
Journal of Functional Analysis 203 (2003) 321–355

Analysis of the Kohn Laplacian on quadratic
CR manifolds$

Marco M. Pelosoa,� and Fulvio Riccib

aDipartimento di Matematica, Politecnico di Torino, 10129 Torino, Italy
bScuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Received 24 September 2000; accepted 16 April 2003

Communicated by L. Gross

Abstract

We study the Kohn Laplacian&
ðqÞ
b acting on ð0; qÞ-forms on quadratic CR manifolds. We

characterize the operators&
ðqÞ
b that are locally solvable and hypoelliptic, respectively, in terms

of the signatures of the scalar components of the Levi form.
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0. Introduction

Let V be an n-dimensional complex vector space, W an m-dimensional real vector

space, WC the complexification of W ; and

F :V � V-WC

a Hermitean map (i.e. Fðz; z0Þ ¼ Fðz0; zÞ for every z; z0AV ; where complex

conjugation in WC is referred to the real form W ).
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We consider the associated quadratic manifold

S ¼ fðz; t þ iuÞAV � WC : u ¼ Fðz; zÞg ð1Þ

in n þ m complex dimensions. Then S is a CR manifold of CR-dimension n and real
codimension m:

We consider the %@b-complex on S; its adjoint %@�b (with respect to the Lebesgue
measure dz dt on S and to a fixed Hermitean inner product on V ), and the Kohn
Laplacians

&
ðqÞ
b ¼ %@b

%@�bg þ %@�b %@b

acting on ð0; qÞ-forms on S:
We address the problem of determining under which assumptions on F and q the

operator &
ðqÞ
b satisfies either of the following properties:

(a) it is solvable, in the sense that, given any smooth ð0; qÞ-form f on S with

compact support, there exists a ð0; qÞ-current o on S such that &
ðqÞ
b o ¼ f;

(b) it is hypoelliptic, i.e. any ð0; qÞ-current o on S such that&
ðqÞ
b o is smooth on an

open set U is also smooth on U :

CR manifolds appear in connection with different problems in complex analysis,
such as extension theorems for CR functions or boundary behavior of holomorphic
functions. Questions about solvability or hypoellipticity of (systems of) differential
operators with multiple characteristics naturally arise in this context. We refer the
reader to the monographs [AK,B,ChSh] for accounts on these matters.

Analysis of the %@b-complex on quadratic CR manifolds appears in [RoV], see also
[T2] for a recent overview on this topic.
The form F can be identified with the (vector-valued) Levi form on S; and most of

the properties of S have been recognized to depend on the signatures of the scalar-
valued forms

Flðz; z0Þ ¼ lðFðz; z0ÞÞ;

depending on lAW �: For a given lAW �; let nþðlÞ; resp. n
ðlÞ; the number of
positive, resp. negative, eigenvalues of Fl: In [RoV] it was proved that, under the

assumption that Fl is generically non-degenerate, the CR-equation %@bu ¼ f is

solvable for any smooth %@b-closed ð0; qÞ-form f if and only if there exists no lAW �

such that nþðlÞ ¼ n 
 q and n
ðlÞ ¼ q: The ‘‘only if’’ part of this statement was
extended to general CR manifolds in [AFN].
Another relevant part of the literature concerns subelliptic estimates for the Kohn

Laplacian. In [K] the so-called condition YðqÞ was given as a sufficient condition for
the subellipticity of the Kohn Laplacian on CR manifolds of codimension 1 (see also
[FK,RtS]). The condition stated in Theorem 2 below is equivalent to a natural
extension of condition YðqÞ to the present setting (see condition (v) in Theorem 7.1
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and the remark that follows).1 Solvability of&
ðqÞ
b in absence of hypoellipticity does

not seem to have been considered so far.

We prove that the signatures of the scalar forms Fl; as l varies in W �; completely

determine both solvability and hypoellipticity of &
ðqÞ
b : One of the novelties of our

results lies in the fact that we can include the case where Fl is degenerate for every l:
Our main results are the following.

Theorem 1. Let nþðlÞ; resp. n
ðlÞ; the number of positive, resp. negative, eigenvalues

of Fl: Then &
ðqÞ
b is solvable if and only if there is no lAW � such that nþðlÞ ¼ q and

n
ðlÞ ¼ n 
 q:

Theorem 2. Let nþðlÞ; resp. n
ðlÞ be as in Theorem 1. Then &
ðqÞ
b is hypoelliptic if and

only if there is no lAW �
\f0g such that nþðlÞpq and n
ðlÞpn 
 q:

We also prove that:

(i) property (a) is equivalent to the existence of a tempered fundamental solution

for &
ðqÞ
b ; and also to the property that the L2-null-space of &

ðqÞ
b is trivial;

(ii) when &
ðqÞ
b is not solvable, the orthogonal projection onto its L2-null-space is

given by convolution on GF with an operator-valued distribution Cq for which

we give an explicit formula;

(iii) property (b) is equivalent to the fact that&
ðqÞ
b satisfies non-isotropic subelliptic

estimates of order 2.

The precise statements require further notation and they can be found as
Theorems 4.4, 5.2. 6.1, 6.5, and 7.1.

It is worth mentioning that there are non-trivial cases in which all the Fl are
degenerate (see the remark in Section 3a). Theorem 1 has the following consequence.

Corollary 3. Suppose that the Hermitean forms Fl are degenerate for all l: Then the

operator &
ðqÞ
b is solvable for any q.

Theorem 1 contains some of the results in [NRS], namely Theorems 7.2.1 and
7.3.1, in the particular case where F is ‘‘diagonal’’, i.e.

Fðz; z0Þ ¼
Xn

j¼1
zjz

0
jwj ;

in an appropriate coordinate system on V ; with wjAW :
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In the diagonal case the operator&
ðqÞ
b diagonalizes in the basis of the elementary

ð0; qÞ-forms d %zI ; in the sense that

&
ðqÞ
b

X
jI j¼q

fI d %z
I

0@ 1A ¼
X
jI j¼q

&
ðIÞ
b fI d %z

I ;

where each &
ðIÞ
b acts on scalar-valued functions. This fact reduces the analysis

of &
ðqÞ
b to the study of each individual &

ðIÞ
b :

This reduction is not possible in the general case. We use the fact that a similar
decoupling is possible after taking Fourier transform in the W -variables. However,
this can be done, for each individual lAW �; in a coordinate system on V that

depends on l (in fact a system that diagonalizes Fl).
Our proofs involve the identification of S with a step-2 nilpotent group GF; the

Fourier inversion formula on GF and the analysis of the image of&
ðqÞ
b ; realized as a

system of harmonic oscillators, under the irreducible unitary representations of GF:
In certain cases S coincides with the Šilov boundary of a Siegel domain of type II :

This happens when the form F is positive w.r. to a proper cone in W : In fact this is
equivalent to saying that there exists lAW � such that nþðlÞ ¼ n and n
ðlÞ ¼ 0:
Under this assumption, the basic representation theory of GF was established in
[OV]. In Section 3, we give a self-contained presentation of the Fourier analysis on
GF in the general case. We note in passing that, w.r. to [OV], we prefer to privilege
the Schrödinger model of the representations versus the Bargmann model.
This work has been motivated in part by the above-mentioned results in [NRS].

Some of the techniques for constructing fundamental solutions and related operators
are derived from [MR]; the construction of a non-smooth solution of the equation

&
ðqÞ
b o ¼ 0 in the proof of Theorem 7.1 has an analogue in [RtS].

We finally remark that, from Theorem 1, one can deduce the results in [RoV] on

solvability of the CR-equation %@bu ¼ f ; and extend them to the case where Fl is
always degenerate. We address these matters elsewhere [PR].

1. The nilpotent group associated to a quadratic manifold

Let S be the quadratic manifold defined by the equation

Im w ¼ Fðz; zÞ;

with zAV and wAWC: For elements wAWC the expressions Rew; Im w; %w have the

obvious meaning. For ðz0;w0ÞAS the complex-affine transformation of V � WC

tðz0;w0Þðz;wÞ ¼ ðz þ z0;w þ w0 þ 2iFðz; z0ÞÞ
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maps S onto itself, and

tðz0;w0Þtðz00;w00Þ ¼ tðz0þz00;w0þw00þ2iFðz0;z00ÞÞ

t
1ðz0;w0Þ ¼ tð
z0;
w0þ2iFðz0;z0ÞÞ:

Under the identification of tðz0;w0Þ with ðz0;w0ÞAS; this composition law defines a Lie

group structure on S: As customary, we introduce coordinates ðz; tÞAV � W to
denote the element ðz; t þ iFðz; zÞÞAS: Once pulled back to V � W ; the group
multiplication takes the form

ðz; tÞðz0; t0Þ ¼ ðz þ z0; t þ t0 þ 2 ImFðz; z0ÞÞ:

We call GF this group and gF its Lie algebra, that we now describe in detail.

