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ABSTRACT. The purpose of the talk is to review some of the re-
cent results on Gorenstein liaison confronting them with clas-
sical results in complete intersection liaison theory.

1 Imtroduction

This expository paper is a slightly modified version of a Colloquium
talk I gave at the “Seminario Matematico e Fisico di Milano” on Novem-
ber 15, 1999. The purpose of the talk was to review some of the
recent results on Gorenstein liaison (simply, G-liaison) confronting
them with classical results in complete intersection liaison theory

(simply, CI-liaison).
The notion of using complete intersections to link varieties has

been used for a long time ago, going back at least to work of Noether,
Macaulay and Severi. The development in the last four decades has
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been explosive. Many people has contributed to it and in the codi-
mension 2 case the picture is complete. It is impossible to make a
complete survey in one hour. I will make no attempt to do so. Instead
I will try to convince you that Gorenstein liaison is a more natural ap-
proach if we want to carry out a program in higher codimension and
I refer to the monograph {5] for a more detailed treatment.

In 1948, Gaeta proved that there is only one Cl-liaison class con-
taining arithmetically Cohen-Macaulay (briefly, ACM) curves C ¢ P3
or, equivalently, all ACM curves C ¢ P3 are licci [3]. The first goal
of this work is to see that in the Cl-liaison context Gaeta's Theorem
does not generalize well to higher codimension. More precisely, I will
prove the existence of infinitely many different CI-liaison classes con-
taining ACM curves C ¢ P4, I will give two kind of examples: (1) [ will
see that many ACM curves on a Castelnuovo (resp. Bordiga) surface
give rise to an infinite number of Cl-liaison classes containing ACM
curves by just adding different namber of hyperplane sections (Exam-
ple 3.1) and, (2) ACM curves C; ¢ P* with a t-linear resolution belong
to different Cl-liaison classes provided t # t’ (Corollary 3.3). The
second goal is to convince the reader that G-liaison is in many ways
more natural than Cl-liaison and among other results I will state that
ACM curves C  P* lying on a general smooth, rational, ACM surface
are glicci, i.e., they belong to the G-liaison class of a complete inter-
section (Theorem 4.1). The last goal is to generalize Gaeta's Theorem
and prove that standard determinantal schemes are glicci. Since in
codimension 2, ACM schemes are standard determinantal and since
in codimension 2, arithmetically Gorenstein schemes and complete
intersection schemes coincide, this result is indeed a full generaliza-
tion of Gaeta’s Theorem.

Next we outline the structure of the paper. In section 2, we col-
lect the main definitions of this paper. In section 3, we introduce
some graded modules which are liaison invariants under Cl-liaison
but not under G-liaison (Theorem 3.1 and Theorem 3.2) and we will
use them to prove the existence of infinitely many different Cl-liaison
classes containing ACM curves C C P* In section 4, we determine
huge families of ACM curves C ¢ P* which are glicci (Theorem 4.1
and Theorem 4.3) and; in section 5, we generalize Gaeta’s Theorem
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{Theorem 5.2).

In view of the already vast literature I have only included the ref-
erences that are directly related to the topics discussed here. I apol-
ogize to the many whose beautiful and deep contributions could not
even be mentioned without overly enlarging the perspective of this
note.

ACKNOWLEDGMENT. [ am greatly indebted to my co-authors of [5]
for the enjoyable collaboration which led to most of the material de-
scribed in this paper: they are J. Kleppe, J. Migliore, U. Nagel and
C. Peterson. I wish to thank the “Seminario Matematico e Fisico di
Milano" for giving me the opportunity to talk about this subject in
Milano. T am also very grateful to A. Lanteri for his kind hospitality
during my stay in Milano.

NOTATION. Throughout this paper we work over an algebraically
closed field k of characteristic 0. By PN we denote the N-dimensional
projective space over k, by R the polynomial ring k[ Xjy,...,Xy] and
m = (Xp,...,Xn). For any closed subscheme V of PN we denote by
Iy its ideal sheaf, I(V) its saturated homogeneous ideal (note that
(V) = HY(Iy) := @ep HO(P?, Iy (£))), A(V) = R/I(V) the homoge-
neous coordinate ring, Ny = Hom(ly,Oy) the normal sheaf of V
and M;(V) = HL(Iy) i= @z HH (P, Iy (£)), i = 1,...,dim(V), the i-th
Rao module of V.

