Coming  back to the above problem,  assume that  such  a hyper- 
surface H of P does exist. First we want  to find a (rather obvious) 
necessary  condi t ion in terms of  the canonical  exact sequence  of  nor- 
mal  bundles  

0 --. Nylx  - -  N y ]  P - .  NXlPIY -- O~ (9.1) 
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From the equali ty Y = X n H (in the  scheme-theore t ica l  sense) and  
f rom the above a s sumpt ions  it fol lows that  Y is a local comple te  in- 
tersect ion in H, hence we also have the canonical  exact sequence  of  
normal  bund les  

0 ~ NYIH ~ Nyi P ~ NHIF[Y -" O. (9.2) 

By general  e lementary  s ta tements ,  the  fact that  Y is a p rope r  inter- 
sect ion of  X with H implies that  there  are canonical  i s o m o r p h i s m s  

NYIH ~ NXIpIY and  NBIPIY -~ NYlx.  

Therefore  the exact sequence (9.2) yields a spl i t t ing of  the exact se- 
quence  (9.1). 

In o ther  words,  a necessary" condi t ion  for the triple ( Y , X , P )  of 
varieties sat isfying the hypo these s  f r o m  the beg inning  for which there 
exists a hypersur face  H of P such  that  Y = X n H (scheme-theoret i-  
cally), is the spli t t ing of the exact sequence  (9.1). 

This is why we begin this sect ion by trying to express  the spl i t t ing 
of  (9.1) in te rms of  the first inf ini tesimal  ne ighbou rhood  X (1) of X in 
P. Therefore  we are going to s t udy  a ques t ion  somewha t  similar to 
the spl i t t ing condi t ion  of the no rma l  sequence  of a s m o o t h  subvarie ty  
of a s m o o t h  variety (see l em ma  7.1). 

The dual  of  (9.1) is the following exact sequence  

0 , J / 1 J  ~ , 1/'I 2 ~ ,  I / ( J + 1 2 )  �9 0, (9.3) 

where  ff = Iv (resp. J = ~x) is the ideal  sheaf  of Y (resp. of  X) in (gp. 
Since Y c X, .1 c ~, and  the m a p s  o~ and/3  are def ined as follows: or 
is the canonical  map  induced  by the  ident i ty  O f ! (taking into account  
t h a t  _-/2 c ,J + ~/2), while/~ is the m a p  induced  by the inclusion J c I 

(taking into account  that  I J  _c !2). 

LEMMA 9.1 Under the hypotheses o f  paragraph 9.1, the exact sequence 

(9.1) splits i f  and only i f  there exists an effective Cartier divisor Y'  

on the first infinitesimal neighbourhood X(1) o f  X in P such that  

Y' c~ X = Y (scheme-theoretically). 
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REMARK 9.1 If an effective Cart ier  divisor  Y' on  X(1) as in l e m m a  9.1 

does  exist  one gets the car tes ian  d i ag ram of  na tura l  inclusions  

i n d  
Y . . . . . . .  X 

ind t lincl 

f '  ~ .  X(1) 
i n d  

PROOF. Clearly (9.1) spli ts  if  a n d  only  if (9.3) does. So, f r o m  now 

on it will be more  convenien t  to work  with  the exact  sequence  (9.3). 

Assume  first  tha t  (9.3) splits, i.e. there  exists a map  cr �9 I / J  2 ~ J / I J  

of  Oy-modu les  such that  cr o fi = id~ If ~ " I - 1/:/2 is the canonical  

surject ion,  set  u := cr o rr " I --. J / I J  and I '  := Ker(u Clearly 

j 2  _c 12 _ I '  _c 1, whence  J ' / J  2 _c O e / j 2  = Ox(1) defines a subscheme  

Y' _ X(1).  We shall prove tha t  Y' is an effective Cartier divisor on 

X(1) and  tha t  Y ' n  X = Y (scheme-theoret ical ly) .  The lat ter  p rope r ty  

is equivalent  to 

1 ' + J = I ,  

which  is a consequence  of  the def in i t ion  of 1' plus the equal i ty  cr o 

fi = id. It remains  therefore  to check tha t  Y' is a Cartier divisor on  

X(1). This is a local calculation.  Let x r ! / be an arbi t rary  po in t  and  

set R := Op,x, I := Jx and  J := Jxo Then  R is a regular  local ring, 

and  f r o m  our  hypo theses  it fol lows tha t  there exists an R-sequence  

f l  .... , f n - d , f n - d + l  such that  J = R f l  + ... + R f n - d  and I = R f l  + 
... + R f n - d  + R f n - a + l ,  with  n := d im(P)  = dim(R) and  d := d im(X) .  

