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ABSTRACT. We recover unknown source terms in nonlinear
hyperbolic differential equations and in nonlinear parabolic
integro-differential equations in one space variable under the
assumption of knowing a first integral (in the hyperbolic case)
or the value of the solution at a point inside the domain (in the
parabolic case). For this class of problems we prove existence
results in classes of smooth solutions. Moreover, for linear
hyperbolic and parabolic differential equations in one space
variable we recover some characteristic parameters.

1 Introduction

This paper has a twofold character: on one hand, it is intended to be
introductory to people working in PDE's, while, on the other hand,
it develops some ideas for ODE’s [11] related to recovering a central
force field accounting for the motion of a given material point along
a known trajectory.

The paper is divided into three distinct parts dealing with hyperbolic
and parabolic identification problems.



148 ALFREDO LORENZI

The first part deals with nonlinear first- and second-order hyperbolic
equations in one space variable, when the right-hand side f is un-
known and depends, in a semilinear fashion, on the unknown u. The
additional information necessary to determine f consists of a sort
of “first integral” involving u only. In other words, the solution u is
required to satisfy an additional zeroth- or first-order equation. In
particular, when the equation dealt with is of the second-order and
u denotes the displacement from a reference position, the first-order
differential equation stands for a prescribed mode of vibrating of the
string under consideration. Consequently, we are required to recover
a force field f in order that the string may vibrate as prescribed in
advance.

On the other part, when a first-order hyperbolic equation is dealt
with and a zeroth-order additional information is available, this is
equivalent to assuming that the function u is itself known and we
want to recover an unknown right-hand side f depending on three
independent variables (¢, x, ).

The second part of the paper is concerned with the determination
of a right-hand side f in a guasilinear parabolic integro-differential
equation in one space variable.

The third part is devoted to recovering the (constant) propagation
velocity and the conductivity in the model one-dimensional wave- and
heat- equations.

Finally, we have collected in the bibliography a list of reference books
on Inverse Problems that can be useful for people who need to be
acquainted with such fascinating problems.

2 The first hyperbolic identification problem
We consider here the first-order semilinear differential problem

Dtu(t)x) "DX,LL(t:x) = f(t)xsu(t!X))!
(t,x) € (0, T) x (0,1), (2.1)

(0, x) = up(x), x €i0,1], (2.2)
u(t,l) = g(t), te[0,T]. (2.3)
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As is well known, problem (2.1)-(2.3) admits a unique solution when
up € CH([0,11), g € CH[0,T1), g(0) = uo(0), f,D+f, Duf € C([0,T]
x[0, 11 xR)yand D, f € Cp ([0, T] x [0,1] xR), Cp([0,T1 x [0,1] XR)
denoting the Banach space of all functions that are continuous and
bounded on [0, T] x [0, 1] x R.

Suppose now that f itself is unknown. To recover f we assume to
know a first integral of equation (1.1)

h(t,x,u(t,x)) =0, (t,x) € (0,T) x (0,D), (2.4)

where h € C2([0,T] % [0,1] xR).
Of course, for the solution u to (2.1)~(2.4) to exist the following con-
ditions must be fulfilled:

h(0,x,up(x)) =0, xel[0,1], h(tlLgt)=0, tel0,T] (2.5

Differentiating both sides in (2.4) with respect to t and x, we find the
equations

Dih(t,x,u(t,x)) + Dyh(t, x,u(t, x))Dyult,x) =0,
(t,x) € (0, T) x (0,1), (2.6)

Dyh(t,x,u(t,x)) + Dyh(t,x,u(t, x))Dcult,x) = 0,
(t,x) (0, T)y x (0,I). (2.7)

Subtracting member by member (2.6) and (2.7) and using (2.1), we
find that f must satisfy the equation
Dih(t,x,u(t,x)) - Dih(t,x,u(t,x)) + Dyh(t, x,u(t,x))
- fltx,u(t,x)) =0, (t,x) € (0, T) x(0,1). (2.8)
Assume now
iDyh(t,x, 1) =z m >0, (t,x,u) € [0, T] x{0,l1xR. (2.9

