logo del seminario matematico e fisico di milano
Seminario Matematico e Fisico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano
Direttore: Paolo Stellari
      
Vice Direttore: Gabriele Grillo
      
Segretario: Giona Veronelli

Home / Archivio conferenze

Cerca:

Michael Ortiz, California Institute of Technology, Pasadena (Stati Uniti)
Multiscale problems in crystal plasticity
Lunedì 06 Giugno 2005, ore 17:00
Dipartimento di Matematica - Politecnico di Milano - Via Bonardi 9 - Milano - Aula Seminari III piano
Abstract
 
Mauro Spera, Università di Padova
Alcuni aspetti simplettici della teoria dei nodi
Lunedì 02 Maggio 2005, ore 15:00
Dipartimento di Matematica e Applicazioni - Università degli Studi di Milano Bicocca - Via Cozzi, 53 - Aula 3014
Abstract
 
Igor Chueshov, Kharkov National University (Ucraina)
Long-time behaviour of nonlinearly damped semilinear wave equation
Lunedì 18 Aprile 2005, ore 17:00
Dipartimento di Matematica - Università degli Studi - Via Saldini 50 - Milano - Sala di Rappresentanza
Abstract
 
Louis Nirenberg, Courant Institute, New York (Stati Uniti)
A geometric problem and the Hopf Lemma
Mercoledì 13 Aprile 2005, ore 17:00
Dipartimento di Matematica - Università degli Studi - Via Saldini 50 - Milano - Sala di Rappresentanza
 
Francesco Baldassarri, Università di Padova
Towards an algebraic proof of Deligne's regularity criterion
Lunedì 04 Aprile 2005, ore 17:00
Dipartimento di Matematica - Università degli Studi - Via Saldini 50 - Milano - Sala di Rappresentanza
Abstract
The point of the talk is that of providing purely algebraic definitions and proofs of otherwise known results on integrable systems of linear di erential equations with only a finite dimensional space of local solutions over a smooth algebraic manifold. This talk represents work in collaboration with Y. Andr´e and it is based on our joint book: “De Rham Cohomology of Di erential Modules on Algebraic Varieties”, Progress in Mathematics Vol. 189, Birkhaueser (2001). We correct some statements in that book. The result is still incomplete. Summary: 1. Review of the notion of regular singular point for a linear ordinary di erential equation with meromorphic coecients. Global counterpart “Fuchsian equations”) on a Riemann surface. 2. Examples: Hypergeometric equations on the projective complex line, with 3 singular points. 3. Generalisation of the notion of regular singularity along a divisor to integrable overdetermined systems of linear PDE’s over a complex algebraic manifold, and of the notion of fuchsian connection on an algebraic vector bundle. 4. Deligne’s canonical extension of a Fuchsian connection on a smooth complex algebraic variety, as a logarithmic connection with singularities along a divisor with normal crossings on a Hironaka compactification. 5. Deligne’s criterion of regularity on a normal (not necessarily smooth!) compactification: one only needs to consider the behaviour along the divisors at infinity. 6. (Counter)examples of J. Bernstein to some statements in loc. cit.. 6. Reduction process in a purely algebraic proof of 5. 1
 
Nicola Varopoulos, Université de Paris VI (Francia)
A classification of connected Lie groups in three different but equivalent ways
Lunedì 14 Marzo 2005, ore 16:00
Dipartimento di Matematica e Applicazioni - Università degli Studi di Milano Bicocca - Via Cozzi, 53 - Aula 3014
Abstract