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Abstract

We study the Kohn Laplacian D;q) acting on (0, ¢)-forms on quadratic CR manifolds. We

characterize the operators Dg‘” that are locally solvable and hypoelliptic, respectively, in terms
of the signatures of the scalar components of the Levi form.
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0. Introduction

Let V be an n-dimensional complex vector space, W an m-dimensional real vector
space, WC the complexification of W, and

OV xV>WE

a Hermitean map (i.e. &(z,z') =P(z,z) for every z,zeV, where complex
conjugation in W¢ is referred to the real form W).
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We consider the associated quadratic manifold
S={(z,t+u)eV x W' :u=d(z,2)} (1)

in n + m complex dimensions. Then S is a CR manifold of CR-dimension # and real
codimension m.

We consider the Jy-complex on S, its adjoint 3}; (with respect to the Lebesgue
measure dz dt on S and to a fixed Hermitean inner product on V'), and the Kohn
Laplacians

acting on (0, ¢)-forms on S.
We address the problem of determining under which assumptions on @ and ¢ the

operator Dg") satisfies either of the following properties:

(a) it is solvable, in the sense that, given any smooth (0,¢g)-form ¢ on S with
compact support, there exists a (0, g)-current w on S such that Déq)a) = ¢;

(b) it is hypoelliptic, i.e. any (0, g)-current w on S such that Dg’”w is smooth on an
open set U is also smooth on U.

CR manifolds appear in connection with different problems in complex analysis,
such as extension theorems for CR functions or boundary behavior of holomorphic
functions. Questions about solvability or hypoellipticity of (systems of) differential
operators with multiple characteristics naturally arise in this context. We refer the
reader to the monographs [AK,B,ChSh] for accounts on these matters.

Analysis of the J,-complex on quadratic CR manifolds appears in [RoV], see also
[T2] for a recent overview on this topic.

The form @ can be identified with the (vector-valued) Levi form on S, and most of
the properties of S have been recognized to depend on the signatures of the scalar-
valued forms

OH(z,7) = MD(z,7)),

depending on Ae W*. For a given Ale W* let n* (1), resp. n (1), the number of
positive, resp. negative, eigenvalues of ®*. In [RoV] it was proved that, under the
assumption that @* is generically non-degenerate, the CR-equation Opu =f is
solvable for any smooth Jj-closed (0, ¢)-form /" if and only if there exists no 1e W*
such that nt(1) =n—¢ and n (1) = ¢. The “only if” part of this statement was
extended to general CR manifolds in [AFN].

Another relevant part of the literature concerns subelliptic estimates for the Kohn
Laplacian. In [K] the so-called condition Y(g) was given as a sufficient condition for
the subellipticity of the Kohn Laplacian on CR manifolds of codimension 1 (see also
[FK,RtS]). The condition stated in Theorem 2 below is equivalent to a natural
extension of condition Y(g) to the present setting (see condition (v) in Theorem 7.1
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and the remark that follows)." Solvability of qu) in absence of hypoellipticity does
not seem to have been considered so far.

We prove that the signatures of the scalar forms @*, as A varies in W*, completely
determine both solvability and hypoellipticity of Déq). One of the novelties of our

results lies in the fact that we can include the case where @ is degenerate for every /.
Our main results are the following.

Theorem 1. Let n' (1), resp. n~ (1), the number of positive, resp. negative, eigenvalues
of ®*. Then Déq) is solvable if and only if there is no Ae W* such that n* (1) = q and
n(A)=n—q.

Theorem 2. Let n' (1), resp. n~ (1) be as in Theorem 1. Then Déq) is hypoelliptic if and
only if there is no 2€ W*\{0} such that nt(A)<q and n~ (A)<n—q.

We also prove that:

(i) property (a) is equivalent to the existence of a tempered fundamental solution
for Déq), and also to the property that the L>-null-space of D;f” is trivial;
(i1)) when D;}q) is not solvable, the orthogonal projection onto its L>-null-space is

given by convolution on Gg with an operator-valued distribution %, for which

we give an explicit formula;
(iii) property (b) is equivalent to the fact that DI(;’) satisfies non-isotropic subelliptic

estimates of order 2.

The precise statements require further notation and they can be found as
Theorems 4.4, 5.2. 6.1, 6.5, and 7.1.

It is worth mentioning that there are non-trivial cases in which all the &* are
degenerate (see the remark in Section 3a). Theorem 1 has the following consequence.

Corollary 3. Suppose that the Hermitean forms ®* are degenerate for all /.. Then the
0 (q) ;
perator [1," is solvable for any q.

Theorem 1 contains some of the results in [NRS], namely Theorems 7.2.1 and
7.3.1, in the particular case where @ is ““diagonal”, i.e.

n
D(z,7) = Z ZjZiwj,

=1
in an appropriate coordinate system on V', with w;e W.

' After writing this paper, we were informed of recent results of S.-C. Chen and M.-C. Shaw extending
the Y(g) condition and the relative sufficiency theorem to generic CR manifolds of higher codimension.
These results seem to overlap with part of our Theorem 7.1.
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In the diagonal case the operator D,(,’” diagonalizes in the basis of the elementary
(0, ¢g)-forms dZ!, in the sense that

O (S ) =S Oy fae,
f|=q [7|=¢

where each DZ()I> acts on scalar-valued functions. This fact reduces the analysis

of 0 to the study of each individual O\",

This reduction is not possible in the general case. We use the fact that a similar
decoupling is possible after taking Fourier transform in the W-variables. However,
this can be done, for each individual A€ W* in a coordinate system on } that
depends on A (in fact a system that diagonalizes &%).

Our proofs involve the identification of S with a step-2 nilpotent group Gg, the

Fourier inversion formula on Gg and the analysis of the image of D?, realized as a

system of harmonic oscillators, under the irreducible unitary representations of Gg.

In certain cases S coincides with the Silov boundary of a Siegel domain of type /1.
This happens when the form @ is positive w.r. to a proper cone in W. In fact this is
equivalent to saying that there exists Ae W* such that n™(1) =n and n~ (1) = 0.
Under this assumption, the basic representation theory of Gg was established in
[OV]. In Section 3, we give a self-contained presentation of the Fourier analysis on
G in the general case. We note in passing that, w.r. to [OV], we prefer to privilege
the Schrodinger model of the representations versus the Bargmann model.

This work has been motivated in part by the above-mentioned results in [NRS].
Some of the techniques for constructing fundamental solutions and related operators
are derived from [MR]; the construction of a non-smooth solution of the equation

qu)w = 0 in the proof of Theorem 7.1 has an analogue in [RtS].

We finally remark that, from Theorem 1, one can deduce the results in [RoV] on
solvability of the CR-equation Jyu = f, and extend them to the case where &* is
always degenerate. We address these matters elsewhere [PR].

