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Introduction

This review paper discusses the topic of option pricing with emphasis on

modeling financial risk. The Black-Scholes formula is derived using the

classical dynamic hedging argument. Dynamic hedging justifies the evalu-

ation of contingent claims based on the use of risk-neutral, as opposed to

”frequential”, probabilities. This still leaves open - even in the simplest case

of stock option contracts - the issue of specifying the volatility parameter

or other characteristics of the model describing the evolution of market

prices. This ”specification” problem” leads us to the issue of economic un-

certainty, or risk, the raison d’etre of derivaties markets and financial inter-

mediation. Thus, the valuation of contingent claims under uncertainty goes

far beyond the exercise of computing expected values of cash-flows. After a

discussion of the classical principles of option risk-management using dif-

ferential sensitivities (”Greeks”), I review some more recent proposals for

modeling uncertainty. The idea is to consider, as a starting point, a spec-

tum of risk-neutral probability measures spanning a set of beliefs and to

construct option spreads to reduce uncertainty. This last part of the paper

draws on work with my collaborators (Avellaneda, Levy and Paras (1995),

Avellaneda and Paras (1996) and Avellaneda, Friedman, Holmes and Sam-

peri (1997)).

Mathematical finance has produced a true convergence of ideas between

different intellectual and applied fields. Presently, we see a strong collabo-

ration between mathematicians, economists and financial professionals in

academia and the financial industry. University mathematicians contribute
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as Wall Street consultants and publish in finance journals. Finance aca-

demics use highly quantitative tools and sophisticated econometric analy-

sis. It is has become almost commonplace to find traders with advanced de-

grees in Mathematics of Physics. As financial markets become increasingly

competitive, the demand for sophisticated ideas and creative solutions in-

creases. Markets have thus benefited from the input of mathematics and

this trend shows no signs of abating.

In this paper, I present a scientific perspective on one of the corner-

stones of Mathematical Finance, the theory of options pricing. This theory

was initiated by Fisher Black and Myron Scholes in their seminal 1973 pa-

per (Black and Scholes, 1973) and has grown tremendously since. It would

be impossible for me to do justice to this subject in only one lecture. After

giving a general introduction, I will discuss some aspects that have inter-

ested me the most. Therefore, this paper covers a lot of standard material

as well as more advanced research ideas which use non-linear partial dif-

ferential and ideas from optimal control theory to model risk. For a general

introduction to financial markets and financial mathematics, I recommend

Hull (1994).

1 Investments and probability

Perhaps a good starting point would be to analyze the situation of an in-

dividual who faces the decision of investing money. The most common

investments are in stocks, bonds and cash, or short-term deposits, often

through mutual funds and pension funds. Even a ”no-investment” deci-

sion, such as keeping the money in the bank or spending it, is a form of

asset allocation. The typical parameters used to evaluate investment deci-

sions are yield or expected return on investment, and risk (which is less

well defined). In a very schematic form, an investment in a particular asset

over a time-period ∆t starting at time t gives rise to a return

X(t +∆t)−X(t)
X(t)

= ∆X(t)

X(t)

where X(t) is the amount initially invested and X(t + ∆t) the value of

the investment at time t + ∆t. A very rough measure of the quality of an

investment is obtained if we study a historical time-series of returns and

calculate the empirical mean and variance for this investment:

µ = 1

N∆t

N
∑

n=1

X(n∆t)−X((n− 1)∆t)

X((n− 1)∆t)
,

and

σ 2 = 1

(N − 1)∆t

N
∑

n=1

(

X (n∆t)−X ((n− 1)∆t)

X ((n− 1)∆t)
− µ

)2

.
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Historical (long-term) numbers for these quantities in annual terms are,

more or less, µ = 16%, σ ≈ 15% for stocks, µ = 10%, and σ = 12%

for bonds. However, these numbers are strongly dependent on the ”time-

Window” or sample size.

Although investment is as much and art as a science, rational investment

decisions are often based on evaluating the risk and return of different

strategies. Risk-averse individuals will keep their wealth mostly in bonds

or in cash (not under the mattress, though!). Investors willing to bear some

market risk in exchange for higher returns might invest in stocks or long-

term bonds. Long-term bonds are, in principle, riskless instruments, since

they have a well defined return if held to maturity. However, the value of

a bond changes because there is an ”opportunity cost” in holding a bond

that yields less than other instruments, e.g. cash or shorter-term notes.

It is important to take into consideration the fact that investment strate-

gies can change across time. For example, investment advisors recom-

mend ”aggressive” stock portfolios to their younger clients and more ”sta-

ble” portfolios consisting mostly of bonds, as they approach retirement

age. Another example of time-dependent investing is ”timing the market”

-attempting to buy at the low and sell at the high. This is the goal of all

investors, but it is certainly not easy to do! The concept of dynamic in-

vestment decision or dynamic asset allocation is extremely important in

finance and Financial Mathematics. This principle applies even more so to

firms and corporations in their management of capital and business deci-

sions.

Nobel prize winner Harry Markowitz was one of the the first to propose a

coherent theory of investment based on the use of probabilities (Markowitz,

1991). In his approach, the investor considers the mean and the covariance

matrix of the returns of different investment lines. For instance, in the

inverse of a stock index, a bond index and cash, the investor would consider

the 3-vector (µ1, µ2, µ3) and the covariance matrix

σ 2
1 σ1σ2ρ12 σ1σ3ρ13

σ1σ2ρ12 σ 2
2 σ2σ3ρ23

σ2σ3ρ23 σ2σ3ρ23 σ 2
3

By allocating his resources among the three different assets in different

proportions, the investor can construct a ”portfolio” with yield

3
∑

i=1

wiµi (1)
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and variance

3
∑

i=1

w2
i σ

2
i + 2

∑

i<j

wiwjσiσjρij . (2)

The investor can choose the ”portfolio weights”w1,w2,w3 so as to max-

imize returns (1) holding the variance (2) fixed at a desired level. Here,

the variance of the portfolio is identified with the risk of the investment.

This is a classical quadratic optimization problem that can be solved with

elementary linear algebra. The procedure, called mean-variance optimiza-

tion, gives a rationale for targeting the maximum mean return for a given

risk level. Mean-variance optimization and its many generalizations are the

most widely used tools in modern asset allocation and money management.