Then a solution to (2.8) can be explicitly computed in terms of the
data by

Dih(t,x,u) — Dyehit, x, 1) . }
Duh(t,x,u) L fo(t’-\-yl{')i
{(t,x,u) € [0, TIx[0,I] xR. (2.10)

flt,x,u) =
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Of course f belongs to CH([0,T] x [0,1] x R), but it is not unique,
since all the functions
i, x,u) = folt,x,w)@(hit,x,u)),
(t,x,n) [0, TIx[0, 11 xR. (2.11)

with ¢ € C(R), ¢(0) = 1, solve our identification problem (2.1)-(2.4).
Moreover, in order to have Dy f € Cp ([0, T]1 x [0,1] x R) we need the
assumption

Dyh(DyDih ~ DyDyxh) — D2h(D¢h ~ Dxh) € Cp([0,T] x [0,1] XR).
(2.12)

REMARK 2.1 If we add to condition (2.9} the natural requirements
hit,x,~—) <0, hit,x,+0) >0, (t,x)e[0,T]x[0,1], (2.13)

it follows that giving the first integral (2.4) is equivalent to prescribing
the solution u in an implicit form.

We could reformulate our identification problem by prescribing u
and requiring to recover f from equation (2.1). However, in this case
we could uniquely determine only the composite function (f,x) —
S, x,u(t, x)) and not f as a function of three independent variables.

Conversely, let 1 solve problem (2.1)-(2.3) with f being defined by
(2.10), where h € C1([0, T] x [0,1] x R) is a given function satisfying
(2.5), (2.9). Let us introduce the function

v(t,x) = h(t,x,u(t,x)), [0, T]1x[0,1]. (2.14)
It is easy to check that v satisfies the first-order equation
Div(t,x) - Dyv(t,x) =0, (t,x) € (0,T) x(0,1). (2.15)

Moreover, from (2.5) we deduce that v satisfies the homogeneous
conditions

v(0,x) =0, x € [0,1], v(t,l) =0, t<[0,T]. (2.16)



IDENTIFYING UNKNOWN TERMS ETC. 151

Since all the solutions to (2.15) are of the form
vit,x) =@+ x), te[0,T], x €[0,1], (2.17)
with @ € CI([0, T + 1]), we conclude that
vit,x) =0, tel0,T], x10,1]. (2.18)

Consequently, u satisfies condition (2.4).

3 The second hyperbolic identification problem

Letus consider the second-order semilinear initial and boundary value
problem

D?w(t,x) - D2w(t,x) = f(t,x,Dew(t, x) + Dyw(t,x)),

(t,x) € (0, T) x (0, 1), (3.1)
w(0,x) = wo(x), Diw (0, x) = wy(x), x €[0,1], (3.2)
w(t,0) = go(t), Drw(t,l) +Dxw(t,l) =g1(t), t€[0,T], (3.3)

where function f € C([0, T] x [0,1] xR) has to be determined explic-
itly from (wq, w1, go, g1) and the additional information

h(t,x,Diw(t,x) + Dyw(t,x)) =0, (t,x) e (0,T)x(0,1). (3.4
We make the following assumptions:
wg € C3([0,1]), wy e CY([0,11), go € C*([0,T)),
g1 €CH[0,T]), heC*([0,T]IxI0,1] xR),
IDyh(t,x,u)l=zm >0, (t,x,u)e[0,T]x[0,1] xR, (3.6)

wo(0) = go(0), wi(0) = gy(0), wi(l) +wy(0) = g1(0),
h(t,L,g1(t)) =0, te[0,T].

(3.5)

(3.7)

It is immediate to observe that the function

w(t,x) = Dyw(t,x) + Dyw(t, x), (t,x) € (0, T) x (0,1}, (3.8)
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satisfies equations (2.1)~(2.4) with

ug(x) = wi(x) +wy(x), xe([0,1], gt)=g1(t), t€[0,T]
(3.9)

Then an admissible f is given by

_ Dih(t,x,u) ~ Dxh(t,x,u)
flt,x,u) = DohiE *. ) = folt,x,u),

(t,x,u) € [0, T] x[0,1] xR. (3.10)

Of course, f is not unique, as we have already noted in section 2.