Let X < PN be a locally Cohen-Macaulay and equidimensional
scheme of codimension ¢. X is said to be arithmetically Cohen-Ma-
caulay (briefly, ACM) if and only if M;(X) =0for1 <i < N~ ¢ or,
equivalently, A(X) is a Cohen-Macaulay ring. X is said to be arith-
metically Gorenstein (briefly, AG) if and only if I(X) has a resolution

0 — R(-t) — @X'R(-n§h) — - - - — & R(-n}) — I(X) — 0.

In particular, X is arithmetically Cohen-Macaulay. It is well known
that in codimension two AG subschemes and complete intersection
subschemes coincide. In higher codimension, any complete intersec-
tion subscheme is AG but not vice versa (indeed, a set of n + 2 points
in P" in linear general position is AG but not complete intersection).
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2 Background material

In this section, we collect the main definitions of this paper.

DEFINITION 2.1 (See also [5, Definitions 2.3, 2.4 and 2.10}). Let V3
and Vo < PN be two equidimensional schemes without embedded
components. We say that Vy and V, are directly Cl-linked (resp. di-
rectly G-linked) if there exists a complete intersection scheme (resp.
an AG scheme) X such that Iy, [Ix = Home,y (Ov,, Ox) and Iy, [Ix =
}[OM@PN (Ov,,0x). If Vi and V, do not share any common compo-
nent then this is equivalent to X = Vy U V>,

ExaMPLE 2.1 A simple example of schemes directly Cl-linked is the
following one: Let C; be a twisted cubic in P? and let C; be a secant
line to C;. The union of C; and ( is a degree 4 curve which is the
complete intersection X of two quadrics Q; and Q. So (1 and (; are
directly CI-linked by the complete intersection X.

As a simple example of schemes directly G-linked we have: We
consider a set Y; ¢ P3 of four points in linear general position and a
sufficiently general point Y>. Since X = Yy U Y2 is an AG scheme, Y}
and Y, are directly G-linked.

DEFINITION 2.2 Let Vy and V> < PN be two equidimensional schemes
without embedded components. We say that Vi and V, are in the
same CI-liaison class (resp. G-liaison class) if and only if there exists
a sequence of schemes Yi,..., Yy such that Y; is directly Cl-linked (resp.
directly G-linked) to Y;,, and such that Yy =V, and Yy = Vo. If V1 is
linked to Vo in two steps by complete intersection (resp. AG) schemes
we say that they are Cl-bilinked (resp. G-bilinked).

In other words Cl-liaison (resp. G-liaison) is the equivalence re-
lation generated by directly Cl-linkage (resp. directly G-linkage) and
roilghly speaking liaison theory is the study of these equivalence re-
lations and the corresponding equivalence classes.

DEFINITION 2.3 A scheme X < PN is said to be licci if it is in the CI-
Liaison class of a complete intersection. Analogously, we say that a
scheme X < PN is glicci if it is in the Gorenstein Liaison class of a
complete intersection.
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We are led to pose the following natural question:

Do CI-Liaison and G-Liaison generate the same equivalence relation
on codimension ¢ subschemes of P" ?

In codimension two the answer is yes, since complete intersec-
tions and AG schemes coincide. In higher codimension the answer is
no. Indeed, a simple counterexample is the following: Consider a set
X of four points in P3 in linear general position. By Example 2.1 we
can G-link X to a single point. Therefore, X is glicci. On the other
hand, it follows from [4, Corollary 5.13] that X is not licci.

Although the goal of my talk was to show the merits of studying
Gorenstein liaison, it is worth to mention some disadvantages: (1) It
is easy to check that both CI-links and G-links are preserved under
hyperplane sections. Nevertheless, CI-links lift and G-links do not lift,
in general. (2) Given a scheme V < PV it is, in general, very difficult
to find “good” G-links, i.e., “good" Gorenstein ideals Iy ¢ Iy of the
same high (“good” often means “small”)

DEFINITION 2.4 Let X < PN be a locally Cohen-Macaulay equidimen-
sional scheme. A graded R-module C(X) which depends only on X
is a Cl-liaison (resp. G-liaison) invariant as an R-module (resp., k-
module) if there exists a homogeneous R (resp. k)-module isomorphism
C(X) = C(X') for any X' in the Cl-liaison (resp. G-liaison) class of X.