Implicit in Markowitz’s portfolio theory is the idea that the returns are

governed by probabilities. We thus (i) regard the outcome of investing as

a random varible, and (ii) assume that these probabilities can be inferred

from historical data. This raises the fundamental question of to what extent

can historical, or frequential∗, probabilities predict future returns. Can

statistical analysis applied to financial market predict the future? It is clear

that the answer is ultimately no. Unlike physical (mechanical) systems,

markets are not ”closed systems” determined completely by their initial

conditions. The future behavior of the market may depend on information

not available at present or by future events that we cannot control and

even less model. Furthermore, the market’s dependence on a set initial

conditions is often murky. The point is that there is a distinction to be

made between probability (the calculation of outcomes based on known

odds) and risk-analysis (the estimation of outcomes in the presence of odds

that are not known with certainty). John Maybard Keynes (Keynes, 1936)

put it like this:

By ”uncertain”knowledge... I do not mean merely to distinguish what is

known for certain from what is only probable. The game of roulette is not

subject, in this sense, to uncertainty. The sense in which I am using the term

is that in which the prospect of a European War is uncertain, or the price of

copper and the rate of interest twenty years hence, or the obsolescence of a

new invention... About these matters, there is no scientific basis on which to

form any calculable probability whatever. We simply do not know!

At first glance, this profound statement and its implications might lead

us to the erroneous conclusion that quantitative tools are only of marginal

use in finance and economics. A deeper analysis -and reality- show that

this is not so. The existence of financial risk gives rise to the need for

hedging or diversifying it, hence to more sophisticated investment vehicles.

In particular, the appearance and phenomenal growth of derivatives has

∗Based on the observed frequency of past events.
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prompted completely new applications of mathematics and probability to

finance.

Derivatives are contracts that derive their value from other instruments

(stocks, bonds, etc). They include options which are the main topic of this

paper. Derivates exist because there is volatility, or risk. The effect of

derivatives are what economists call ”financial intermediation”: the trans-

fer of financial risk from some individuals to others. There are people

who, for a price, are willing to assume the investment risks on behalf of

other investors who are risk-averse, more or less like an insurance com-

pany insures your home against casualty for a fee. The trading of deriva-

tive contracts implies that risk itself can be priced and transferred among

investors in the marketplace. It is precisely in the area of modeling risk and

risk-management that mathematics has proven to be extremely effective.

2 Options

An option is a contract that allows the holder to buy or sell a financial asset

at a fixed price in the future. Unlike a forward contract, which consists of

a commitment by two counterparties to enter into a transaction at a future

date, an option need not be exercised - the holder of the option will use it

only if this is convenient. A call is an option to buy an asset and a put is

an option to sell it. An option contract specifies the exercise price and the

expiration date of the contract. For example, the 145 IBM Call of March

1997 gives the holder the right to buy 100 IBM shares at $ 145 anytime

between now and the third friday in March. This option is called American

because it can be exercised anytime before its expiration date. Options that

can be exercised only at the expiration date are called European.

Options increase the spectrum of investments. For instance, an in-

vestor’s shares of a given stock can use options in several ways. Suppose

that he thinks that the market is ”overvalued” and is due for a correction.

He could choose, on the one hand, to ”take profits” by selling all or part of

his stock holdings and perhaps buying bonds or keeping the proceeds in

cash. If he does this, however, he might loose the opportunity of a further

rally. With this in mind, he could choose instead to buy a put option, which

gives him the right to sell the stock for a period of time a predetermined

exercise price, and maintain his stock position. In this way, he preserves

the investment opportunity while insuring himself against a drop in price.

This strategy is usually called a protective put. Note however that the

purchase of the put implies paying up-front for this insurance (perhaps by

selling some stock) and this protection is valid only for a period of time.

The investor who implements a protective put strategy reduces a fraction

of his potential gains by purchasing the option. Another common strat-

egy is the so called buy-write strategy. This is done by investors that hold

stock and and believe that the market will not experience much volatily
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and wish to derive some ”income” from the position they hold. In this

case, the investors sells (”writes”) call on the stock. Since he owns stock,

he can meet the potential obligation implied by the option contract. There

are infinitely many strategies for investment using options; the two men-

tioned above being the simplest. Puts and calls are traded essentially like

any other financial asset.

A longstanding problem in Finance was the valuation of option con-

tracts. Is there a relationship between the price of the underlying asset, on

the one hand, and an option contract written on this asset? This problem

was solved by Fisher Black and Myron Scholes in 1973. Let us assume a

stochastic model for the evolution of the price of the underlying asset:

dSt

St
= σdZt + µ dt, (3)

where Zt is a Brownian motion and σ , µ represent respectively the volatily

and mean of the returns for investing in the stock. This model is just the

”continuous-time” version of the ”stochastic returns” model of the previous

section. We shall be purposely vague about how σ and µ are determined

for now. The prevailing short-term interest rate will be denote by r .

We shall make the intial guess that the value Vt of a call on the stock is

given by

Vt = C(St , t), (4)

where C(St , t) is a smooth function of S and t.

Suppose that an investor sells one call option and buys ∆ shares of the

underlying asset at time t. The change in the value of his holdings over the

interval (t, t + dt) is

(−Vt+dt +∆St+dt)− (−Vt +∆St) = −dVt +∆dSt . (5)

Using equation (3) and (4) and applying Itô’s formula, we can express

the variation of the portfolio in therms of the variation of call price in terms

of the variation of the price of the underlying asset, viz.,

dVt = CS(St , t)dSt + Ct(St , t)dt +
1

2
σ 2S2CSS(St , t)dt, (6)

to leading order in dt. Substituting this expression into (5), we arrive at the

following expression for the change in the portfolio value

(−CS (St , t)+∆)dSt −
(

Ct (St , t)+
1

2
σ 2S2

t CSS (St , t)

)

dt. (7)

If the number of shares held in the portfolio was

∆ = CS (St , t)
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then the dSt term would vanish in equation (7), rendering the the return

of the portfolio non-volatile over the period of time (t, t + dt) (to leading

order indt). I claim that the rate of return of this portfolio should be exactly

equal to the short-term interest rate. Indeed, if this were not so, there would

be an opportunity for making money at no risk -an arbitrage opportunity.

In fact, by investing in this portfolio (or its ”mirror image”), an investor

would effectively be able to borrow money at the cheapest rate and lend

it out at the more expensive rate. Professionals would take advantage of

this and, through the forces of supply and demand, would eventually drive

the option prices to a level where the return on the option-stock portfolio

would be equal to the interest rate for cash †. Since the value of the option-

stock portfolio at the time t is −C (St , t) + ∆St = −C (St , t) + StCS (St , t),
the absence of arbitrage implies that

Ct +
σ 2

2
S2CSS = r (C − SCS)

or

Ct +
σ 2

2
S2CSS + rSCS − rC = 0. (8)

This is the Black-Scholes partial differential equation. To determine the

function C(S, T) we must specify boundary conditions. In the case of a call

with expiration date T we have

C(S, T) = (S −K)+ = max(S −K 0), (9)

where K is the strike price (X+ represents the positive part of X). Indeed,

if ST ≤ K, the option is worthless, and if ST > K, the holder of the call can

buy the underlying asset for K dollars and sell it at market price, making a

profit of ST −K.

