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1 I n t r o d u c t i o n  

Our aim is to i l lustrate well-known and very recent  resul ts  which  show 
how the s t ruc ture  of a group can be inf luenced by proper t ies  satisfied 
by all or '~many" of its 2-generator  subgroups .  

A class C of groups  is called S-closed if f rom H subg roup  of a 
g roup  G in C it follows that  also H is in C. 

Examples of S-closed classes are: the class f of all finite groups,  
the  class A of  all abelian groups,  the class C of  all cyclic groups,  the 

class S = P A  of  all soluble groups.  
The class J of all finitely genera ted  g roups  is no t  S-closed (see for 

ins tance  [21, Part 1, p.30]). 

*The authors are members of C.N.Ro -- G.N.S.A.G.A, Italy. This work has been 
partially supported by M.U.R.S.T. 
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Other interest ing classes we will cons ider  later on  are: the class 
~Fk (k a positive integer) of all n i lpo ten t  g roups  of class at m o s t  k, i.e. 
the g roups  G satisfying [xl  . . . .  ,xk+l ]  = 1 for any x l  . . . . .  x k + l  ~ G; 

the class LAF = Uk>_.l LAFk of all n i lpo ten t  groups;  the class Ek (k a 
posit ive integer) of all k-Engel groups ,  Le. the groups  G sat isfying 
[ x , k y ]  = 1 for any x , y  ~ G. 

If C is any S-closed class of  groups ,  we call C(2) the class of  all 
g roups  G such that  every 2-generator  subgroup  H of G is in C; this 
mea ns  that  ( x , y )  ~ C for any x , y  ~ G~ 

Obviously C is conta ined  in C(2), since C is s u p p o s e d  S-closed. 
So a natura l  ques t ion  is: is the class C(2) conta ined  in C, that  is, are 
the classes C and C(2) equal? 

This means:  is it t rue that  a g roup  G is in C whenever  every 2- 
genera tor  subgroup  of G is in C ? 

The answer depends  on the class. Obviously the equali ty holds  
for the  class _A, the class Ek (k -> 1), more  generally for every variety 
C of  g roups  defined by a word  in two letters.  But the  answer can be 
negative: for instance we have C ~ C(2), since a locally cyclic g roup  
need  no t  to be cyclic; again, .Y~2(2) ~ L7~2 since there  exist 2-Engel 
g roups  which are n i lpotent  of  class 3. 

Also for the class LM we have ~N(2) ~ LAF: for M.F. Newmann  (see 
[20]) cons t ruc ted  a 3-generator infinite p -group  G such that  ( x , y )  
is (finite and) n i lpotent  for any x,  y ~ G. Moreover M.R. Vaughan- 

Lee and J.Wiegold (see [23]) exd'ribited an infinite perfect  locally finite 
g roup  G of exponent  p > 5 such  that  the class of all ( x , y ) ,  x , y  E G, 

is b o u n d e d  by some fixed integer  t. 

Now consider  the class C_A of  all g roups  with cyclic c o m m u t a t o r  
subgroup;  therefore a group G is in C A  if and  only if G' is cyclic. 

It is easy to notice that (CA)(2)  is different  f rom CA.  For, con- 
sider the group G = ((a) x (b) x (c) • (d)) >a (x) where a 2 = b 2 = 

c 2 = d 2 = x 2 = 1, a x = b,  b x = a ,  c x = d ,  d x = c .  

The g roup  G is no t  in C A  since G' = (ab)  • ( c d )  is a four  group,  
bu t  H '  has  order  at mos t  2, for any 2-generator  subgroup  H of  G. 

If C is any S-closed class such  that  C(2) ~ C, we could try to 
de t e rmine  some interest ing class D such  that  C(2) is conta ined in D, 
i.e. a class D such that  G is in D whenever  all 2-generator subgroups  
of  G are in C. For instance, we have C(2) _c A since a locally cyclic 



GROUPS SATISFYING CONDITIONS ETC. 173 

group is abelian; also N2  (2) is con ta ined  in J q ' 3 ,  since a 2-Engel group 
is n i lpo ten t  of class < 3 (see for ins tance  [21, Part 2, p.45]). 