Once we have determined the pair (u, f), we observe that our original

unknown w must satisfy the first-order differential problem
Diw(t, x) + Dxw(t,x) = u(t,x), (t,x) € (0,T) x(0,), (3.11)
w(0, x) = wo(x), te[0,1], (3.12)
w(t,0) = go(t), te[0,T]. (3.13)

Consequently, using the method of characteristics, we obtain the fol-
lowing representation for w:

t
wo(x*t)+J u{s,x~-t+s)ds, O0=st=<x=l,
wi(t,x) = 2
go(t~x)+J0 u(t-x+y,y)dy, 0sx=st=<x+T.

(3.14)

Our problem is now fully solved.

4 The third hyperbolic identification problem

Let us consider the second-order quasilinear initial and boundary
value problem

Diu(t,x) — a(t,x,u(t,x), Dyu(t,x), Dxu(t,x))D3ult,x)
= f(t,x,ult,x),Deult,x), Dyu(t,x)), (£,x)€(0,T)xR, (4.1)

u(0,x) = uglx), Diu(0,x) = u1(x), x €R, (4.2)
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where function f € C([0,T] x R?) has to be determined explicitly
from {(a, 1o, 11) and the additional information

ht,x,u(t,x),Diu(t,x),Dyu(t,x)) =0, (t,x)e (0,T)xR. (4.3)

We make the following assumptions:

ae€ C3([0,TIxRY), alt,x,u,p,q)=u>0,
(t,x,u,p,q) € [0,T] xRY, (4.4

up € C3(R), u; € C3(R), heC?([0,T]xRY), 4.5)
h(0,x,uo(x),u1(x), uy(x)) =0, x €R, {4.6)
IDuh(t,x,u,p, @)l =m>0, (t,x,u,p,q €[0,TIxRYL (4.7

Differentiating with respect to t and x both sides in (4.3) and omitting
variables, we easily deduce the equations

Dith + (Dyh)Diu + (Dph)Diu + (Dgh)DeDxu = 0, in (0, T) X R,
(4.8)

Dyh + (Dyh)Dyu + (Dpyh)DeDxu + (Dgh)D2u =0, in (0,T) XR.
(4.9)

Multiply then equations (4.8) and (4.9) by Dph and D, h, respectively,
and subtract member by member. We find the equation

+ (Dph)?D?u — (D h)?D2u = 0, in (0,T) xR. (4.10)

Assume now that h is not a general function, but satisfies the first-
order equation

[Dgh(t,x,u,p,q)1* = alt,x,u,p,q)[Dph(t,x,u,p,q) 1%,
(t,x,u,p,q) € (0,T) xR*,  (4.11)

as well as the condition

IDph(t,x,u,p,q)l =2m >0, (t,x,u,p,q) €(0,T) xR (412)
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Then from (4.1) and (4.11) we deduce that f satisfies, in (0, T) x R4,
the equation

— (Dgh)(Dyh)Dxu + (Dph)? f = 0. (4.13)

As a consequence, by virtue of (4.12) an admissible function f is
given, in (0, T) x R*, by
f = (Dph)”z

- {~(Dph)Dth + (D4h)Dxh — p(Dph)(Dyh) + q(Dzh) (Dyh)}.
(4.14)

Note that, by virtue of assumptions (4.5), (4.16), (4.17) function f
belongs to C1([0, T];R*).

Now we should show that any solution to (4.1)~(4.3) with f being
defined by (4.14) necessarily satisfies (4.3). Unfortunately, we cannot
deal with general functions a. We will limit ourselves to considering
functions a with separated variables p and g, i.e. functions of the
form

alt,x,u,p,q) = [bi(t,x,u,p)1?[b2(t, x,u,q)1?,
(t,x,u,p,q) € [0, TI xR?* (4.15)

where b; and b» enjoy the properties
br e CH[0, TIxR3), (t,x,u,z) €[0,TIxR3 k=1,2, (4.16)
by(t,x,u,z) = u >0, (t,x,u,z) €[0,TIxR3, k=1,2. (4.17)

Moreover, for the sake of simplicity we will limit ourselves to dealing
with functions h satisfying the equations

Dph(t,x,u,p,q) = bi(t,x,u, p)b2(t, x,u,q)Dgh(t,x,u,p,q),
(t,x,u,p,q) € (0,T) xR* (4.18)

R{0, x,uo(x), u1(x), uy(x)) =0, x €R. (4.19)
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REMARK 4.1 The procedure described allows to determine an explicit
expression for f in a very simple way, but, of course, it does not guar-
antee that our identification problem is solvable. To be sure that our
treatment is reasonable we need to show that also the “converse part”
works as well, at least in some specific cases.