For a European-style call (which can be exercised only at the date T ),

C(S, t) is determined by solving the Cauchy problem for the Black-Scholes

PDE with final condition (8). The explicit solution is known as the Black-

Scholes formula:

C(S, , t; , K, , T ; , r , , σ) = S N(d1)−K; e−r(T−t)N(d2), (10)

where d1 = 1

σ
√
T−t ln(

S
K e−r(T−t) )+

1
2σ
√
T − t; d2 = d1 − σ

√
T − t, and

N(z) = 1√
2π

z
∫

−∞
e−

y2

c dy.

†An arbitrage is defined as a transaction in which one buys an asset and immediately sells
it realizing a riskless profit. One of the consequences of an (ideal) equilibrium economy is
the absence of arbitrage opportunities, or, at least, of "obvious" arbitrage opportunities
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A similar formula exist for European puts, replacing the final condition

by (k− S)+.

American-style options, which allow for exercise anytime before the ma-

turity date, can be evaluated in a similar way. However, the possibility of

early exercise makes the contract more valuable, in principle. The ”early

exercise premium”, or survalue of American options with respect to Euro-

peans, depends on the income stream that can be derived by holding the

underlying asset (e.g. stock dividends) and cash (interest rate) instead of

waiting to exercise the option. The rule of thumb here is that there is an

early exercise premium whenever the asset that is ”bought” has non-

zero income stream. So far, we have not assumed that the stock pays

dividends. Therefore, call options o such assets would have no exercise

premium. Puts do have early exercise premium since selling the stock is

like ”buying cash” and the interest rate (income for holding cash) is non-

zero. The income earned by exercising the put option and investing the

proceeds in cash may exceed the ”speculative” value of holding a put ex-

pecting the underlying price to drop further. There in lies the value of early

exercise for puts.‡

In the case of stock index options such as OEX option traded at the

Chicago Mercantile Exchange, we must take into account the fact that the

stocks composing the Standard & Poor 500 Index pay dividends (currently

slightly below 2% on an annualized basis); therefore both puts and call have

eary exercise premium. It is well-known the value of an American S&P500

call (OEX contract of the CBOE) exceeds the value of the corresponding

European contract (SPX).

To value American options, the idea is that we should look for a function

C(S, t) that satisfies the Black-Scholes equation in regions of the (S, t)-

plane where the option should not be exercised and provide additional

boundary conditions along the region corresponding to price levels where

the option should be exercised. One way to arrive at this region is to impose

the additional conditions on option prices that should hold in the case of

American-style options:

C(S, t) = (S −K)+(calls) , P(S, t) = (K − S)+(puts), (11)

since the option is worth as least as much as what you would get by exercis-

ing it immediately. These constraints give rise to an obstacle problem, or

differential inequality, for the Black-Scholes equation which can be solved

numerically. The free boundary arising in this problem corresponds to the

boundary of the ”optimal exercise” region for the holder -the option should

be exercised whenever equality holds in (11).

The free-boundary conditions for American options at the boundary of

the exercise region are

‡The Black-Scholes equation for assets that pay "continuous" dividends at a rate d, is
analogous to (8). The only difference is that the drift term rSCS is replaced by (r − d)SCS .
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C(St , t) = St −K ,
θC(St ,t)
θt = +1, (calls).

P(St , t) = K − St ,
θP(St , t)

θt
= −1, (puts). (12)

These are classical first-order contact free boundary conditions for obstacle

problems encountered in PDE texts.§

The story only begins here. The Black-Scholes PDE and its variants are

used to value more general contracts which have payoffs depending on the

value of another traded asset. Such contracts are generically called contin-

gent claims in the Mathematical Finance literature. They include the class

of exotic options, traded in the inter-bank market, which can have practi-

cally any conceivable payoff structure. The end-users of exotic options are

banks, corporations and sophisticated investors that demand special cash-

flow structures especially suited to their investment needs. ”Plain vanilla”

stock options, on the other hand, are mostly trated in exchanges such as

CBOE, CME, AMEX, etc., and over-the-counter as well.

3 Risk-Neutral Probabilities

Suppose that a contract gives rise to a series of cash-flows at different

dates T<T2 < · · · < TN and that these cash-flows are represented by func-

tions Fi
(

STi
)

,= 1,2 . . . , N . An argument similar to the one of the previous

paragraph shows that the value of the corresponding contingent claim is

Vt = V(St , t), where V(S, t) satisfies the PDE

∂V

∂t
+ 1

2
σ 2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = −

∑

i:t<Ti

Fi(S)δ(t − Ti), (13)

with V(S,NT + 0) = 0. This formula also applies to option portfolios, i.e.

to bundles of options held (long or short) by an investor.

The Black-Scholes PDE has a fundamental probabilistic interpretation.

The correspondence between PDEs and probabilities via the Fokker-Plank

formalism yields

V(St, t) = E







∑

i:t<Ti

e−t(Ti−t)F(STi) | It







, (14)

where St is the diffusion process governed by the stochastic differential

equation

dSt

St
= σ dZt + r dt (15)

§These boundary conditions can be derived also from purely financial considerations
(Avellaneda, NYU course notes)
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and E {• | It} represents the conditional expectation with respect to the

σ -algebra generated by {Zs , s ≤ t} .
If you compare equation (15) with the proposed statistics for the returns

of the index (3), you will notice that the mean returns (drifts) are different.

Indeed, in the latter equation, the mean return over the period (t, t+∆t) is

r ∆t instead of µ∆t (the ”subjective” annual return on investment for the

stock). Thus, the Black-Scholes theory tells us that the value of an option

(or a more general contingent claim) is equal to the expected future cash-

flows, calculated under a certain probability measure assigned to the future

paths for the price of underlying asset. This measure, however, is not the

”subjective probability” that we started with!

Let us give a concrete example. Suppose that the interest rate is 5%, that

the volatility of a stock XYZ is 16% and that it is expected to appreciate in

price by 40% annually. The Black-Scholes value of European-style option to

buy this stock at today’s price in 180 days is 5.75% of the price of the stock.

This result is totally independent of the rate of return on the price of the

stock (we assume that no dividends are paid out). On the other hand, the

expected value of the cash-flows, max(ST − K)+, using 40% returns (equa-

tion (3)) is 21.46%. From an investor’s point of view, this result may seem

paradoxical, since the higher the expected returns, the higher the proba-

bility of profiting from holding the call. Therefore, he should be willing to

pay more than 5.75% for the option. This argument, based on ”frequential

probabilities”, is neverthless wrong.