Another  invest igat ion one could  carry out  is the following: given 
any S-closed class C such  that  C(2) ~ C, to de te rmine  a sufficiently 
large class X such that  C(2) n X is conta ined  in C or at least in some 

in teres t ing  class D. 
For ins tance R. Baer showed  (see [11, p.722]) that  a finite group 

whose  2-generator subgroups  are superso lub le  is itself supersoluble .  
Even more  f rom a famous  resul t  due  to J. T h o m p s o n  (see [22, p.388]) 
it follows that  a finite group is soluble  whenever  all its 2-generator 

subg roups  are soluble~ 
In 1973 (see [14]) J.Co Lennox p roved  that  soluble finitely gener- 

a ted g roups  in which every 2-generator  subgroup  is polycyclic are 
polycyclic. Key results  for this are the  following: 

THEOREM 1.1 Let G be a finitely generated soluble group and let A be 
an abelian normal subgroup o f  G such that G / A is polycyclic. Assume  
that  ( a , x }  is polycyclic for any  a E A, x ~ G. Then G is polycyclico 

THEOREM 1.2 Let G be a finitely generated group and let H be a nor- 
mal  subgroup of  G such that  G / H  is cyclic. Assume that (a) (b) is 

finitely generated for any a ~ H, b E G. Then H is finitely generated. 

PROOF. There exists g E G such  that  G = H(g) .  From G finitely 
genera ted  it follows that  G = (h i  . . . . .  h r , g )  and U = ( h i  . . . . .  h r )  G 

for suitable hi  . . . .  , h r  E H. 
For any i = 1 . . . .  , r ,  the g roup  (hi) (g) is finitely generated,  t hen  

there  exist h i l , . . . ,  hid(i) ~ H such  that  (hi) (~) = (hi1 . . . . .  hid(i)). 
T h e r e f o r e H  = (his(i) I 1 < i < r ,  1 < s(i) < d(i ) )  is f imtely 

generated.  [] 

More recently J.So Wilson (see [24]) considered finitely genera ted  
res idual ly  finite groups.  Among  o ther  results  he proved: 

THEOREM 1.3 I f  G is a finitely generated residually finite group and i f  
for  some integer r each 2-generator subgroup o f  G has rank at  most  

r ,  then G has finite rank~ 
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THEOREM 1.4 I f  G is a finitely generated residually finite group and i f  
there is an integer r such that every 2-generator subgroup of  G has 
series o f  length at most," with cyclic factors, then G is polycyclic. 

THEOREM 1.5 I f  G is a finitely generated residually finite group whose 
2-generator subgroups are nilpotent o f  bounded class, then G is nilpo- 
tent. 

More generally: 

THEOREM 1.6 I f  G is a finitely generated residually finite group such 
that, for some integer k, [ x , k y ]  = 1 for a l l x , y  ~ G, then G is 
nilpotent. 

Therefore 

THEOREM 1.7 A finitely generated residually finite group in •k is" niIpo- 
tent. 

Notice that in 1.3 the un i form bound  t is necessary: E.S. Golod 
(see [10]) showed that for each integer d > 1 and each prime p there 
exist infinite d-generator  residually finite groups all of whose ( d -  1)- 
generator  subgroups are fimte p-groups.  A similar remark holds for 
the other  results. 

In 1995 Y.K. Kim and A.H. Rhemttflla (see [12]) extended the result  
1.7 to a very interesting class of groups, the class of locally graded 

groups. 
Recall that a group G is said to be locally graded if every finitely 

genera ted non-trix,ial subgroup of G has a finite non-trivial quotient. 

They showed that: 

THEOREM 1.8 A finitely generated locally graded k-Engel group is 
nilpotent. 

As we mentioned,  J. Wilson proved that a finitely generated resid- 
ually finite group G whose 2-generator subgroups are nilpotent of 
class at most  k, for some fLxed k, is nilpotent.  So a natural problem is 
to investigate if there exists a funct ion f of k such that the class of G 
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is bounded by f ( k ) ,  at least in the case G torsion-free; and possibly 
to determine this function. 

Obviously groups in Nk (2) are k-Engel groups and one of the very 
strong results due to EoI. Zel'manov (see [25, 26, 27, 28]) ensures that 
for a torsion-free k-Engel group G there e~sts  a function f ( k )  such 
that G is nilpotent of class at most f ( k ) .  

Therefore assume that G is a torsion-free nilpotent group in Nk (2) 
and consider the problem to determine an integer n(k)  such that G 

is in JV'n(k). 
Since torsion-free 2-Engel groups are in N2 and torsion-free 3- 

Engel groups belongs to N4, we have the following results: 

THEOREM 1.9 A torsion-free nilpotent group in LM2(2) is o f  class at 
most  2. 

THEOREM 1.10 A torsion-free nilpotent group in N3(2) is o f  class at 
most  4. 

Recently C. Delizia (see [6]) has sho~vTl that: 

THEOREM 1.11 A torsion-free nilpotent group in .9V4(2) is o f  class at 
most 9. 

2 Groups  wi th  cycl ic  c o m m u t a t o r  subgroup .  

Now come back to the class CA of groups with cyclic commutator 
subgroup. 