1. The nilpotent group associated to a quadratic manifold
Let S be the quadratic manifold defined by the equation
Imw = &(z,z),

with ze ¥V and we WC. For elements we WC the expressions Re w, Im w, w have the
obvious meaning. For (z/,w') €S the complex-affine transformation of ¥ x W®

Tow)(zw) = (242, w+w +2id(z, 7))
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maps S onto itself, and

T(:’,w’)r(z”,w”) = T(z’+z”,w/+w”+2id>(z’,z”))

-1
T(z’,w’) = T(—z/,—w+2id(' ,2))

Under the identification of (., with (/,w’) €S, this composition law defines a Lie
group structure on S. As customary, we introduce coordinates (z,f)eV x W to
denote the element (z,f+ i®(z,z))eS. Once pulled back to V x W, the group
multiplication takes the form

(z,0)(Z, )= (z+Z,t+ 7 +2Im &(z,7)).

We call Gy this group and g, its Lie algebra, that we now describe in detail.

For ve V', denote by 0, f the directional derivative of a function f on V' x W in the
direction v, and let X, be the left-invariant vector field on G4 that coincides with 9, at
the origin. It is easy to check that

Xof (z,8) =0 f(z,t) + 2Im @(z,v) - V. f (2, 1).

As we are going to introduce complex vector fields on G, it is convenient to adopt
the notation Jv (instead of iv) for the complex structure on V. We then define
Z,,Z,€q5 as

1 1 —_—
Z, = 5(X, = iXp,) = 5(0, = i0y) + i0(z,0) - V.,

- 1 1
Z, = E(XL + inv) = E((’)b + i) — i¢(2, v) - V.

The commutation rules are

Xy, Xy] = 41m &(v,v') - V,,
[Zvazv’] = [Z_vazv’] = 07

[Zy, Zy] = =2i®(v,0) - V,. (2)
Hence, g, is 2-step nilpotent and, under its identification with V' x W,

(90,95 ={0} x W S3y,

where 3, denotes the center of g,.
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2. The Kohn Laplacian on G4

A (0,q)-form on S is a section of the vector bundle A%7(T*S), whose fiber at each
point can be identified with the exterior product 4, = A%(V*). As every vector
bundle on S is trivial, we regard (0, ¢)-forms as vector-valued functions on Gy with
values in A4,.

Let {vy,...,v,} be any orthonormal basis of ¥ with respect to the given inner
product. Let (zi, ...,z,) denote the coordinates on 7 with respect to this basis. As
customary, we write

1 , .
:7XU/'+IXJU/)’ ‘]:1,...,}’1.

1 . 7
2306, - %), 2=

2

The ), complex is defined as follows.

We denote by dz’ the (0, g)-form dz; A --- ndZ;,, where I = (iy, ..., i) is a strictly
increasing multi-index. Given a (0, ¢)-form ¢ =3, _, ¢,;dz" with smooth coeffi-
cients, we set

VEDY Z Zi(ppdacndz = > " el Zi(pp)dz (3)

[|=q k=1 [J|=g+1 k|I|l=q¢

Here ¢/, = 0 if J#{k} L[ as sets, and it equals the parity of the permutation that
rearranges (k, iy, ..., I,) in increasing order if J = {k} UI.

The inner product on V" induces a Hermitean product (-,-) on each A, in such a
way that the elements dz/ form an orthonormal system.

Let dz dt denote the left-invariant Haar measure on Gp. On the space L*(Gp) ® A4,
of (0, q)-forms with coefficients in L?(Gg) we consider the inner product

R :/G (Pp(z,0),4(z,1)) dz dt.

The formal adjoint J; of J, can be easily computed to yield

Db | = Y =D ez a7 (4)

ll=q Vl=q-1 kll=q
We now compute the Kohn Laplacian 0 = §,3; + 3;0.
Given two multi-indices K and L such that |[K| = |[L| = ¢ and {KnL}| =¢q— 1,
we set
e(K,L) = (71)"17 (5)

where m is the number of elements in K N L between the unique element k€ K\L and
the unique element /e L\K.
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Proposition 2.1. With respect to any fixed orthonormal basis on V, the operator Dg’” is

represented by a matrix (O k) of scalar left-invariant differential operators on Gy as

o7 <§Kj ¢Kdz’<> = Z(}Kj DLK¢K> dz".

L

Then,
Ok = -0k L + Mg

where .k is the Kronecker delta, & =% %} | (ZxZix + ZixZx) and

%(Z Zk, Zi] = 2 [zk,zk]> if K=L,
keK kéK
Mg = )
oK, L)[Zi, /] if {KaLY =g—1,

0 otherwise.

Proof. By (3) and (4) we have

BTpd) =0 | = D | D esZudk | dZ’

[7I=q—1 \ k.|K|=¢

(]

K. L5 L
g6 Le Ly | dz”.
[LI=q \k./,|J|=9—1,|K|=¢q

On the other hand,

Fde) =0, > | D ek | d=”

|H|=q+1 \J,IK|=¢q

_ H_H~— 5 =L
= — E E SjKSiLZ,Z/¢K dz".
[LI=q \ij,|H|=q+1,|K|=¢
Hence,

[]1()”)((;’)) = - Z Z Z 811513{212/21(

|LI=q |K|=q \ ¢k |J|=q—1

H H > % L
+ E ek ZiZy | g dz”.
i |H|=q+1
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Then,

_ K L 5 H H 7 5
Uk = — E errZe i — E eixeiLZiZ;. (6)
4k |T|=q~1 ij | H|=q+1

When K = L the indices k and 7 are forced to be equal, as well as i and j. Hence,

O = — (Z ZiZi + Z Zij>

keL JjEL
1 & _ 1 _ }
=-3 Z(Zka +ZvZy) — 2(2 [Zk, Zi] + Z [Z,“Zk])_
k=1 keL k¢ L

This proves the statement for the terms along the diagonal.

On the other hand, when K # L, the coefficient &f, &%, is different from 0 if only if
K=Ju{k} and L =Ju{/}. Notice that, given K and L such that [{KnL}| =
g — 1, they uniquely determine J,k and /. Analogously, sf}((sg;éo if and only if
H = Ku{j} = Lu{i}. Then, necessarily, [{KnL}| = g — 1 as before, and if k and /
are as above, j =/ and i = k.

It follows that (0 x = 0 unless [{KNL}| = g — 1. In this case, each of the sums in
(6) reduces to one single term, and

DLK = —SlfJ8;JZ/Zk — S?KSIIC_ILZ]CZ_/7
with J = KnL and H = Ku L. Furthermore,
K L _ _ H . H _
eerery = —¢/xer = e(K, L),

where ¢(K, L) is defined in (5).
Thus,

Ork = &K, L)[Zk, Z/],

which proves the proposition. [J

3. Fourier analysis on Gg
3.1. Representations and Plancherel formula

The irreducible unitary representations of Gg can be described as follows.
By Schur’s lemma, if = is an irreducible unitary representation of Gy, there is
Je W* such that n(0,7) = ¢*). Then, by (2),

dn([Z,, Z]) = 20(P(v, ') = 28 (v, v/)1. (7)
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We diagonalize &* with respect to an orthonormal basis {v}, ..., vg} of V,in such a
way that

(v, v) = Oy (4),

with g; = 1;(4) #0 for j<v(4) and y; = 0 for j>v(Z), where 0<v(4) = rank o <n.
We call

A A Ao A Jo_ ) syl _ .
X/» —ij, Y/ —XJuj7 Zj _E(Xf —lY_'}.), Z;—E(z\?—i—lY}A).