The explanation lies in the concept of dynamic hedging. Under Black-

Scholes assumptions, the holder of ∆t = CS(St , t) shares of stock and

C(St , t) − CS(St , t) · St dollars in a money-market account has a portfolio

worth CS(St , t) dollars at time t. In the period (t, t + dt), the change in

the value of the shares plus the interest accrued in the cash account add

up to the change in the function CS(St , t), because

dC(St , t) = CS(St , t)dSt +
(

Ct(St , t) + σ2S2

2 CSS(St , t)
)

dt

= ∆tdSt + r (C(St , t) − CS(St , t).St)dt,

by virtue of the Black-Scholes PDE. Therefore, by successively adjusting the

number of shares, Delta after each trading period, it is possible to maintain

a net portfolio value equal to C(St , t). At the expiration date, the value of

the portfolio is exactly equal to C(ST , T ) = (ST −K)+ which is the market

value of the option.

The conclusion is that if you have an initial reserve at time t of C(St , t)

dollars, you can implement a dynamic trading strategy that generates a

return identical to the one of the option. This strategy is called option

replication, or dynamic hedging.

Referring back to the example, the point is that an individual that can

engage in dynamic hedging, does not care if investing 21.46% of price of
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the underlying stock in the call will make him break even (in the long run).

The option can be ”manufactured” with only 5.75%, so why pay more? Con-

versely, if the expected return on the stock was less than 5% and the option

was priced as a ”statistical bet” instead of using Black-Scholes, the investor

would probably buy but definitely not sell at that price! The probability

measure on price movements implied by (15) is called a risk-neutral prob-

ability because it has the property that the option premium corresponds to

the value of a ”statistical bet” (expectation) under this modified probabil-

ity. The Black-Scholes formula represents the cost of replicating the option,

rather than the expected value of the payoff under a subjective probability

(is in a game of chance). It is a consequence of the absence of arbitrage op-

portunities: if the assumptions of the model are correct (volatility, interest

rate) then if the market traded at another price, this would give rise to a

profit at no risk. One would simply buy or sell the option and offset the

risk by dynamic hedging.

An important caveat at this point is the ability of investors to engage in

dynamic hedging in practice, which involves actively trading in the under-

lying security over the lifetime of the option. As some readers might know,

the possibility of dynamic hedging is only available to professional option

dealers, due to the large costs of execution, transaction costs, etc.

However, option dealers, who compete for customers in the market-

place, estimate the cost of managing an option inventory using Black Sc-

holes and make prices accordingly. Since prices must be competitive with

other dealers, they reflect the business costs of dynamic hedgers (risk-

neutral valuation) rather than the expected value of the option payoff under

subjective probabilities.

Let me also mention here that the use of risk-neutral probabilities for

pricing contingent claims goes far beyond Black-Scholes theory. Harrison

and Kreps (1979) formulated a general theory of no-arbitrage pricing, of-

ten called Arbitrage Pricing Theory (APT) which can be summarized as

follows:

Suppose that a market has no arbitrage opportunities. Then, there exists

a (risk-neutral) probability measure P defined on the paths of prices of traded

assets such that

Pt = EP











e
−
T
∫

t

rs ds

PT +
∑

t<Ti<t

e
−
T
∫

t

−trs ,ds
CT | It











. (16)

Here, P• represents the price of a traded asset, CTi represent cash-flows

which are paid to the holder of the asset at different dates and rs is a short-

term interest rate. The measure P is called a martingale measure in the

Mathematical Finance literature.

The significance of APT is that, some probability measure with the prop-

erty (15), i.e. a risk-neural probability, must exist in the absence of arbi-

trage. In other words, if such a measure would not exists, we would be
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able to find, in principle, a dynamic trading strategy that generates profits

with no risk. Equation (15) can also be viewed as a formula for evaluating

the price of securities, and it applies to all classes of financial assets. A

complete discussion of the implications of APT is beyond the scope of this

lecture. I recommend, for instance Duffie (1992) for an in-depth discussion

of this subject.

4 Risk-management using the ”Greeks”

This section discusses practical uses of the Black-Scholes formula or, more

generally, the Black-Scholes PDE, as a tool for for hedging an option port-

folio. For simplicity, we consider a ”pure” situation of a stock which pays

no dividends between now and the expiration dates of the options.

Recall that the parameters that enter the Black-Scholes formula are (i)

the exercise price, or strike price, K, (ii) the expiration date, T , (iii) the price

of the underlying asset, S, (iv) the interest rate, r , and (v) the volatily, σ.

Of these five parameters, the first four are observable at any give time (r is

known for short expiration dates). In contrast the volatility of underlying

asset is not directly observable. For each value of the volatility parame-

ter we obtain a different thoeretical option value. Conversly, it is easy to

show that to each possible option value (in the range of the Black-Scholes

formula) there is a corresponding a unique volatility parameter. This is a

consequence of the fact that the Black-Scholes option premium is a strictly

increasing function of σ . The implied volatility of a traded call is, by defi-

nition, the value of σ that solves the equation

C(S, t; K, T ; r , σ) = market price of the call,

where the left-hand side represents the BS theoretical value, with the same

definition applying to puts.

The market price of the option defines its implied volatility, which is the

volatility that ”makes Black-Scholes true”. We will assume henceforth that

σ is the implied volatility. The main use of the Black-Scholes formula is to

control the exposure of an options portfolio to different types of market

risk. We already introduced the parameter Delta, which is the derivative of

the portfolio value with respect to changes in S:

∆ = ∂V(S,t)
∂S .

Here, V represents the total value of the portfolio, i.e. the sum of the

values of all the options in the portfolio. The portfolio Delta is the algebraic

sum of the Deltas corresponding to each option computed with its own im-

plied volatility. The fundamental result of BS is that a position in−∆ shares

of the underlying asset renders the position ”market-neutral” − the value

of the portfolio will vary less than the stock price by an order of magnitude
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(dt rather than dt1/2). Moreover, the Black-Scholes theory implies that the

dt term is equal to the cost of funding the position at the riskless rate. (If

funding is taken into account the variation of the total portfolio value is

therefore O(t3/2) - negligible even after adding all the variations over the

life of the option).