For vAV ; denote by @v f the directional derivative of a function f on V � W in the
direction v; and let Xv be the left-invariant vector field on GF that coincides with @v at
the origin. It is easy to check that

Xv f ðz; tÞ ¼ @v f ðz; tÞ þ 2 ImFðz; vÞ � rt f ðz; tÞ:

As we are going to introduce complex vector fields on GF; it is convenient to adopt
the notation Jv (instead of iv) for the complex structure on V : We then define

Zv; %ZvAgCF as

Zv ¼
1

2
ðXv 
 iXJvÞ ¼

1

2
ð@v 
 i@JvÞ þ iFðz; vÞ � rt;

%Zv ¼
1

2
ðXv þ iXJvÞ ¼

1

2
ð@v þ i@JvÞ 
 iFðz; vÞ � rt:

The commutation rules are

½Xv;Xv0 � ¼ 4 ImFðv; v0Þ � rt;

½Zv;Zv0 � ¼ ½ %Zv; %Zv0 � ¼ 0;

½Zv; %Zv0 � ¼ 
2iFðv; v0Þ � rt: ð2Þ

Hence, gF is 2-step nilpotent and, under its identification with V � W ;

½gF; gF�Df0g � WDzF;

where zF denotes the center of gF:
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2. The Kohn Laplacian on GU

A ð0; qÞ-form on S is a section of the vector bundle L0;qðT�SÞ; whose fiber at each
point can be identified with the exterior product Lq ¼ L0;qðV �Þ: As every vector
bundle on S is trivial, we regard ð0; qÞ-forms as vector-valued functions on GF with
values in Lq:

Let fv1;y; vng be any orthonormal basis of V with respect to the given inner
product. Let ðz1;y; znÞ denote the coordinates on V with respect to this basis. As
customary, we write

Zj ¼
1

2
ðXvj


 iXJvj
Þ; %Zj ¼

1

2
ðXvj

þ iXJvj
Þ; j ¼ 1;y; n:

The %@b complex is defined as follows.

We denote by d %zI the ð0; qÞ-form d %zi14?4d %ziq ; where I ¼ ði1;y; iqÞ is a strictly
increasing multi-index. Given a ð0; qÞ-form f ¼

P
jI j¼q fI d %zI with smooth coeffi-

cients, we set

%@bf ¼
X
jI j¼q

Xn

k¼1

%ZkðfI Þd %zk4d %z
I ¼

X
jJj¼qþ1

X
k;jI j¼q

eJ
kI

%ZkðfI Þd %zJ : ð3Þ

Here eJ
kI ¼ 0 if Jafkg,I as sets, and it equals the parity of the permutation that

rearranges ðk; i1;y; iqÞ in increasing order if J ¼ fkg,I :

The inner product on V induces a Hermitean product ð�; �Þ on each Lq in such a

way that the elements d %zI form an orthonormal system.

Let dz dt denote the left-invariant Haar measure on GF: On the space L2ðGFÞ#Lq

of ð0; qÞ-forms with coefficients in L2ðGFÞ we consider the inner product

/f;cS ¼
Z

GF

ðfðz; tÞ;cðz; tÞÞ dz dt:

The formal adjoint %@�b of %@b can be easily computed to yield

%@�b
X
jI j¼q

fI d %z
I

0@ 1A ¼
X

jJj¼q
1


X

k;jI j¼q

eI
kJZkfI

0@ 1Ad %z
J : ð4Þ

We now compute the Kohn Laplacian &
ðqÞ
b ¼ %@b

%@�b þ %@�b %@b:

Given two multi-indices K and L such that jK j ¼ jLj ¼ q and jfK-Lgj ¼ q 
 1;
we set

eðK ;LÞ ¼ ð
1Þm; ð5Þ

where m is the number of elements in K-L between the unique element kAK\L and
the unique element cAL\K :
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Proposition 2.1. With respect to any fixed orthonormal basis on V, the operator &
ðqÞ
b is

represented by a matrix ð&LKÞ of scalar left-invariant differential operators on GF as

&
ðqÞ
b

X
K

fK d %z
K

 !
¼
X

L

X
K

&LKfK

 !
d %z

L:

Then,

&LK ¼ 
dLKLþ MLK

where dLK is the Kronecker delta, L ¼ 1
2

Pn
k¼1 ð %ZkZk þ Zk %ZkÞ and

MLK ¼

1
2

P
kAK

½Zk; %Zk� 

P

keK

½Zk; %Zk�
 !

if K ¼ L;

eðK ;LÞ½Zk; %Zc� if jfK-Lgj ¼ q 
 1;
0 otherwise:

8>>>><>>>>:
Proof. By (3) and (4) we have

%@bð %@�bfÞ ¼ %@b 

X

jJj¼q
1

X
k;jK j¼q

eK
kJZkfK

0@ 1A d %z
J

0@ 1A
¼ 


X
jLj¼q

X
k;c;jJj¼q
1;jKj¼q

eK
kJe

L
cJ

%ZcZkfK

0@ 1A d %z
L:

On the other hand,

%@�bð %@bfÞ ¼ %@�b
X

jHj¼qþ1

X
j;jK j¼q

eH
jK

%ZjfK

0@ 1A d %z
H

0@ 1A
¼ 


X
jLj¼q

X
i;j;jHj¼qþ1;jKj¼q

eH
jKe

H
iLZi %ZjfK

0@ 1A d %z
L:

Hence,

&
ðqÞ
b ðfÞ ¼ 


X
jLj¼q

X
jK j¼q

X
c;k;jJj¼q
1

eK
kJe

L
cJ

%ZcZk

0@
þ

X
i;j;jHj¼qþ1

eH
jKe

H
iLZi %Zj

1AfK d %z
L:

ARTICLE IN PRESS
M.M. Peloso, F. Ricci / Journal of Functional Analysis 203 (2003) 321–355 327



Then,

&LK ¼ 

X

c;k;jJj¼q
1
eK

kJe
L
cJ

%ZcZk 

X

i;j;jHj¼qþ1
eH

jKe
H
iLZi %Zj : ð6Þ

When K ¼ L the indices k and c are forced to be equal, as well as i and j: Hence,

&LL ¼ 

X
kAL

%ZkZk þ
X
jeL

Zj %Zj

 !

¼ 
 1
2

Xn

k¼1
ð %ZkZk þ Zk %ZkÞ 


1

2

X
kAL

½ %Zk;Zk� þ
X
keL

½Zk; %Zk�
 !

:

This proves the statement for the terms along the diagonal.

On the other hand, when KaL; the coefficient eK
kJe

L
cJ is different from 0 if only if

K ¼ J,fkg and L ¼ J,fcg: Notice that, given K and L such that jfK-Lgj ¼
q 
 1; they uniquely determine J; k and c: Analogously, eH

jKe
H
iLa0 if and only if

H ¼ K,f jg ¼ L,fig: Then, necessarily, jfK-Lgj ¼ q 
 1 as before, and if k and c
are as above, j ¼ c and i ¼ k:
It follows that&LK ¼ 0 unless jfK-Lgj ¼ q 
 1: In this case, each of the sums in

(6) reduces to one single term, and

&LK ¼ 
eK
kJe

L
cJ

%ZcZk 
 eH
cKe

H
kLZk %Zc;

with J ¼ K-L and H ¼ K,L: Furthermore,

eK
kJe

L
cJ ¼ 
eH

cKe
H
kL ¼ eðK ;LÞ;

where eðK ;LÞ is defined in (5).
Thus,

&LK ¼ eðK ;LÞ½Zk; %Zc�;

which proves the proposition. &

3. Fourier analysis on GU

3.1. Representations and Plancherel formula

The irreducible unitary representations of GF can be described as follows.
By Schur’s lemma, if p is an irreducible unitary representation of GF; there is

lAW � such that pð0; tÞ ¼ eilðtÞ: Then, by (2),

dpð½Zv; %Zv0 �Þ ¼ 2lðFðv; v0ÞÞI ¼ 2Flðv; v0ÞI : ð7Þ
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We diagonalize Fl with respect to an orthonormal basis fvl1;y; vlng of V ; in such a
way that

Flðvlj ; vlkÞ ¼ djkmjðlÞ;

with mj ¼ mjðlÞa0 for jpnðlÞ and mj ¼ 0 for j4nðlÞ; where 0pnðlÞ ¼ rankFlpn:

We call

X l
j ¼ X l

vj
; Y l

j ¼ X l
Jvj
; Zl

j ¼ 1
2
ðX l

j 
 iY l
j Þ; %Zl

j ¼ 1
2
ðX l

j þ iY l
j Þ:

Then

dpð½X l
j ;X l

k �Þ ¼ dpð½Y l
j ;Y l

k �Þ ¼ 0;
dpð½X l

j ;Y l
k �Þ ¼ 
4imjdjkI ;

for every j; k: It follows from the Stone–von Neumann theorem that there is

Z ¼ a þ ibACn
nðlÞ such that p is unitarily equivalent to the representation pl;Z of Gf

on L2ðRnðlÞÞ such that

dpl;ZðX l
j Þ ¼ 2@xj

dpl;ZðY l
j Þ ¼ 
2imjxj

)
jpnðlÞ;

dpl;ZðX l
j Þ ¼ 2iaj
nðlÞ

dpl;ZðY l
j Þ ¼ 2ibj
nðlÞ

)
j4nðlÞ:

ð8Þ

Given l; let ðzl1;y; zlnÞ be the coordinates on V induced by the basis fvlj g; with
zlj ¼ xl

j þ iyl
j : In order to simplify the notation, we set

xl ¼ ðxl
1;y; xl

nÞ; x0 ¼ ðxl
1;y;xl

nðlÞÞ; x00 ¼ ðxl
nðlÞþ1;y; xl

nÞ;

and similarly for yl; y0; y00:We also set z00 ¼ x00 þ iy00: In doing so, we must remember
that x0; x00; etc. are components that depend on l:
The integrated form of pl;Z is, because of (8),

ðpl;Zðx; y; tÞfÞðxÞ ¼ eiðlðtÞþ2 Re/z00;ZSÞe
2i
PnðlÞ

1
mjy

l
j ðxjþxl

j Þfðxþ 2x0Þ: ð9Þ

It must be observed that these formulas depend on the choice of the (ordered)

basis of V that diagonalizes Fl: However, different choices of the basis lead to
equivalent representations.
For a function f on GF; we define

pl;Zð f Þ ¼
Z

f ðz; tÞpl;Zðz; tÞ
1 dz dt: ð10Þ
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This definition has the effect that pl;Zð f � gÞ ¼ pl;ZðgÞpl;Zð f Þ: The disadvantage of
producing an inversion in the order of the two factors is compensated by a more
natural formalism when dealing with vector-valued functions.
Observe that if L is a left-invariant differential operator, then

pl;ZðLf Þ ¼ dpl;ZðLÞpl;Zð f Þ:

Definition 3.1. Let n ¼ maxlAW �nðlÞ: We call O the Zariski-open set ODW � such
that nðlÞ ¼ n for lAO: For lAO; we set

DðlÞ ¼
Yn
j¼1

jmj j:

If n ¼ n; then DðlÞ ¼ jdetFlj:

Proposition 3.2. The Plancherel formula for GF is

jj f jj22 ¼
Z
O

Z
Cn
n

jjpl;Zð f Þjj2HSDðlÞ dZ dl ð11Þ

for an appropriate normalization of the Lebesgue measure dl on W �; and the inversion

formula takes the form

f ðz; tÞ ¼
Z
O

Z
Cn
n

trðpl;Zð f Þpl;Zðz; tÞÞDðlÞ dZ dl:

Proof. It follows from (7) that, for lAO;

ðpl;Zð f ÞfÞðxÞ ¼
Z
R2n

Fx00;y00;t f ðx0; y0; 2Z; lÞe2i
Pn

1
mjyjðxj
xjÞfðx
 2x0Þ dx0 dy0

¼
Z
Rn

Kl;Zðx; x0Þfðx0Þ dx0;

with

Kl;Zðx; x0Þ ¼ Fx00;yl;t f
x1 
 x01
2

;y;
xn 
 x0n
2

;
m1
x1 þ x01
2

;y;
mn
xn þ x0n
2

; 2Z; l
� �

:

The conclusion follows from the fact that jjpl;Zð f Þjj2HS ¼
R
jKl;Zðx; x0Þj2 dx dx0 and

from the Euclidean Plancherel formula. &

When n ¼ n; i.e. when there exists lAW � such that Fl is non-degenerate, the
Plancherel formula takes the simpler form

jj f jj22 ¼
Z
O
jjplð f Þjj2HSj detFlj dl:

ARTICLE IN PRESS
M.M. Peloso, F. Ricci / Journal of Functional Analysis 203 (2003) 321–355330



Remark. It must be noticed that it is quite possible that all the Fl are
degenerate, even though there is no common radical that can be factored
out to decompose GF as the product of a nilpotent and an abelian group.

An example is obtained by taking V ¼ C3; W ¼ R2; F ¼ ðF1;F2Þ; with Fjðz; z0Þ ¼
z0�Ajz and

A1 ¼
0 0 0

0 1 0

0 0 
1

0B@
1CA; A2 ¼

0 1 1

1 0 0

1 0 0

0B@
1CA:

We also observe that GF is stratified (i.e. the vector fields Zv and %Zv generate the

full complex Lie algebra) if and only if there is no la0 such that Fl ¼ 0: This
remark will be recalled in Section 7.

3.2. Hermite bases

In dealing with the representation pl;Z we privilege a particular orthonormal basis
of L2ðRnðlÞÞ that depends on l:
Denote by hj the jth Hermite function on the real line:

hjðtÞ ¼ ð2j
ffiffiffi
p

p
j!Þ
1=2ð
1Þj

et2=2 d j

dt j
e
t2 : ð12Þ

Given a multi-index mANnðlÞ; we set

hl
mðxÞ ¼

YnðlÞ
j¼1

jmj j1=4hmj
ðjmjj1=2xjÞ: ð13Þ

As a further simplification in the notation, for xARnðlÞ we set

Rlx ¼ ðjm1j1=2x1;y; jmnðlÞj1=2xnðlÞÞ:

Lemma 3.3. Let wl;Zm; m0 ðxl; yl; tÞ be the matrix entry /pl;Zðxl; yl; tÞhl
m; h

l
m0S: There

exist Schwartz functions ce
m; m0 on R2nðlÞ depending only on m; m0 and on the signatures

ej ¼ mj=jmjj such that

wl;Zm; m0 ðxl; yl; tÞ ¼ eiðlðtÞþ2 Re/z00;ZSÞce
m; m0 ðRlxl;Rly

lÞ:
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Proof. Write

hl
mðxÞ ¼

YnðlÞ
j¼1

jmjj1=4
 !

e

12
PnðlÞ

j¼1 jmj jx2j PmðRlxÞ;

with Pm a real polynomial containing only monomials x
a with apm: Then

wl;Zm; m0 ðxl; yl; tÞ

¼ eiðlðtÞþ2 Re/z00;ZSÞ
YnðlÞ
j¼1

jmjj1=2
 !Z

RnðlÞ
e

2i
PnðlÞ

j¼1 mjy
l
j ðxjþxl

j Þe

12
PnðlÞ

j¼1 jmj jðxjþ2xl
j Þ
2

� e

12
PnðlÞ
j¼1

jmj jx2j
PmðRlðxþ 2xlÞÞPm0 ðRlxÞ dx

¼ eiðlðtÞþ2 Re/z00;ZSÞ
YnðlÞ
j¼1

jmjj1=2
 !Z

RnðlÞ
e

2i
PnðlÞ

j¼1 mjy
l
j
xj e


12
PnðlÞ

j¼1 jmj jðxjþxl
j
Þ2

� e

12
PnðlÞ

j¼1 jmj jðxj
xl
j Þ
2

PmðRlðxþ xlÞÞPm0 ðRlðx
 xlÞÞ dx

¼ eiðlðtÞþ2 Re/z00;ZSÞ
YnðlÞ
j¼1

jmjj1=2
 !

e


PnðlÞ

j¼1 jmj jxl2
j

X
aþbpmþm0

cm; m0;a;bðRlx
lÞa

�
Z
RnðlÞ

e

2i
PnðlÞ

j¼1 mjy
l
j xj e



PnðlÞ

j¼1 jmj jx2j ðRlxÞb dx

¼ eiðlðtÞþ2 Re/z00;ZSÞe


PnðlÞ

j¼1 jmj jxl
j 2

�
X

aþbpmþm0

cm; m0;a;bðRlx
lÞa
YnðlÞ
j¼1

ðsgn mjÞ
bjFðe
jxj2xbÞð2RlyZÞ:

The conclusion follows from the fact that the Fourier transform of a monomial

times e
jxj2 equals e
j�j2=4 times a polynomial. &

Remark. As on the Heisenberg group, the functions ce
m; m0 can be expressed in

terms of Laguerre functions (see e.g. [F]). However, we shall not need their
explicit expression, except for the case m ¼ m0 ¼ 0: The proof of Lemma 3.3
shows that

wl;Z0;0ðz; tÞ ¼ eiðlðtÞþ2 Re/z00;ZSÞe


PnðlÞ

j¼1 jmj jjzlj j
2

: ð14Þ
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3.3. Smoothly varying frames on V and Schwartz functions on the group

Among the elements of O we select those l for which the number of distinct
eigenvalues of Fl is maximum. These elements form a subset O0 which is Zariski-
open, and therefore it carries the full Plancherel measure.