Then

dn([X}, X{]) = dn([Y}, Y[]) =0,

dn([X}, Y{])
for every j, k. It follows from the Stone-von Neumann theorem that there is
n = a+ ibeC"™ such that 7 is unitarily equivalent to the representation 1. of Gy

on L*(R'™) such that

dm,(X}) =20
2( D=2,
dmi(Y7) = =201, (8)
d”M(Xj)”) =2ia;_,; | .
y . J>v(A).
dﬂ:/l‘r]()]j') = 2lbj7v())

Given /, let (7, ..., ;) be the coordinates on V' induced by the basis {v}}, with

-y Zy
y)

z} = x} +iy/. In order to simplify the notation, we set

= (e xn), X = (X)), Y = (K - X0,

and similarly for y*, ', y". We also set 2/ = x” + iy". In doing so, we must remember
that x/, x”, etc. are components that depend on /.
The integrated form of n,, is, because of (8),

(T (x,3, 1)) (E) = A0 R A mf @ gz 1wy ()

It must be observed that these formulas depend on the choice of the (ordered)

basis of V' that diagonalizes ®*. However, different choices of the basis lead to
equivalent representations.
For a function f on Gy, we define

mial) = [ 0w () dzdr (10)
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This definition has the effect that 7, ,( f * g) = 7,,(g)7;,(f ). The disadvantage of
producing an inversion in the order of the two factors is compensated by a more

natural formalism when dealing with vector-valued functions.
Observe that if .Z is a left-invariant differential operator, then

win(Lf) = dni (L) msu(f )

Definition 3.1. Let v = max;.p~v(4). We call Q the Zariski-open set Q< W* such
that v(1) = v for 2eQ. For 1eQ, we set

v
=TI Il
j=1
If v = n, then D(2) = |det &*|.
Proposition 3.2. The Plancherel formula for Gg is

B = [ [ Imia D) din (1)

for an appropriate normalization of the Lebesgue measure d on W*, and the inversion
formula takes the form

Fen) = /Q [t £ . 0)DG) dn

Proof. It follows from (7) that, for Ae @,
(i ()P / T f (3,72, 1) 259 g — 2) dx’ dy!
— [ K206z,

with

5 év_éi f +‘fl f\r"'éiy
Ki-ﬂ(évé/): X"yt tf( l sy P y —Hy 12 1a-~~7_:uv D) 72’77}' .

The conclusion follows from the fact that ||7;, (f ||Hs J1Kq(¢, P dEdE and
from the Euclidean Plancherel formula. O

When v = n, i.e. when there exists i€ W* such that &* is non-degenerate, the
Plancherel formula takes the simpler form

||f||§=/Q||m<f>||ﬁs\detd>i|dz.
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Remark. It must be noticed that it is quite possible that all the &* are
degenerate, even though there is no common radical that can be factored
out to decompose Gy as the product of a nilpotent and an abelian group.
An example is obtained by taking V' = C°, W = R?, & = (&, ®,), with Di(z,7) =
Z"*A;z and

00 0 0 I 1
A=10 10 , A»=11 0 0
0 0 -1 1 0 0

We also observe that Gg is stratified (i.e. the vector fields Z, and Z, generate the

full complex Lie algebra) if and only if there is no 1#0 such that @* = 0. This
remark will be recalled in Section 7.

3.2. Hermite bases

In dealing with the representation =; , we privilege a particular orthonormal basis

of L2(R"*) that depends on A.
Denote by /; the jth Hermite function on the real line:

» ; d/ _,
(1) = V) =1 e (12)
Given a multi-index meN"" we set
A vu) 1/4 1/2
(&) = 1T 1" B (7)) (13)

Jj=1

As a further simplification in the notation, for e R'™ we set

Rlé = (‘:ul|l/zéla ) |:u'v(i)|l/2év().))'

)
m, m'

(x*,¥*,1) be the matrix entry {m;,(x*,y* )i’ ht,>. There

mm’

Lemma 3.3. Let y

exist Schwartz functions x//; o ON R depending only on m, m'" and on the signatures
& = /|| such that

AN (x;',yi, l) _ ei(/l(t)+2 Re(z”,11>)lpa (RJVX)', Riy;').

/(m, m' m, m'
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Proof. Write

v(4) V(%)
B (H ﬂj|l/4> et 2 PP (R,
=1

with P, a real polynomial containing only monomials £* with «a<m. Then

1 (X

v(4) ~) . v(2) )
— D +2 R 1)) < H l/2 / e 2 ”fy]‘(@f“/”)e*% Do ImlG+2x))?

)

-3 "“Jlfz )
xe Pin(Ri(E + 2x%)) Py (R;C) d
. VAL 2y S ()
_ e;(ﬂ(l)JrZ Re(=" %) H |HJ|1/2 / e ! /j=1 /‘/}/Qe 2 j=1 HILGjTX;
=l RV(4)
\(/)
y 372 U lwlE—- xl) (Ri(é + xi))Pm,(R,z(é - xﬂ-)) dé

) .
_ (0042 Re<-’”ﬂ1>)< H |#j|1/2> CXI TS (R

ot+p<m+m’
o / —2{:, e D Wﬂﬁf(&é)ﬁ dé
R'¥)
02 R ) = Do Il
v(4)

x> anmap(RX) ] (sen ) F () 2R ).

o+p<m+m’ j=1

The conclusion follows from the fact that the Fourier transform of a monomial

times ¢~ <" equals e~ /4 times a polynomial. O

Remark. As on the Heisenberg group, the functions 1//;7 . can be expressed in
terms of Laguerre functions (see e.g. [F]). However, we shall not need their
explicit expression, except for the case m =m' = 0. The proof of Lemma 3.3
shows that

. " W
)Cég(z7 l) _ eI(A(t>+2 Re(? ,n))e Z w1z ‘ (14)
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3.3. Smoothly varying frames on V and Schwartz functions on the group

Among the elements of Q we select those 4 for which the number of distinct
eigenvalues of @* is maximum. These elements form a subset Q' which is Zariski-
open, and therefore it carries the full Plancherel measure.

Fix Aoe ', and let y,, ..., u, be the distinct eigenvalues of @ with multiplicities
my, ...,my, respectively. By the implicit function theorem, there is a connected
neighborhood U of 4y in Q' on which one can define real-analytic functions x;(1) for
1<i</, such that u,(4) = u; and p,(2) is an eigenvalue of &* with multiplicity ;.
Also, u;(1)<0 for Ae U, except for at most one 7 (in case v<n), for which y;(1) is
identically 0 on U.

For each i and each 1€ U, we can also find an orthonormal basis of the y;(1)-
eigenspace of @*, in such a way that the kth basis element depends analytically on A
for every k.

At this point, we relabel the eigenvalues, allowing repetitions according to their
multiplicity, and ordering them in such a way that p, (1) = --- = p,(4) = 0.

Hence, for each A€ U we have an orthonormal basis {vf, ..., v}} of V, such that v}
depends analytically on A and

(v, ) = Sy ().

