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J(u+ h)� J(u) =

Z



hrGu;rGhi dx+ J(h);

for every h 2 C1
0 (
;R). We call critical point of J any function u 2

C1(
;R) such that

R


hrGu;rGhi dx; 8h 2 C1

0 (
;R):

Then, given u 2 C1(
;R), we have: u is a critical point of J if and only
if �Gu = 0 in 
. Indeed, since Z�

j = �Zj , an integration by parts gives

R


hrGu;rGhi dx =

PN1

j=1

R


ZjuZjh dx = �

PN1

j=1

R


(Z2

j u)h dx

= �
R


(�Gu)h dx;

for every u 2 C1(
;R) and h 2 C1
0 (
;R).

We end this section with the following remarkable result.

Proposition 1.4.6. Let 
 be an open connected subset of the Carnot group
G . Then a function u 2 C1(
;R) is constant in 
 if and only if its canonical
intrinsic gradient rGu vanishes identically on 
.

Proof. Suppose Z1u; : : : ; ZN1u vanish identically on 
. Since the Lie algebra
of G is given by LiefZ1; : : : ZN1g (see (1.46)), then for every vector �eld Zj of
the Jacobian basis, we have Zju � 0. We end by applying Proposition 1.2.13.
ut

1.5 Examples

1.5.1 Euclidean group

The additive group (RN ;+) is a homogeneous group with respect to the
dilations

Æ�(x) = �x; � > 0:

We call E = (RN ;+; Æ�) the Euclidean group. E is a Carnot group of step 1.
Its generators are @x1 ; : : : ; @xN . Thus, the canonical sub-Laplacian on E is the
classical Laplace operator

� =
PN

j=1 @
2
xj
:

We want to stress that E is the only Carnot group of step 1 and N generators.
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1.5.2 Heisenberg-Weyl group

Let us consider in R2n+1 the following composition law

(z; t) Æ (z0; t0) = (z + z0; t+ t0 + 2 Im(z � z0)): (1.59)

Hereafter we agree to identify R
2n with C

n and to use the following notation
to denote the point of R2n+1 � C n � R:

(z; t) = (x; y; t) = (x1; : : : ; xn; y1; : : : ; yn; t)

with xj ; yj ; t 2 R, zj = xj + iyj , z = (z1; : : : ; zn). In (1.59), z � z0 denotes the
usual hermitian inner product in C n , i.e., z � z0 =

Pn

j=1(xj + iyj)(x
0
j � iy0j).

Then, the composition law Æ can be written as

(z; t) Æ (z0; t0) = (x+ x0; y + y0; t+ t0 + 2 (yx0 � xy0)):

It is quite easy to verify that (R2n+1 ; Æ) is a Lie group whose zero is the origin
and where the inverse is given by (z; t)�1 = (�z;�t). Let us now consider the
dilations

Æ� : R2n+1 ! R
2n+1 ; Æ�(z; t) = (�z; �2t):

A trivial computation shows that Æ� is an automorphism of (R2n+1 ; Æ) for
every � > 0. Then H n = (R2n+1 ; Æ; Æ�) is a homogeneous group. It is called
the Heisenberg-Weyl group in R2n+1 .

The Jacobian matrix at the origin of the left translation �(z;t) is the fol-
lowing block matrix

J�(z;t)(0; 0) =

0
@In 0 0

0 In 0
2y �2x 1

1
A ;

where In denote the n � n identity matrix, while 2y and �2x stand for the
1 � n matrices (2y1; : : : ; 2yn) and (�2x1; : : : ;�2xn), respectively. Then, the
Jacobian basis of hn, the Lie algebra of H n , is given by

Xj = @xj + 2yj @t; Yj = @yj � 2xj @t; j = 1; : : : ; n; T = @t:

Then, since [Xj ; Yj ] = � 1
4 @t, we have

rank
�
LiefX1; : : : ; Xn; Y1; : : : ; Yng(0; 0)

�
= dim

�
spanf@x1 ; : : : ; @xn ; @y1 ; : : : ; @yn ; @tg

�
= 2n+ 1:

This shows that H n is a Carnot group. Its step is r = 2 and its generators
are the vector �elds Xj , Yj , j = 1; : : : ; n. As a consequence, the canonical
sub-Laplacian on H n is given

�Hn =
Pn

j=1

�
X2
j + Y 2

j

�
:
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1.5.3 B-groups

Let us consider a N �N matrix B with real entries bi;j , i; j = 1; : : : ; N . Let
us put

E(t) := exp(tB); t 2 R:

In R1+N , whose point will be denoted by z = (t; x), t 2 R, x 2 RN , let us
introduce the following composition law

(t; x) Æ (t0; x0) = (t+ t0; x0 +E(t0)x):

One easily veri�es that B = (R1+N ; Æ) is a Lie group whose zero is the origin
(0; 0) and where the inverse is given by