REMARK 4.2 If we solved first the implicit problem (4.3) under the
basic condition (4.12) guaranteeing that equation (4.3) can be set in
anormal form with respect to Dyu and under the only initial condition

1 (0, x) = ug{x), x &R, (4.20)

we could drop out equation (4.19). However, the expression of f could
not be determined explicitly in terms of the data, but only through the
formula f = thu — aD2%u, u being the solution to problem (4.3),
(4.20).

We note that under this point of view the type of equation (4.1) would
play no role. So we could replace operator f = D?u ~ aDZu by
any nonlinear second-ovder differential operator N(t, x, 1w, Diyu, Dxu,
thu, D:Dyxu, D2u) and recover f by simply computing such an oper-
ator at w. Yet, observe that, in general, w could not be derived in a
closed form in terms of the data.

We conclude this remark by observing that in several applications we
need an explicit expression for f, so our previous procedure seems to
be appropriate for hyperbolic equations, whenever we are ready to
accept some restriction on the form of the first integral h.

To determine the form of a general solution to the first-order equation
(4.18) observe first that the family of functions

p
hit,x,u,p,q,o0) = ch ba(t,x,u,&)d&
uy(x)
dq (4.21)
+ cxf [bi(t,x,u,m ] dn - p(e0),
1y {x)
depending on the real parameter « and the arbitrary function p : R —
R, defines [22] a complete integral of equation (4.19). We want now
to eliminate « from (4.21) and the equation Dyh(t, x,u,p,q, «) =0,



156 ALFREDO LORENZI
e,

q

F bz(t,x,u,E)d§+fl

uy(x) ug

X)[b1(t,x,u, M1 tdn - p'(a) = 0.
(4.22)

For this purpose assume that p’ is invertible and its inverse function
¢ belongs to C1(R;R). Then equation (4.22) yields

r q
=y U bo(t,x,u, &) dE +f , [bl(t,x,u,‘é)]“ldn) (4.23)
Uy (x) )

Ty (x

Hence, function & we look for is given by

P
hit,x,u,p,q) :C(Ju o ba(t,x,u,&)dg
1 O

q (4.24)
H bt m? dn),
uglx)
where
C(r) =ry(r) - ply(r)), r €R. (4.25)
Observe that h satisfies condition (4.19) if and only if
c0) =0. (4.26)

As a consequence, f admits the following representation (cf. (4.14))

ft,x,u,p,q) = [Dyh(t,x,u,p,a)1 2Dgh(t,x,u,p,q)
. {-b;(t,x,u,p)bg(t,x,u,p,q)Dth(t,x,u,p,q)
+Dyh(t,x,u, p,q) + [-pb1(t,x,u, p)b2(t, x,u,q) + q]
-Duh(t,x,u,p,q)}
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= [by(t,x,u, p)ba(t,x,u,q)] 72

14
. U [—bi(t,x,u,p)ba(t,x,u,q)Deba(t,x,u, &)

uy(x)

a
+ Dybo(t, x,u,E)]1dE +J )

Uy
cbolt, x,u,q)Deb1(t,x,u,n) — Dxbi(t,x,u,n)]dn

r
<[=p +gbi(t,x,u,p)b2(t, x,u,q)] f Dby (t,x,u,&)dE

uy(x)

q
) [by(t,x,u, ]2

[by(t,x,u, )1 2[b1(t,x,u, p)
(x)

+[p - qbl(t,x,u,v)bz(t,x,u,q)]J

Ug(x)

-Dyby(t,x,u,n)dn - u’l () ba(t, x,u, 11 (x))
- uf)'(x)[bl(t,x,u,u&(x))]'l}.