Then  
n - d  

j2 E Rf i f j ,  12 J2+Jfn-d+ 2 = = l + R f n _ a +  1, and  I J  = J 2 + J f n - d + l  
i,j= l 

Set 7 i  := fi m o d  12, Vi = 1 ..... n - d + 1 and  J~i := f i  m o d  I J,  

V i = 1 .... , r t -  d. Since f t  ..... f n - a +  1 is an  R-sequence,  f l , . . . ,  f n - d +  1 is 

a basis  of  the R / I - m o d u l e  I / I  2, and  f r o m  the hypotheses ,  f l  ..... f n - a  

is a basis  of  the R / I - m o d u l e  J / I J .  

Since fi(jq) = -fi, V i  = 1 ..... n - d and cr o fi = id, o ' ( f i )  = f , ,  
V i = l  .... , n - d .  Moreover, 

n-d 
cr(- fn_d+l)  = ~" G~fi ,  with Gi e R / I .  

i=1 
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CLAIM 9A 

(with F E I). 

Clearly, F ~ Ker(cr)~ Converse ly ,  
n - d  

~i=1 Fi-f i, with  Fi E R / I .  Then  

n - d  

o = c r ( ~ )  = y .  ~ w ( 7 ~ )  = 
i=1 

L. BADESCU 

- -  - -  - -  n - d  
Ker(cr) = (R/ I )F ,  where  F := f n - d + l  - ~i=1 Gi-f i E 1/12 

let  H ~ Ker(cr) ,  wi th  H = 

n - d  n - d  

Y r,0?i + ~,~-d+l Z <07~ 
i=1 i=1 

n - d  

~.  (Fi + Fn-d+lai)0?i. 
i=1  

Since 071 ..... 0?n-a is a b a s i s  of  the  R / / - m o d u l e  J I I J  we get  Fi+Fn-d+l Gi 
= 0, Vi  = 1 ,  .~ n - d, and  c o n s e q u e n t l y  

n - d + l  n - d  

n - -  ~ FiL = ~n-~+lffn-~+l - Z G/L) -- ~n-~+lr, 
i=1 i=1 

and  c la im 9.1 is p roved .  

CLAIM 9.2 1' = 12 + RF. 

This is a direct  c o n s e q u e n c e  of  c la im 9.1 taking into accoun t  tha t  

I '  = Ker (y ) .  

CLAIM 9.3 12 + R F  = j2 + RF. 

9 
Since 12 = j z  + J f n - a + l  + R f~ -d+t  the  claim is equiva lent  to 

f i f n - a + l E J  2 + R F ,  V i = l  .... , n - d + 1 .  (9.4) 

Taking into accoun t  of  the f o r m u l a  def ining F we have F = f n - a + l  - 
n - d  Z i = l  g i f t ,  w h e r e  gi  e R such  that  G~ = gi  m u d  I. Then  

n - d  n - d  

f j F  = f j ( f n - d + l  - ~ g i f t )  = f j f n - d §  - ~.  g i A f j ,  (9.5) 
i=1 /=1 

for  all j = 1 .... , n - d + 1. In par t icular ,  

f j f n - d + l  ~ .1.2 + RF,  V j  = 1, ..., n - d. (9.6) 
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Taking j = n - d + 1 in (9.5) we get  

n - d  
f . - a + l F  = Z 2 - n-d+l Z g i f n - d + l f i ,  

i=1 

whence ,  us ing  also (9.6) we get  f2n_d+ 1 ~ j2  +RF.  Claim 9.3 is proved.  