Fix l0AO0; and let m1;y; mc be the distinct eigenvalues of F
l0 ; with multiplicities

m1;y;mc; respectively. By the implicit function theorem, there is a connected

neighborhood U of l0 in O0 on which one can define real-analytic functions miðlÞ for
1pipc; such that miðl0Þ ¼ mi and miðlÞ is an eigenvalue of Fl with multiplicity mi:
Also, miðlÞp0 for lAU ; except for at most one i (in case non), for which miðlÞ is
identically 0 on U :
For each i and each lAU ; we can also find an orthonormal basis of the miðlÞ-

eigenspace of Fl; in such a way that the kth basis element depends analytically on l
for every k:
At this point, we relabel the eigenvalues, allowing repetitions according to their

multiplicity, and ordering them in such a way that mnþ1ðlÞ ¼ ? ¼ mnðlÞ ¼ 0:
Hence, for each lAU we have an orthonormal basis fvl1;y; vlng of V ; such that vlj

depends analytically on l and

Flðvlj ; vlkÞ ¼ djkmjðlÞ:

The corresponding coordinate functions zlj ¼ xl
j þ iyl

j are then real-analytic in l
for lAU :
Define the representations pl;Z for ðl; ZÞAU � Cn
n according to this choice of the

coordinates. If m; m0ANn; we set

bff ðl; Z;m; m0Þ ¼ /pl;Zð f Þhl
m; hl

m0S ¼
Z

f ðxl; yl; tÞwl;Zm0;mðxl; yl; tÞ dxl dyl dt: ð15Þ

Lemma 3.4. Let fðl; ZÞ be a CN function with compact support in U � Cn
n; and let

m; m0ANn: There is a function fASðGFÞ such that

(i) pl;Zð f Þ ¼ 0 for leU ;

(ii) bff ðl; Z;m; m0Þ ¼ fðl; ZÞ for ðl; ZÞAU � Cn
n;

(iii) bff ðl; Z; p; p0Þ ¼ 0 for ðp; p0Þaðm; m0Þ and ðl; ZÞAU � Cn
n:

Proof. Define

f ðz; tÞ ¼
Z

U�Cn
n
fðl; ZÞwl;Zm0;mðxl; yl; tÞDðlÞ dl dZ;
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where xl; yl are the real coordinates of zAV in the basis fvlj g: As U is connected and

contained in O0; the signatures ej of the eigenvalues mjðlÞ are constant on U :

Therefore,

f ðz; tÞ ¼
Z

U�Cn
n
fðl; ZÞeiðlðtÞþ2 Re/z00;ZSÞce

m0;mðRlxl;Rly
lÞDðlÞ dl dZ;

with ce
m0;m as in Lemma 3.3 and e fixed.

The fact that f is a Schwartz function can be easily deduced from the smoothness

of the functions xl
j ; yl

j ; mjðlÞ and the fact that the mjðlÞ are bounded away from zero
on the support of f:
Taking Fourier transform in t; we find thatZ

f ðz; tÞe
ilðtÞ dt ¼ 0

identically for leU ; which implies that pl;Zð f Þ ¼ 0 for leU :

From the definition of wl;Zm0;m; we have that

f ðz; tÞ ¼
Z

U�Cn
n
fðl; ZÞ/pl;Zðxl; yl; tÞhl

m0 ; hl
mSDðlÞ dl dZ

¼
Z

U�Cn
n
trðpl;Zðxl; yl; tÞAl;Z

m; m0 ÞDðlÞ dl dZ;

where A
l;Z
m; m0hl

m ¼ fðl; ZÞhl
m0 and A

l;Z
m; m0hl

p ¼ 0 if pam:

By uniqueness of the Fourier transform, it follows that pl;Zð f Þ ¼ A
l;Z
m; m0 for

ðl; ZÞAU � Cn
n: Hence

bff ðl; Z; p; p0Þ ¼ /A
l;Z
m; m0h

l
p; hl

p0S;

and the conclusion follows. &

3.4. Fourier transform of vector-valued functions

Let f be a function on GF taking values in a finite-dimensional complex space E:
Following (10), we define

pl;Zð f Þ ¼
Z

GF

pl;Zðz; tÞ
1#f ðz; tÞ dz dtAEndðL2ðRnðlÞÞÞ#E:

Let K be a function on GF with values in Hom ðE;FÞ; with E and F finite-
dimensional spaces. Then the convolution operator

f/f � Kðz; tÞ ¼
Z

GF

Kððw; uÞ
1ðz; tÞÞf ðw; uÞ dw du
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maps E-valued functions into F -valued functions and it is left-invariant. We have

pl;Zð f � KÞ ¼ pl;ZðKÞpl;Zð f Þ;

if we understand that the composition of T#AAEndðL2ðRnðlÞÞÞ#HomðE;FÞ with
U#vAEndðL2ðRnðlÞÞÞ#E is TU#AvAEndðL2ðRnðlÞÞÞ#F :
Let now ð�; �Þ be a Hermitean inner product on E and let

/f ; gS ¼
Z

GF

ð f ðz; tÞ; gðz; tÞÞ dz dt

be the induced inner product on L2ðGFÞ#E:
Introducing an orthonormal basis on E; one can easily express this pairing in

terms of the Fourier transform of f and g; using the polarized form of the Plancherel
formula. In order to obtain a coordinate-free formula, consider the inner product

// � ; �SS on HSðL2ðRnÞÞ#E such that

//T#v;U#wSS ¼ trðTU�Þðv;wÞ; ð16Þ

where T ;U are Hilbert–Schmidt operators on L2ðRnÞ; v;wAE: We then have

/f ; gS ¼
Z
O

Z
Cn
n

//pl;Zð f Þ; pl;ZðgÞSSDðlÞ dZ dl: ð17Þ

We shall use this formula to define vector-valued distributions on GF: In doing so,
we adopt the convention that the pairing /u; fS between a distribution u and a test
function f is linear in u and anti-linear in f :

3.5. The Fourier transform of &
ðqÞ
b

We shall be primarily concerned with the situation where E ¼ F ¼ Lq ¼ Lð0;qÞ
V ;

with the inner product naturally inherited from the inner product on V : If f is a
Schwartz ð0; qÞ-form on GF; then pl;ZðfÞAEndðL2ðRnðlÞÞÞ#Lq:

We want to describe the image of &
ðqÞ
b under pl;Z: Observe that

dpl;Zð&ðqÞ
b ÞAEndðL2ðRnðlÞÞÞ#EndðLqÞ:

Proposition 3.5. Let fvl1;y; vlng be an orthonormal basis of V that diagonalizes Fl;

and let ðzl1;y; zlnÞ be the corresponding coordinates on V. For a strictly increasing

multi-index L with jLj ¼ q; denote by ol
L the elementary form d %zl

L

: Then, for

f ¼
P

jLj¼q fL#ol
LASðRnðlÞÞ#Lq; we have

dpl;Zð&ðqÞ
b Þ

X
jLj¼q

fL#ol
L

0@ 1A ¼
X
jLj¼q

ðHl;Z þ alLÞfL#ol
L;
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where

Hl;Z ¼ 

XnðlÞ
j¼1

ð@2xj

 m2j x

2
j Þ þ jZj2;

and

alL ¼
X
kAL

mk 

X
keL

mk: ð18Þ

In particular, dpl;Zð&ðqÞ
b Þ acts diagonally with respect to the basis fhl

m#ol
Lg of

L2ðRnðlÞÞ#Lq: Precisely,

dpl;Zð&ðqÞ
b Þðhl

m#ol
LÞ ¼

XnðlÞ
j¼1

jmj jð1þ 2mjÞ þ jZj2 þ alL

 !
hl

m#ol
L: ð19Þ

Proof. For the given orthonormal basis we write Zl
j ; %Z

l
j as in (2). From (7) we have

dpl;Zð½Zl
j ; %Z

l
k�Þ ¼ 2djkmk:

Notice that dpl;ZðLÞ ¼
PnðlÞ

j¼1 @
2
xj

 m2j x

2
j 
 jZj2 ¼ 
H: The result now follows from

Proposition 2.1 and from the fact that the Hermite function hjðtÞ on the real line is an
eigenfunction of the Hermite operator 
ðd=dtÞ2 þ t2 with eigenvalue 2j þ 1: &

The next result will be needed in Section 6. When fASðGFÞ#E; we still denote bybff the E-valued function

bff ðl; Z;m; m0Þ ¼
Z

f ðxl; yl; tÞwl;Zm0;mðxl; yl; tÞ dxl dyl dt:

With an abuse of notation, we write

bff ðl; Z;m; m0Þ ¼ /pl;Zð f Þhl
m; hl

m0S;

keeping in mind that the inner product on the right-hand side is vector-valued.
We also denote by j � j the norm on E:

Lemma 3.6. For each positive integer N, there exist a Sobolev norm jj � jjN 0 and a

constant cN40 such that for all fASðGFÞ#E we have

j bff ðl; Z;m; mÞjpcN

jj f jjN 0

ð1þ jZj2ÞNð1þ jljÞNð1þ
PnðlÞ

j¼1 ð1þ 2mjÞjmjjÞ
N
:
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Proof. Consider the operator L#I acting on SðGFÞ#E; where I denotes the
identity map on E: Then

ððL#IÞf Þ4ðl; Z;m; mÞ ¼/pl;ZððL#IÞf Þhl
m; hl

mS

¼/dpl;ZðL#IÞpl;Zð f Þhl
m; hl

mS

¼/pl;Zð f Þhl
m; dpl;ZðL#IÞhl

mS:

(The fact that dpl;ZðL#IÞ is self-adjoint on L2ðRnÞ#E follows from the polarized

form of the Plancherel formula, see (17).)
Then,

ððL#IÞf Þ4ðl; Z;m; mÞ ¼ jZj2 þ
Xn
j¼1

ð1þ 2mjÞjmj j
 !

/pl;Zð f Þhl
m; hl

mS

¼ jZj2 þ
Xn
j¼1

ð1þ 2mjÞjmj j
 !bff ðl; Z;m; mÞ:

The conclusion follows easily, once we observe that, from (15) and Lemma 3.3,

ð1þ jZj2Þð1þ jlj2Þbff ðl; Z;m; mÞ ¼
Z

f ðxl; yl; tÞPt;z00w
l;Z
m0;mðxl; yl; tÞ dxl dyl dt;

for a constant coefficient differential operator Pt;z00 in t and z00: &

4. Non-solvability of &
ðqÞ
b

In this section we prove the negative result in Theorem 1. In fact we prove the

stronger statement that, under the given assumption, the operator &
ðqÞ
b is not even

locally solvable.2

We will use the following necessary criterion for local solvability, which is the
vector-valued extension of the corresponding version for scalar operators, due to
Corwin and Rothschild [CoRt].

