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Geometric Theory for controllability of nonlinear systems

nonlinear dynamical control system = dynamical polysystem =
=collection of vector fields on a (finite-dimensional) manifold

Geometric Control Theory - properties of the control system via
structure of the Lie algebra generated by this set of vector fields

Simple application of this idea to controllability - Rashevsky-
Chow theorem ∗ (1938, 1940), which establishes controllability of
a of symmetric (driftless) dynamical polysystems, under bracket
generating (Hörmander) condition

We extend the polysystem by Lie brackets of its vector fields
∗P.K.Rashevsky worked in ”nonholonomic geometry”; W.L.Chow based on a
previous work of C.Caratheodory, 1909
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Symmetric vs. nonsymmetric systems

Hörmander condition is NOT sufficient for controllability if the

system is nonsymmetric. ∗

Asymmetry occurs ”often”, e.g. if the controls involved are

”one-sided” or the system has a ”drift”.

∗Symmetry (in a strict sense) of a dynamic polysystem means that −f belongs
to a polysystem iff f does
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Basic 1
2
Example

ẋ = u, ẏ = x2, u ∈ R. (1)

This is a particular case of control-affine system

q̇ = f(q) + g(q)u, u ∈ R.

Evidently f = x2∂/∂y, g = ∂/∂x and by direct computation

[g, [g, f ]] = 2∂/∂y,

Span{g, [g, [g, f ]]} = R2 - one has bracket generating property.

BUT Obviously starting from the origin we ONLY achieve points

with y ≥ 0.
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Analysis of the basic example ẋ = u, ẏ = x2; obstructions for

controllability

The Lie bracket [g, [g, f ]] is an obstruction, or bad, or one-sided

Lie bracket.

cf. H.J.Sussmann, H.Hermes, G.Stefani ...

The velocity of the motion in the direction of [g, [g, f ]] = 2∂/∂y

equals x2 > 0 - the SQUARE of the primitive of u(·).
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Attainable set for the basic example

”Theorem” The attainable set of ẋ = u, ẏ = x2 from the origin

O is the upper half-plane

{O}+ {y > 0}.

The proof consists of two steps.

Proposition. The attainable set is dense in the upper half-plane.

Krener’s theorem. Under bracket generating property an attain-

able set possesses nonvoid interior and is contained in the closure

of this latter.
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Lie extension or Lie saturation of a control system(cf. V.Jurdjevic,

I.Kupka, H.J.Sussmann)

is a set-theoretic extension of the polysystem, under which the

closures of attainable sets Ax̂ persist.

Remark. Evidently this definition is nonconstructive.

If proceeding with a series of extensions one arrives to a control-

lable system, then the original system is ”almost controllable” -

it attainable set is dense

To complete the argument apply Krener’s theorem
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Some examples of Lie extensions

• The closure of a polysystem in Whitney topology is a Lie
extension;

• convexification or conification of a polysystem F

convF =


N∑

j=1

αj(q)f
j|αj ∈ C∞, f j ∈ F , αj ≥ 0,

N∑
j=1

αj = 1

 .

is Lie extension (theory of relaxed controls, homogeniza-
tion,etc.);

• extension by an adjoint action of a normalizer∗P : F
⋃

AdPF
(Lie algebraic control theory).

∗Diffeomorphism P is a normalizer for F if ∀q̂ : P (q̂), P−1(q̂) ∈ clos(Aq̂)
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”Reduction formula” for control-affine systems

For a control-affine system (with no a priori bounds on controls)

q̇ = f(q) + G(q)u = f(x) +
r∑

j=1

gj(q)uj

the diffeomorphisms eG(q)v with fixed v ∈ Rr are normalizers.