The corresponding coordinate functions z}

for AeU.
Define the representations 7, , for (4,17)€ U x C"" according to this choice of the
coordinates. If m, m' eN", we set

= x} + iy} are then real-analytic in 1

I Gonym, m') = (g (f R S —/f X 727,,1()6’,# t)dx" dy* dt.  (15)

Lemma 3.4. Let ¢p(A,n) be a C* function with compact support in U x C"™", and let
m, m' eN". There is a function [ € ¥ (Gg) such that

() (/) = 0 for i U;
(i) f (2sm, ') = @) for (2n)e U x ©;
(il) J (4. 13p.p/) = 0 for (p.p')#(m, nr) and (i) €U x C"".

Proof. Define

Py = [ b, 0DG) didy
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where x*, y* are the real coordinates of ze V' in the basis {vj‘} As U is connected and

contained in @', the signatures ¢ of the eigenvalues w;(4) are constant on U.
Therefore,

f(z,0) = /U o ¢(/17,7)ei(;.(z)+2 Re<z”,'1>)l/j:;llvm(Rllxi’RU/)D(;L) di.dy,
X

with 5, ,, as in Lemma 3.3 and ¢ fixed.
The fact that f is a Schwartz function can be easily deduced from the smoothness
of the functions x]):,yj, 1;(4) and the fact that the 4;(4) are bounded away from zero

on the support of ¢.
Taking Fourier transform in ¢, we find that

/f(z, e ™0 dr =0

identically for A¢ U, which implies that n; ,(f") = 0 for A¢ U.
From the definition of Xf;;7 we have that

m’

Pty = [ ) a5 OB I, D) i
:/ tr(mﬁn(xi,yi,t)Af,‘fm,)D(}v) dl. dy,
Uxcr ’

where A} I, = (A, and A7 =0 if p£m.

m, m' m, m'
By uniqueness of the Fourier transform, it follows that n,,(f )= 4,"  for

m, m'
(4,m)eU x C"". Hence

o~

9 Aot )
f(’%’?%p,P/) = <Am71m/hp7hp’>7

and the conclusion follows. O

3.4. Fourier transform of vector-valued functions

Let f be a function on Gy taking values in a finite-dimensional complex space E.
Following (10), we define

tin(f) = /G (2, 0) " ®f (z,1) dz dr e End(L*(R"™)) @ E.

Let K be a function on Gg with values in Hom (E, F), with E and F finite-
dimensional spaces. Then the convolution operator

fof*K(z,t) = ; K((w,u)""(z,0))f (w, u) dw du
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maps E-valued functions into F-valued functions and it is left-invariant. We have
i (f % K) = 10, (K) 7, (),

if we understand that the composition of T® A eEnd(Lz(R‘ ))) @ Hom(E, F) with
U®uveEnd(L2(R'™))®E is TU ® Ave End(L*(R"W)) @ F.
Let now (-,-) be a Hermitean inner product on E and let

<f,g>=/G<f<z 0),4(z, 1)) dz dr

be the induced inner product on L?(Gg) ® E.

Introducing an orthonormal basis on E, one can easily express this pairing in
terms of the Fourier transform of f/ and g, using the polarized form of the Plancherel
formula. In order to obtain a coordinate-free formula, consider the inner product
{+,-> on HS(L*(R")) ® E such that

(T®v,URw) =tr(TU")(v,w), (16)

where T, U are Hilbert-Schmidt operators on L*(R"), v, we E. We then have

Soa> = [ [l )mnlo)> D) d (17)

We shall use this formula to define vector-valued distributions on Gg. In doing so,
we adopt the convention that the pairing {u,f > between a distribution u and a test
function f is linear in # and anti-linear in f.

3.5. The Fourier transform of Dé")

We shall be primarily concerned with the situation where £ = F = A, = A<,9'q>,
with the inner product naturally inherited from the inner product on V. If ¢ is a

Schwartz (0, q)-form on Gg, then 7;,,(¢) € End(L*(R"?)) ® A,.
We want to describe the image of D§,> under 7;,. Observe that
dn;,(0'9) e End(L2(R'™)) ® End(A,).

Proposition 3.5. Let {v},...,v'} be an orthonormal basis of V that diagonalizes &,
and let (2}, ..., n) be the corresponding coordinates on V. For a strlctly increasing
multi-index L with |L| _q, denote by w’ the elementary form dz". Then, for

¢ =it~ ¢, @} e (R'W)® Ay, we have

du (O [ Y- @0 | = 3 (#1y + i) @),

|L|=q |L|=q¢
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where

v(Z)
Hom == (@ —28) + P,

J=1

and

“EZZM/(—ZN/(- (18)

kel kéL

In particular an(D@) acts diagonally with respect to the basis {h’ @t} of
L*(R'™)® A,. Precisely,

v(4)
d”i,n(ng))( ®(UL (Z || (1 + 2my) + |’7| + “L)hA ®wL (19)

Jj=1

Proof. For the given orthonormal basis we write Zf, Z/‘ as in (2). From (7) we have
dny((Z], Z}]) = 28y

Notice that dn;, (%) = Z]‘.’(:l) - 128 — |n]* = —#. The result now follows from
Proposition 2.1 and from the fact that the Hermite function /;(¢) on the real line is an
eigenfunction of the Hermite operator —(d /dl)2 + £ with eigenvalue 2j + 1. O

The next result will be needed in Section 6. When f € % (G) ® E, we still denote by
f the E-valued function

F i, iy = [ £, 000,00 5%, 0 v’y
With an abuse of notation, we write

fA(i,n;m, I/I’l/) = <7I)_’,1(f )hmahfn’>7

keeping in mind that the inner product on the right-hand side is vector-valued.
We also denote by | - | the norm on E.

Lemma 3.6. For each positive integer N, there exist a Sobolev norm || || and a
constant ¢y >0 such that for all f € ¥ (Ggy) ® E we have

[FAIF _
(L4 PN (U 12DY (4 209 (14 2my) gy )

| (omym, m)|<ew
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Proof. Consider the operator ¥ ®1I acting on ¥ (G¢)® E, where I denotes the
identity map on E. Then

(L@Df)" (2yn;m, m) = {my (L @Dy, by
= dny (L @Dy (f VI,
= (i (f s A (L @D,
(The fact that dn;, (£ ®]I) is self-adjoint on L*(R") ® E follows from the polarized

form of the Plancherel formula, see (17).)
Then,

(($®I)f) (/L n;m, m <|77| +Z +2mj |:uj ) <7U“n(f)h:n7h;>

<|11| +Z 1 + 2my) |,u,> (A, 11;m, m).

The conclusion follows easily, once we observe that, from (15) and Lemma 3.3,

U+ [P+ 2P (Aomzm, m) = / AV OP gl (X4, %, 1) dx* dy* dt,

for a constant coefficient differential operator &, .» in t and z. O

4. Non-solvability of (1'%

In this section we prove the negative result in Theorem 1. In fact we prove the

stronger statement that, under the given assumption, the operator D,gq)

locally solvable.”

We will use the following necessary criterion for local solvability, which is the
vector-valued extension of the corresponding version for scalar operators, due to
Corwin and Rothschild [CoRt].

1S not even

Lemma 4.1. Let .# be a homogeneous left-invariant differential operator from
S (Gp)RFE to S (Gp)QF, and let M*: S (Gp) QF - F(Gp)QE' be the adjoint
operator. Suppose that there exists a non-trivial p€ S (Gp) @ F' such that M*¢ = 0.
Then M is not locally solvable.