(4.27)

Conversely, assume that w is the solution to the direct problem (4.1)-
(4.3) with f being defined by (4.27).
It is an easy task to check (cf. (4.27)) that the function

v(t,x) = hit,x,u(t,x),Diult,x), Dxu(t,x)), (&,x)€(0,T)xR.
(4.28)
solves the equations
Dev(t,x) — by (t,x,u(t,x), Dyult, x))ba(t, x, u(t, x), Dxu(t, x))
Dyv(t,x) =0, (t,x) € (0, T) XR, (4.29)
v(0,x) =0, x € R. 4.30)

We are now in a position to prove the following “converse” result stat-
ing that the identification problem (4.1)-(4.3) can be solved provided
the direct problem (4.1), (4.2) with f defined by (4.27) is solvable in a
suitable functional space. In other words, the identification problem
is solvable if a specific associated direct problem is.

THEOREM 4.1 Let problem (4.1), (4.2) with a and f defined by (4.15)
and (4.27), respectively, admit a unique solutionu € C'([0, T];L*(R))
NC([0, T1: HY(R)) such that the function

(t,x) — Dylbi(t, x,u(t,x), Deu(t,x))bo(t, x,ult, x), Deult, x))]
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is bounded on [0, T] X R. Then u satisfies also equation (4.3).

PROOF. Multiply both sides in (4.28) by 2v{t, x) and integrate with
respect to x over R. We easily find the equations

0

i

D; JR v(t,x)?dx - L bs(t,x)D[v(t, x)?1dx

i

Dy Lv(t,x)zdx + JRDxbg(t,x)v(t,x)de, te[0,T],
(4.31)
where we have set
b3(t,x) = by (t, x,u(t,x), Diult,x))b2(t, x,u(t,x), Dxult, x)).

From our assumption on b3 and (4.31), (4.29) we easily derive the
differential inequality and the initial condition

DtJRv(t,x)zdx < MLv(t,x)2 dx, te[0,T], (4.32)

J (0, x)2 dx = 0. (4.33)
R
Hence, we easily derive the relations

IRv(t,x)zdx =0, te[0,T] < vit,x) =0, (t,x) € [0,T] x [0,1].
(4.34)

As a consequence, u satisfies equation (4.3). O

5 The first parabolic identification problem

In this section we are going to deal with the problem of identifying a
unknown right-hand side independent of x in the following nonlinear
integro-differential parabolic equation

+

Dru(t, x) - a(j ) anu(t,;x:):zdy)D;u{t,x)

= f(t,j

+ o0

IDxu(t,»)2dy),  (,x) € (0,T) xR, (5.1)
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subject to the initial condition
u(0,x) = ug(x), x € R. (5.2)

To recover the unknown function f : [0, T] x R — R we prescribe the
additional information

w(t,0) = zo(t), te [0, T]. (5.3)
As far as the data a, g and zg are concerned we will assume

acCl®R), ap)=2p>0, peR, (5.4)

ug € H*E5(R) for some € € Ry, 2zp € H (0, T)), uo(0) = z5(0),
(5.5)

where HS(Q), s € R,, denotes the usual Sobolev space related to
L2(Q), Q being an open domain in R".

To solve the identification problem (5.1)-(5.3) we introduce the auxil-
iary unknown

X

v{t,x) =Dyult,x) <> u(t,x)=zop(t)+ Jo v(t,n)dn. (5.6)

Differentiating equation (5.1) with respect to x, we immediately de-

duce that v solves the following nonlinear parabolic integro-differen-
tial Cauchy problem

4o

Div(t,x) —a U lv(t, y)° dy) Div(t,x) =0,

(t,x) € (0,T) xR, (5.7)
v (0, x) = uy(x), x €R. (5.8)
Taking the Fourier transforms of the left- and right-sides in (5.7), (5.8),

we obtain the following Cauchy problem for an ordinary differential
equation

Dri(t,§) + EallB(t, M2 g0t E) =0, (£,E) € (0,T) xR, 5.9
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0(0,8) = i&uo(¥), £ eR. (5.10)