(t; x)�1 = (�t;�E(�t)x):

The Jacobian matrix at the origin of the left translation �(t;x) is the following
block matrix

J�(t;x) (0; 0) =

�
1 0
b IN

�
;

where b stands for the N � 1 matrix

d
ds

��
s=0

E(s)x = BE(s)x
��
s=0

= Bx:

Then, the Jacobian basis of b, the Lie algebra of B , is given by

Y = @t +rx � Bx; @x1 ; : : : ; @xN : (1.60)

We explicitly remark that, for a general matrix B, the group (B ; Æ) may not
be nilpotent. Indeed, an easy computation shows that, for any j 2 f1; : : : ; Ng

[@xj ; [@xj ; � � � [@xj| {z }
k times

; Y ] � � � ]] =

NX
i=1

(Bk)i;j @xi :

Hence, (B ; Æ) is a nilpotent group i� B is a nilpotent matrix. For example, if
N = 1 and B = (1), the composition law is

(t; x) Æ (t0; x0) = (t+ t0; x0 + et
0

x); (t; x); (t0; x0) 2 R
2 ;

and the Jacobian basis is @t+x@x, @x. R
2 equipped with the above composition

law is not a Carnot group (and it is not even di�eomorphic to any Carnot
group) since it is not nilpotent. In particular, the second order di�erential
operator on R2 de�ned by

L = @2x + (@t + x@x)
2 = (1 + x2) @2x + @2t + 2x @x@t + x @x

is a sum of squares of left-invariant vector �elds on (R2 ; Æ), it satis�es
H�ormander's ipoellipticity condition

rank
�
Lief@x; @t + x@xg(t; x)

�
= 2; 8 (t; x) 2 R

2 ;

but L is not a sub-Laplacian on any Carnot group. Indeed, L is elliptic at any
point.
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1.5.4 K-type groups

Let us now suppose that the matrix B in the previous example takes the
following special form 0

BBBBBB@

0 0 � � � 0 0
B1 0 � � � 0 0

0 B2
. . .

...
...

...
...

. . . 0 0
0 0 � � � Br 0

1
CCCCCCA

(1.61)

where Bj is a pj�pj�1 block with rank pj , j = 1; 2; : : : ; r. Moreover p0 � p1 �
� � � � pr and p0+p1+ � � �+pr = N . We want to show that the group B related
to this matrix is a Carnot group. It will be called a group of Kolmogorov type
or, in short, a K-type group.

Let us split RN as follows

R
N = R

p0 � � � � � R
pr

and de�ne, for every � > 0,

D�x = D�(x
(0); : : : ; x(r)) = (�x(0); : : : ; �r+1x(r)); (1.62)

where x(i) 2 R
pi for 0 � i � r. We also put Æ�(t; x) = (�t;D�x).

Claim 1 For every � > 0, the dilation Æ� is an automorphism of B .
To prove this claim we need the following lemma.

Lemma 1.5.1. For every t 2 R and � > 0, we have

E(�t)D� = D�E(t) (1.63)

where E(t) = exp(tB), B is as in (1.61) and D� is the dilation in (1.62).

Proof. Since Bk = 0 for every k � r + 1, one has E(t) =
Pr

k=0 t
k Bk=k!

and (1.63) holds for every t 2 R and � > 0 i�

�k BkD� = D�B
k; 8 k � 0; 8� > 0: (1.64)

This identity holds true when k = 0. An easy direct computation shows
that it also holds true for k = 1. As a consequence

�2B2D� = �B(�BD�) = �B(D�B) = (�BD�)B = (D�B)B = D�B
2:

Then (1.64) holds true for k = 2. An iteration of this argument shows
(1.64) for k � 2. ut
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From this lemma, the Claim 1 easily follows. Indeed, for every z = (t; x),
z0 = (t0; x0) 2 R1+N we have

(Æ�z) Æ (Æ�z
0) = (�t;D�x) Æ (�t

0; D�x
0) = (�t+ �t0; D�x

0 +E(�t0)D�x)

(by Lemma 1.5.1) = (�(t+ t0); D�x
0 +D�E(t

0)x) = Æ�(t+ t0; x0 +E(t0)x)

= Æ�(z Æ z
0):

Thus B = (R1+N ; Æ; Æ�) is a homogeneous group whose �rst layer is R �
Rp0 = f(t; x(0)) j t 2 R; x(0) 2 Rp0 g. Moreover, the vector �elds in the
Jacobian basis related to this �rst layer are given by

Y = @t + hBx;rxi; @x1 ; : : : ; @xp0 : (1.65)

Claim 2 We have rank
�
LiefY; @x1 ; : : : ; @xp0g(0; 0)

�
= 1 +N .