Lemma 4.1. Let M be a homogeneous left-invariant differential operator from

SðGFÞ#E to SðGFÞ#F ; and let M� :SðGFÞ#F 0-SðGFÞ#E 0 be the adjoint

operator. Suppose that there exists a non-trivial fASðGFÞ#F 0 such that M�f ¼ 0:
Then M is not locally solvable.

ARTICLE IN PRESS

2A differential operator P is said to be locally solvable at a point x0 if there exists an open neighborhood

U of x0 such that for any test function f with support contained in U there exists a distribution u such that

Pu ¼ f on U : For translation invariant operators, local solvability does not depend on x0:
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Proof. We argue by contradiction. By Hörmander’s condition [Hö], M is locally
solvable at a point ðz0; t0ÞAGF if and only if there exist a neighborhood U of ðz0; t0Þ;
kAN; and a constant c40 such that

jjgjj
kpcjjM�gjjk

for all gACN

0 ðUÞ#F 0; where jj � jjr denotes the Sobolev norm.
Suppose that M is locally solvable. Using the homogeneity of M; the

proof of Lemma 1 in [CoRt] goes through without changes to the case
of vector-valued functions to imply that there exists kAN such that the
following holds. For each cACN

0 ðGFÞ#F there exists ffmgDCN

0 ðGFÞ#E

such that: (i) supp fmDfjðz; tÞjpm þ 1g; (ii) Mfm ¼ c on fjðz; tÞjpmg;
(iii) jMfmðz; tÞjpmk:
Given f as in the statement, let cACN

0 ðGFÞ#F : ThenZ
jðz;tÞjpmþ1

/fðz; tÞ;cðz; tÞS dz dt

�����
�����

¼
Z
jðz;tÞjpmþ1

/fðz; tÞ;cðz; tÞ 
Mfmðz; tÞS dz dt

�����
�����

¼
Z

mpjðz;tÞjpmþ1
/fðz; tÞ;cðz; tÞ 
Mfmðz; tÞS dz dt

�����
�����

pcc

Z
mpjðz;tÞjpmþ1

jfðz; tÞjmk dz dt;

which tends to 0 as m-þN: Then f ¼ 0; a contradiction. Hence,M is not locally
solvable. &

We state for future reference a lemma whose proof is essentially contained in the
last part of Section 3.

Lemma 4.2. Given the partial differential equation ðHl;Z þ alLÞf ¼ 0; the following

conditions are equivalent:

(i) there exists a non-trivial solution fASðRnðlÞÞ;
(ii) Z ¼ 0 and the multi-index L is such that mkp0 for kAL and mkX0 for keL:

Recall that, given lAW �; we denote by nþðlÞ the number of positive eigenvalues
of the form Fl; and by n
ðlÞ the number of negative eigenvalues.

Definition 4.3. We define Oq to be the cone

Oq ¼ fl : nþðlÞ ¼ q; n
ðlÞ ¼ n 
 qg:
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Therefore, Theorem 1 can be restated by saying that &
ðqÞ
b is (locally) solvable if

and only if Oq is empty (or equivalently if and only if On
q ¼ 
Oq is empty).

Theorem 4.4. Assume that Oq is non-empty. Then there is a non-trivial

oASðGFÞ#Lq such that &
ðqÞ
b o ¼ 0:

Proof. Under the given assumptions, O0
n
q ¼ On
q-O0 is non-empty. As n ¼ n; there

is no Z in the parameters for the generic irreducible representations of GF:

Let l0AUCO0
n
q be as in Section 3. Let zlj ¼ xl

j þ iylj be the coordinates adapted

to a corresponding smoothly varying frame on V ; and let ol
L ¼ d %zl

L

; as in Section 3.

Then ol
L varies smoothly with l:

Let %L be the multi-index of length q formed by those k for which mkðlÞo0 on U :
Slightly modifying the construction in the proof of Lemma 3.4 we take a CN-
function fðlÞ with compact support in U and set

oðz; tÞ ¼
Z

U

fðlÞwl0;0ðz; tÞDðlÞol
%L

dl:

It follows easily from (14) that oASðGFÞ#Lq: As in the proof of Lemma 3.4, it is

easily shown that the only irreducible unitary representations of GF for which
plðoÞa0 are those with l in the support of f: For these l we have

plðoÞ ¼ fðlÞAl
0;0#ol

%L
;

where A0;0 is the orthogonal projection onto the one-dimensional subspace of L2ðRnÞ
spanned by hl

0:
It follows from Proposition 3.5 that, for l in the support of f;

plð&ðqÞ
b oÞ ¼

Xn

j¼1
jmj j þ al%L

 !
fðlÞAl

0;0#ol
%L
¼ 0;

because

al%L ¼
X
kA %L

mkðlÞ 

X
ke %L

mkðlÞ ¼ 

Xn

k¼1
jmkðlÞj:

By uniqueness of the Fourier transform, &
ðqÞ
b o ¼ 0: &
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5. The orthogonal projection on the null space of &
ðqÞ
b

Assume that Oq is non-empty. It follows from Theorem 4.4 that the null space of

&
ðqÞ
b is non-trivial in the space of Schwartz ð0; qÞ-forms. We shall determine the null

space in L2ðGFÞ#Lq and obtain an expression for the corresponding orthogonal

projector involving a kind of Laplace transform.

Let fUjg be a locally finite open covering of O0
n
q such that each Uj is relatively

compact in O0
n
q and for each lAUj there is an orthonormal coordinate system

ðzl1;y; zlnÞ on V that varies smoothly with l and diagonalizes Fl as Flðz; zÞ ¼Pn
k¼1 mkjzlkj

2: Let %L be the multi-index of length q containing those k for which

mko0:
Let also frjg be a smooth partition of unity on O0

n
q subordinated to the given

covering.

Lemma 5.1. Let oAL2ðGFÞ#Lq: The following are equivalent:

(i) o is in the null space of &
ðqÞ
b ;

(ii) plðoÞ ¼ 0 a.e. outside of On
q and, a.e. on each Uj; plðoÞ ¼ Tl
j #ol

%L
; where Tl

j is

a Hilbert-Schmidt operator on L2ðRnÞ; with range in the linear span of hl
0:

Proof. A form o in L2ðGFÞ#Lq is in the null space of&
ðqÞ
b if and only if, for every

tASðGFÞ#Lq;

/&
ðqÞ
b o; tS ¼/o;&ðqÞ

b tS

¼
Z
O
//plðoÞ; dplð&ðqÞ

b ÞplðtÞSSDðlÞ dl

¼ 0: ð20Þ

Assume that o satisfies (ii). Then

/&
ðqÞ
b o; tS ¼

Z
On
q

//plðoÞ; dplð&ðqÞ
b ÞplðtÞSSDðlÞ dl

¼
X

j

Z
Uj

rjðlÞ//Tl
j #ol

%L
; dplð&ðqÞ

b ÞplðtÞSSDðlÞ dl

¼
X

j

Z
Uj

rjðlÞ
X

mANn

/Tl
j hl

m#ol
%L
; dplð&ðqÞ

b ÞplðtÞhl
m#ol

%L
SDðlÞ dl

¼
X

j

Z
Uj

rjðlÞ
X

mANn

/dplð&ðqÞ
b ÞðTl

j hl
m#ol

%L
Þ; plðtÞhl

m#ol
%L
SDðlÞ dl

¼ 0;
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by Proposition 3.5, because Tl
j hl

m#ol
%L
is a scalar multiple of hl

0#ol
%L
and

al%L ¼ 

Pn

k¼1 jmkj: Hence (ii) implies (i).
Assume now that (i) holds, i.e. that (20) is satisfied for every Schwartz form t:
Take l0AO0 and let U be a neighborhood of l0 allowing a smoothly varying

frame with coordinates ðzl1;y; zlnÞ of V for lAU : Let f be a smooth func-

tion with compact support in U ; m; m0ANn and L a multi-index of length q:
We set

tðz; tÞ ¼
Z

U

fðlÞwlm0;mðxl; yl; tÞol
LDðlÞ dl:

As in the proof of Lemma 3.4, we find that, for lAU ; plðtÞ ¼ fðlÞAl
m; m0#ol

L for

lAU ; where Al
m; m0hl

p ¼ dm;phl
m0 ; and 0 otherwise.

Therefore,

plð&ðqÞ
b tÞ ¼

Xn

j¼1
jmjjð1þ 2m0

jÞ þ alL

 !
fðlÞAl

m; m0#ol
L

for lAU and 0 otherwise.
Since (20) holds,

Z
U

Xn

j¼1
jmjjð1þ 2mj

0Þ þ alL

 !
fðlÞ//plðoÞ;Al

m; m0#ol
LSSDðlÞ dl ¼ 0

for every f: So, either
Pn

j¼1 jmjjð1þ 2mj
0Þ þ alL ¼ 0; or //plðoÞ;Al

m; m0#ol
LSS ¼ 0 for

a.e. lAU :

The first condition is satisfied if and only if m0 ¼ 0; UCO0
n
q and L ¼ %L: This

concludes the proof. &

In order to describe the projection operator, observe that, by translation
invariance, it must have the form

o/o � Cq;

where Cq is a distribution taking values in EndðLqÞ: It is important at this point to
make the following remark.

