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1 Introduction

Our aim is to illustrate well-known and very recent results which show
how the structure of a group can be influenced by properties satisfied
by all or “many ” of its 2-generator subgroups.

A class C of groups is called S-closed if from H subgroup of a
group G in C it follows that also H is in C.

Examples of S-closed classes are: the class F of all finite groups,
the class A of all abelian groups, the class C of all cyclic groups, the
class S=PA of all soluble groups.

The class 7 of all finitely generated groups is not S-closed (see for
instance {21, Part 1, p.30]).
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Other interesting classes we will consider later on are: the class
N (k a positive integer) of all nilpotent groups of class at most k, i.e.
the groups G satisfying [xy,...,xk+1] = 1 for any x1,...,Xx:1 € G;
the class N = [Jg»1 Ny of all nilpotent groups; the class Fy (k a
positive integer) of all k-Engel groups, i.e. the groups G satisfying
[x,¥]=1forany x,y € G.

If C is any S-closed class of groups, we call C(2) the class of all
groups G such that every 2-generator subgroup H of G is in C; this
means that (x,y) € Cforany x,y € G.

Obviously C is contained in C(2), since C is supposed S-closed.
So a natural question is: is the class C(2) contained in C, that is, are
the classes C and C(2) equal?

This means: is it true that a group G is in C whenever every 2-
generator subgroup of Gisin C ?

The answer depends on the class. Obviously the equality holds
for the class A , the class Fy (k = 1), more generally for every variety
C of groups defined by a word in two letters. But the answer can be
negative: for instance we have C = C(2), since a locally cyclic group
need not to be cyclic; again, N2(2) = N> since there exist 2-Engel
groups which are nilpotent of class 3.

Also for the class N we have N (2) +# N for M.F. Newmann (see
[20]) constructed a 3-generator infinite p-group G such that (x,y)
is (finite and) nilpotent for any x,y € G. Moreover M.R. Vaughan-
Lee and J.Wiegold (see {23]) exhibited an infinite perfect locally finite
group G of exponent p > 5 such that the class of all {(x,y), x,y € G,
is bounded by some fixed integer .

Now consider the class CA of all groups with cyclic commutator
subgroup; therefore a group G is in CA if and only if G’ is cyclic.

It is easy to notice that (CA)(2) is different from C.A. For, con-
sider the group G = ({a) x {b) x {¢) x {(d)) % {x) where a? = b? =
c?=d’=x%2=1,a"=b, b =a,c¥=d,d* =c.

The group G is not in C A since G’ = {ab) x (cd) is a four group,
but H' has order at most 2, for any 2-generator subgroup H of G.

If C is any S-closed class such that C(2) # C, we could try to
determine some interesting class D such that C(2) is contained in D,
i.e. a class D such that G is in D whenever all 2-generator subgroups
of G are in C. For instance, we have C(2) < A since a locally cyclic
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group is abelian; also N> (2) is contained in N3, since a 2-Engel group
is nilpotent of class < 3 (see for instance [21, Part 2, p.45]).

Another investigation one could carry out is the following: given
any S-closed class C such that C(2) # C, to determine a sufficiently
large class X such that C(2) n X is contained in C or at least in some
interesting class D.

For instance R. Baer showed (see {11, p.722]) that a finite group
whose 2-generator subgroups are supersoluble is itself supersoluble.
Even more from a famous result due to J. Thompson (see {22, p.388))
it follows that a finite group is soluble whenever all its 2-generator
subgroups are soluble.

In 1973 (see [14]) J.C. Lennox proved that soluble finitely gener-
ated groups in which every 2-generator subgroup is polycyclic are
polycyclic. Key results for this are the following:

THEOREM 1.1 Let G be a finitely generated soluble group and let A be
an abelian normal subgroup of G such that G/ A is polycyclic. Assume
that {(a,x) is polycyclic for any a € A, x € G. Then G is polycyclic.

THEOREM 1.2 Let G be a finitely generated group and let H be a nor-
mal subgroup of G such that G/H is cyclic. Assume that {a)® is
finitely generated for any a € H, b € G. Then H Is finitely generated.

PROOF. There exists g € G such that G = H{g). From G finitely
generated it follows that G = (hy,...,hy,g) and H = (hi,...,h)¢
for suitable hy,...,h, € H.
For any i = 1,...,7, the group (h;)'9" is finitely generated, then
there exist hiy,..., i) € H such that (hi)(g) = (hi1,..-, Rig@))-
Therefore H = (hjg;) |11 £ 1 < 7,1 < 5(i) < d(i)) is finitely
generated. ' O

More recently J.S. Wilson (see [24]) considered finitely generated
residually finite groups. Among other results he proved:

THEOREM 1.3 If G is a finitely generated residually finite group and if
for some integer v each 2-generator subgroup of G has rank at most
r, then G has finite rank.
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THEOREM 1.4 If G is a finitely generated residually finite group and if
there is an integer v such that every 2-generator subgroup of G has
series of length at most v with cyclic factors, then G is polycyclic.