Once this claim is proved, it will follow that (R1+N ; Æ; Æ�) is a Carnot
group of step r+1 and generators the 1+ p0 vector �elds in (1.65). Thus
the related canonical sub-Laplacian is given by

�B = Y 2 +�Rp0 ; �Rp0 =
Pp0

j=1 @
2
xj
: (1.66)

This sub-Laplacian will be said of Kolmogorov type. To prove Claim 2, the
following lemma will be useful.

Lemma 1.5.2. In Rp � Rq let us consider the vector �eld

Z = Ay � (rz)
T , where A is a q � p matrix, y 2 R

p and z 2 R
q .

Suppose rank(A) = q � p. Then

span
�
[@yi ; Z] j i = 1; : : : ; p

	
= spanf@z1 ; : : : ; @zqg: (1.67)

Proof. Let A = (ai;j)i�q; j�p. Then

[@yi ; Z] =
Pq

j=1 aj;i @zj ; i = 1; : : : ; p

so that, since rank(A) = q,

dim
�
span

�
[@yi ; Z] j i = 1; : : : ; p

	�
= q:

This implies (1.67). ut

We now prove Claim 2. Since B has the form (1.61), we can write

Y = @t +
Pr

i=1 Bix
(i�1) � (rx(i) )

T :

Then, by applying Lemma 1.5.2, we get

span
�
[@xi ; Y ] j i = 1; : : : ; p0

	
= span

�
[@xi ; B1x

(0) � (rx(1) )
T ] j i = 1; : : : ; p0

	
= span

�
@
x
(1)
i

j i = 1; : : : ; p1
	
:
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Another application of Lemma 1.5.2 gives

span
�
[@
x
(1)
i

; Y ] j i = 1; : : : ; p1
	
= span

�
@
x
(2)
i

j i = 1; : : : ; p2
	
:

Iterating this argument, we get

LiefY; @x1 ; : : : ; @xp0g = LiefY; @x1 ; : : : ; @xNg:

This obviously shows the claim.

The groups of Kolmogorov type were introduced in [32] in studying a class
of hypoelliptic ultraparabolic operators including the classical prototype op-
erators of Kolmogorov-Fokker-Planck. The composition law in [32] was sug-
gested by the structure of the fundamental solution of the operator in R3

@2x1 + x1 @x2 � @x3 given by Kolmogorov in [31].

Remark 1.5.3. Assume that the matrix B is as in (1.61). If we de�ne

d� : R1+N ! R
1+N ;

d�(t; x
(0); : : : ; x(r)) = (�2t; �x(0); �3x(1); : : : ; �2r+1x(r));

then fd�g�>0 is a group of automorphisms of B . For a proof of this state-
ment, we directly refer to [32]. This remark shows that (R1+N ; Æ; d�) is a
homogeneous Lie group. It can be also easily be proved that the ultraparabolic
operator

L = �p0 + Y (1.68)

is left-translation invariant and homogeneous of degree two with respect to
fd�g�>0. Operator (1.68) generalizes the prototypes of the ones introduced
by Kolmogorov in [31].

1.5.5 Homogeneous groups of step two

Let RN be split as RN = Rm � Rn and denote its point by z = (x; t) with
x 2 Rm and t 2 Rn . Given an n-tuple B(1); : : : ; B(n) of m�m matrices with
real entries, let

(x; t) Æ (�; �) = (x+ �; t+ � + 1
2 hBx; �i): (1.69)

Here hBx; �i denotes the n-tuple (hB(1)x; �i; : : : hB(n)x; �i) and h; i stands for
the inner product in Rm . One can easily verify that (RN ; Æ) is a Lie group
whose identity is the origin and where the inverse is given by (x; t)�1 =
(�x;�t+ hBx; xi). It is also quite easy to recognize that the dilation

Æ� : RN ! R
N ; Æ�(x; t) = (�x; �2t) (1.70)

is an automorphism of (RN ; Æ), for any � > 0. Then G = (RN ; Æ; Æ�) is a
homogeneous group.
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We explicitly remark that the composition law of any Lie group in Rm�Rn ,
homogeneous w.r.t. the dilations fÆ�g� as in (1.70), takes the form (1.69), see
Theorem 1.3.11.

The Jacobian matrix at (0; 0) of the left translation �(x;t) takes the follow-
ing block form

J�(x;t) (0; 0) =

�
Im 0
1
2 Bx In

�
;

where if B(k) = (b
(k)
i;j )i;j�m, for k = 1; : : : ; n, Bx denotes the matrix

�Pm

j=1 b
(k)
i;j xj

�
k�m; j�n

:

Then, the Jacobian basis of g, the Lie algebra of G , is given by

Xi = (@=@xi) +
1
2

Pn

k=1

�Pm

l=1 b
(k)
i;l xl

�
(@=@tk); (i = 1; : : : ;m);

Tk = @=@tk; (k = 1; : : : ; n):
(1.71)

An easy computation shows that

[Xj ; Xi] =
Pn

k=1
1
2

�
b
(k)
i;j � b

(k)
j;i

�
@tk =:

Pn

k=1 c
(k)
i;j @tk :

We have denoted by C(k) = (c
(k)
i;j )i;j�m the skew-symmetric part of B(k). Let

us now assume that C(1); : : : ; C(n) are linearly independent. This implies that
the m2 � n matrix 0

BB@
C
(1)
1;1 � � � C

(n)
1;1

... � � �
...