As we have already observed, each point in O0
n
q has a neighborhood U on which

we can define a smooth function l/ol
%L
with values in Lq and where the multi-index

%L consists of the indices j such that mjo0:
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In general, this function cannot be extended to all of O0
n
q:

3 If two neighborhoods

U and U 0 intersect, then the two corresponding choices of ol
%L
differ by a scalar factor

of absolute value 1.
This implies however that, at each lAU-U 0; the two corresponding orthogonal

projections of Lq onto the linear span of ol
%L
coincide. This orthogonal projection,

that we call Pl

; is hence well defined and smooth on all of O

0
n
q:

In fact Pl

 is well defined and smooth on all of On
q: In order to see this, we must

regard the elements of Lq as multi-linear functionals on V#RC: The action of Pl

 on

a ð0; qÞ-form is then the composition of the form itself with the projection, in each

component, onto the linear span of the ð0; qÞ-eigenvectors of Fl with negative
eigenvalues. This operation is well defined and smooth on all of On
q:

Theorem 5.2. The orthogonal projection of L2ðRnÞ#Lq onto the null space of &
ðqÞ
b

maps a form o into o � Cq; where CqAS0ðRnÞ#EndðLqÞ is given by

Cqðz; tÞ ¼
Z
On
q

eilðtÞe
jFljðz;zÞPl

 DðlÞ dl;

where jFljðz; zÞ ¼
Pn

k¼1 jmkjjzlkj
2:

The formula for Cq must be interpreted in the sense of distributions. To be precise,

if cASðGFÞ#EndðLqÞ; we have

/Cq;cS ¼
Z

GF

Z
On
q

eilðtÞe
jFljðz;zÞ trðPl

cðz; tÞ�ÞDðlÞ dl dz dt

¼
Z

V

Z
On
q

e
jFljðz;zÞ trðPl

Ftcðz; lÞ�ÞDðlÞ dl dz

¼
X

j

Z
V

Z
Uj

rjðlÞe
jFljðz;zÞ/ol
%L
;Ftcðz; lÞol

%L
SDðlÞ dl dz:

Proof. By Lemma 5.1, the Fourier transform of Cq is given by plðCqÞ ¼ 0 for
lAO\On
q and plðCqÞ ¼ Al

0;0#Pl

 for lAOn
q: Therefore, if cASðGFÞ#EndðLqÞ;

/Cq;cS ¼
Z
On
q

//Al
0;0#Pl


; plðcÞSSDðlÞ dl

¼
Z
On
q

trðPl


#cðl; 0; 0; 0Þ�ÞDðlÞ dl:
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By (14),

#cðl; 0; 0; 0Þ ¼
Z

GF

cðz; tÞwl0;0ðz; tÞ dz dt

¼
Z

V

Ftcðz; lÞe
jFljðz;zÞ dz;

and this gives the proof. &

The formula for Cq generalizes the classical Gindikin formula for the Cauchy-

Szegö kernel on the Šilov boundary of a Siegel domain of type II (see [G] Theorem
5.3 and [KS]). As it was mentioned in the Introduction, S is the Šilov boundary of
such a domain if and only if On is non-empty. If this is the case, let GCW be the
conic hull of fFðz; zÞ : zAVg; and let

D ¼ fðz;wÞ : Im w 
 Fðz; zÞAG
3

g

be the corresponding Siegel domain. Then S is the Šilov boundary of D: Since On is
the dual open cone of G; according to Gindikin’s formula,

C0ðz; tÞ ¼
Z
On

eilðtÞe
Flðz;zÞDðlÞ dl

is the (scalar-valued) convolution kernel of the orthogonal projection of L2ðGFÞ onto
the Hardy space consisting of boundary values of holomorphic H2-functions on D
(see [OV]).

6. Fundamental solution for &
ðqÞ
b

In this section we prove the positive part in Theorem 1 by constructing a tempered

fundamental solution K ¼ Kq for&
ðqÞ
b when Oq is empty. Minor modifications to the

formula will give a relative fundamental solution when Oq is non-empty.

The definition of fundamental solution requires the introduction of some more
formalism.
Let fASðGFÞ#HomðE;LqÞ; where E is a finite-dimensional space. Because of

the canonical identification of HomðE;LqÞ with E0#Lq; we can write

fðz; tÞ ¼
X

j

ojðz; tÞ#cj;

where the sum is finite, cjAE 0 and ojASðGFÞ#Lq: We then set

&
ðqÞ
b f ¼

X
j

ð&ðqÞ
b ojÞ#cj: ð21Þ
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This is consistent with the original definition of &
ðqÞ
b on forms, because of the

identification LqDHomðC;LqÞ: If E has an inner product, the action of&
ðqÞ
b can be

extended to distributions in S0ðGFÞ#HomðE;LqÞ:
We then say that KAS0ðGFÞ#EndðLqÞ is a fundamental solution of &

ðqÞ
b if

&
ðqÞ
b K ¼ d0#I ; i.e. if

/K ;&
ðqÞ
b fS ¼ tr fð0Þ;

for fASðGFÞ#EndðLqÞ:
The existence of a fundamental solution implies that&

ðqÞ
b is solvable, because for

oASðGFÞ#Lq we have

&
ðqÞ
b ðo � KÞ ¼ o � ðd0#IÞ ¼ o:

In order to construct such a fundamental solution, we distinguish between the case
n ¼ n and non: In the former case we must assume explicitly that Oq is empty. This

assumption is automatically verified in the latter case.

6.1. Case n ¼ n

For lAO we define Kl
qAEnd L2ðRnÞ#EndðLqÞ as follows. Keeping the nota-

tion in Proposition 3.5, let ol
L denote the elementary form d %zl

L

: Then, forP
jLj¼q cL#ol

LAL2ðRnÞ#Lq; we set

Kl
q

X
jLj¼q

cL#ol
L

0@ 1A ¼
X

m

X
jLj¼q

/cL; hl
mS

alL þ
Pn

j¼1ð1þ 2mjÞjmjj
hl

m#ol
L: ð22Þ

Furthermore, for fASðGFÞ#EndðLqÞ; we define Kq by setting

/Kq;fS ¼
Z
O
//Kl

q; plðfÞSSjdetFlj dl; ð23Þ

where the pairing //�; �SS is defined in (17).

Theorem 6.1. Let Oq be empty and n ¼ n: Then Kq is a well-defined tempered

distribution on GF; that is, KqAS0ðGFÞ#EndðLqÞ: Moreover, Kq is a global,

homogeneous, fundamental solution for &
ðqÞ
b :

In the proof we will need the following result.

Lemma 6.2. There is N0AN such that for any NXN0 there exists a constant cN;nX0

such that for each multi-index L we have
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X
m

1

ðalL þ
Pn

j¼1ð1þ 2mjÞjmj jÞð1þ
Pn

j¼1ð1þ 2mjÞjmjjÞ
N
pcn;N

1þ jljn

jdetFlj
: ð24Þ

Assuming the validity of the lemma we prove Theorem 6.1.

Proof of Theorem 6.1. We begin by showing that K ¼ KqAS0ðGFÞ#EndðLqÞ:
For fixed lAO; consider the orthonormal basis ðd %zl

K Þ�#d %zl
L

of

L0
q#LqDEndðLqÞ; where we have set v�ðwÞ ¼ /w; vS for v;w in any inner product

space. If fASðGFÞ#EndðLqÞ; we write

f ¼
X
K;L

fKLðd %zl
K

Þ�#d %z
lL

;

where the fKL are scalar-valued functions.
By (17) and Lemma 3.6 we have

j/K ;fSj ¼
Z
O

X
L

X
m

#fLLðl;m; mÞ
alL þ

Pn
j¼1ð1þ 2mjÞjmjj

jdetFlj dl

�����
�����

p cjjfjjN 0

Z
O

X
L

SðL; lÞ jdetFlj
ð1þ jljÞN

dl;

where SðL; lÞ denotes the left-hand side in (24).
From Lemma 6.2 it follows that for N large enough,

j/K ; gSjpcjjfjjN 0 ;

which shows that KAS0ðGFÞ#EndðLqÞ:
We now show that K is a fundamental solution for &

ðqÞ
b : For

fASðGFÞ#EndðLqÞ; we have

/&
ðqÞ
b K ;fS ¼/K ;&

ðqÞ
b fS

¼
Z
O
//plðKÞ; plð&ðqÞ

b fÞSSjdetFlj dl

¼
Z
O
//plðKÞ; dplð&ðqÞ

b ÞplðfÞSSjdetFlj dl
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¼
Z
O

X
L

X
m

ðalL þ
Pn

j¼1ð1þ 2mjÞjmjjÞ/hl
m; plðfLLÞhl

mS

ðalL þ
Pn

j¼1ð1þ 2mjÞjmjjÞ
jdetFlj dl

¼ tr fð0Þ:

This proves the proposition. &

Proof of Lemma 6.2. We wish to estimate the left-hand side of (24).
We split the sum for mANn as

X
EDf1;y;ng

X
mj¼0 if jeE
mjX1 if jAE

1

ðalL þ
Pn

j¼1ð1þ 2mjÞjmjjÞð1þ
Pn

j¼1ð1þ 2mjÞjmjjÞN

0BB@
1CCA

and we write jEj to denote the cardinality of E:

For each L fixed, we may relabel coordinates in order to have alL ¼
Pp

j¼1 jmjj 
Pn
j¼pþ1 jmj j: Then,

alL þ
Xn

j¼1
ð1þ 2mjÞjmjj ¼

Xp

j¼1
jmjj þ 2

Xn

j¼1
mjjmjj:

Notice that pX1 since n ¼ n and Oq is empty.