2 A differential operator P is said to be locally solvable at a point x, if there exists an open neighborhood
U of x such that for any test function f  with support contained in U there exists a distribution u such that
Pu = f on U. For translation invariant operators, local solvability does not depend on Xx;.
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Proof. We argue by contradiction. By Hérmander’s condition [H6], .# is locally
solvable at a point (zo, f9) € G if and only if there exist a neighborhood U of (zo, #y),
keN, and a constant ¢>0 such that

llgll s <cll-#"gl|,

for all ge Cy° (U)®F’, where || - ||, denotes the Sobolev norm.

Suppose that .# is locally solvable. Using the homogeneity of .#, the
proof of Lemma 1 in [CoRt] goes through without changes to the case
of vector-valued functions to imply that there exists keN such that the
following holds. For each yeC;°(Gy)®F there exists {f}=C;°(Go)RF
such that: (1) suppfn<{l(z,t)|<m+1}; (@) Af,=y on {|(z,1)|<m};
(i) [ (2, 0)| <m".

Given ¢ as in the statement, let Y € C;° (Gy) ® F. Then

/ (P(z,0),¥(z, 1)) dzdt

[zl <m+1

/ Pz, 0),Y(z,8) — Mz, 1)) dz dt
[(z,0)| <m+1

/ (O (1) — M2 i
m<|(z 0] <m+1

<c¢y / |p(z, 1) |mk dz dt,
m<|(z,0)| <m+1

which tends to 0 as m— + oo. Then ¢ = 0, a contradiction. Hence, .# is not locally
solvable. [

We state for future reference a lemma whose proof is essentially contained in the
last part of Section 3.

Lemma 4.2. Given the partial differential equation (#,, + o})f =0, the following
conditions are equivalent:

(i) there exists a non-trivial solution f e ¥ (R"?);
(i1) n = 0 and the multi-index L is such that p, <0 for ke L and w, =0 for k¢ L.

Recall that, given Ae W*, we denote by n' (1) the number of positive eigenvalues
of the form &%, and by n~ (1) the number of negative eigenvalues.

Definition 4.3. We define Q, to be the cone

Q,={2:n"(A)=q,n (A)=n—q}.
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Therefore, Theorem 1 can be restated by saying that Déq) is (locally) solvable if
and only if ©Q, is empty (or equivalently if and only if Q,_, = —€Q, is empty).

Theorem 4.4. Assume that €, is non-empty. Then there is a non-trivial
we S (Gy) ® A, such that Dgﬁw =0.

Proof. Under the given assumptions, @, , = Q, ,N Q' is non-empty. As v = n, there
is no n in the parameters for the generic irreducible representations of Gg.

Let e U=, be as in Section 3. Let z; = x/ + iy} be the coordinates adapted
to a corresponding smoothly varying frame on ¥, and let w} = dZ}'L, as in Section 3.
Then o} varies smoothly with .

Let L be the multi-index of length ¢ formed by those k for which g, (1) <0 on U.

Slightly modifying the construction in the proof of Lemma 3.4 we take a C*-
function ¢(4) with compact support in U and set

o(z, t):/Uqﬁ(i)Xé’o(z, t)D()L)wji da.

It follows easily from (14) that we ¥ (Gy) ® A,. As in the proof of Lemma 3.4, it is
easily shown that the only irreducible unitary representations of Gg for which
7;(w)#0 are those with 4 in the support of ¢. For these A we have

:(w) = p(1)Af o @k,

where A4 is the orthogonal projection onto the one-dimensional subspace of L?(R")
spanned by hé.
It follows from Proposition 3.5 that, for A in the support of ¢,

m (0 w) = < >l + o&i> DA @w]} =0,
Jj=1

because

=S ) -3 == Il
k=1

kel k¢l

By uniqueness of the Fourier transform, Dé‘”w =0. O
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5. The orthogonal projection on the null space of Dﬁ)‘”

Assume that €, is non-empty. It follows from Theorem 4.4 that the null space of
Dl(;f) is non-trivial in the space of Schwartz (0, ¢)-forms. We shall determine the null
space in L?(Gg) ® A, and obtain an expression for the corresponding orthogonal

projector involving a kind of Laplace transform.
Let {U;} be a locally finite open covering of €, such that each Uj is relatively

/

g and for each ieU; there is an orthonormal coordinate system

compact in Q
(zf,...,z}) on V that varies smoothly with /. and diagonalizes @* as ®*(z,z) =
> e ,uk|zf(|2. Let L be the multi-index of length ¢ containing those k for which
e <0.

Let also {p;} be a smooth partition of unity on Q:H; subordinated to the given

covering.
Lemma 5.1. Let we L*(Gy) @ Ay. The following are equivalent:

(1) o is in the null space of Dé");
(i) 7m.(w) =0 a.e. outside of Q,_, and, a.e. on each U;, n;(w) = T/ﬂ ®a)%, vvhére Tjﬁ is
a Hilbert-Schmidt operator on L*(R"), with range in the linear span of hj.

Proof. A form w in L?*(Gy) ® A, is in the null space of Dé") if and only if, for every
TE y(Gq;) ® /lq7

(O w7y = o, 0}

- / (i), dry(O)my(2) > D(3) di
=0

Assume that w satisfies (i1). Then

<D§,q)w,f>: o <7u(w)7dﬂ)y(Déq))m(T»D(’l)d)”

= Z/Upj(i)(Tj)'®cu)i,dm(D2q))n;v(r))D(i) d
J J

=3 [ o) ¥ <00} dn O ok, @) > D(2) d

J j meN"
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by Proposition 3.5, because Tf*h%@wé is a scalar multiple of hé@aﬂZ and
= —>%_; |- Hence (ii) implies (i).
Assume now that (i) holds, i.e. that (20) is satisfied for every Schwartz form 7.
Take Age®Q' and let U be a neighborhood of Ay allowing a smoothly varying
frame with coordinates (zf,...,z%) of V for AeU. Let ¢ be a smooth func-
tion with compact support in U, m, m'eN" and L a multi-index of length g.
We set

wet) = / S (7 )0 D(2) d.

As in the proof of Lemma 3.4, we find that, for Ae U, m;(1) = ¢(2)4;, ,, ® w} for
J.e U, where A’ h = 5,”,,/1

- and 0 otherwise.

m'
Therefore,

ni<|:]24)r) = < Z |:u1|(1 +2mj/) +a}4> (/5( ) m, m’®wL

J=1

for A€ U and 0 otherwise.
Since (20) holds,

/ ( Z |/"/ +2mj +aL>¢(;”)<n/l(w>7Ai1,m’®w;i>D()”) dr=0

®coL> =0 for

m, m'

for every ¢. So, either > 77, [1;[(1 + 2mj) + o =0, or {my(w),4
ae. LeU.

The first condition is satisfied if and only if m’ =0, U=, , and L = L. This
concludes the proof. [

In order to describe the projection operator, observe that, by translation
invariance, it must have the form

w—ox by,

where %, is a distribution taking values in End(4,). It is important at this point to
make the following remark.