It is immediate to check that ¥ solves the integral equation

t
(8 = Eio@ exp[ - 82 | a5 (s, g ds],
(t,8) € (0,T) xR. (5.11)

Integrating the squares of both sides of (5.11) over R and setting
P) =10t g, te(0,T). (5.12)

we easily deduce the nonlinear integral equation

+ oo

t
o) = | Elio@Fep[-28 | alp(s, ) ds]dE = N(@)),
te(0,T). (5.13)

Observe now that

+00

N(@)(t) s | EBlao(®)1*dE = lluglia g,
te(0,T), @ €C:([0,T]), (5.14)

where C. ([0, T]) = {¢ € C([0, TD : @(t) =0, t € [0,T1}.

From (5.13), (5.14) we deduce that N maps C. ([0, T}) into the boun-
ded cone of positive functions

K={®eC(0,TD  I@llc.aom < Iugllg ). (.15

In particular, N maps K into itself.
We now show that N is a contraction mapping on K. For this purpose
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observe that

IN(@2)(t) — N(g) ()]

400

215 2 2 [
< | elao@Pr] e[ - 28 a@ats, s
5 t
*exp[——Z‘é Jo a(tpl(S,'))ds”dg
t +00
< 2| la(@a(e) - al@u)lds | Ele@)?
2 - £
-exp[—25“%(J0a(qaj(s,~))ds)]d§
t +00
< 20alcqory | 192is) = @a(s)lds | E o (5)PEE
-exp(-2utE?) dE
t
< @l lcqory | £ @a(s) ~ @a(s)]ds
'J’“ §2+251ﬁ0(§)‘2d§
5 t
< C@lalicqorpluolfieg Jo(t~3)"1+EICP2(S)"Wl(S)ldS,

te (0, T), @, € K. (5.16)
From (5.16) we easily deduce the estimate
£
IN(@2)(t) - Nt =y jo (t = )" " pa(s) — @i(s)] ds,
te(0,T), 1,92 €K, (5.17)

where T’ denotes the Euler's gamma function.
By induction we can easily show that the iterates of N satisfy the
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integral inequalities

[CiT(g)]™

m _am
INT (@) (t) = N (@1) ()] < Tome)

t
= el -pr(5) ds, £ (O0,T), @1 @z K, mEN.

(5.18)
In particular, from (5.18) we derive the basic estimate

IN" (@2) = N™ (@i lcoT)
_LaTTe)™

S Tmer D w2 — @ilicqorn, P1, P2 €K, meN. (5.19)

Since [C1TT (&)1 [[(me +1)]"! — 0 as m — +oo, from a well-known
corollary of the Banach-Caccioppoli fixed-point theorem we conclude
that equation (5.13), i.e. @ = N(g) admits a unique solution in K.
Moreover, no other solution can exist in C, ([0, T']) owing to inequal-
ity (5.14).

From (5.11) we deduce that ¥ admits the following representation in
terms of @:

Lt
v(t, &) = 1&g (&) exp [ - & J;) a(pl(s)) dS],
(t,8) € (0,T) xR. (5.20)

Consequently, coming back to the original function v, we find the
representation

-+ 00

ot
E(jo a(p(s))ds, x - y)u(’J(y) dy,
(t,¥) € (0, T) xR, (5.21)

v(t, x) =f

-0

where E denotes the fundamental solution of the heat equation

2

E(t,x) = (4mt) 2 exp (- g—t—) (5.22)
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Finally, observe that the function u defined in (5.6) satisfies

+00

Dru(t,x) — a,(f IDxu(t, )12 dy ) D3ult, x)

+ 00

= zy(t) + [:Dtv(t, mdn - a(J . lv(t,»)|? dy)va(t,x)

X
=z + | [Drve,m - ate)Diuen ] ay
0
—a(p(t))Dxv(t,0)
= z(')(t) —alp(t))Dev(t,0), (t,x) e (0, T) xR. (5.23)
From (5.1) and (5.21) we conclude that f can be chosen as
f(t,p) = zy(t) —a(p)Dyxv(t,0), (t,x)€(0,T)xR. (5.24)

REMARK 5.1 In the present case we cannot express f explicitly in terms
of the data. Of course, f is not unique.