Let E ¼ f j1;y; jkg: If jEj ¼ kX2;

X
mj¼0 if jeE
mjX1 if jAE

1

ðalL þ
Pn

j¼1ð1þ 2mjÞjmjjÞð1þ
Pn

j¼1ð1þ 2mjÞjmjjÞN

p
X

mji
X1

i¼1;y;k

1

ð
Pk

i¼1 mji jmji
jÞð1þ

Pk
i¼1 mji jmji

jÞN

p
Z þN

0

?
Z þN

0

1

ð
Pk

i¼1 xji jmji
jÞð1þ

Pk
i¼1 xji jmji

jÞN
dxj1?dxjk

pc
1Q

jiAE jmji
j

pc
1þ jljn

jdetFlj
;

where the last inequality follows from estimates for the eigenvalues of a Hermitean
form (see e.g. [MR, Lemma 4.2]).
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Next, if jEj ¼ 1; the corresponding sum is bounded by a constant times

X
mX1

1

mjmj0
jð1þ mjmj0

jÞN
p

1

jmj0
j þ
Z þN

1

1

xjmj0
jð1þ xjmj0

jÞN
dx

p c
1

jmj0
j;

and the claimed estimate follows as before.

Finally, if jEj ¼ 0; the corresponding term equals 1=ð
Pp

j¼1 jmjjÞ for which we easily
obtain the estimate. This proves the lemma. &

If Oq is non-empty, defineK
l by (22) if leOq; and by the same formula with the

sum in L extended only to La %L if lAOq; where %L is the multi-index introduced in

the proof of Theorem 4.4. Then define Krel according to (23).

Corollary 6.3. If Oq is non-empty, Krel is a relative fundamental solution of &
ðqÞ
b ;

i.e. &
ðqÞ
b Krel ¼ d0#I 
 Cq:

We now treat the case in which the form Fl is degenerate for all l; that is the
maximum rank n of Fl is strictly less than n: We split this case into two subcases:
when non 
 1 and when n ¼ n 
 1: The former case is technically similar to the case
n ¼ n: Instead, the latter case requires a more involved definition of the fundamental
solution. The difference between these two cases somehow resembles the difference

in the formulas for the fundamental solution of the classical Laplacian in R2 and Rn

with n42:

6.2. Case non 
 1

We now assume that the form Fl is degenerate for all l and that the maximum
rank n of Fl is strictly less than n 
 1: As before, we denote by O the Zariski-open
cone of the lAW � for which rankFl ¼ n and by O0 the subcone of O where the

number of distinct eigenvalues of Fl is maximum.

For lAO0; Za0 and for
P

jLj¼q cL#ol
LAL2ðRnÞ#Lq; we set

Kl;Z
q

X
jLj¼q

cL#ol
L

0@ 1A ¼
X

m

X
jLj¼q

/cL; hl
mS

jZj2 þ alL þ
Pn

j¼1ð1þ 2mjÞjmj j
hl

m#ol
L: ð25Þ
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Furthermore, for fASðGFÞ#EndðLqÞ; we define Kq by setting

/Kq;fS ¼
Z
O0

Z
Cn
n

//Kl;Z
q ; plðfÞSS dZ DðlÞ dl: ð26Þ

Essentially the same proof of Theorem 6.1 proves the following.

Theorem 6.4. Let non 
 1 and Kq be defined by (26). Then KqAS0ðGFÞ#EndðLqÞ
and it is a global, homogeneous, fundamental solution for &

ðqÞ
b :

6.3. Case n ¼ n 
 1

As before, let O0 be the subcone of O where the number of distinct eigenvalues

of Fl is maximum. We must treat with special care the values of l for which
there exists at least a multi-index L such that alL þ

Pn
j¼1 jmj j ¼ 0: (The existence of

such l was excluded in the case n ¼ n; because of the assumption Oq ¼ |; while

in the case non 
 1 such l do not cause any inconvenience since the function 1=jZj2

is locally integrable in Ck when k41:) Let G be the subcone of O0 consisting of
such l:
Moreover, let

El ¼ L : jLj ¼ q; alL þ
Xn
j¼1

jmjj ¼ 0
( )

;

and

Dl ¼ fðL;mÞ : LAEl;m ¼ 0ANng:

Let fUkg be an open covering of O0 such that on each Uk a smoothly varying
frame can be chosen according to Section 3.3. In particular, on each Uk we have well-

defined functions mj ¼ mjðlÞ parametrizing the eigenvalues of Fl: We order them in

such a way that mnþ1ðlÞ ¼ ? ¼ mnðlÞ ¼ 0: Let frkg be a smooth partition of unity
subordinated to this covering.
In the present situation, we need to modify the definition of the fundamental

solution of &
ðqÞ
b as follows. Let U ¼ fðl; ZÞ : lAG; jZjo1g:

We set Kq ¼ K 0 þ K 00 where, for fASðGFÞ#EndðLqÞ we define

/K 0;fS ¼
X

k

Z Z
ðO0�Cn
nÞ\U

rkðlÞ//Kl;Z
q ; pl;ZðfÞSS dy DðlÞ dl; ð27Þ
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with Kl;Z
q defined by (25), and

/K 00;fS ¼
X

k

Z Z
U

rkðlÞ
X

ðL;mÞeDl

#fLLðl; Z;m; mÞ
alL þ jZj2 þ

Pn
j¼1ð1þ 2mjÞjmj j

dZ DðlÞ dl

þ
X

k

Z Z
U

rkðlÞ
X

LAEl

#fLLðl; Z; 0; 0Þ 
 #fLLðl; 0; 0; 0Þ
jZj2

dZ DðlÞ dl; ð28Þ

where bff ðl; Z;m; mÞ is given by (15).

Theorem 6.5. Let n ¼ n 
 1 and let Kq ¼ K 0 þ K 00 be defined as above. Then

KqAS0ðGFÞ#EndðLqÞ: Moreover, Kq is a fundamental solution for &
ðqÞ
b :

Proof. Notice that for ðl;mÞAðO0
\GÞ �Nn or lAG and ðL;mÞeDl we have

alL þ jZj2 þ
Xn
j¼1

ð1þ 2mjÞjmjjX
Xp

j¼1
jmj j;

for some integer p; 1pppn: Then, combining Lemma 3.6 with an argument
analogous to that given in the proof of Lemma 6.2, we obtain that

j/K 0;fSj c
X
jLj¼q

Z
O0

Z
Cn
n

j #fLLðl; Z;m; mÞj dZð1þ jljnÞ dl

p cjjfjjN 0 :

The fact that j/K 00;fSjpcjjfjjN 0 follows from standard arguments. This shows

that KAS0ðGFÞ#EndðLqÞ:
Finally, we prove that K is a fundamental solution of &

ðqÞ
b : Let

fASðGFÞ#EndðLqÞ: By Proposition 3.5, arguing as in the proof of Lemma 3.6,
we have that

ð&ðqÞ
b fÞ4ðl; Z;m; mÞ ¼/pl;Zð&ðqÞ

b fÞhl
m; hl

mS

¼/dpl;Zð&ðqÞ
b Þpl;ZðfÞhl

m; hl
mS

¼/pl;ZðfÞhl
m; dpl;Zð&ðqÞ

b Þhl
mS:
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Hence,

ð&ðqÞ
b fÞ4LLðl; Z;m; mÞ ¼ alL þ jZj2 þ

Xn
j¼1

ð1þ 2mjÞjmj j
 !

/pl;ZðfLLÞhl
m; hl

mS

¼ alL þ jZj2 þ
Xn
j¼1

ð1þ 2mjÞjmj j
 !