By the  above th ree  claims it fol lows t h a t / '  = j2  + RF = 12 + RF, 

where  I '  = I x. In part icular ,  the s u b s c h e m e  Y' of  X(1 ) is locally given 
by  one  equat ion.  It r ema ins  to p rove  tha t  this equa t ion  is a non-ze ro  

divisor. Again the verif icat ion is local, so tha t  we have to prove that  
F is n o t  a zero  divisor in R/j2o This can be done  in the fol lowing 

way. Since Y' n X = Y it fol lows tha t  F m o d J  is a local equa t ion  

of  Y in X, and  in part icular ,  F m o d J  is no t  a zero  divisor in R / J .  If 
F m o d J  2 would  be a zero divisor in R / j 2 ,  t h e n  F m o d J  2 e j / j 2  ( R / J  

is a domain)  which  is no t  possible  because  we jus t  r e m a r k e d  that  

F m o d J  was no t  a zero  divisor in R / J .  

Conversely,  a s s u m e  now the exis tence  of  the effective Cart ier  di- 

visor  Y' on X(1)  such  tha t  Yf o X = Y (scheme-theoret ical ly) .  T h e n  

we have  to f ind a spli t t ing of  (9.3), This means  tha t  we have an  ideal  
1' con ta in ing  j 2  such  that  I '  + J = !, and  in part icular ,  j2  c I '  _ !. 

CLAIM 9 - 4  j 2  ~ ,./,  

Again  the verif icat ion is local. In the above nota t ions ,  I '  = j 2  + RF, 

with  F a non-ze ro  divisor modu lo  j2.  The equal i ty  I '  + J = I impl ies  

J + R F  = I. There fo re  we m a y  a s s u m e  that  F - f n - d + l  m u d  J,  i.e. 

n - d  

F = ~. g i f i +  fn -a+ lo  (9.7) 
i=1 

T h e n  proving  claim 9.4 is equivalent  to checking that  

f j f n - d + l  ~ j2  + RF, V j  = 1 .... , n - d + 1. (9.8) 

Mult iplying (9.7) by f j  we get  (9.8). 

CLAIM 9.5 The exact sequence  (9.3) splits. 
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Indeed, using claim 9.4 we may consider  the map 

/2 : 1'/~ 2 �9 J / J J  - "~/I 2 

defined by p ( f  mud 12,~a mud I J )  = f + g mud  12. We claim that  
p is an isomorphism. The surjectiviW of p comes f rom I '  + J = I. 
The verification of the injectiviW of p is local (along the same lines as 
above) and is left to the reader. The splitting o- : I /~J 2 ~ J / ~ / J  of (9.3) 
is then given by the second project ion of the direct sum composed  
with p -  1 [] 

If Y is a projective varieW we shall denote  by Pic~ (resp. by 
Pic T (Y)) the subgroup of Pic (Y) consist ing of all i somorphism classes 
of line bundles  which are algebraically (resp. numerically) equivalent 
to zero. Clearly, Pic~ ___ PicT(Y), and a theorem of Matsusaka 
asserts that  Pic T (Y)/Pic ~ (Y) is a finite group. The N6ron-Severi group 
of Y is by definition NS(Y) := Pic(Y)/Pic~ By a result  of N6ron- 
Severi, NS(Y) is a finitely generated abelian group. Moreover, we also 
set Num(Y) := Pic(Y)/Pic ~" (Y). By the definition of Num(Y) it follows 
that  Num(Y) is torsion free, whence Num(Y) is a free abetian group 
of finite rank since NS(Y) is a finitely generated abelian group by 
N6ron-Severi's result. 

LEMMA 9.2 Let X be a closed smooth irreducible subvariety of ~ n over 
C of dimension > 2. Let X(1) be the first infinitesimal neighborhood 
of  X in ~no Then the image of the composition of natural maps 

Pic(X(1)) - Pic(X) -- Num(X) 

is isomorphic to 71. 

PROOF. Consider the (logarithmic derivative) map dlog : Pic(X) 
H I ( X , f ~ )  defined in the following way. If [L] r Pic(X) is repre- 
sented by the 1-cocycle {~0} i,j of O~ with respect  to the affine cover 
{Ui} of X (with ~ij r F(Ui N Uj, O})), then dlog({~ij}) is by deft- 