It is well known that for equidimensional, locally Cohen-Macaulay
schemes X ¢ PV, the i-th module of Rao M;(X) 1= @ ez HI(P™, Iy (1)),
1 < i < dim(X), are CI-liaison invariants (up to shifts and duals). Even
more they are G-liaison invariants. In next section, we describe other
Cl-liaison invariants which allow us to distinguish between many CI-
liaison classes which cannot be distinguished by Rao modules alone.

3 Liaison invariants and applications

Let X C P"*C¢ be a closed subscheme, locally CM, equidimensional
of dimn > 0*. If X is ACM all the Cl-liaison invariants M;(X), 1 =

*Throughout this paper we work with schemes of dimension n > 0. We want
to point out that the results we give generalize to 0-dimensional schemes and we
assume » > 0 for avoiding technical complications.
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i < dim(X), vanish. Our first goal is to describe non-trivial Cl-liaison
invariants of ACM schemes. To this end, we consider a graded R-free
resolution of I = I(X):

- @;R(-n?) — &;R(-n}) — I — 0. (3.1)
We apply H om(~, Ox) to the exact sequence (3.1) and we obtain
0 — Nx — @;0x(-n}) — @;0x(-n3).

We take cohomology (H}*Ox = HJLF1(R/D), A=R/I); and we get a nat-
ural map
Sx 1 H'Nx — Homgp(I, HY 1 (A)) =

Homg (I, HL (D).

This map &y plays an important role; in particular, its kernel and
cokernel are CI-liaison invariants (See Theorem 3.1).

REMARK 3.1 If I/I° is a free R/I-module, then Sy is an isomorphism.
Thus, if X ¢ P"*¢ is a global complete intersection, then 6y is an
isomorphism.

THEOREM 3.1 Let X, X’ c P"*¢ be ACM subschemes of dimensionn >
0 algebraically linked by a complete intersection Y C P**¢. Then:

1. As graded R-modules: HiNx = HiNx for1 < i < n -1,
kev(Sx) = ker(6x)

2. As graded k-modules: Coker (8x) = Coker(dx’)

PrOOF. See [5, Theorem 6.1]. ol

As application, we get the following criterion to check if an ACM
scheme is licci.

COROLLARY 3.1 Let X ¢ P"*¢ be a closed subscheme of dimension
n > 0. If X is licci, then:

I.HLNy=0forl<is<n-1,
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2. 8x is an isomorphism.

PrROOE. It follows from Theorem 3.1 and the fact that for complete
intersections Y < P"*¢, HiNy = O0for1 < i <n -1 and dy is an
isomorphism (Remark 3.1). )

From now until the end of this section, we will restrict our atten-
tion to closed subschemes X ¢ P"*3 n > 0, of codimension 3 and
we will deduce from the previous results the Cl-liaison invariance of

Hi (Kggerl) i=0,..,n

being Kg/1 = Extfg (R/I,R)(~n — 4) the canonical module of X.

Indeed, using basic facts on local cohomology, the spectral se-
guence relating local and global Ext:

E}? = HP (X, Ext(F,G)) = ExtP*4(F,G),
and the spectral sequence:
E5% =y Extli (M), HA (M2)) =, Exth 1My, M),

we obtain

THEOREM 3.2 Let X ¢ P"*3 be an ACM subscheme of codimension 3
(n > 0) and K := Ext}(A,R)(~n — 4) its canonical module. Then, we
have

1. Hf'Ny = HL (K eg D(n +4), 0 < i < n -2, as graded R-
modules. )

2. There exists an exact sequence:
0 HY YUK ox D(n +4) — H'Ny 2% Hom (I, HL 1(A))

~ HY (K ®gD)(n +4) — 0.

In particular,
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3. H,ﬁl(K ®gr I) are Cl-liaison invariant as graded R (resp. k)-modu-
les,0 =i <n(resp. 0 < i< n) Moreover, if X is locally complete
intersection then

Hi(KegD(n+4)=HYYKer ¥ i=0,.,n

as R-modiiles.