REMARK 5.2 Qur identification problem can be generalized to that whe-
re the right-hand side in (5.1) has the more general form

f(t,f

+ o0

IDxu(t, ¥)12dy) g (),

provided g solves a n-th order linear differential equation with con-
stant coefficients A(Dy)g(x) = 0, x € R. In this case we must pre-
scribe the following n additional conditions on x = 0:

Diu(t,0) =z;(t), te(0,T), j=0,...,n~1.

The new unknown v is now defined by

v{t,x) = A(Dx)ult,x) <
n-1

) x
ult,x) = %zj(t)xf ; Jo Glx,E)v(t,E) dE,

J=0+"

where G denotes the Green function related to the Cauchy problem at
x = 0 for the differential operator A(Dy).
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6 Recovering some basic parameters
in the wave- and heat-equations

We consider here the problem of recovering the positive constant c,
the speed of wave propagation, related to the vibration of a endless
homogeneous string when its initial shape and velocity are known:

D?u(t,x) —c?Diu(t,x) = f(t,x), (t,x) € (0,T) xR, (6.1)
u (0, x) = uglx), Diu(0,x) = ui(x), xeR. (6.2)

A natural information to determine ¢ consists in prescribing, i.e. in
measuring, the displacement u at a fixed point xg at some positive
time tq:

u(to, xg) = a. (6.3)

For the sake of simplicity we will require that the data satisfy the
following assumptions:

HI up € C?(R) and the limits ug(—) and wo(+c) (exist and) have
the same sign, if they are both infinite;

H2 u, € CHR)nLYR);
H3 f,Dyf € C([0,T]xR) and f € L1((0, ty) x R).

As is well-known, the solution to the Cauchy problem (6.1)-(6.2) is
given by the D’Alembert formula

x+ct
wu(t,x) = ~[ug(x+ct)+uo(x—~ct ]+———J u(y)dy
(6.4)

X+c{t—5)
+——J as[ ¥y, (63 €[0,TIXR
2c —c(t—s) )

Consequently, condition (6.3) amounts to solving the following equa-
tion for c:

Xo+Clp
a= —-[ug(x0+cto)+u0(x0—cto)]+~—— ul(y) dy
xomcto (6.5)

Sfis,y)ydy =1 g(c).

to Xg+c{tg—$)
+ J

Xo—C{fo~3)
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According to our assumptions we easily derive the following rela-
tions:

to
g(0) = uplxp) + torwy (xg) + JO f(s,x0)ds, (
6.6)

g(+o0) = %[ug(wo) + Ug(+o0)].

Therefore, since g € C([0, +)), equation (6.5) is solvable in R, if a
belongs to the open interval with end-points g(0) and g(+), pro-
vided

1
g(0) = uolxp) + tour(xq) + Of(s»“,.x()) ds
0 (6.7)

1
* -2-[uo(~oo) + up(+00)] = g(+co).
To discuss the uniqueness of such solutions, we compute

! t 7 I
g (c) = 'ZQ[MO(XO +cty) —ugixo — cto)]

1 Xp+ciy
+{ ZJ ul(y)dy+~——[1,tl(x0+ct0) +u1(xo—cto)]}
2c xo—Clo

xg+c(tg—$)

fo
+ —Z—CE de f(s,y) dy

xp~c(to—s)
3
+ EEJO (to = $)Lf (5,0 + cto) + f(5,x0 = cto)]ds} := J; g;(c).

(6.8)

We note that g’ is strictly positive (negative) on R. if the following
addirional assumptions are satisfied:

H4 wj is increasing (decreasing) on R;
H5 up and x — f(t,x), t € [0,T], are non-increasing (non-de-

creasing) on (-0, x] and non-decreasing (non-increasing) in
[x0, +0).
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From H5 we easily derive the inequalities

1 Xo+cto
g2(c) = E"?_‘J [11(x0 + cto) — u1(y)1dy
C X0
1 (X0
+ 575 [uilxo—cto) —u1(»)1dy 20, c€Ry,
2¢ xo—Ctp

(6.9)
1 ty xo+cltg—s)
g3(e) = 55 | s | £ (5,0 + cto) = £(s, )] dy
2¢ 0 X0
L(* a5 ™ LA( to) - F(s,9)]dy > 0
S - - = U,
+ 52 fo ij(rc(tg—s) f(s,x0 —cto) — f(s,y)]dy
ceER,.
(6.10)

Therefore, according to H4 and HS5, g’ is strictly positive. As a con-
sequence, under assumptions 41-H5 ¢ can be uniquely recovered
whenever a € (g(0),g(+o)).