As already noticed, we have (CA)(2) & CA, that means that a 
group G in (CA)(2) need not to have cyclic commutator subgroup. 
Therefore one could ask if G; is at least abeliano 

In 1963 J.L Alperin (see [2]) answered positively the question as- 
sum_ing that the group is either finite nilpotent of odd order or torsion- 
free nflpotent. Moreover Alperin proved that a finite group in (CA) (2) 
is soluble, so supersoluble by Baer's result. 

W. Dirscherl and H. Heineken continued in 1994 the study started 
by Alperin; they considered again finite groups in (CA) (2) and proved 
(see [8]) that for such a group G the quotient G / ~  (G) is metabelian 
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and W is normal  in G for any subgroup W of G satisfying too(G) < 

W < G'r (where too(G) is the hypercent re  of G). 

Very recent ly it has been shown (see [17]) that : 

THEOREM 2.1 A finite group o f  odd order in (CA)(2)  is metabeliano 

THEOREM 2 . 2  A torsion-free group in (CA)(2)  need not to be metabe-  

llano 

THEOREM 2.3 A torsion-free group in (CA) (2) has com m ut a t o r  sub- 

group nilpotent  o f  class at  most  2. 

Therefore 2.1 shows that the hypothesis  "nilpotent" in the first 

of Alperin's results can be removed, but  the same is not  true for the 

second result, as 2.2 points out. 

To show 2.1, we need the following lemma. 

LEMMA 2.1 Let G be a finite group o f  odd order in (CA)(2) .  

1. [ a , b ]  a, [a ,b]  b are in ( [a ,b ] ) ,  for a l la ,  b ~ G. 

2o I f  G = P >~ (x), where P is a p-group, x a p ' -e lement ,  then 

[P, (x)]  is abelian. 

3o I f  G = P >~ (x)  , where  P is a p-group, x a p ' -element ,  then G 

is metabeIian. 

PROOF OF ITEM 2. It suffices to show that [ [g ,x ] ,  [ y , x ] ]  = 1 for all 

g, y ~ P. Since G is supersoluble, there is a normal subgroup N of G 

of order  p. By induction on IGI we may assume that ([P, ( x ) ] N ) / N  

is abelian. Assume by contradict ion that there are a, b ~ P such that 
[ [ a , x ] , [ b , x ] ]  ~ 1. Wege t  [ a , x ]  x = [ a , x ]  r, [b , x ]  x = [b , x ]  s where 

r -= s (rood p) and r ~ 1 (rood p). Moreover [ [ a ,x ] ,  [b ,x ] ]  ~ No 

Now, if N c_ CG(X), then 1 4 [ [ a , x ] , [ b , x ] ]  = [ [ a , x ] , [ b , x ] ]  x = 
[[a, x] ,  [b, x ] ]  rs, f rom which r 2 - 1 (rood p), a contradiction. 

If N ~ C6(x ) ,  then 1 :k [ [ a , x ] , [ b , x ] ]  t = [ [ a , x ] , [ b , x ] ]  x f rom 

which r 2 = t = r (mod p), the final contradiction. [] 

SKETCH OF THE PROOF OF THEOREM 2.1. Let G be a minimal coun- 

terexample. Then G' is a non-abelian nilpotent group, so G' is a p- 

group for some p. 
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The re fo re  we have G = P >4 X whe re  P z G' and  X is an abe l ian  

p ' -g roup .  

Using Alper in 's  resu l t  we get  G' = P '  {P, X] where  P '  is abel ian  and  

[P,X]  is non-abel ian.  So we m a y  a s s u m e  that  G = P ( x , y )  for  s o m e  

x,  y r G and  get  the  f i n n  con t r ad i c t i on  arguing in these  hypothes i s~  

[]  

To s h o w  2.2, we can cons ide r  the  fol lowing group:  

G = ( (a )  x {wl)  x ('~J2)) N ( x , y ~  w h e r e  a x = a - l w t  aY = a - l w 2 ,  I = 

[Wl ,X]  = [ w l , y ]  = [W2,x]  = [ w 2 , y ] ,  [ X , y ]  x = [ y , x ]  = I x , y ]  y.  

Then  G' is non-abel ian,  s ince G' > ( a - 2 w i ,  I x , y ] )  , b u t  G is in 

( C A ) ( 2 )  s ince ( [ g l , g 2 ] )  < ( g l , g 2 )  for  all g l , g 2  E Go 

Finally we cons ider  to rs ion- f ree  g roups  G in (CA)(2 )~  

First  o f  all we s h o w  that  i f g  ~ G, then  e i t h e r g 2  ~ Z(G)  or 

[ x , g , g ]  = 1 for  all x ~ G. 