nit ion the cohomology class of the 1-cocycle { ~-~.j y~j of f ~ .  Since 

dlog(Pic~ = 0 the map dlog factors to 

dlog" NS(X) = Pic(X)/Pic ~ (X) - H 1 (X, f}~)o 
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Moreover, since PicT(X)/PicO(X) is a finite subgroup  of NS(X) and 
the under ly ing  abelian group of  the C-vector space H 1 (X, f ~ )  is tor- 
s ion free, we infer that dlog(Pic'r(X)) = O, i.eo there is a unique m a p  
a "Num(X) ~ HI(x, f)~r such  that  dlog = a o fi, where  fi" Pic(X) 
Num(X)  is the canonical surject ion.  Then  it is a general  fact (see [24, 
page 163]) that  a induces  an injective m a p  a '  := ac  : Num(X) | C 
H 1 (X, f ~ ) .  Using this, to prove the  l emma  it will be sufficient to 
show that  the image of Pic(X(1)) in Hi(x, f2)c) (via the map  a com- 
pos e d  with Pic (X( 1 ) ) - Num(X))  is containe d in an one-dimensional  
complex  vector subspace of  H 1 (X, f ~ ) .  

To do this we need  the following three facts: 

1 yields by te- l .  The canonical surjective m a p  fl~nJX(1) ~ flx(1) 

s tr ict ion to X an i s o m o r p h i s m  f~#n IX ~ f~(1)EX. 

2. There is a natural  map  H 1 (X, fl~, IX) - H 1 (X, ~}) .  

3. The C-vector space H ~ (X, f)~, IX) is one dimensional .  

2 is obvious because  the m ap  in ques t ion  is induced  by the canonical  
(surjective) map  s IX - ~ ,  while 3 is j u s t  s tep 2 of the p roof  of 
t h e o r e m  7.1. To prove 1 consider  the canonical  exact sequence  

f~x(1)  ~ 0, 

and  observe that  after restr ic ted to X the  first map  becomes  zero. 
Using 1-3, the fact that  the image of  Pic(X(1)) in H Z ( X , ~ )  is 

con ta ined  in an one-dimensional  complex  vector  subspace follows 
f r o m  the injectivity of ac  and  the following commuta t ive  d iagram 

Pic(X(1)) Pic(X) 

dlog~ I 
H ~ (X(1), f~(1))  Num(X) 

t t 
HI ( X , ~ a  ) IX) Num(X) | C 

H (x, Ix) ...... H ix ,  
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Lemma 9.2 is proved.  
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[] 

THEOREM 9.1 (ELLINGSRUD-GRUSON-PESKINE-STROMME [17], [13]) Let 

X be a smooth projective complex surface embedded in pn (n > 3) as 

a complete intersection. Let Y be a smooth connected curve in X such 

that the exact sequence o f  normal bundles 

0 ~ Nyix  ~ Nyf~n ~ N x j ~  ]Y -- 0 

splits. Then there exists" a hypersurface H of  ~n such that Y = X n H 
(scheme-theoretically). 

PROOF. Since X is a comple te  in te r sec t ion  in ~n the Lefschetz the- 
o r em on hyperp lane  sect ions (see e.g. [27], or [29], or also appendLx 
A below) implies  that  the res t r ic t ion m a p  Pic(~ n) ~ Pic(X) is injec- 
tire, Picr(X) = 0, and  the class of  Ox(1)  is no t  divisible in Pic(X). In 
particular,  the canonical map  Pic(X) ~ Num(X)  is an i somorphism.  

By l e m m a  9.1 the spl i t t ing of  the above sequence  implies that  there 
is an effective Cartier divisor Y' on  X( 1 ) such  that  Y' r = Y (scheme- 
theoretically). In particular,  the class of  Ox(Y)  is in the image of  
Pic(X(1)) ~ Pic(X) ~ Num(X),  which  by l emma  9.2 is i somorphic  to 
7L It follows that  there are two non-ze ro  integers  s and t such  that  
Ox(sY)  ~ Ox(t ) .  Since Ox(1) is no t  divisible in Pic(X) this implies  

that  Ox(Y)  ~ Ox(d)  for some d > O. 
On the o ther  hand,  X being a comple t e  intersect ion in pn, X 

is project ively normal  in p n  This impl ies  that  the restr ict ion map  
H~ n, O~,~(d)) ~ H~ Ox(d))  = H~ Ox(Y))  is surjective~ In 
particular,  there exists a sect ion a e H~ n, 0~,, (d)) such that  al Y E 

H~ Ox(Y) )  is a global equat ion  of  Y. In o ther  words,  there is a hy- 
persur face  H of  degree d such  that  X n H = Y (scheme-theoretically). 