PROOF. See [5, Proposition 6.8]. .

As application we get another criterion to check if an ACM sub-
scheme X of PV is licci.

COROLLARY 3.2 Let X ¢ P"*3 be g closed subscheme of dimension
n > 0. If X is licci then H, (K @g I) = 0,0 < i < n.

PrROOF. It follows from Theorem 3.2 and the fact that for complete
intersections Y ¢ P**3, HL (Kg/1iyy ®r I{(Y)) =0,0 2 i < n. .

We are led to pose the following question which, to my knowledge,
is still open:

QUESTION 3.1 Whether the converse of Corollary 3.2 is true, i.e, is a
codimension 3 ACM scheme X ¢ P**3 licci if HL (K ®g I) = 0 for
Osizsn?

Now, we will illustrate with an example how to use Theorem 3.2

EXAMPLE 3.1 Let C ¢ P* be a smooth, connected curve of degree d
and genus g with an “almost linear” resolution:

0—R(~5—-23)% = R(~5 - 2)? ~R(~5—=1)' @ R(—5)%° — I(C) ~ 0.
Ifd+g~-1-acy+# 0 then C is not licci.

IDEA OF THE PROOF. We compute the dimension,

UC)y = dimy,s Hy (Ka ®r 1(C)),
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of the Cl-liaison invariants u+5H31(K 4 ®r I). The exact sequence and
the duality of Theorem 3.2 gives us (small letters mean dimension)

LCYy — UC)—py-5 = KN (p) — homg(I(C), H3,(A)).

Since _ohomg(I,H%,(A)) = acg and h!'N¢e(=2) = —xNe(=2) = d +
g — 1 (Riemann-Roch’s Theorem), we obtain

HC)-2=U(C)-3 = h'Nc(-2)-2homp I(C), H, (A)) = d+g~1-aco.

Therefore, by Corollary 3.2, if d + g — 1 — acg # 0 then C is not licci.
i

REMARK 3.2

1. The only smooth connected curve in P* with a linear resolution
{co = 0) which is licci is a line.

2. The smooth rational quarticis notlicci. Indeed, (a, b, 1,0, $) =
(3,8,6,0,1)andd+g—-1—-acy=3+0.

Recall that Gaeta’s Theorem states the existence of a unique CI-
liaison class containing ACM curves C C P3. We will now deduce
the existence of infinitely many different Cl-liaison classes containing
ACM curves C ¢ P4, So, in the context of CI-liaison, Gaeta’s Theorem
does not generalize well to higher codimension. In next sections,
we will try to convince the reader that G-liaison is a more natural
approach if we want to carry out a program in higher codimension.

COROLLARY 3.3 Let C; € P* be an ACM curve with a linear resolution:

243142

24
0 — R(~t—2)"T — R(=t -1+ . R(-)" 7 . 1(C,) — O.

For t # q, C; and C,; belong to different Cl-liaison classes.

PROOF. We have d(C;) = (“f) - (tzz), PalCr) = (t - 1)d(Ce) + 1 -

(tf) and d(C) +pa(Ce) =1 # d(Cy)+pa(Cq)-1fort # q. Therefore,
by Example 3.1, C; and C,; belong to different liaison classes provided
t#4q. O
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REMARK 3.3 Corollary 3.3 shows that in the context of Cl-liaison Gae-
ta’s Theorem does not generalize to higher codimension. To prove
Corollary 3.3 we strongly use that the graded modules HL, (K ®g I)
are Cl-liaison invariants. So, if one wants to see that G-liaison is a
more natural approach in higher codimension, we have to prove that
HL (K ®g I) are not G-liaison invariants. Indeed, they are not. As
example we have the following one:

Denote by C; ¢ P* the ACM curve defined by the maximal minors
of atx (f +2) matrix with linear entries. D¢ has a t-linear resolution.
According to Corollary 3.3, H3,(Kp, ®g I(D;)) changes when t varies
and it follows from Theorem 5.2 that Dy is glicci. Therefore, HY, (K ®g
I) is not a G-liaison invariant.