THEOREM 1.5 If G is a finitely generated residually finite group whose
2-generator subgroups are nilpotent of bounded class, then G is nilpo-
tent.

More generally:

THEOREM 1.6 If G is a finitely generated residually finite group such
that, for some integer k, [x, v] = 1 forall x,y € G, then G is
nilpotent.

Therefore

THEOREM 1.7 A finitely generated residually finite group in Ey, is nilpo-
tent.

Notice that in 1.3 the uniform bound ¢ is necessary: E.S. Golod
(see [10]) showed that for each integer d > 1 and each prime p there
exist infinite d-generator residually finite groups all of whose (d —1)-
generator subgroups are finite p-groups. A similar remark holds for
the other results.

In 1995 Y.K. Kim and A.H. Rhemtulla (see [12]) extended the result
1.7 to a very interesting class of groups, the class of locally graded
groups.

Recall that a group G is said to be locally graded if every finitely
generated non-trivial subgroup of G has a finite non-trivial quotient.

They showed that:

THEOREM 1.8 A finitely generated locally graded k-Engel group is
nilpotent.

As we mentioned, J. Wilson proved that a finitely generated resid-
ually finite group G whose 2-generator subgroups are nilpotent of
class at most k, for some fixed k, is nilpotent. So a natural problem is
to investigate if there exists a function f of k such that the class of G
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is bounded by f(k), at least in the case G torsion-free; and possibly
to determine this function.

Obviously groups in N (2) are k-Engel groups and one of the very
strong results due to EI. Zel'manov (see [25, 26, 27, 28]) ensures that
for a torsion-free k-Engel group G there exists a function f (k) such
that G is nilpotent of class at most f{(k).

Therefore assume that G is a torsion-free nilpotent group in N (2)
and consider the problem to determine an integer n(k) such that G
is in Ny-

Since torsion-free 2-Engel groups are in /N, and torsion-free 3-
Engel groups belongs to N4, we have the following results:

THEOREM 1.9 A torsion-free nilpotent group in N»(2) is of class at
most 2.

THEOREM 1.10 A torsion-free nilpotent group in !N3(2) is of class at
most 4.

Recently C. Delizia {(see [6]) has shown that:

THEOREM 1.11 A torsion-free nilpotent group in Ny(2) is of class at
most 9.

2 Groups with cyclic commutator subgroup.

Now come back to the class CA of groups with cyclic commutator
subgroup.

As already noticed, we have (CA)(2) # C.A, that means that a
group G in (CA)(2) need not to have cyclic commutator subgroup.
Therefore one could ask if G’ is at least abelian.

In 1963 J.L. Alperin (see [2]) answered positively the question as-
suming that the group is either finite nilpotent of odd order or torsion-
free nilpotent. Moreover Alperin proved that a finite group in (CA4)(2)
is soluble, so supersoluble by Baer’s result.

W. Dirscherl and H. Heineken continued in 1994 the study started
by Alperin; they considered again finite groupsin (C.4)(2) and proved
(see [8]) that for such a group G the quotient G/ (G) is metabelian
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and W is normal in G for any subgroup W of G satisfying . (G) <
W < G'C (G) (where T (G) is the hypercentre of G).
Very recently it has been shown (see [17]) that :

THEOREM 2.1 A finite group of odd order in (CA)(2) is metabelian.

THEOREM 2.2 A torsion-free group in (C.A)(2) need not to be metabe-
lian.

THEOREM 2.3 A torsion-free group in (C.A)(2) has commutator sub-
group nilpotent of class at most 2.

Therefore 2.1 shows that the hypothesis "nilpotent” in the first
of Alperin’s results can be removed, but the same is not true for the
second result, as 2.2 points out.

To show 2.1, we need the following lemma.

LEMMA 2.1 Let G be a finite group of odd order in (CA)(2).
1. [a,b]?, [a,b}? are in {[a,b]), foralla,b € G.

2. If G =P x(x), where P is a p-group, x a p'-element, then
[P, {x)] is abelian.

3. If G=Px{x),whereP isa p-group, x a p’ -element, then G
is metabelian.

PrROOF OF ITEM 2. It suffices to show that [[g,x],[y,x]] = 1 for all
g,v € P. Since G is supersoluble, there is a normal subgroup N of &
of order p. By induction on |G| we may assume that ([P, {x}]N)/N
is abelian. Assume by contradiction that there are a, b € P such that
[[a,x],Ib,x]] + 1. We get [a,x]* = [a,x]", [b,x]* = [b,x]® where
r =5 (modp) andr #£ 1 (mod p). Moreover [[a,x],[b,x]] € N.

Now, if N € Cg(x), then 1 # [[a,x],[b,x]] = [la,x],[b,x]1* =
[[a,x],[b,x]1"S, from which % = 1 (mod p), a contradiction.

IfN ¢ Cglx), then 1 # [[a,x],[b,x]1t = [[a,x],[b,x]]* from
which 2 = t = ¥ (mod p), the final contradiction. i

SKETCH OF THE PROOF OF THEOREM 2.1. Let G be a minimal coun-
terexample. Then G’ is a non-abelian nilpotent group, so G’ is a p-
group for some p.
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Therefore we have G = P x X where P > G" and X is an abelian
p’-group.