For example, a 180-day European at-the-money call (K = S) with r =
5% and σ = 16% has a delta of 0.6086. This means that to hedge a short

position in 100 calls (or, equivalently, one option to buy 100 shares), one

should buy 60.86 shares of the underlying stock (say, 60 shares). Similarly,

the order of an option to buy 100 shares will be hedged by short-selling

60 shares. The same philosophy applies to option portfolios. At least in

theory, Delta-hedging is a way of protecting an option portfolio against

moves in the price of the underlying asset.

An important observation concerning delta-hedged option positions is

that the distinction between owning a call and owning a put disappears

completely! Indeed, identity

(S − K)+ − (K − S)+ = S −K

implies that

C(S, t;K,T) − P(S, t;K,T) = S − Ke−r(T−t),

where the functions in the left-hand side of the equation represent the

value of a call and a put with same strike and expiration date. The right-

hand side can be interpreted as the fair value of a contract to buy the stock

at K dollars at date T . This result is called put-call parity. It states that

a put can be ”Synthesized” with a portfolio consisting of a call, one share

held short, and a note with face value K. Differentiating this equation, we

obtain a relation between the Deltas of puts and calls:

∆call − ∆put = 1.

The point is that, while unhedged option positions represent leveraged

bets on the direction of the market, hedged positions are ”non-directional”.

Delta-hedged option positions stand to profit or lose according to the be-

haviour of volatility or interest rates.

The second-derivate of the BS price with respect to the spot price

Γ = ∂2V(S,t)
∂S2 ,

is an important sensitivity for practical Delta-hedging. Gamma measures

the change in Delta per charge in the value of the underlying asset. This

sensitivity does not enter the derivation of the Black-Scholes theory, which

assumes continuous adjustments in Delta. However, in real life, adjust-

ments to the hedge porfolio are done at discrete dates usually in response

to changes in the price of the underlying asset. Discrete hedging gives rise
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to ”hedge slippage”: the option is no longer perfectly replicated an there

are gains and losses at each time (relative to the Black-Scholes) fair value.

The Gamma of an option (put or call) is given explicity by

Γ = 1

S
√

2πσ 2
e−

d2
1

2 .

It is a positive quantity: the Delta of an option increases as the stock

price increases. The graph of a hedged (long) option as a function of S is

convex and has a minimum at the current spot price. It is easy to see that

the graph at time t + dt is also convex but it is uniformly lower in value

for all S . This means that the holder of a hedged long option position will

make money if |St+dt − St| is large and will lose if the change in value of

the stock is nearly unchanged. If we consider the reverse position, i.e., a

short option hedged with the Black-Scholes delta, we see that the graph is

now concave. Small stock moves give rise to a profit and large stock moves

give rise to a loss, due to the negative convexity. Market professionals

refer to the former situation as being ”long Gamma” and the latter as being

”short Gamma”. This concept, like Delta, applies at the portfolio level. The

Gamma of the portfolio is just the net Gamma obtained by adding all the

option Gammas weighted by their sign (long/short) and by the number of

contracts. Needless to say, positions with large Gammas are risky because

they are difficult to hedge without introducing too much error with respect

to theory. The size of Gamma, measures, in a sense, the risk exposure to

missing the hedge by trading discretely. Managing Gamma is achieved by

buying or selling options so as to keep this sensitivity under prescribed

limits, therefore limiting the risk of ”hedge-slippage”.

Gamma also becomes important when we take into account transaction

costs incurred by hedging dynamically. For instance, traders that are short

Gamma have to buy stock when its price goes up and sell when the price

drops (always a painful proposition). On the other hand, hedging a long-

Gamma position involves selling stock as the market rallies and buying

when it drops. This creates a noticeable asymmetry in the expected cost

of replicating long and short Gamma positions. In general, dynamic hedg-

ing in the presence of transaction costs is expensive and erodes traders’

profits. A ”compromise” must therefore be made between avoiding trans-

action costs and limiting the contracts risk-exposure. This subject leads to

very interesting mathematics and is the object of numerous studies (Leland

(1985), Davis, Panas and Zariphopolou (1993), Avellaneda and Paràs (1994),

Taleb (1997)).

Another important sensitivity of the BS equation is

Θ = ∂V(S, t)

∂t
,

known as the time-decay. It is of crucial importance in the risk manage-

ment of an options portfolio, because is tells the trader by how much the
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value of the position will change if the spot price stays the same. Theta

and Gamma have opposite signs, as we argued above. We can see this

more precisely by making the change of variables

∼
V= e−r ,t,V,

∼
S,= e−r ,t,S,

which expresses values in constant dollars, removing the effect of interest

rates. In the terms of these variables, the Black-Scholes PDE becomes

∂
∼
V

∂t
+ 1

2
σ 2

∼
S

2 ∂2
∼
V

∂
∼
S

2
= 0 ,

or
∼
Θ= − 1

2
σ 2

∼
S

2∼
Γ ,

where we can use tildes to emphasize that values are computed in constant

dollars. This relation can be rewritten as

∼
V (t + dt)−

∼
V (t) ∝ − 1

2

∼
Γ ·E

{

(∼
S (t + dt)−

∼
S (t)

)2
}

,

where we identified the variance with the square of the spot price incre-

ment. Thus, the BS equation expresses a proportionality relation between

time-decay, convexity and volatility.

Let us illustrate this with a numerical example. The change in value of

a 180-day at-the-money call with σ = 16% over one day expressed in con-

stants dollars is approximately ∆V = 0.01% of the value of the underlying

asset. This is what the holder of the option will lose over one day if the

price of the underlying remains unchanged. On the other hand, the change

in Delta for a 1% move in spot is 0.0357. A volatility of 16% represents ap-

proximately a

(

∆
∼
S

)2

of approximately 16 × 16/365 = 0.71 in percentage

terms. Multiplying this by 0.5 × 0.0357 yields approximately 0.012% as

claimed. This is what the holder of the option expects to make if the spot

price changes by one standard deviation.

As one might espect, the sensivity of the BS value with respect to the

volatility parameters plays a crucial role. The sensitivity is known as Vega¶

V ega = ∂V

∂σ
·

¶The derivative of the stock price with respect to σ is now sometimes referred to as
κ (Kappa), with the advantage that the latter is a Greek letter. Vega appears to be the
terminology used to by option risk-managers in the "early days" and is currently widely
used. The name Vega, on the other hand, corresponds to the name of a Chevrolet model
sold in this country in the 1970’s, a somewhat amusing/nostalgic coincidence.
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Traders often use other higher-order sensitives of the Black-Scholes for-

mula to analyze the risk of an option portfolio, such as

∂2V

∂S∂σ
= ∂∆

∂σ
= ∂(Vega)

∂S
,

and
∂2V

∂σ 2
= ∂(Vega)

∂σ
·

The intuition behind these higher-order sensitives is probably mastered

only by the most seasoned option professionals. For example,
∂∆
∂σ repre-

sents the change in the Delta, the amount of shares of the underlying asset

to be held in the hedge, under a change in the options implied volatility with

all the other parameters held constant. Another parameter often used to

manage option positions is sensitivity with respect to the short-term inter-

est rate,

ρ = ∂V

∂r
.