#fLLðl; Z;m; mÞ:

From this, it also follows that, for LAEl; ð&ðqÞ
b fÞ4LLðl; Z; 0; 0Þ ¼ jZj2 #fLLðl; Z; 0; 0Þ:

Then, for fASðGFÞ#EndðLqÞ we have

/&
ðqÞ
b Kq;fS ¼/Kq;&

ðqÞ
b fS

¼
X
jLj¼q

X
mANn

Z
O0

Z
Cn
n

#fLLðl; Z;m; mÞ DðlÞ dl

¼ tr fð0Þ;

which is what we wished to prove. &

7. Hypoellipticity of &
ðqÞ
b

We now turn to Theorem 2. We begin by noticing that if the operator L is
hypoelliptic then spanRfFðz; zÞg ¼ W : Indeed, if spanRfFðz; zÞg is a proper
subspace of W ; L cannot be hypoelliptic since it is an operator on a proper
subgroup of GF:
The fact that spanRfFðz; zÞg ¼ W is equivalent to saying that the group GF is

stratified, and also to saying that there is no la0 such that Fl ¼ 0: If this is the case
and if fV1;y;V2ng is an enumeration of the vector fields Z1;y;Zn; %Z1;y; %Zn; we
have

jjVjVkf jjL2pcjjLf jjL2 ; ð29Þ

for each fASðGFÞ and j; k ¼ 1;y; 2n:
We introduce non-isotropic Sobolev norms as follows. Let kAN and let Bk be the

set of all products of the form Vi1 ;y;Vij ; where 1pijp2n and jpk: For fASðGfÞ
we set

jj f jjðkÞ ¼
X

PABk

jjPf jjL2 :

It is well known that, for functions with a fixed compact support, any ordinary
Sobolev norm is controlled by a non-isotropic norm, see [FS].
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Because of (29), for k even

jj f jjðkÞE
Xk=2
j¼0

jjLj f jjL2 : ð30Þ

If we extend Sobolev norms to forms in SðGfÞ#Lq in the obvious way, (30)

remains valid replacing L by L#I ; where I is the identity on Lq:

Theorem 7.1. The following conditions are equivalent:

(i) spanRfFðz; zÞg ¼ W and there exists C40 such that for each fASðGfÞ#Lq

jjðL#IÞfjjL2pCjj&ðqÞ
b fjjL2 ;

(ii) &
ðqÞ
b is hypoelliptic;

(iii) there exists no non-zero lAW � such that nþðlÞpn 
 q and n
ðlÞpq;
(iv) there exists dAð0; 1Þ such that, for every lAO and every multi-index L with

jLj ¼ q; 
alLoð1
 dÞ
PnðlÞ

j¼1 jmjðlÞj; where alL is defined in (18);

(v) for every la0; Fl has at least maxðq þ 1; n 
 q þ 1Þ eigenvalues with the same

sign, or at least minðq þ 1; n 
 q þ 1Þ pairs of eigenvalues with opposite signs.

Remark. Condition (v) above is the natural generalization of the YðqÞ condition to
quadratic manifolds of higher codimension mentioned in the Introduction.

Proof. We preliminary show that conditions (iii) and (v) are equivalent. The rest of
the proof gives the implications (i) ) (ii) ) (iii) ) (iv) ) (i).
It is easy to see that conditions (iii) and (v) are both equivalent to the following

condition: There exists no non-zero lAW � such that

minðnþðlÞ; n
ðlÞÞpminðq; n 
 qÞ;
maxðnþðlÞ; n
ðlÞÞpmaxðq; n 
 qÞ:

(

Next, if (i) holds, formula (29) implies that

jjfjjð2Þpcðjj&ðqÞ
b fjjL2 þ jjfjjL2Þ;

for every f smooth, with support in a fixed compact set. Using the fact that L#I

and &
ðqÞ
b commute, it follows by induction that

jjfjjðkþ2Þpcðjj&ðqÞ
b fjjðkÞ þ jjfjjðkÞÞ;
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for every k even. This implies that &
ðqÞ
b is hypoelliptic by standard arguments (see

[T1, Chapter 2, Section 5]). Thus (i) implies (ii).
In order to prove that (ii) implies (iii), we show that if (iii) does not hold, we can

construct a non-smooth solution of the homogeneous equation &
ðqÞ
b u ¼ 0:

Suppose then that there exists a l0a0 such that nþðl0Þpn 
 q and n
ðl0Þpq:
Then there exists a multi-index L with jLj ¼ nðl0Þ such that

al0L þ
Xnðl0Þ
j¼1

jmjðl0Þj ¼ 0:

Because the eigenvalues are homogeneous functions of l; the same equality holds for
all l ¼ sl0; with s40:
By Proposition 3.5,

dpl;0ð&ðqÞ
b Þul ¼ 0; ð31Þ

whenever l ¼ sl0; s40 and ul ¼ hl
0#ol

L (see Proposition 3.5 for notation). Notice

that we can take the basis fvl1;y; vlng that diagonalizes Fl to be the same for all

l ¼ sl0; with s40: Also, notice that nðlÞ ¼ nðl0Þ; and we denote this value by n0:
We define uAS0ðGFÞ#Lq as follows. For fASðGFÞ#Lq we set

/u;fS ¼
Z þN

0

//usl0 ; psl0;0ðfÞSS ds

¼
Z þN

0

/hsl0
0 ; psl0;0ðfÞhsl0

0 S ds

¼
Z þN

0

Z
Cn0

Ft;z00fðz0; 0; sl0Þe
s
Pn0

1
jmjðl0Þjjzj j2 dz0 ds: ð32Þ

We show that u is homogeneous of degree 
2 with respect to the dilations
r � ðz; tÞ ¼ ðrz; r2tÞ on GF: Making the change of variables z0/r
1z0 and s/r2s; we
have

/u;fðr�ÞS ¼ r
2ðnþmÞ
Z þN

0

Z
Cn0

Ft;z00fðrz0; 0; sl0=r2Þe
s
Pn0

1
jmjðl0Þjjzj j2 dz0 ds

¼ r
2ðnþmÞþ2
Z þN

0

Z
Cn0

Ft;z00fðz0; 0; sl0Þe
s
Pn0

1
jmjðl0Þj jzj j2 dz0 ds

¼ r
Qþ2/u;fðr�ÞS;

where Q ¼ 2ðn þ mÞ denotes the homogeneous dimension of GF:

As a distribution, u is homogeneous of degree s if /u;fðr�ÞS ¼ r
Q
s/u;fS; for
all r40 and fASðGFÞ#Lq: Thus, u is homogeneous of degree 
2 and non-trivial,
hence it cannot coincide with a smooth function.
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For fASðGFÞ#Lq we have

/&
ðqÞ
b u;fS ¼/u;&

ðqÞ
b fS

¼
Z þN

0

//usl0 ; dpsl0;0ð&
ðqÞ
b Þpsl0;0ðfÞSS ds

¼ 0;

because of (31). Then u is a solution of the equation&
ðqÞ
b u ¼ 0; henceforth implying

that &
ðqÞ
b is not hypoelliptic.

We prove that (iii) implies (iv). If (iii) holds, the quantity

Aðl;LÞ ¼
alL þ

Pn
1 jmjðlÞjPn

1 jmjðlÞj

is well defined for lAO and jLj ¼ q; because the denominator does not vanish.
Proving condition (iv) is equivalent to proving that

inffAðl;LÞ : lAO; jLj ¼ qg40: ð33Þ

Suppose then that (33) does not hold. Let flkgDO and fLkg be multi-indices such
that Aðlk;LkÞ-0 as k-þN: Since A is homogeneous of degree 0 in l; we may
assume that jlkj ¼ 1 for all k: By passing to a subsequence we may also assume that
lk-l0; with jl0j ¼ 1:
By condition (iii), either nþðl0Þ4n 
 q or n
ðl0Þ4q: Assume for instance that

nþðl0Þ4n 
 q; and let d40 be a strict lower bound for the positive eigenvalues of
Fl0 : By Rouché’s theorem, Flk has at least n 
 q þ 1 eigenvalues larger than d for k

large enough. Then for every L with jLj ¼ q;

alj

L þ
Xn
1

jmjðlkÞj42d;

for k large. Since
Pn
1 jmjðlkÞj remains bounded, we have a contradiction.

Finally, we show that (iv) implies (i). Condition (iv) implies that

sup
lAO; jLj¼q

Pn
1 jmjðlÞj

alL þ
Pn
1 jmjðlÞj

p
1

d
;

which in turn is equivalent to

sup
lAO; jLj¼q; mANn; ZACn
n

jZj2 þ
Pn
1 jmjðlÞjð1þ 2mjÞ

alL þ jZj2 þ
Pn
1 jmjðlÞjð1þ 2mjÞ

p
1

d
:

Observe that, by Proposition 3.5, for lAO; these quantities are precisely the

eigenvalues of dpl;ZðL#IÞðdpl;Zð&ðqÞ
b ÞÞ
1: Therefore this is a bounded operator
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and

jjdpl;ZðL#IÞðdpl;Zð&ðqÞ
b ÞÞ
1jjp1

d

for every lAO; where jj � jj denotes the operator norm.
Therefore, for fASðGFÞ#Lq; by (11), we have

jjðL#IÞfjj2L2 ¼
Z
O

Z
Cn
n

jjpl;ZððL#IÞðfÞÞjj2HSDðlÞ dZ dl

p
Z
O

Z
Cn
n

jjdpl;ZðL#IÞðdpl;Zð&ðqÞ
b ÞÞ
1jj jjpl;Zð&ðqÞ

b fÞjj2HSDðlÞ dZ dl

p djj&ðqÞ
b fjj2L2 :

This proves that (iv) implies (i) and finishes the proof. &

This proves the theorem.

Remark. We have in fact proved that&
ðqÞ
b is hypoelliptic if and only if the following

Rockland condition is satisfied: For every ðl; ZÞað0; 0Þ dpl;Zð&ðqÞ
b Þ is injective on

SðGFÞ#Lq: An extension of Helffer–Nourrigat theorem [HeN] to systems of

differential operators does not seem to appear in the literature.
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