As another example about the existence of infinitely many dif-
ferent Cl-liaison classes containing ACM curves C ¢ P* we have the
following one

EXAMPLE 3.2 Let S ¢ P4 be a Castelnuovo (resp. Bordiga) surface and
let C ¢ S be a rational, normal quartic. Consider an effective divisor
C; € |C + tH|, where H is a hyperplane sectionof Sand 0 <t e Z. It
holds:

o (; is not licci, Vt = 0;

¢ C; and Cp belong to different Cl-liaison classes provided 0 <
t<t.
This last example is a particular case of a much more general re-
sult that I will state after fixing some extra notation:

We consider a Cartier divisor C on S ¢ P"+3 where dim C = n and
C,S c P"*3 are ACM subschemes generically complete intersection.
We take a free resolution of I(S) :

0 —~ ®;R(—q;) = & R(-p;) —~ I(S) = 0.

Since Ext!(Is,Ic/s) = ws(n+4)®Icss , applying Hom(., I¢;s) to
the above exact sequence we get, for any integer u, the complex:

& Hle s (p; + 1) — ®:H Ieys(qi + 1) 25 HO(ws(n + 4) @ Ieys(w).
We define:
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1. L%(C), = Coker @y,

2. LI(C)y = H(ws(n+4) ® Ic;s(p)), j = 1.

Notice that if H is a hyperplane section of § ¢ P"*3, we have an
isomorphism L°(C)y = L%(Ct) y+t for any C; € |C + tH].

PROPOSITION 3.1 Let C € § ¢ P"*+3 be two ACM subschemes, S gener-
ically complete intersection in P"*+3 and suppose C is a Cartier divisor
onS of dimC = n > 0. We take an effective divisor C; € |C + tH],
being H a hyperplane section of S, and we assume L"~1(C),, # 0 for
some integer pg. It holds:

1. Cy is not licci, Vit >> 0;

2. Cy and Cy belong to different liaison classes for any t > t' >> 0.

PROOF. See [5, Corollary 7.51. O

4 Glicci curves in P4

In this section, using the fact that the Picard group of a “general”
ACM surface X ¢ P? is well known together with the fact that roughly
speaking Gorenstein liaison is a theory about divisors on ACM sche-
mes, we will see that there is only one G-liaison class containing ACM
curves C C P* lying on a smooth, rational, ACM surface S ¢ P*. More
precisely, we will see that all ACM curves C ¢ P4 lying on a smooth,
rational, ACM surface S ¢ P* are glicci (Theorem 4.1). We will also
prove that ACM curves C ¢ P lying on a “general” ACM surface X C
P4 with degree matrix [l u;; > 0, are glicci provided 16((KH)? -
K2H?)—H?[H?-K?+8(1+p4)] = 0; being K the canonical divisor on
X and H the hyperplane section of X (Theorem 4.3). See Example 4.1
and Corollary 4.2 for examples of ACM surfaces X ¢ P* verifying
the above numerical condition and [1] for further generalizations of
Theorem 4.3. Notice that these results drastically differ from the one
obtained in Example 3.2.

We start with some preliminary results.
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DEFINITION 4.1 A noetherian ring A (resp. a noetherian scheme X)
satisfies the condition G1, “Gorenstein in codimension < 1", if every
localization Ap (resp. every local ring Ox ) of dimension < 1 is a Goren-
stein local ring.

LEMMA 4.1 Let X ¢ P" be an ACM subscheme satisfyving the property
Gi1, and let C be a subcanonical divisor on X. Let F « I(C) be a
homogeneous polynomial of degree d such that F does not vanish on
any component of X. Let Hr be the divisor cut out on X by F. Then
the effective divisor Hr — C on X, viewed as a subscheme of P™, is AG.
In fact, any effective divisor in the linear system |Hr — C| is AG.

SKETCH OF THE PROOF. We are assuming that C is the divisor as-
sociated to a regular section of wyx(l) for some l € Z. Let Y be the
residual divisor, Y € |Hf — C|. We have Iy|x(d) = Ox(dH - Y) =
Ox{C) = wx (1) and the exact sequence

0 — I(X) — I(Y) — HY(wx)(1 - d) — 0.

