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ABSTRACT. Numerical methods for the evaluation of 2D in-
tegrals, based on bivariate quasi-interpolating splines, with a
four directional mesh, are presented and convergence results
are derived. Moreover an application to 2D singular integrals,
defined in the Hadamard finite part sense, is proposed and
studied.
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1 Introduction

Univariate and multivariate spline theory can have an essential influ-
ence on numerical integration [1, 5, 6, 7, 8, 13].

The purpose of this paper is to present some recent results that
we obtained on 2D spline-based numerical integration.
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We propose cubatures based on bivariate local quadratic quasi-
interpolating (q-i)C!splines with a four directional mesh [2], intro-
duced in [3], for which we can show some interesting computational
features and convergence properties.

Moreover we consider the problem of the evaluation of 2D inte-
grals, defined in the Hadamard part sense, by integration rules based
on the bivariate splines above introduced. For such rules conver-
gence results are presented.

2 On the bivariate quasi-interpolating spline approximation
Let S = {(x,y):0 =< x,y <1} and let A,(ﬁ% be a uniform grid parti-
tion of S with type-2 triangulation (Fig. 1) defined by the restriction
on S of the R? partition consisting of lines:

mx —i=0

ny —-i=0

ny-mx—-i=0

ny+mx—-i=0 i=...,—-1,0,1,...

where m, n are given integers.
We consider the set S_% (A%)n) of local bivariate C! spline functions
that in every triangular cell of A%)n are polynomials of total degree

two.
]

y

Fig. 1
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Let B(x,y) be the B-spline [3, 15] supported on the octagon Q
with center at (0,0) and vertices at

It is strictly positive inside its support, that has been partitioned into
twentyfive cells (Fig. 2).

On every cell A;, labeled by i, the function B(x, y) is a polynomial
pi(x,y) € P2,i = 1,...,25 where P> is the class of polynomials of
total degree two. In particular it results [3] that:

_ 1 1., 15
pl(x;y) - 2 ZX 23’;
5 1. 1,
p2(x,y) = g 22X 3Y
(x,¥) = (Z—x+lx2>+<l—lx> e
pelx,y) = 3 4 57D y 4.')’
_ 9 3 .15
p7(x,y) = 3 2x+2x
_ o1 2) <_ 1 ) 1 2
po(x,y) = (1 x+4x + 1+2x y+4y

and the other p;’s are obtained from the above ones by simmetry.
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We recall that B is in C!(R?). Moreover B(x, y) = 0 for all (x, y)
outside Q and it is strictly positive inside Q. Following [3] we con-
sider

i =0,....m+1

Bij(x,y)=B<mx—i+1,ny—j+l) i
2 .
j=0,....,.n+1

2

whose support Q;; = U2, A,({”) has center at

o q2i-1 2j—1>
i) = (S5 2
and ‘radius’
5 = Lmax [\/9m2 + n2,Vmz2 +9n2]
mn Zmn ’ )

where A,((ij ) is the k-th cell of Qij. Then the set of the above bivariate
B-splines {B;;,i=0,...,m+1, j=0,...,n+ 1} spans all splines of
S3 (Ajin)-

Now we consider the following bivariate ‘variation diminishing’
spline operator

Vinn : C(Q) — S3(AG),
defined by

m+1n+1

Vi (f3x,9) = > > f(xi,77)Bij(x,¥),

i=0 j=0

where Q is an open set containing S and

an(f) =f,

for f(x,y) = 1vxaany'
Let:

- K be a compact set which is the closure of Q;

- wi(f;0)=sup{lf(x,y)-f(u,v)|:(x,¥),(w,v)eK,|(x,y)-
(u,v)| < 6} be the modulus of continuity of f on K, where
[(x, v) = (x? + y2)1/2
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- |l - lls be as usual the supremum norm over S;
1 117,
- Omn = maX[ ],

m'n

- f1, f2 be the partial derivatives of f with respect to its first and
second variable, respectively;

- || D2f || be the maximum over S of the norm of the linear
transformation

D?f(x,y) :R*xR?> =R
defined by:

D% f(x,y)((u1,u2), (v1,v2)) = f11(x, ¥)ujv; +

+ f120¢, Y)urve + fo1(x, y)uavi + foo(x, y)uzv2,

where f; is the partial derivative of f; with respect to its first
variable, etc.

Then, from [3], we recall the following theorem.

THEOREM 2.1 Let f € C(K). Then for all sufficiently large m,n, say
m,n = No,

|| f_ an(f) ||SS wK(f’ 5;/'111) .

Furthermore, if in addition f € C1(S), then
| f = Vian (f) lls< dmnmax[ws(f1,0mn/2), ws(f2,0mn/2)].
Finally, if in addition f € C%(S), then
1
I f = Vimn (f) lls< 15%”@ | D2f I,

for allm,n > Ny.
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3 Cubature rules based on the spline operator V,,,

For any function g € C(Q) we consider the numerical evaluation of
the integral

I(g) = Lg(x,y)dxdy- (3.1)

by cubature rules defined by

m+1 n+l

1) = TI(Vimn(9)) = > > wijgxi,v)), (3.2)
i=0 j=0

where

Wi =J Bij(x,y)dxdy .
QijnS

We remark that, for all i and j, it results w;; > 0.
Moreover we can show the following theorems [4].