[] 

Ano the r  appl icat ion of l emma  9.2 is a weak form of a t h e o r e m  
of Barth concerning the Picard g roup  of  smal l -codimensional  s m o o t h  
subvariet ies  of  the complex  project ive space. In this applicat ion we 
shall use  the following general iza t ion of  the Kodaira vanishing theo- 

r em due to Le Potier ([34], or also [47]): 
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THEOREM 9.2 (LE POTIER VANISHING THEOREM) LetX  be a smooth  co- 

mplex projective variety o f  dimension d >_ 2, and let E be an ample 

vector bundle o f  rank r on X.  Then H i ( X ,  E* ) = 0 for every i <_ d - r .  

THEOREM 9.3 (BARTH) L e t X  be a closed smooth  subvariety  o f  the corn- 
n+2 plex projective space yn o f  dimension > - T -  (n > 4). ThenPic(X)  -~ ~-o 

REMARK 9.2 The Barth theorem on the Picard group also states that 

(under the hypotheses of theorem 9.3) Ox (1) generates Pic (X)~ 

PROOF OF THEOREM 9.3- Let J be the ideal sheaf  of X in O ~ .  Then 

the t runcated exponential sequence 

0 : /1: /2 �9 �9 
= -- Ox(i) 

yields the cohomology sequence 

H I ( X , N ~ I p , )  ~ Pic(X(1)) ~ Pic(X) - H2(X,N.~Ip,) .  

Since the normal bundle Nxllpr, of X in ~n is a quotient of T~,~ IX, 
n §  

Nxten is ample of rank = codime,  (X). The hypothesis  dim(X) >_ 2 

is equivalent to dim(X) - codimpn (X) >_ 2, whence by theorem 9.2 

the first and the last cohomolog7 groups are zero. It follows that the 

restrict ion map Pic(X(1)) -* Pic(X) is an isomorphism. 
rt+2 The hypothesis dim(X) _> "-7- also implies dim(X) > -~, whence 

by corollary 8.5, X is algebraically simply connected. In particular, 

q = d im(Hi(X,  Ox)) = 0. Indeed, otherwise Pic~ ~ 0, and since 

Pic~ is the underlying group of a complex torus, there exists a 

non-trivial line bundle L of finite order  rn >_ 2. Then L produces  a 

connected non-trivial 6tale cover X' - X, with X' = Spec(@~o 1 Li), 

contradicting the fact that X is algebraically simply connected. 
Since Pic ~ (X) = 0, by Matsusaka's theorem Pic T (X) is a finite sub- 

group of Pic(X). Again if there is a non-trivial L e PicT(X), one 

gets a connected non-trivial 6tale cover of X as above. Therefore 

PicT(X) = 0, i.e. Pic(X) ~ Num(X)~ 
At this point, using the bijectivity of the restriction maps Pic(X(1)) 

-- Pic(X) and Pic(X) - Num(X), we can conclude by applying lemma 

9.2~ [] 
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REMARK 9-3 Barth's theorem asserts that (under the hypotheses of 
theorem 9.3) Pic(X) is the (infinite) cyclic group generated by the class 
of Ox (1). It would be also interesting to prove geometrically that the 
class of Ox (1) generates Pic (X)o 

9.1 Appendix A 

In this appendLx we shall show how the following Lefschetz theorem 
for the Picard group (which was used in the proof of theorem 9.1): 

THEOREM 9.4 Let X be a smooth projective complex surface embedded 
in pn (n >_ 3) as a complete intersection. Then the natural restriction 
map a : Pic(P n) ~ Pic(X) is injective and Coker(a) is torsion free. 
In other words, a is injective and the class o f  Ox(1) is not divisible in 
Pic(X). 

can be deduced from the following special case of the topological 
Lefschetz theorem for hyperplane sections (see e.g. Milnor [36]): 

THEOREM 9.5 Let X be a smooth projective complex surface embedded 
in pn (n > 3) as a complete intersection. Then the natural maps o f  
singular integral cohomology Hi ( P n, ~ ) -- H i ( X, ~ ) are isomorphisms 

for i < 2 and injective with torsion free cokernel for i = 2. 