REMARK 6.1 Conditions H5 are very strict, since they require that 1,
and any function f(t,-), t € [0,T], should have a minimum (maxi-
mum) at x = xo. However, this is not a severe restriction if we assume
that f is independent of x, since in this case gz reduces to the null
function. If, in addition, 1, is constant, condition H5 can be dropped.

We now deal with a similar problem for the one-dimensional heat
equation:

Dyu(t,x) — cD2u(t, x) = f(t,x),  (t,x) €(0,T)XR, (6.11)
u(0,x) = uplx), x€[0,1]. (6.12)

To determine the conductivity coefficient ¢ again we prescribe con-
dition (6.3), i.e. we measure the temperature u at a fixed point xp at
some positive time £g.

Moreover, for the sake of simplicity we will require that the data sat-
isfy the following assumptions:

H6 up € Ci**(R) for some € (0,1) and the limits uo(—c0) and
Uug{+o0) exist and are both finite;
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H7 u’O is strictly increasing (decreasing) on R;

H8 f e C/*™([0,T] x R) and the limits f(t, ~o0) and f(t,+o0)
exist and are finite for any t € [0, T];

HI f(-,~0), f(-,+%) € L}((0, 1)) and Dy f € Cp([0, T] X R);

H10 x — Dy f(t,x) is non-decreasing (non-increasing) on R for any
tel0,Th

As is well known, the solution to the Cauchy problem (6.1 1)—(6.12) is
given by the following formulae, where (t,x) € (0,T) xR:

u(t,x) = LE(ct,x - y)ug(y) dy
¢
+ f ds[ E(c(t—s),x —y)f(s,y)dy
0 R
= r~1/2 JR exp (=¥ ug(x — 2t12c12y) dy

t
+mrl/? Jo ds JR exp (—y?) f(s,x = 2t12c12yy dy,
(6.13)

where the fundamental kernel E is defined by (5.22).
Consequently, condition (6.3) amounts to solving the following equa-
tion for c:

a=7m1? JRexp (v uglxg - 2t1%ct2y) dy

to

=:g(c), ¢ €ER,.
(6.14)

According to our assumptions we easily derive the following rela-
tions:

to
9(0) = 1(xq) + JO £(s,x0) ds, (6.15)
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1 1 (fo
g(+o0) = §[u0(-oo) +ug(+o)] + EJ [f(s,~0) + f(s,+0)]ds.
0
(6.16)

Therefore, since g € C([0, +)), equation (6.14) is solvable in R.
if a belongs to the open interval with end-points g(0) and g(+o),
provided

¢
9(0) = u(xo) + joof(s,xo) ds # 2 [tg(~0) + g (+09)]
(6.17)

1 [t
N 5[() [f(s, =) + f(s, +o0)]ds = g(+o0).

To discuss the uniqueness of such solutions, for all ¢ € R, we com-
pute
g'(c) = ~té/2(nc)‘”2”Ryexp (=P ug(xo - 2t5'*c12y) dy
to )
+ fo ds fRy exp (~¥?)Dxf (s, x0 - 2ty c2y) dy},

+oo
= té/z(ﬂC)””Z{Jo vexp (~y?)[ug(xo + 2t32c12y))
~ugxo - 2t5"*c2y)1dy

to + 00
+J0 ds | yexp (=¥*)[Dxf (s, x0 + 265! 2y)

~ D f(s,x0 = 2t3"2c 2 y)] dy}.
(6.18)

We note that, according to H7 and H10, g’ is strictly positive (nega-
tive) on R;. As a consequence, under assumptions H6-HI0 ¢ can be
uniquely recovered whenever a € (g(0), g(+)).
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