For, let  x ~ G. F rom ( { x , g ] )  <~ ix ,  g) ,  it fol lows that  e i ther  
[ x , g , g ]  = 1 or  [ x , g ]  o = [ x , g ]  -1, so  ei ther  [ x , g , g ]  = 1 or  [ x , g  2] = 

1o Thus  we get  G = CG(g 2) U {x E G I [ x , g , g ]  = 1}~ 

Now it is no t  difficult to s h o w  that  {x ~ G t [ x , g , g ]  = 1} is a 

s u b g r o u p  of  G, and then  the resu l t  will follow. 

SKETCH OF THE PROOF OF THEOREM 2.3. Let G be a to rs ion- f ree  g r o u p  

in ( C A ) ( 2 ) .  We want  to s h o w  that  G' is n i lpotent  o f  class at m o s t  2o 

We k n o w  that  i f g  ~ G, then  e i ther  g 2 ~ Z(G) or [ x , g , g ]  = 1 for  

all x e G. 

If  [ x , g , g  ] E Z ( G) for  all x , g  r G, then  G / Z ( G) is 2-Engel and  we 

are done.  So a s s u m e  that  there  is g ~ G\Z(G)  such  that  g2 ~ Z(G)o 

We are able to show that: 

�9 ( aZ (G) )  <~ G/Z(G)  for  any  a ~ G such  that  a ~ ~ Z(G)o 

�9 G ' Z ( G ) / Z ( G )  < CG/Z(G)(N/Z(G)),  where  N = (a  E G ] a 2 

Z(G)). 

There fo re  ( G / Z ( G ) ) / ( N / Z ( G ) )  is abelian, so G ~ is con ta ined  in N, 

wh ich  yie lds  that  G ' Z ( G ) / Z ( G )  is abelian, and  the resu l t  fol lows.  []  
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3 A c o n d i t i o n  o n  in f in i t e  s u b s e t s .  

Now some different problems. 

Given any S-closed class of groups C, we can define the class C(2) * 
as follows: a group G is in C(2)* if any infinite subset X of G contains 
different elements  x and y such that  ( x , y )  ~ Co 

Obviously C(2) is contained in C(2)*, moreover  all finite groups 
are in C(2)* 

As already noticed, the class A ( 2 )  coincides with A .  In 1976 B.H. 
Neumann  (see [19]) considered the class A * ,  that is the class of all 
groups G in which every infinite subset  contains two elements which 
commute .  He proved that: 

THEOREM 3.1 A group G is in A *  i f  and only if its centre has finite 
index. 

The same result  was obtained by Faber, Laver and McKenzie inde- 
pendent ly  (see [9]). 

In 1981 J.C. Lennox and J. Wiegold (see [15]) draw their at tent ion 
on the class PC of all polycyclic groups. They showed that 

THEOREM 3.2 A finitely generated soluble group in (PC)(2)* is itself 
polycyclic. 

So the equality (PC) (2) c~ S n J = PC proved by Lennox holds even 
if (PC) (2) is substi tuted by (PC) (2) *. 

Lennox and Wiegold showed also that for a finitely generated sol- 
uble group G the following character izat ion holds: G ~ N ( 2 ) *  if and 
only if G is finite-by-nilpotent. 

In some papers (see [3, 4, 5]) C. Delizia studied groups in -%/-k(2)* 
He proved the following results: 

THEOREM 3.3 Let G be a finitely generated soluble group. Then G is 
in 5~c 2 (2) * if and only if the second centre Z2 (G) has finite index. 

THEOREM 3.4 Let G be a finitely generated residually finite group. 
Then G is in 5 2 ( 2 ) *  if and only if  the second centre Z2(G) has finite 
index, 
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THEOREM 3.5 Let G be a finitely generated residually finite group~ I f  
G is in ~r then the third centre Z3(G) need not to have finite 

index in G. 

THEOREM 3.6 Let G be a finitely generated soluble group. I f  G is in 
~r then G/ZI(G) is finite for some l depending on k and on the 

derived length of  G. 

Finitely generated soluble groups in Jrk(2)* have been studied 
also by A. Abdollahi and B. Taeri (see [1]). They showed that: 

THEOREM 3-7 Let G be a finitely generated soluble group. Then G is 
in Jrk(2)* if and only if G has a normal finite subgroup N such that 
G / N belongs to ~rk(2). 

More recently C. Delizia, A.Ho Rhemtulla and H. Smith (see [7]) have 
proved that 

THEOREM 3.8 Let G be a finitely generated locally graded group. I f  G 
belongs to Nk(2)*, then G / Z f (k) ( G ) is finite for some f ( k ) depending 
only on k~ 

Finally P. Longobardi (see [16]) has shown that: 

THEOREM 3-9 Let G be a finitely generated locally graded group. I f  G 
is in E~ , then G is finite-by -(k-EngeI), and so G is ( k-Engel)-by-finiteo 
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