Using the minimal free resolutions of I(X) and H2(wx)(l - d) to-
gether with the Horseshoe Lemma [10, 2.2.8, pag. 37] we deduce that
Y is AG. O

In next Proposition we are going to prove that in contrast to the
fact that adding hyperplane sections does not preserve the Cl-liaison
class {see Proposition 3.1), it preserves the G-liaison class.

PROPOSITION 4.1 Let X c P" be a smooth ACM subscheme and let
C C X be an effective divisor. Take any divisor C; in the linear system
|C + tH| being H a hyperplane section of X and t € Z. Then, C and
C; are G-bilinked. (Notice that if t = 0 then C and C; are linearly
equivalent.)

SKETCH OF THE PROOF. Let K be a subcanonical divisor of X. Take
A € I(K) a form of degree a >> 0 not vanishing on any component
of X. So H, — K is effective (We denote by H4 the codimension one
subscheme of X cut out by A). Now we choose forms F € I(C) and
G € I(Cy) with degF + t = degG and a divisor D on X such that
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Hr - C = D = Hg — C;. By lemma 4.1, Hyr — K and Hag — K are
Gorenstein. Moreover, Hyp ~K~C = (Hy—-K)+(Hp—-C) =Hs—-K+D
and Hag—-K~Cr = (Ha—K)+(Hg-Ct) = Hy~K+D. So C and C; are
Gorenstein linked to H4 — K + D as subschemes of P" or, equivalently,
C and C; are G-bilinked. O

Proposition 4.1 motivates the following definition

DEFINITION 4.2 Let X < P" be a smooth scheme. We say that an
effective divisor C on X is minimal if there is no effective divisor in the
linear system |C — H| being H a hyperplane section divisor of X.

We are now ready to state one of the main results of this section.

THEOREM 4.1 All ACM curves C C P* lying on a general smooth, ratio-
nal, ACM surface S ¢ P* are glicci, i.e., they belong to the Gorenstein
liaison class of a complete intersection.

SKETCH OF THE PROOF. According to the classification of general
smooth, rational, ACM surfaces S is

1. A cubic scroll: S = Bl{,}(P?) embedded in P* by means of
the linear system [2Eq — Ey|, deg(S) = 3, and Pic(S) = 7% =<
Eg;Ey >, or

2. A Del Pezzo surface: S = Blip,, . 41 (P?) embedded in P* by
means of the linear system |3Eg — lezlEil, deg(S) = 4, and
Pic(S) = 78 =< Eg; E1, ..., E5 >, or

.....

means of the linear system [4Eg — 2E1 — Z?:z E;|, deg(S) = 5,
and Pic(S) = 79 =< Ey;Ey1,...,Eg >, or

4. A Bordiga surface: S = Blyp,,  pio}(P?) embedded in P* by
means of the linear system |4Eg — 2}21151-1, deg(S) = 6, and
Pic(S) = 7! =< Eg; Ey, ..., E10 >.
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For each general smooth, rational, ACM surface, we classify the
minimal ACM curves C on S (see {5, §8]). Finally, we check that each
minimal ACM curve C on S is glicci by direct examination. O

We are led to pose the following question which should be viewed
as a generalization of Gaeta’s Theorem (see section 53).

QUESTION 4.1 In codimension three, is there only one Gorenstein li-
aison class containing ACM schemes? or, equivalently, are all ACM
subschemes glicci?

Although we do not fully answer this question, we make a sub-
stantial progress and we determine a huge family of ACM surfaces
S ¢ P?* such that all ACM curves C lying on S are glicci (see, The-
orem 4.3). Hence, Theorem 4.1 and 4.3 suggest that the answer to
question 4.1 should be “yes".

TERMINOLOGY 4.1 To say that a statement holds for a general point
of a projective variety Y means that there exists a countable union Z
of proper subvarieties of Y such that the statement holds for every
x € Y\ Z. In particular, we say that a statement holds for a general
surface X < P* with Hilbert polynomial p(t) if the statement holds
for a general point of an irreducible component of H ilbﬁ?t),

From now on, unless otherwise specified the word general, when
referred to elements of projective varieties, will have this meaning.
We have:

THEOREM 4.2 Let X € P* be a general ACM surface not complete in-
tersection with degree matrix [1,;], uij > 0 for all i, j. Then, three
cases are possible for the Picard group of X:

1. Pic(X) = 79 and X is a Castelnuovo surface, or
2. Pic(X) = 21 and X is a Bordiga surface, or

3. Pic(X) = Z?% if X is none of the above.
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ProOO¥. See {6, Theorem I1.4.2]. O

REMARK 4.1 In the last case of Theorem 4.2, Pic(X) is generated by
H = 0x(1) and K, being K the canonical sheaf of X.