As we have already observed, each point in @), p has a neighborhood U on which
we can define a smooth function A— a))L with values in 4, and where the multi-index
L consists of the indices j such that u;<0.
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In general, this function cannot be extended to all of Q" q.3 If two neighborhoods
U and U’ intersect, then the two corresponding choices of wz differ by a scalar factor

of absolute value 1.
This implies however that, at each Ae U U’, the two corresponding orthogonal

projections of A, onto the linear span of w;L coincide. This orthogonal projection,
that we call P*, is hence well defined and smooth on all of Q,’_q.

In fact P~ is well defined and smooth on all of Q,_,. In order to see this, we must
regard the elements of 4, as multi-linear functionals on V' ® rC. The action of P* on
a (0,¢)-form is then the composition of the form itself with the projection, in each

component, onto the linear span of the (0, ¢)-eigenvectors of @* with negative
eigenvalues. This operation is well defined and smooth on all of Q,_,.

Theorem 5.2. The orthogonal projection of L*(R") ® Ay onto the null space of D;;D
maps a form o into @ x €, where €,€ ' (R") ® End(A,) is given by

Gy(z,1) = / "0 112 P1 D7) di,
Q

n—q

, C
where |@7|(z,2) = 35y lillz5 1"

The formula for 4, must be interpreted in the sense of distributions. To be precise,
if y € #(Gp) ® End(A,), we have

¥ = / / D¢ ICE) (P y(z, 1)) D(2) i dz dr
Go
// N (P (2, 7)) D7) di d=
— Z:/V/Ujpj()h)ed" :.,Z)<w)i,«97[lp(z,i)a))i>l)(}b) di dz.

Proof. By Lemma 5.1, the Fourier transform of %, is given by 7;(%4,) =0 for
2eQ\Q,_, and m,(€,) = Aj,® P* for 2€Q,_,. Therefore, if € #(Gy) @ End(4,),

(g :/Q (AL ® P () > D(3)

n—q

_ / (P (2,0:0,0)°)D(2) .
Quyq

3This is possible if Q,Lq is simply connected. One way to overcome the topological problems is to lift to

the universal covering of @ as in [MR]. We have chosen to avoid this by introducing partitions of unity

q’
when strictly necessary.
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By (14),

P

V¥ (4,0;0,0) = V(z, t)xé‘o(z, t) dz dt
Gy

= / F bz, ;_)e—\d)’"'\(z.,:) dz,
14
and this gives the proof. [

The formula for %, generalizes the classical Gindikin formula for the Cauchy-
Szegd kernel on the Silov boundary of a Siegel domain of type II (see [G] Theorem
5.3 and [KS]). As it was mentioned in the Introduction, S is the Silov boundary of
such a domain if and only if Q, is non-empty. If this is the case, let ' W be the
conic hull of {®(z,z):zeV}, and let

Z ={(z,w): Imw — ®(z,z)€e F}

be the corresponding Siegel domain. Then S is the Silov boundary of Z. Since Q, is
the dual open cone of I', according to Gindikin’s formula,

%o(z,1) = / M=% =2 p(7) d
Qll

is the (scalar-valued) convolution kernel of the orthogonal projection of L?(Gg) onto

the Hardy space consisting of boundary values of holomorphic H>-functions on &
(see [OV])).

6. Fundamental solution for D,gq)

In this section we prove the positive part in Theorem 1 by constructing a tempered
fundamental solution K = K, for Dl(f) when €, is empty. Minor modifications to the
formula will give a relative fundamental solution when £, is non-empty.

The definition of fundamental solution requires the introduction of some more
formalism.

Let €7 (Gy) ®Hom(E, A,), where E is a finite-dimensional space. Because of

the canonical identification of Hom(E, 4,) with E' ® A,, we can write

$(z,0) =Y oz 1)@,

J

where the sum is finite, ;€ £' and ;€ ¥(Gg) @ A,. We then set

0y ¢ =" (O w) @y, (21)
J
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This is consistent with the original definition of Dg’” on forms, because of the

identification A4,~Hom(C, 4,). If E has an inner product, the action of ng) can be
extended to distributions in ¢'(Gs) @ Hom(E, A,).

We then say that Ke9'(Go) ® End(Ay,) is a fundamental solution of Dl()q) if
OYWK =6,®1, ie. i

(K,09¢> =t ¢(0),

for ¢ €7 (Gy) ®End(4,).
The existence of a fundamental solution implies that D,g‘” is solvable, because for
we ¥ (Gy) ® A, we have

D;}q)(w*K) =wx*(0®I) =w.

In order to construct such a fundamental solution, we distinguish between the case
v =n and v<n. In the former case we must assume explicitly that Q, is empty. This
assumption is automatically verified in the latter case.

6.1. Casev=n

For 1eQ we define 4 ;eEnd L*(R")®End(4,) as follows. Keeping the nota-

tion in Proposition 3.5, let w} denote the elementary form dz". Then, for

2 lLi=q Y, Q@wiel2(R")®A4,, we set

. Yoy L
AN IA-EAEDSD) VL D W@w. (22
Nz, "t A e+ S (U 2my) e (22

Furthermore, for ¢ € ¥ (Gy) ® End(4,), we define K, by setting

Ky = [ CAml)y lde @], 23)
where the pairing {-,-) is defined in (17).
Theorem 6.1. Let Q, be empty and v=n. Then K, is a well-defined tempered

distribution on Gg, that is, K, %' (Go)®End(A,). Moreover, K, is a global,

homogeneous, fundamental solution for D,@.

In the proof we will need the following result.

Lemma 6.2. There is NoeN such that for any N = Ny there exists a constant cy =0
such that for each multi-index L we have
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PP p— L N o
S (O 2m)l)( o ( 2m)a)” "V ldet o]

Assuming the validity of the lemma we prove Theorem 6.1.

Proof of Theorem 6.1. We begin by showing that K = K,€.%"(Gp) ® End(4,).

For fixed /ZeQ, consider the orthonormal basis (d2° ) @dz" of
A, ® A,~End(4,), where we have set v*(w) = {w,v) for v,w in any inner product
space. If ¢ € ¥ (Gy) ® End(A4,), we write

¢ = Zcm dz",

where the ¢g; are scalar-valued functions.
By (17) and Lemma 3.6 we have

brr(2sm, m) 1
[{K,d)|= ‘/Z Zawz, 2l |det &*| d .

det ¢*
< ||l / S s( '))'Ndx,

where S(L, 2) denotes the left-hand side in (24).
From Lemma 6.2 it follows that for N large enough,

<K, 9> |<clllly,

which shows that K€ 9" (Gy) ® End(A,).

We now show that K is a fundamental solution for qu). For
$peS(Gop) ®End(4,), we have

COYK, ¢y =<K, O07¢>

:/(m(K),m(Déq>¢)>|det<D*|di
Q

= / (mi(K), dmy(O0)m;(¢) ) |det 7| d2
Q
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|det @*| d2

O‘L+E/ 1 +2m/)|ﬂj|)<hm77U(¢LL)hfn>
/Z ; OCL—"_z:/ ](1+2mj)|:u/|)

=tr ¢(0).
This proves the proposition. [

Proof of Lemma 6.2. We wish to estimate the left-hand side of (24).
We split the sum for meN" as

1
Eggun} m,—O;/¢E (o7 + 27:1(1 + 2my) [ (1 + 27:1(1 + 2mj)|ﬂj|)N
mi=1if jeE

and we write |E| to denote the cardinality of E.
For each L fixed, we may relabel coordinates in order to have o} = oy Iyl =

57 o1 gl Then,
X n V4 n
S U 2m)ll = S Il +2 37 mylul
j=1 J=1 j=1
Notice that p>1 since v = n and Q, is empty.