Although, the effect of ρ is less important in general, considerations

about changes in funding rates can be important in countries where interest

rates are very high and/or fluctuate considerably over short periods of time.

By and large, option portfolio risk-management consists in neutralizing,

or at least keeping within reasonable limits, the above-mentioned sensitiv-

ities in a portfolio. Thus, an options dealer will manage his Delta (usually

set zero), as well as Gamma, Theta, Vega and Rho. Except for Delta, which

is managed by trading in the underlying asset, risk-management of other

”Greeks” involves buying and selling options so as to keep the net sensitiv-

ities near target levels. This includes taking positions in these higher-order

sensitivities as well. For example, a trader can gain exposure to a rise in

implied volatility, for example, by having a positive-Vega portfolio for in-

stance, but at the same time be neutral in Delta, Gamma and Rho. An obvi-

ous but important consideration is the opposite sign of Theta and Gamma

- the ”buyer of convexity” gets exposed naturally to time-decay, while time

is ”on the side” of the seller of convexity if the market remains quiet.

The management of volatility risk (and, in some cases, interest rate risk)

of an options book is a highly non-trivial matter. Among other things,

the implied volatilities of options with different maturities and strikes are

generally not equal. Managing volatility risk requires therefore monitoring

the joint movement of a ”matrix” of implied volatilities

σ(Ki, Tj), i, j = 1, 2 . . .

where Ki and Ti represent different strikes and expiration dates. This im-

plies frequent adjustments of the option portfolio to keep the Greek sensi-

tivities in line and to design profitable option positions according traders’
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expectations on the future behavior of volatilities and rates. In other words,

professional option traders must evaluate the risk-return characteristics of

option spreads, or different option combinations, in terms of volatility and

interest-rate forecasts, price ranges, dividend pay-outs, liquidity of differ-

ent contracts, etc. Natanberg (1988) and Taleb (1977) contain lucid analyses

of option strategies from a practical point of view.

5 Uncertain volatility model

From a fundamental point of view, the assumption that volatility is constant

and Vega-hedging as a risk-management practice, have several shortcom-

ings which are more and more recognized. Specifically:

• The Black-Scholes model, (15), assumes implicity that variations or the

spot price are homogeneous, i.e. that price returns have the same statistics

at differental dates;

• Vega gives the sensitivity of an option only for small changes in the

implied volatility;

• Vega-hedging is inconsistent with the fact that options with the same

maturity and different strikes usually trade at different implied volatilities.

In mathematica parlance, one say that Greek hedging corresponds to a

”linearized” approach to managing risk. In particular, it is not expected to

work in the event of a large move, or crash. or to a regime shift, in which

market conditions change dramatically after some event.

The constant volatility assumption is actually inconsistent with ATP. In

fact, if two options with the same expiration date trade at different im-

plied volatilities, which is often the case, then the ”spot volatility” of the

underlying asset
dSt

St
= σt dZt + r dt

cannot be constant, or even a deterministic function of time. If σt was con-

stant orσt = σ0(t)whereσ0(·) is deterministic, at least one of two options

would be mispriced by the market if we used the original Black-Scholes

model. However, there is ample evidence that demonstrates that a differ-

ence in implied volatilities does not necessarily imply an arbitrage oppor-

tunity. Instead, it is currently believed that the implied volatility smile and

skew observed in many markets, reflect traders ”inhomogeneous” volatility

expectation. Traders estimate the cost of option replication conditionally

on future event such as changes in market conditions, changes in the liq-

uidity of the underlying asset, etc. There is no reason why the constant-

volatility/lognormal assumptions of Black-Scholes should hold: only the

consequence of the theory - the consequences of no-arbitrage - should hold,

once a probabilistic model is specified.

Here, mathematics comes to the rescue in a big way. According to the

No-Arbitrage Theorem of §2, no-arbitrage implies the existence of a prob-
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ability measure on paths {St} such that the prices of traded assets are si-

multaneously reproduced by taking expectations with respect to the same

probability should be such that that prices computed in costant dollars are

martingales. By making volatility σt a random process, or a function of St
and t, for example we can expect to satisfy the APT equation with a single

probability measure for S• and thus obtain a more accurate valuation of

option positions.

This promped researchers to look for specifications of the volatility pro-

cess that would reconcile Black-Scholes theory with observed behavior of

implied volatility of option markets. One proposal has been to make the

spot volatility a stochastic process, which may be statistically correlated

with price shocks. Hull and White (1987) showed, among other things,

that a negative correlation between volatility shocks and price shocks (as

the market drops volatility rises) reproduces qualitatively (but, in my own

experience, not quantitatively) the ”volatility skew” observed in equity op-

tions markets. Typically, in these markets, out-of-the-money puts have a

higher implied volatility than out-of-the-money calls. Other proposals for

volatility modeling (Engle (1984), Noh et al (1994)) use conditionally het-

eroskedatic models (the ARCH-GARCH family) to model the behavior of the

underlying asset. However, the use of stochastic volatility models or ARCH

models raises the important problem of model specification (by economet-

ric analysis or otherwise) and the relevance of historical data for managing

future risk. Another critique of stochastic volatility models. with which

Keynes would probably not disagree, is that the differential sensitivities

with respect to the parameters of these more complicated models may not

provide protection against large moves in the market. Making the model

more elaborate may reflect better current options prices quoted in the mar-

ket but still miss the notion of risk, or uncertainty about the model itself.

In an attempt to remedy these shortcomings of parametric models, I

present here a new approach for managing volatility risk. This approach

is based on the premise that we have little knowledge of the spot volatility

process and that it may be preferable to use the concept of ”uncertainty” or

lack of information, rather than an elaborate specification of the statistics

of volatility.

Let us assume that we have determined a confidence interval for the

spot volatility process {σt , 0 ≤ t ≤ T}, without going into details of how

this interval, or ”cone” was obtained. We postulated therefore that the

process of conditional volatility for the price of the undelying asset satisfies

the inequalities

σmin (t) ≤ σ t ≤ σmax (t) , (17)

where 0 < σmin < σmax are deterministic functions. We shall consider the

collection of all probability specifications on the underlying price process

that satisfy the volatility bounds. Given this range of uncertainty, we cannot
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provide a single price for any given contract whose value is sensitive to

volatility. Instead there is a continuum of possible prices. We shall focus

on the extreme model values, or upper and lower bounds on prices, which

correspond to the worst-case scenario replication costs for short and long

positions, respectively.