REMARK 4.2 Let X ¢ P* be a smooth general ACM surface. Assume
that either X is a complete intersection or X is rational. Then, any
ACM curve C on X is glicci. Indeed, either X is rational and the result
follows Theorem 4.1, or X is a complete intersection, deg(X) > 4
and Pic(X) = Z =< H >. In this last case, the result follows from
Proposition 4.1 and the fact that the hyperplane section H of X is an
ACM curve C contained in P3, and according to Gaeta’s Theorem [3],
H is licci.

From now on, we restrict our attention to general ACM surfaces
X ¢ P* which are neither rational, nor complete intersection. We will
also assume that the degree matrix [u; ;] of X verifies 11; ; > 0 for all
i,j. According to Theorem 4.2, Pic(X) = ZH @ ZK. Set d = H? the
degreeof X, 1 = H—(ﬂf—&l +1 the sectional genus of X and p, = xOx -1
the arithmetic genus of X. Define

mo:=min{0 <m € Z| H*[H? - K% + 8(1 + pa)]
< 4m?((KH)? - K2H%)}.

REMARK 4.3 Using the double point formula 2K? = d2 — 5d — 1077 +
12p4+22, we can write my in terms of the degree of X, the arithmetic
genus of X and the sectional genus of X:

mo=min{0 <m €2 |10md - 6d + 7d° - d° + 4p.d
< 4m?®(81% - 167 + 8 + 21d — 14d + 7d% - d3 - 12pa)}.

EXAMPLES 4.1 (i) Let X ¢ P* be an ACM surface defined by the max-
imal minors of a matrix A with entries homogeneous forms of fixed
degree n. X has a graded minimal free resolution

0 — Opi(=p — )T — Opa(=p) 5~ Ix — 0,

where p € N is a multiple of .
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We have

p2(p + n)2(p? + np - 2n?)
144

(KH)? —~ K?H? =

and

p2(p +n)2(3p? +3np + 2n° - 8)

H2 HZ _ w2 =
{ K+ 8(1+pa)l s

Therefore, mp = 2 for all p multiple of n, p > 2n, and for all n € N.

(ii) Let X C P* be the ACM surface defined by the maximal minors
of a matrix [A, B] where A is an n X 7 matrix with linear entries and B
is a column with entries of degree n. Then, Ix has a graded minimal
free resolution

0 — Ops(-2m)" — Ops(=2n+ )" @ Ops(—n) — [x — O.

In this case, we get that for n = 11, mg > 2.

We are now ready to state the main result of [2].

THEOREM 4.3 Let X C P* be a general ACM surface with degree matrix
[ujjl,uij >0 Vi, j. Then, there are at most mo—1 G-liaison classes
containing ACM curves C on X.

SKETCH OF THE PROOF. We first prove, using Proposition 4.1 and
Theorem 4.2, that the only G-Liaison classes which may contain ACM
curves are those determined by ak with0 <a < mg - 1.

Now, we will check that the ones determined by H and K coincide.
In fact, we know that H is licci (indeed, H is an ACM curve contained
in P3 and, by Gaeta’s Theorem, H is licci). Therefore, any effective
divisor in the linear system | nH | is glicci. Now we are going to
prove that also any effective divisor in the linear system | K + LH | is
glicci:

Let L be the (n+ 1) X (n+ 2) matrix defining the surface X and let
A = [L,M] be the matrix obtained adding to L a column M. Thus, A
defines a codimension 3 standard determinantal scheme D ¢ X C P4
By Theorem 5.2 (see below), D is glicci. Moreover, Ox(D) = wx(f)
forsomet € Z,1.e., D € |K + tH]| (see [5, Proposition 10.7}]). Hence, K
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and D are G-bilinked (Proposition 4.1). So K is glicci and it is in the
same G-Liaison class of H.

Therefore the number of G-Liaison classes containing ACM curves
on X is at most mg — 1. .