If in addition [gj, gk] = 0, j, k = 1, . . . , r one can extend the
system by Ad

(
eG(q)v(t)

)
f with v(t) - time-variant

(”Reduction formula”, cf. A.Agrachev, A.S., 1986,Math. USSR
Sbornik)

Remark. For constant vector field G(q) ≡ G:

Ad
(
eGv(t)

)
f(q) = f(q + Gv(t)).
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Example 1: Control of a rotational motion of a satellite

(rigid body)

The equations of the rotational motion of a satellite (cf. A.Bloch’s

lectures) are

Q̇ = QΩ̂, Ṁ = M ×Ω = M × JM, (2)

where Q ∈ SO(3) is a position of the body, Ω = (Ω1,Ω2,Ω3) ∈ R3

is its angular velocity, M ∈ R3 - a momentum, symmetric (3×3)-

matrix J - inverse of the tensor of inertia of the body, ’×’ - vector

product in R3;

Ω̂ =

 0 Ω3 −Ω2
−Ω3 0 Ω1
Ω2 −Ω1 0

 ∈ so(3).
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Control of a rotational motion of a satellite (ctn.)

Assume that a pair of torques are applied to create the forcing

momentum along an axis L. The corresponding equations of

controlled motion are:

Q̇ = QĴM, Ṁ = M × JM + Lu(t), u ∈ R, L ∈ R3.

There may exist bounds on control: ‖u(t)‖ ≤ b.

6-dimensional system with 1-dimensional control.

Controllability - ?
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Reduction formula for the controlled dynamic equation of
satellite

Consider just the dynamic equation

Ṁ = f(M) + Lu = M × JM + Lu

Applying the reduction formula we obtain

Ad
(
eLv

)
f = f(M + Lv) = (M + Lv)× J(M + Lv) =

= M × JM + (M × JL + L× JM)v + (L× JL)v2.

Note that the v-quadratic term multiplies the Lie bracket [L, [L, f ]]
which equals to a constant vector field L′.

The v-linear term can be killed by convexification, while the v-
quadratic term is sign-definite - it is an obstruction(!)
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Recurrence property of the drift and its inversion

What ”saves” the controllability is the recurrence property of the
drift f = M × JM - almost all of its trajectories are periodic.

For the ”big” 6-dimensional system almost all points are Poisson
stable. Does not hold for satellite subject to damping.

This recurrence allows to extend the system by the field −f

(Lobry-Bonnard theorem) and after a reduction obtain the vector
field −L′ = −[L, [L, f ]] = −(L× JL).

Repeating once more the reduction we obtain another constant
vector field L′′ = (L′× JL′). For generic J, L the vectors L, L′, L′′

are linearly independent and the dynamic equation is controllable.
Controllability of 6-dimensional case follows easily.
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Example 2: Infinite-dimensional systems: 2D and 3D Navier-

Stokes equations controlled by forcing in few low modes

∂u/∂t + (u · ∇)u +∇p = ν∆u + V (t, x),

∇ · u = 0.

u(t, x) - velocity of the fluid at instant t at point x

p - pressure;

ν∆u - ”dissipative term”

V (t, x) - forcing term, taken as a control.
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2D and 3D Navier-Stokes equations controlled by forcing

ctn.

∂u/∂t + (u · ∇)u +∇p = ν∆u + V (t, x), ∇ · u = 0.

boundary conditions periodic w.r.t. x : u(t, x) evolves on a torus

T2 or T3

the controlled forcing V (t, x) is degenerate: only few low modes

(harmonics) are forced;

There are no a priori constraints on the magnitudes of controls.
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Spectral representation for 2D and 3D NS system

Introduce the vorticity w = ∇⊥ · u, put v = ∇⊥ · V . Then

∂w/∂t + (u · ∇)w = ν∆w + v(t, x).

Spectral method for periodic b.c. = take Fourier expansions:

w(t, x) =
∑

k∈Z2

qk(t)e
ikx, v(t, x) =

∑
k∈Z2

vk(t)e
ikx :

Infinite system of ODE(”infinite-dimensional rigid body”; cf.

V.I.Arnold):

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk(t), k, m, n ∈ Z2.
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For 3D NS system we obtain (cf. G.Gallavotti, ”Foundations of

Fluid Mechanics”)

q̇
k
= −i

∑
m+n=k

(qm · n)Πkqn − ν|k|2qk + vk,

Here qk ⊥ k and Πk is the orthogonal projection of R3 onto k⊥.