In the setting, the problem of calculating extreme prices is isomorphic to

a stochastic control problem in which the volatility is the control variable.

Extremal prices can be computed using the Bellman dynamic programming

principle. More specifically, the partial differential equation for the upper

bound has the form

∂V

∂t
+ Φ0

[

S2

2

∂2V

∂S2

]

+ r S ∂V
∂S

− r V = −
∑

i : t <Ti

Fi(S)δ (t − Ti), (18)

where

Φ0[X] =











σ 2
minX, X < 0,

σ 2
maxX, X ≥ 0.

(19)

This equation constitutes a simple but important modification of the

Black-Scholes PDE; it reduces to the latter when there is no uncertainty

(σmin = σmax). The PDE (17) is known as the Uncertain Volatility Model

(UVM) (Avellaneda, Levy and Paras, 1995). The Delta of the UVM equation

can be used to immunize the portfolio against market risk, in the following

sense: if the agent uses this Delta and starts with the reserves calculated

with the UVM equation he or she will break even if the worst-case volatility

scenario is realized and will otherwise make a profit (use less reserves than

budged). This idea is known as a dominating strategy in Mathematical

Finance. If the agent budgets initially less reserves than the UVM value,

the strategy may lose money but losses are limited to the difference be-

tween the BS and UVM premia. It is intuitively clear that this method of

valuation is robust with respect to volatility specification. However, this

protection does not come for free, since UVM requires more reserves than

Black-Scholes using, say, the center of the band as volatility parameter. In

particular, UVM can generate option prices that are not competitive with

those of a dealers using a constant volatility inside the band.

The gap between upper and lower extremal prices, or between the ex-

treme prices and Black-Scholes using the center of the band (16), is due

to the fact that the new valuation provides protection against all volatility

paths in the band. This gap in prices reflect our uncertainty about future

volatility paths. One way to narrow this ”uncertainty gap” is is to consider

options as a partial alternative to dynamic hedging. An extension of UVM,

which I to describe now, provides a rational approach for doing this (Avel-

laneda and Paràs, 1996). The method consists in using the UVM equation
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to price ”packages” formed by the contingent claims of interest combined

with traded options. Thus, the idea is to perform the UVM analysis on the

new package package rather than on the original claim. Since the options

can be bought/sold in the market we can concentrate on delta-helding only

the net exposure. Usually, this proposal gives rise to narrower price bands

while, at the same time, hedges that perform well under a broad range of

volatility scenarios.

Let me show how this works. Assume that there are M traded options

in the market, with payoff a Gj , j = 1, 2, . . .M and expiration dates $$

Assume also that each option trades at a price Cj respectively. If an agent

sells the derivative security represented by the cash-flows {Fj} and buys

a portfolio of λ1 contracts of the first option, λ2 contracts of the second,

and so forth, the amount of cash needed to hedge this position under the

worst-case scenario is

sup E

{

N
∑

i=1

e−rTi F(STi) −
M
∑

j=1

λj e
−rτj G(Sτj )

}

,

where the sup is taken over all probabilities with volatility paths in the band

(16). If we add to this the market price of the options portfolio, we obtain

V(λ1, . . . λM) = supP E

{

N
∑

i=1

e−rTi F(STi) −
M
∑

j=1

λj e
−rτj G(Sτj )

}

+
M
∑

j=1

λjCj . (20)

V(λ1, . . . λM) can be interpreted as the worst-case scenario reserves neces-

sary to hedge the contingent claim using a partial ”static” option hedge and

Delta-hedging the residual. If we minimize V(λ1, . . . λM) over all combina-

tions of the variables, we will have found the cheapest hedge using options

that immunizes the portfolio over all possible volatility paths inside the

band. This hedge will be represented by a vector of option-hedge ratios

(λ∗1, . . . λ
∗
M). It is noteworthy that the function V(λ1, . . . λM) is strictly con-

vex, so that if a minimum exists, it must be unique. Moreover. the probabil-

ity measure P∗ which gives the worst-case scenario with these hedge-ratios

satisfies the market price conditions

Cj = E
{

e −rτj G(Sτj)
}

, j = 1, 2, . . . M. (21)

To see this, it suffices to use the first-order conditions for the minimum

in (19) taking into account that the partial derivatives of V satisfy

∂V(V(λ1, . . . λM)

V(λj)
= Cj − EP

∗ {

e −rτj G(Sτj)
}

, j = 1, 2, . . . M, (22)
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where P∗ is the measure that realizes the supremum. In particular, the new

worst-case scenario probability produces a calibrated model, matching the

prices of all the traded options.

Let us illustrate the theory with an example. Suppose that the stock

price is S0 = $100, and that r = 5%. Suppose that a 180-day option on

this stock with strike K1 = 100 is trading with an implied volatility of 16%.

Moreover, you expect the ”spot” volatility σt to vary between the limits

σmin = 8% and σmax = 24%. How could you use this information to price

and hedge an option with a strike K2 = 115 expiring in 160 days?

In this problem, we have M = N = 1. The market price if the at-the-

money option with σ = 0.16 is $5.75. Optimizing the function V(λ1) with

F1(S) = (S − 115)+, G1(S) = (S − 100)+ and C1 = 5.75 yields, for the

short position,

λ1 = 0.302 , V(λ1) = 1.97 , ∆ = 0.06.

This means that optimal hedge consists in buying 0.302 at-the-money

options for each 115-option sold. The UVM Delta hedge for the residual

portfolio is 0.06, i.e., 6% of the notional amount of shares in the contract.

The quantity V(λ1) = 1.97 represents the cost of this hedge, which is

broken down as follows: 5.75 × 0.302 =$1.73 invested in the option hedge

and 1.97 - 1.73 = $0.24 invested in reserves for dynamic hedging. We can

compare this with the Black-Scholes premium with different values of σ .

For σ = 0.16 we have a BS value of $0.75, which is much less than V(λ1) =
1.97. On the other hand, if your worst-case fears materialize and the term

volatility turned out ot be 24% instead of 16% the correct premium should

have been $24! This is greater than the optimized value, 1.97. The price

could be narrowed further if there were more options to add to the mix!

This hedging technique, called Lagrangian Uncertain Volatility Model

(λ - UVM), can be used to systematically construct option hedges for exotic

options and other nonstandard derivatives which are more reliable with re-

spect to changes in the volatility environment. They provide an alternative

to hedging volatility risk using Vega and other σ -related Greeks. From a

theoretical point of view, we see how the introduction of multiple martin-

gale measures (through a band of volatility paths) can be used to eliminate

volatility risk by selecting a package of options that gives rise to a less risky

net position, In my own opinion, this tradeoff between delta-hedging and

buying option protection up-front is the key for managing volatility risk.