Using Alperin’s result we get G’ = P’[P, X] where P’ is abelian and
[P, X] is non-abelian. So we may assume that G = P(x,y) for some
x,y € G and get the final contradiction arguing in these hypothesis.

O

To show 2.2, we can consider the following group:
G = ({a) x{wy) x{w2)) x{x,y)wherea* =alwya¥ =a lw;, 1=
fwi,x] = [wy, y] = (w2, x] = [we, ¥], [x, ¥ = [y, x] =[x, ¥]7.
Then G’ is non-abelian, since G’ = (a~%wy,[x,v1) , but G is in
(CA)(2) since {[g1,92]) < {g1,92) for all g1, 92 € G.

Finally we consider torsion-free groups G in (CA)(2).

First of all we show that if g € G, then either g° € Z(G) or
{x,g9,9] =1forall x € G.

For, let x € G. From {([x,g]) < {x,g), it follows that either
[x,9,9] =1or[x,gl9 =[x,g]7}, soeither [x,g,9] =1or [x,9%] =
1. Thuswe get G = Ce(g®) U {x € G | [x,g,9] = 1}.

Now it is not difficult to show that {x € G | [x,g,9] = 1} is a
subgroup of G, and then the result will follow.

SKETCH OF THE PROOF OF THEOREM 2.3. Let G be a torsion-free group
in (C.A)(2). We want to show that G’ is nilpotent of class at most 2.
We know that if g € G, then either g2 € Z(G) or [x,g,9] = 1 for
al x e G.
If({x,g9,9] € Z(G) forall x, g € G, then G/ Z(G) is 2-Engel and we
are done. So assume that there is g € G\Z(G) such that g> € Z(G).
We are able to show that:

e {(aZ(G)) «G/Z(G) for any a € G such that a? ¢ Z(G).

e G'Z(G)/Z(G) =< Cgizic)(N/Z(G)), where N = (a € G | a’ ¢
Z(G)).

Therefore (G/Z(G))/(N/Z{(G)) is abelian, so G’ is contained in N,
which yields that G’ Z(G)/Z(G) is abelian, and the result follows.
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3 A condition on infinite subsets.

Now some different problems.

Given any S-closed class of groups C, we can define the class C(2)*
as follows: a group G is in C(2)* if any infinite subset X of G contains
different elements x and y such that (x,y) € C.

Obviously C(2) is contained in C(2)*, moreover all finite groups
are in C(2)*.

As already noticed, the class A (2) coincides with 4. In 1976 B.H.
Neumann (see [19]) considered the class AA*, that is the class of all
groups G in which every infinite subset contains two elements which
commute. He proved that:

THEOREM 3.1 A group G is in A* if and only if its centre has finite
index.

The same result was obtained by Faber, Laver and McKenzie inde-
pendently (see {9]).

In 1981 ]J.C. Lennox and J. Wiegold (see [15]) draw their attention
on the class PC of all polycyclic groups. They showed that

THEOREM 3.2 A finitely generated soluble group in (PC)(2)* is itself
polycyclic.

So the equality (PC)(2)nSn J = PC proved by Lennox holds even
if (PC)(2) is substituted by (PC)(2)*.

Lennox and Wiegold showed also that for a finitely generated sol-
uble group G the following characterization holds: G € N (2)* if and
only if G is finite-by-nilpotent.

In some papers (see [3, 4, 5]) C. Delizia studied groups in N (2)*
He proved the following results:

THEOREM 3.3 Let G be a finitely generated soluble group. Then G is
in N>(2)* if and only if the second centre Z»(G) has finite index.

THEOREM 3.4 Let G be a finitely generated residually finite group.
Then G isin N>(2)* if and only if the second centre Z>{(G) has finite
index.
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THEOREM 3.5 Let G be a finitely generated residually finite group. If
G is in N3(2)*, then the third centre Z3(G) need not to have finite
index in G.

THEOREM 3.6 Let G be a finitely generated soluble group. If G is in
Ni(2)*, then G/Z|(G) is finite for some | depending on k and on the
derived length of G.

Finitely generated soluble groups in Ny (2)* have been studied
also by A. Abdollahi and B. Taeri (see [1]). They showed that:

THEOREM 3.7 Let G be a finitely generated soluble group. Then G is
in N¢(2)* if and only if G has a normal finite subgroup N such that
G/N belongs to Ni(2).

More recently C. Delizia, A.H. Rhemtulla and H. Smith (see [7]) have
proved that

THEOREM 3.8 Let G be a finitely generated locally graded group. If G
belongs to Ni(2)*, then G/ Z s (G) is finite for some f (k) depending
only onk.

Finally P. Longobardi (see [16]) has shown that:

THEOREM 3.9 Let G be a finitely generated locally graded group. If G
isin Ef, then G Is finite-by -(k-Engel), and so G is ( k-Engel)-by-finite.
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