Degenerate controlled forcing - finite set K1 ⊂ Z2,3 of controlled

modes;

vk(t) with k ∈ K1 - measurable, essentially bounded controls;

vk ≡ 0, ∀k 6∈ K1

Are the 2D and 3D NS systems controllable?
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Global controllability for the NS systems: various problem

settings

Controllability

Due to smoothing properties of the NS system hard to be ex-

pected. (cf. A.Fursikov, Y.Immanuilov for alternative defini-

tions)

Approximate controllability

Is attainable set from a given (initial) point dense in the space

of u’s?
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Controllability in finite-dimensional projections

We select a finite set Kobs ⊂ Z2,3 of observed modes and follow

its dynamics according to complete NS system.

Controllability in observed projection: can one start from any

(initial) point and attain (in fixed time T) any preassigned ob-

served projection?
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Finite-dimensional Galerkin approximations of NS systems

We truncate the (2D or 3D) NS system, putting all the unob-

served modes equal to zero, obtaining finite-dimensional control-

affine system - the Galerkin approximation.

Is the finite-dimensional Galerkin approximation of NS system

globally controllable?
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Controllability for Navier-Stokes systems: answers provided

cf. A.Agrachev, A.Sarychev, Doklady Mathematical Sciences, v.
69, N.1/2,2004,pp.112-115.

&

Journal of Mathematical Fluid Mechanics, v. (2004), 45 pp.

Controllability of finite-dimensional Galerkin approximations (=
finite-dimensional truncations) of the 2D and 3D NS systems -
YES

Controllability of finite-dimensional projections of trajectories of
complete 2D NS systems - YES

Approximate controllability of 2D NS system - YES
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Controllability for NS and Euler systems: work in progress

Controllability of 2D Euler equation for incompressible ideal fluid

Lie algebraic methods and accessibility property for NS system

Control of viscous incompressible fluid under various boundary

conditions
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Finite-dimensional treatment: controllability of Galerkin

approximations of (2D and 3D) NS systems (GANS)

The Galerkin Approximation of (2D and 3D) Navier-Stokes sys-

tem is a particular type of control-affine system, actually an

multidimensional version of Euler (satellite) equation

q̇j = fj(q) + uj, j ∈ K1,

q̇j = fj(q), j ∈ Kobs \ K1,

fj(q) =
∑

m+n=j

(m ∧ n)|m|−2qmqn − ν|k|2qj, j, m, n ∈ Kobs
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Controllability of GANS - ctd.

Observation: If K1 = Kobs, then

q̇j = fj(q) + uj, j ∈ Kobs,

and the controllability in observed projection can be concluded

(almost) trivially.

Moreover: in this case one can design any (Lipschitzian with

respect to t) evolution of the observed projection.

Proof: to design a Lipschitzian trajectory q̃(t) of the equation

q̇ = f(q) + v take

v(t) = ˙̃q(t)− f(q̃(t).
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Controllability of GANS - ctd.

The only interesting case is:

K1 ⊂ Kobs

More interesting when K1 can be chosen independent of Kobs.

Idea: provide a series of Lie extensions in order to arrive at the
end to this trivial situation

The extensions are:

• relaxation=convexification;

• extension by application of reduction formula;
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Extension by reduction

1. As in ”satellite example” the controlled vector fields gj for

the NS system are constant. They commute and the r.-h.side

of the reduced system is computed as:

ẏ = f(y + GV (τ)),

where V (·) is the primitive of the original control.

2. The drift f is quadratic+linear ; hence this r.-h.side is poly-

nomial of degree 2 w.r.t. V :

f(y + GV ) = f(y) + FV + F(V, V ).

3. The linear terms w.r.t. V can be killed by convexification

(substitute V and −V and convexify).
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4. Among the quadratic terms there are mixed terms vjvk, which

will be our ”new” or ”extended” controls, which multiply con-

stant vector fields. The values of these new controls vjvk can

take both signs.

5. Each control vjvk ”drives” the variable qm with m = j + k,

where j, k ∈ K1, but m may be outside K1. This is an extension.

Convexifying the new controlled directions we arrive at a control-

affine system.