COROLLARY 4.1 Using the notation above, let X ¢ P* be a general
ACM surface with a graded minimal free resolution

0 — & Ops(-my) — 722 O0pi(~dj) — Ix — 0.

Assume thatmg =2 and m; — d; >0 Vi, j. Then every ACM curve
C ¢ X is gliccl.

PROOF. It follows directly from Theorem 4.3. O

COROLLARY 4.2 Let p € N be a multiple of n € N and let X, C P*
be a general ACM surface with a graded minimal free resolution:

0 — Ops(~p -)F 1 — Ops(—p) " — I, — O.
Then, mo = 2, V p and every ACM curve C C Xp » is glicci.

PrROOF. We may assume that p = 2n, because in the case p = n
Xp,n is a complete intersection, and we may assume that Pic(Xpn) =
ZH o ZK (Theorem 4.2 and Remark 4.2).

As we have seen in Example 4.1 (i), mo = 2 for all p multiple of n,
so we conclude by Corollary 4.1. O

5 Generalization of Gaeta’s Theorem

In this section, we generalize Gaeta's theorem and we prove that any
standard determinantal subscheme X C P" is in the G-liaison class
of a complete intersection. We start fixing some notation.

DEFINITION 5.1 A subscheme X ¢ P" of codimension ¢ + 1 is said to
be standard determinantal if I(V) is defined by the maximal minors
of at x (t +c) homogeneous matrix A. To simplify, we will often write
I(X) = I(A).
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If X ¢ P" is standard determinantal then X is ACM. Moreover, the
Hilbert-Burch Theorem state that, in codimension 2, the converse is
also true.

In section 3, we have pointed out that if X ¢ P" is licci then it is
ACM, and hence, if we also have codim(X) = 2, then X is standard de-
terminantal. The important contribution to liaison theory of Gaeta’s
theorem (See [9] for a rigorous, modern proof of Gaeta’s theorem) is
the converse:

THEOREM 5.1 Let V C P" be a pure codimension 2 subscheme defined
by the maximal minors of a t X {t + 1) homogeneous matrix A. Then,
V is liccl,

SKETCH OF THE PROOF. We link V to a scheme V) by means of a
complete intersection X defined by two minimal generators of V. V1
is ACM and, hence, standard determinantal. Gaeta proved that the
matrix A; defining I(V}) is obtained from A deleting two columns
and transposing. Going on, in a finite number of steps, we reach a
1 x 2 matrix, i. e. a complete intersection. O

THEOREM 5.2 Let V C P" be a pure codimension ¢ subscheme defined
by the maximal minors of a t X (t + ¢ — 1) homogeneous matrix A.
Then, V is glicci.

IDEA OF THE PROOF. The proof is rather technical and the main idea
is the following one:

We denote by B the matrix obtained deleting a “suitable” column
of A and we call X the subscheme defined by the maximal minors of
B. (“Suitable" means that codim(X) = ¢ — 1. First take, if necessary, a
general linear combination of the rows and columns of A.) We denote
by A’ the matrix obtained deleting a “suitable” row of B and we call
V' the subscheme defined by the maximal minors of A’. (“Suitable”
means that codim(V’) = c. First take, if necessary, a general linear
combination of the rows and columns of B.)

We consider V and V' as divisors on X, we show that V and V'
are G-bilinked. Hence in 2t — 2 steps we reach a scheme defined by a
1 % 3 matrix, i.e., we arrive at a complete intersection. ]
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REMARK 5.1 Gaeta’s original theorem says that all ACM subschemes
of codimension 2 are licci. Since it is well known for subschemes of
codimension two that ACM subschemes are standard determinantal
and that AG subschemes and complete intersections coincide, Theo-
rem 5.2 is a full generalization of Gaeta’s Theorem.

Finally, we want to stress that this last result drastically differs
from the one we obtain when we link by means of complete intersec-
tion schemes. Indeed, since any ACM curve Dy in P* defined by the
maximal minors of a p X (p + 2) matrix with linear entries has a lin-
ear resolution, we have that D, and D’ belong to different CI-Liaison
classes provided p = p’ (See Corollary 3.3) and, by Theorem 5.2. they
belong to the same G-liaison class.
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