PROOF OF THEOREM 9.4. For a complex algebraic variety V de- 
note by O~ n (resp. by (o~n) *, resp. by 2v) the sheaf of holomorphic 
functions on V (resp. the sheaf of nowhere vanishing holomorphic 
functions on V, resp. the constant sheaf 2[ on V). Then the commu- 
tative diagram of exponential sequences 

o , ~ - o ~  n ~ P ~  ( o ~ ) *  . . . .  o 

t i t 
o - ~x  , o } ~  e ~ , .  ( O ~ , ) , _  ~ 0  

yields the following commutative diag-ram with exact cohomology se- 

quences 

H l ( ~ n , O ~ )  . .  H~(~'~,(Oe,~) *) .... H~(fpn Z) 

1 1 t 
HI(x ,O  an) HI(X,(Oa~) *) . o  H2(X, 2) x 

H2(~n an O~, ) 
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By the  GAGA resul ts  of  Serre [49], H i ( V ,  Ov)  -~ H i ( v , o ~  n) for  all 

i _> 0 and  Pic(V) = H I ( V , O ~ , )  ~ H I ( V , ( O ~ )  *) for every  complex  

project ive variety V. Moreover,  H i ( p n ,  o~,~) = 0 for  i = 1,2, and  
H i ( X ,  Ox)  = 0 because  X is a comple t e  in te rsec t ion  sur face  in pno 

There fo re  the last c o m m u t a t i v e  d i ag ram  becom es  

0 , P i c ( P  n)  ~ H 2 ( [ p n , ~ )  

0 ....... Pic(X) ~ H 2 ( X , 2 )  

~ 0  

By t h e o r e m  9.5, the m a p  fi is inject ive and  Coker(fi)  has  no torsion. 
This fact  toge ther  wi th  the  last  c o m m u t a t i v e  d iagram with  exact  rows 

imply  that  o~ is injective and  Coker(~x) has  no torsion. 

9.2 A p p e n d i x  B 

In this shor t  appendix  we recall  briefly some  basic facts  about  cyclic 

covers.  Let X be an i r reducible  pro jec t ive  variety of  d imens ion  > 1, 

and  let L ~ Pic(X) be a line b u n d l e  of  finite o rder  n > 2. In part icular ,  

there  is an i s o m o r p h i s m  

L n ~ Ox.  (9.9) 

We shall a s sume  that  char (k)  does  no t  divide n. Using this i somor-  
phism,  we can endow the O x - m o d u l e  A := eP_-ol L i wi th  a s t ruc tu re  

of  c o m m u t a t i v e  Ox-algebra in the  following way. For any  two local 

sec t ions  s of  L i and  t of  LJ we def ine  the p roduc t  s t  as follows: 

| s t  := s | t which  is a local sec t ion  of  L i+j, if i + j < n - 1, and  

, s t  is the image of  s | t (which is a sect ion of L i+j) u n d e r  the 

i s o m o r p h i s m  L i+j ~ L i+j-n d e d u c e d  f rom (9.9), if i + j _> n.  

T h e n  taking X'  := S p e c ( A )  and  f : X'  ~ X the s t ruc tu ra l  mor-  
p h i s m  of Spec(A) ,  we get  an  i r reducible  project ive variety X '  t oge the r  

wi th  a canonical  finite &tale m o r p h i s m  f : X'  ~ X of  degree  n (here 

the fact  that  the character is t ic  of  k does  not  divide the o rde r  n of L 

is essential).  By const ruct ion ,  f *  (L) -~ Ox,. 
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Then the morph i sm f is called the cyclic dtale cover of X associ- 
ated to the line bundle  L E Pic(X) of order  n.  

More explicitly, X ~ is obtained as follows. Let (~ij)i,j E Z 1 (U, O~c) 
be a 1-cocycle of O~ with respect  to a finite affine cover U = (Ui)i 
of X which represents  L E Pic(X) = H 1 (X, O~.). Since L n ~ Ox the 
1-cocycle (~j)i, j  is a 1-boundary, i.e. we can write 

rj = g i / g j ,  on Ui l~ Uj, with gi  E r(ui,  o~). 

Then define f : X' ~ X locally on Ui by taking f i  the restr ict ion to 
the open subset  

Xi := {( x ,  zi) e Ui x i z (x) = g i ( x ) }  

of the second projection of Ui x A 1. Then the morphisms  f i  patch 
together to yield the ~tale morph i sm f with the above properties.  
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