6 Relative entropy: combining volatility uncertainty

with a-priori beliefs

In this section, I sketch a generalization λ - UVM which attempts to narrow

the lack of information inherent in assumtion (16) (Avellaneda, Friedman,

Holmes, Samperi, 1997).
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Let us assume now that we have a definite belief about the behavior of

forward volatility, based upon historical analysis, expectations about future

option prices, etc. This belief is expressed mathematically as a choice for

the ”most likely” risk-neutral probability measure, P0 that will be realized,

e.g.,

dSt

St
= σ0(St , t)dZt + r dt , (23)

where σ0(St , t) is given function of (S, t). We now wish to price and hedge

contingent claims taking into account also volatility risk - the possibility

that the realized volatility will be differ from our a-priori belief σ0. A nat-

ural approach is to compute a worst case-scenario probability measure, as

before, introducing a penalization for probabilities which are ”far away”

from the prior measure (22) in some norm or distance and which we con-

sider therefore unlikely to occur.

It turns out that a convenient notion of distance for this purpose is the

Kullback-Lieber relative entropy distance, given by

ε(P ; P0) := E P
{

log

(

dP

dP0

)}

, (24)

where
(

dP
dP0

)

is the Radon-Nykodym derivative of P with respect to P0. The

KL relative entropy is a tool used in computer science to analyze the com-

plexity of codes and in other fields of science as well, usually in connection

with inverse problems and parameter estimation (Jaynes (1996, 1984)). It

can be interpreted as a generalized likelihood ratio. To proceed along these

lines, we must compute the relative entropy distance between P0 and a

generic probability measure (P) for St of the form

dSt

St
= σ(t)dZt + r dt . (25)

As it turns out, the relative entropy of Ito processes with different

volatilities is infinite. Nevertheless, this divergence can be removed by

passing to a discrete lattice model and analyzing the asymptotic behavior

of (23) as the mesh-size tends to zero. This yields the result

ε(P ; P0) ≈
const.

∆t
× EP











T
∫

0

η

(

σ(t)

σ0(St , t)

)

dt











, (26)

where ∆T represents the lattice time-time step and η is a convex function

defined on non-negative real numbers. Equation (25) shows that the rel-

ative entropy of two measures defined on a lattice (trinomial tree) which

approximate the Ito processes P and P0 diverges at a rate inversely propor-

tional to the lattice step, with a well-defined rate, given by the right-hand
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side of (25). The function η depends on the discretizationn scheme, unfor-

tunately. However η(Y) is, generically, a convex function of its argument,

independently of the scheme used to approximate the diffusions. A possi-

ble choice for η, which is obtained from the standard trinomial lattice and

is therefore useful for computations, is

η(Y) = Y log(Y) − Y + 1 . (27)

This computation suggests that we consider the following variant of

h-UVM (compare with (20)):

V(λ1, . . . λM) =

sup
P

EP











−ε
T
∫

0

η

(

σ(t)

σ0(St , t)

)

dt +
N
∑

i=j
e−rTiF(STi) −

M
∑

j=1

λje
−rTj G(Sτi)











+
M
∑

j=1

λj (28)

where the supremum is taken with respect to risk-neutral measures such

that σt lies in the band (16). In this equation, ε represents a numerical con-

stant, which can be ”tuned” in different ways. Large values of ε correspond

to a large penalization for deviating from the a-priori measure P0; small

values of ε correspond to a weak effect of the relative entropy and hence

to a larger volatility uncertainty.

For finite values of ε, minimization of (27) over all vectors (λ1, . . . λM)

will give the best option hedge taking into account uncertain volatility and,

at the same time, information about the ”most likely risk-neutral measure”

P0. The minimization of the function in (27), which is convex in its argu-

ments, is done using a non-linear PDE analogous to (17)-(18), but where the

function Φ0 is replaced by Φε

Φε(X) = σ 2
0 · sup

σmin
σ0

≤Y≤ σmin
σ0

(XY − ε · η(Y)). (29)

A precise corrispondence between this history and h-UVM can be made

if we take η(Y) to be a function equal to zero for σmin/σ0 ≤ Y σmax /σ0,

and to +∞ otherwise (a degenerate convex function). In this case, the en-

tropy term will be finite if and only if σ is inside the volatility band. A

smooth, strictly convex function η which is finite in the interval and infi-

nite outside this interval gives rise to a smooth transition, as a function

of Gamma, between the extreme volatility values σmin, σmax which is equal

to σ0 when the Gamma of the portfolio vanishes (in the absence of volatil-

ity risk). For details on this theory and a variety of numerical results, see

Avellaneda, Friedman, Holmes and Samperi (1997).
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7 Conclusion

This paper sketched some of the main themes and results in the area of

valuation of derivative securities. We have covered the principles underly-

ing the valuation of options and contingent claims and also discussed the

management of the risk of an options portfolio using differential sensitiv-

ities. This led us naturally to the original question of model specification

and to managing the uncertainty as to which risk-neutral probability will be

”realized” by the market in the future. We made a fundamental distinction

between pricing contingent claims using a well-defined probabilistic model,

and pricing in the presence of uncertainty with respect to model parame-

ters, This uncertainty is ever-present in derivatives valuation, the argument

being that if the pricing measure was known with certainty by all market

participants, there would be ultimately no incentive for trading options.

Options risk-management is beyond the scope of linear models. Managing

the ”Greeks” is the preferred technique for handling model uncertainty,

but we have shown that this method can be inconsistent with APT and,

more importantly, that it will not provide protection against large changes

in market conditions (i.e. large changes in risk-neutral probabilities). Pro-

posals such as h-UVM, which are based on the simultaneous consideration

of different pricing scenarios, seem to be natural alternative to differential

hedging.

I conclude by stating that the focus of this paper has been limited to a

single risky asset. In reality, we are usually confronted with an economy

with multiple sources of risk and multiple underlying assets, such as the

universe of fixed-income instruments with different tenors. In the multi-

dimensional case the complexity of the theory increases considerably, and

even the apparently simple problem of evaluating expected cash-flows (un-

der a single probability measure) presents difficulties. The need for explor-

ing uncertainty in a multi-asset economy, such as correlation uncertainty,

makes the analysis of risk under uncertain probabilities even more rela-

vant. I hope that some of the methods discussed here, or at least the ideas

behind them, may prove useful for solving the challenging problems exists

in this field.
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