Remark for geometric control experts: we extend our control system

by good Lie brackets [gi[gj, f ]]. Bad Lie brackets (obstructions)

[gj[gj, f ]] vanish.



Controllability criteria for Galerkin approximations of Navier-

Stokes systems (GANS)

Let K1 ⊂ Zs, (s = 2,3) be the set of controlled forcing modes.

Define the sequence of sets Kα ⊂ Zs, α = 2, . . ., as:

Kα = {j + k| j, k ∈ Kα−1 ∧
‖j‖ 6= ‖k‖

∧
j ∧ k 6= 0}.� (3)

Theorem. Let K1 be the set of controlled forcing modes. De-

fine iteratively sequence of sets Kα, α = 2, . . . , by (3) and assume

that for some M :
⋃M

α=1K
α contains all the observed modes:⋃M

α=1K
α ⊃ Kobs. Then for any T > 0 GANS are time-T globally

controllable. �
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Saturating sets of forcing modes

Definition. A set K1 of forcing modes is called saturating if for
any bounded (finite) subset K of Zs, s = 2,3, there exists M
such that K ⊆

⋃M
α=1K

α, where Kα are constructed as above.

Lemma. The set K1 = {k = (k1, k2)| |k1| ≤ 3
∧
|k2| ≤ 3} ⊂ Z2

is saturating. The sets Kα are growing monotonously: Kj ⊂
Kj+1, j ≥ 1. �

Corollary. The set K1 = {k = (k1, k2)| |k1|+ |k2| ≤ 2} ⊂ Z2 is
saturating. �

Remark. M.Romito (U.Firenze) has proven that the set of con-
trolled forcing modes K1 = {(1,0,0), (0,1,0), (0,0,1)} ⊂ Z3 is
sufficient to guarantee global controllability of any finite-dimensional
Galerkin approximation of 3D NS system.
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Controllability in finite-dimensional observed projection for

2D NS system

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k ∈ K1, (4)

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk, k ∈ Kobs \ K1, (5)

Q̇ = B(q, Q) + ν∆Q. (6)

Theorem 1.

If the set K1 is saturating then the system is controllable in the

observed projection. �
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We prove more

Theorem 2.

For any compact C in the space of observed variables there ex-
ists a family of controls v(t, b) parameterized continuously in L1-
metric by a finite-dimensional compact B such that each point
of C can be attained by some control from this family. �

Remark. This property is stable.

Main technical difficulty: the infinite-dimensional part Q affects
the evolution of the observed projection q.

One has to extend the arguments of Geometric Control Theory
to take into account the infinite-dimensional part.
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Relaxed controls for controlled 2D NS system

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + v, k ∈ K1, v ∈ Ω vs.v ∈ coΩ

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk, k ∈ Kobs \ K1,

Q̇ = B(q, Q) + ν∆Q.

Theorem. The trajectories of the first system are dense in the

set of trajectories of the second system. �

Proof is based on Lyapunov-Schmidt-type reduction to a finite-

dimensional case.
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Extension of infinite-dimensional system by Lie brackets.

Infinite-dimensional motion planning

Consider the system of equations

q̇1 = f1(q) + u1,

q̇2 = f2(q) + u2, fj are quadratic+linear,

q̇k = cq1q2 +
∑

m+n=k

cmnqmqn − bkqk,

for an observed uncontrolled (=unforced) variable qk.

How to affect the evolution of qk?
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Assume that the r.-h. side of the equation for qk contains the
term cq1q2. As far as we are able to design any evolution for
q1, q2, we may treat them as controls.

Take

q1 = A1 sinωt, q2 = A2 sinωt, where A1A2c = 2,

and substitute it into the equation for qk, obtaining in its r.-h.
side 2 sin2 ωt = 1− cos 2ωt � 1, as ω →∞.

Remark 1. sinωt � 0, as ω → ∞; this asymptotic equality is
understood in the metric of relaxed controls.

Remark 2. The product q1q2 enters only one equation; in all
other equations (including infinite-dimensional part) q1 and q2
enter linearly. One can prove that their effect on the variables
different from qk tends to 0 as ω →∞.