Let E = {1, ....jx}. I |E| = k>2,

1
— N
m,f;fjéE (o, 4+ 251 (1 2mp) L [) (1 + 255 (1 + 2my) )

mi=1if jeE

1
<)
k k
w1+ Syl )Y

i=1,...k

/+w /+oo 1
< dx;, ---dx;
= k k N 4 Jk
0 0 (i Xl D+ 220 x5, 1)
1

N

Hj,eE |:uj,|

1+ |A]"

|det o

where the last inequality follows from estimates for the eigenvalues of a Hermitean
form (see e.g. [MR, Lemma 4.2]).
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Next, if |E| = 1, the corresponding sum is bounded by a constant times

1 e 1
N<—+/ ~ dx
st i | (U mlg, DY il S el (14l 1)

1
<c—,
|#I'0|

and the claimed estimate follows as before.
Finally, if |E| = 0, the corresponding term equals 1/(37_, |1]) for which we easily
obtain the estimate. This proves the lemma. [

If Q, is non-empty, define %" by (22) if /.¢Q,, and by the same formula with the
sum in L extended only to L+# L if 2eQ,, where L is the multi-index introduced in
the proof of Theorem 4.4. Then define K. according to (23).

Corollary 6.3. If Q, is non-empty, Ky is a relative fundamental solution of D;}q),
ie. 09K =601 — %,

We now treat the case in which the form &* is degenerate for all A, that is the
maximum rank v of @ is strictly less than n. We split this case into two subcases:
when v<n — 1 and when v = n — 1. The former case is technically similar to the case
v = n. Instead, the latter case requires a more involved definition of the fundamental
solution. The difference between these two cases somehow resembles the difference
in the formulas for the fundamental solution of the classical Laplacian in R*> and R"
with n>2.

6.2. Casev<n—1

We now assume that the form @* is degenerate for all 4 and that the maximum
rank v of @* is strictly less than n — 1. As before, we denote by Q the Zariski-open
cone of the A€ W* for which rank @* = v and by Q' the subcone of Q where the
number of distinct eigenvalues of &* is maximum.

For 2.e @', n#0 and for }7;,_, ¥; ® ;e *(R") ® 4, we set

] Yoy L o o
0[Sy @w} | = SRS AL K@k (25)
! \L\Z:q ; \L\Z:q Il + op + Dy (14 2my) |yl
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Furthermore, for ¢ € ¥(Gs) ® End(4,), we define K, by setting

Kpd> = [ [ a3 mi9)> dn D) a2 (26)

Essentially the same proof of Theorem 6.1 proves the following.

Theorem 6.4. Let v<n — | and K, be defined by (26). Then K e ' (Go) ® End(A,)

and it is a global, homogeneous, fundamental solution for ng).

6.3. Casev=mn-—1

As before, let Q' be the subcone of Q where the number of distinct eigenvalues
of @* is maximum. We must treat with special care the values of A for which
there exists at least a multi-index L such that o} + > -1 1y = 0. (The existence of
such 4 was excluded in the case v = n, because of the assumption Q, =0, while
in the case v<n — 1 such 1 do not cause any inconvenience since the function 1/|5|*

is locally integrable in C* when k>1.) Let I' be the subcone of Q' consisting of
such /.
Moreover, let

& = {L: Ll =g, + > |ul —0},

=
and
2, ={(L,m):Le&;,m=0eN"}.

Let {Ux} be an open covering of Q" such that on each Uy a smoothly varying
frame can be chosen according to Section 3.3. In particular, on each U, we have well-
defined functions p; = w;(4) parametrizing the eigenvalues of @*. We order them in
such a way that u,,(4) = --- = u,(4) = 0. Let {p,} be a smooth partition of unity
subordinated to this covering.

In the present situation, we need to modify the definition of the fundamental
solution of 0117 as follows. Let % = {(A,n): €T, |n|<1}.

We set K, = K’ + K" where, for ¢ € (Gy) ® End(A4,) we define

K., ¢p> = DA 1, dy D(2) d2, 27
(K. ;//(W‘me . 70($)> dy D(2) @7)
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with 7" defined by (25), and

/ éLL(/l,ﬂ;m, m)
&9y =Y [ [ ot ! dn D(3) di
zk: « (L,%;@,; of +n* + 2 (1 2my) ||

bri(2,1;0,0) — drr(4,0;0,0

+ Z//pk(/l) Z ¢LL(/L7’75 ) ) 2¢LL( sy Vy Uy )di’]D(/l) dj., (28)
k u Leé, In

wheref(i,n;m, m) is given by (15).

Theorem 6.5. Let v=n—1 and let K,=K'+ K" be defined as above. Then
K, e %' (Go) ® End(A,). Moreover, K, is a fundamental solution for Déq)‘

Proof. Notice that for (1,m)e(Q"\I') x N* or eI’ and (L,m)¢ 2, we have

v )4
j 2
of 4+ P+ A+ 2m) ] = Dy,
j=1 j=1

for some integer p, 1<p<v. Then, combining Lemma 3.6 with an argument
analogous to that given in the proof of Lemma 6.2, we obtain that

(<Kp1e Y [ 1dusamm mldn( -+ 1) dz

[Ll=¢

< cllly-

The fact that |[{K", ¢ > |<c||¢p||y follows from standard arguments. This shows
that Ke.%'(Gp) ® End(4,).

Finally, we prove that K is a fundamental solution of E]E,q). Let
¢S (Gyp) ®End(A,). By Proposition 3.5, arguing as in the proof of Lemma 3.6,
we have that

(O379)" (hymsm, m) = iy (O $)h, 1, >
= dms (O3 )3, 17, >

= (g (P)HLy dres (OO
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Hence,

(O @) gy (2 msm, m) = (wm +Z 1+ 2m;) |u,><m,n<¢u>h;n,hﬁ,>
<aL + |17‘ + Z + 2Wl] |:uj )QZ@LL(;{’";M, I’Vl)

From this, it also follows that, for Le&;, (O ¢)7, (2,7;0,0) = [n¢LL(%,1;0,0).
Then, for ¢ €5 (Gy) ®End(4,) we have

0, Ky ¢ = <Ky, 0}
=> > / Cn‘mbu)cﬂ

|LI=¢ meN"

=1tr ¢(0),

which is what we wished to prove. [

7. Hypoellipticity of [\

We now turn to Theorem 2. We begin by noticing that if the operator & is
hypoelliptic then spanp{®(z,z)} = W. Indeed, if spang{®(z,z)} is a proper
subspace of W, ¥ cannot be hypoelliptic since it is an operator on a proper
subgroup of Gg.