THEOREM 3.1 The weights of the cubature (3.2) satisfy the following
symmetric properties:

- form,n > 5 it results that
) Wij=Wm—itl,j = Win-—j+1 = Wm—itln—j+l =

Wii = Wm—j+1,i = Wjin—i+1l = Wm—j+1l,n—i+l
i=0,...,2 j=0,...,1;

i) Wij = Win_j+1 =wzj, Jj=0,1

Wip = Wip-1 =Wz 1i=3,...,m—2;
iii) Wij = Wm-i+1,j = Wi2, i=0,1 j= 3,...,m—2;
v) wij =wz, i=2,....m-1 j=3,...,n-2;

- for 3 <m < 5, n =5, the above i),iii),iiii) hold;
- form =5, 3 < n <5, the above i),ii) hold;

- for 3 <m,n < 5, the above i) holds.
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THEOREM 3.2 For any g € C(Q) and for m,n > 3 the rule (3.2) can
be written in the following simplified form:
2 i
I(Vmn(9)) = > > wijzij(g) (3.3)
i=0j=0
defined only by six weights, given by Table 1, with
zkk(g) = Gkk + Im-k+1,k + Fkn-k+1 + Gm-k+1,n—k+1;
zok(9) = S Gkt Gim—k) + 2123 (Grj+Im-ke1,j),  k=0,1
z10(9) = g10tImo+gdin+1+IGmmn+1+9o1 +IGm+1,1tgon+9m+1,n;
z0(g) = 315" Z?:_zl Jij
and gij = g(xi,y;).

Woo Wio w11 W20 w21 w»?

1 7 33 1 5 1
48mn | 48mn | 48mn | 6mn | 6mn | mn

Table 1

In order to study the convergence of {I(Viyn(g))} to I(g), from
Theorem 2.1 we can deduce the following

THEOREM 3.3 Let g € C(K). Then
I(Vinn(g)) = 1(g) as m,n — o,
In particular
|Emn(g)] = 11(g) = I(Vinn(g))| = O(wi (g, d1mn)) -
If in addition g € CX(S), k = 1, 2, then
Emn(g) = O(8%) -

4 Numerical evaluation of 2-D singular integrals defined in
the Hadamard finite part sense

In some physical and engineering problems [9, 10, 11, 14] we have to
deal with 2-D singular integrals of the form

@[} fr,0)
J(f) = Ll jLo —drdo, (4.1)



238 C. DAGNINO

where the domain of integration is the triangle
T={1r,0):0<r<R(0),0, <0 <0y}

as in Fig. 3:

P

1
0

Fig. 3

and j( indicates the Hadamard finite part [11, 12].

We remark that in practical applications R(0) is always analytic
in [01, 02] and we suppose f € C1(Q), with O an open set containing
[0,R] X [01,02], R = maxg, <p<g, |IR(O)].

We can write (4.1) as follows:

J) =T + TV, (4.1)

where

02 ~R(0) _
J(O)(f)zjezjo f(T,Q)rf(O.Q) drdo

and
02
JP(f) = L £(0,0)InR(0) do.

Since JU) is a regular one-dimensional integral, it can be accurately
evaluated.
For the regular double integral J(© we can write

JOU) = (02— 0DI(Y), (4.2)
where _ _ _
¥(p.0) = f(R(E(H))p,E(;))) - f(0,£(0))
and

€(0) =01+ (02— 01)0.
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Since f € C1(Q), we can deduce that ¥ € C(Q), with Q open set
containing S.
Therefore we can estimate I(¥) in (4.2) by (3.2) and we obtain

J(O) (f) (0) (f + E(O) (f
where
Tin(f) = (02 = O (Vign (¥)) = (02 — 01) 37 X wijzij (¥)

Ewn(f) = Emn(¥)

with {w;;}, {(x;,¥;)} respectively weights and nodes of (3.2) and
{zi;} defined in section 3.
Now we can show the following convergence theorem [4].

THEOREM 4.1 Let J; be the closure of an open set containing [0, R]
and ], the closure of an open set containing [01, 0>]. Let f € C1(J; x
J>). Then

E,&?lﬁo as m,n — oo, (9)

If in addition f € C%([0,R] x [61, 62]), then
Esh(F)] = 0(8mn) - (4.3)
Ifalso f € C3([0,R] x [01, 02]), then
()] = 0(62,,). (4.4)

5 Conclusion

In this note we have considered cubatures based on a class of bi-
variate C! local polynomial splines, for which we have proved some
computational features and convergence properties.

We remark that formulas of this kind, based on ‘non’ tensor prod-
uct splines, can be ‘better’ than the product integration ones for
functions f with oscillations in the directions nx = my = 0, with
n and m integers.

Moreover we have presented an application of our local method
to the evaluation of 2-D integrals, defined in the Hadamard finite part
sense, arising in engineering problems.
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