The fact that spang{®(z,z)} = W is equivalent to saying that the group Gy is
stratified, and also to saying that there is no 250 such that &* = 0. If this is the case
and if {Vy, ..., V2,} is an enumeration of the vector fields Zi, ..., Z,, Zy, ..., Z,, we
have

WViVif Nl <cll A1)z (29)

for each f e #(Gy) and j,k =1, ...,2n.
We introduce non-isotropic Sobolev norms as follows. Let ke N and let %} be the

set of all products of the form V5, ..., V;, where 1<i;<2n and j<k. For fe #(Gy)
we set
1 Mgy = D IBA ]
PE,@/(

It is well known that, for functions with a fixed compact support, any ordinary
Sobolev norm is controlled by a non-isotropic norm, see [FS].
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Because of (29), for k even

k/2
1A gy = D 17 Nl (30)
7=0

If we extend Sobolev norms to forms in ¥ (G4) ® 4, in the obvious way, (30)
remains valid replacing ¥ by ¥ ®1, where [ is the identity on A,.

Theorem 7.1. The following conditions are equivalent:
(i) spang{®(z,2)} = W and there exists C>0 such that for each ¢ €S (Gy) @Ay

(L @Dl <CIITY D25

(ii) qu) is hypoelliptic;
(iii) there exists no non-zero 2.€ W* such that nt (1) <n — q and n~ (1) <g;
(iv) there exists d€(0,1) such that, for every LeQ and every multi-index L with

L = q, —af <(1 = 8) S 1(2)], where o, is defined in (18);
(v) for every A#0, & has at least max(q + 1,n — q+ 1) eigenvalues with the same
sign, or at least min(q + 1,n — q + 1) pairs of eigenvalues with opposite signs.

Remark. Condition (v) above is the natural generalization of the Y (g) condition to
quadratic manifolds of higher codimension mentioned in the Introduction.

Proof. We preliminary show that conditions (iii) and (v) are equivalent. The rest of
the proof gives the implications (i) = (ii) = (iii) = (iv) = (i).

It is easy to see that conditions (iii) and (v) are both equivalent to the following
condition: There exists no non-zero L€ W* such that

min(n* (/1)7 n- (/“)) Srmn(q, n— q)a
max(nt(1),n (1)) <max(q,n — q).
Next, if (i) holds, formula (29) implies that

161l < (1T Bl + N1l 12),

for every ¢ smooth, with support in a fixed compact set. Using the fact that ¥ ® 1
and Dg‘n commute, it follows by induction that

161142y <1 TR Bl + 111wy
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for every k even. This implies that D;)q) is hypoelliptic by standard arguments (see
[T1, Chapter 2, Section 5]). Thus (i) implies (ii).
In order to prove that (ii) implies (iii), we show that if (iii) does not hold, we can
construct a non-smooth solution of the homogeneous equation Dg")u =0.
Suppose then that there exists a 19#0 such that n*(ly)<n — ¢ and n (1) <gq.
Then there exists a multi-index L with |L| = v(4) such that

(Z0)
o+ > (k)| =0.
j=1

Because the ecigenvalues are homogeneous functions of A, the same equality holds for
all 4 = sy, with 5s>0.
By Proposition 3.5,

dro(0W)u; = 0, (31)

whenever 4 = sy, s>0 and u; = hé@wi (see Proposition 3.5 for notation). Notice

that we can take the basis {vf, ..., vﬁ} that diagonalizes @ to be the same for all
A = sAg, with s>0. Also, notice that v(1) = v(4), and we denote this value by vj.
We define ue ' (Go) ® 4, as follows. For ¢p€ % (Gy) ® A, we set

+ oo
w¢>:A iy, Taino(h) Y dis
+ oo
_ / CRS g o (@RS S ds
0
+ oo N
:/ / %t,;'/¢(z’,0,sio)e_szlo Gl g2/ s, (32)
0 Cc'o

We show that u is homogeneous of degree —2 with respect to the dilations
r-(z,t) = (rz,r*t) on Gg. Making the change of variables z'+—r~'z’ and s+ r’s, we

have
+o0 R
<u7 ¢(}’)> — r—2(n+m) / 37MH¢(VZI7 0, sio/rz)e_s ZIO \MJ(AO)HZj\z dZ ds
0 c"o

oo .
=y 2ntm)2 / T (2,0, 500)e 2t W EF g1 g
o Jeo
:riQ+2<ua¢)(r')>7

where Q = 2(n + m) denotes the homogeneous dimension of Gg.

As a distribution, u is homogeneous of degree ¢ if {u,p(r-)> =r"277u, ¢, for
all >0 and ¢ € S (Gp) ® A,. Thus, u is homogeneous of degree —2 and non-trivial,
hence it cannot coincide with a smooth function.
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For ¢ € ¥ (Gp) ® A, we have

OWu ¢y =Cu, 000>

+ o0

_ / Cttggs dtysy o( O )0 0() > ds
0

:0,

because of (31). Then u is a solution of the equation Dgf’)u = 0, henceforth implying

that Dl@ is not hypoelliptic.
We prove that (iii) implies (iv). If (iii) holds, the quantity
OC)V + v : ;u
A(;L7L): L vX:l“‘fj( )|
21 |N_/(/L)

is well defined for AeQ and |L| = ¢, because the denominator does not vanish.
Proving condition (iv) is equivalent to proving that

inf{A(4, L): 1eQ, |L| = ¢} >0. (33)

Suppose then that (33) does not hold. Let {4} =Q and {L;} be multi-indices such
that A(Ak, Lx) >0 as k— + oo. Since 4 is homogeneous of degree 0 in 1, we may
assume that |4,] = 1 for all k. By passing to a subsequence we may also assume that
}vk—>io, with M()‘ =1.

By condition (iii), either nt(dg)>n— ¢ or n (4)>g. Assume for instance that
nt(4)>n— ¢, and let >0 be a strict lower bound for the positive eigenvalues of
@*. By Rouché’s theorem, @* has at least n — ¢ + 1 eigenvalues larger than J for k
large enough. Then for every L with |L| = ¢,

v
i ,
o+ | > 26,
i
for k large. Since )} |u;(4«)| remains bounded, we have a contradiction.

Finally, we show that (iv) implies (i). Condition (iv) implies that

2l 1

S Sy
€9, |Li=g %7 + 221 11 ()]
which in turn is equivalent to

. I+ D10 +2m) 1
1eQ, |Li=q, meN', g ok + [n)* + ) |1 (A)[ (1 + 2my) 0

Observe that, by Proposition 3.5, for 1€, these quantities are precisely the
eigenvalues of dnm(f®I)(dm1,1(Dl(jq)))7l. Therefore this is a bounded operator
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s (£ @) (OF) | <5
for every /€ Q, where || - || denotes the operator norm.

Therefore, for ¢ € ¥ (Gp) ® A4, by (11), we have

Iz @il = [ [ Ima(zon@)lisbl) dnd

< [ [ Nrn( @ @ Dams (O ) (O 6) D) iy

2
< o0 ¢|l7..

This proves that (iv) implies (i) and finishes the proof. [

This proves the theorem.

Remark. We have in fact proved that 0\ is hypoelliptic if and only if the following

(9)

Rockland condition is satisfied: For every (4,1)#(0,0) dn,,(0,") is injective on
S (Gp)®A,. An extension of Helffer—-Nourrigat theorem [HeN] to systems of
differential operators does not seem to appear in the literature.
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