C
(1)
m;m � � � C

(n)
m;m

1
CCA

has rank equal to n. As a consequence

spanf[Xj ; Xi] j i; j = 1; : : : ;mg = spanf@t1 ; : : : ; @tng:

Therefore,

rank
�
LiefX1; : : : ; Xmg(0; 0)

�
= dim

�
spanf@x1 ; : : : ; @xm ; @t1 ; : : : ; @tng

�
= m+ n:

This shows that G is a Carnot group of step two and generators X1; : : : ; Xm.
We explicitly remark that the linear independence of the matrices

C(1); : : : ; C(n)

is also necessary for G to be a Carnot group. Then, every Carnot group of
step two and m generators is of the type described here. Moreover, the above
arguments show that there exist Carnot groups of any dimensionm 2 N of the
�rst layer and any dimension n � m(m � 1)=2 of the second layer: it suÆces
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to choose n linear independent matrices B(1); : : : ; B(n) in the vector space
of the skew-symmetric m � m matrices (which has dimension m(m � 1)=2)
and de�ne the composition law as in (1.69). Finally, by means of the general
results on strati�ed groups in Section 1.8, we have the following remarkable
result.

Theorem 1.5.4. The N -dimensional strati�ed groups of step two and m gen-
erators are characterized by being (canonically isomorphic to) (RN ; Æ) with the
Lie group law as in (1.69) where the B(k)'s are m �m linearly independent
skew-symmetric matrices. The group of dilations is given by (1.70).

1.5.6 Groups of Heisenberg type

Let H = (Rm+n ; Æ; Æ�) be the homogeneous Lie group with composition law
(1.69) and the group of dilations as in (1.70). Let us also assume that the
matrices B(1); : : : ; B(n) have the following properties:

1. B(j) is a m�m skew-symmetric and orthogonal matrix, for every j � n;
2. B(i) B(j) = �B(j) B(i), for every i; j 2 f1; : : : ; ng with i 6= j.

If all these conditions are satis�ed, G is called a group of Heisenberg-type, in
short, a H-type group.

An H-type group is a Carnot group, since conditions (1) and (2) imply the
linear independence of B(1); : : : ; B(n). Indeed, if � = (�1; : : : ; �n) 2 RN n f0g
then 1

j�j

Pn

s=1 �sB
(s) is orthogonal (hence non-vanishing) as the following

computation shows:�
1
j�j

Pn
s=1 �sB

(s)
�
�
�

1
j�j

Pn
s=1 �sB

(s)
�T

= � 1
j�j2

P
r;s�n �r�s B

(r)B(s)

= � 1
j�j2

X
r�n

�2r (B
(r))2 � 1

j�j2

X
r;s�n; r 6=s

�r�sB
(r)B(s) = Im:

Here we used the following facts: (B(r))2 = �Im since B(r) is skew-symmetric
and orthogonal; B(r)B(s) = �B(s)B(r) from condition (2) above.

The generators of G are the vector �elds (see (1.71))

Xi = @xi +
1
2

Pn

k=1

�Pm

l=1 b
(k)
i;l xl

�
@tk; i = 1; : : : ;m:

A direct computation shows that the canonical sub-Laplacian �G =
Pm

i=1X
2
i

can be written as follows

�G = �x +
1
4

Pn

h;k=1hB
(h)x;B(k)xi @thtk

+
Pm

k=1hB
(k)x;rxi @tk +

Pn

k=1 trace(B
(k)) @tk :

On the other hand, by conditions (1) and (2), hB(h)x;B(h)xi = jxj2 while,
for h 6= k, hB(h)x;B(k)xi = 0 since hB(h)x;B(k)xi = �hB(k)B(h)x; xi =
hB(h)B(k)x; xi = �hB(k)x;B(h)xi. We also have trace(B(k)) = 0 since B(k) is
skew-symmetric. Then �G takes the form

�G = �x +
1
4 jxj

2�t +
Pn

k=1hB
(k)x;rxi @tk : (1.72)
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Remark 1.5.5. The �rst layer of a group of Heisenberg type has even dimension
m. Indeed, if B is a m�m skew-symmetric orthogonal matrix, we have Im =
BBT = �B2, whence 1 = (�1)m(detB)2.

Remark 1.5.6. With the previous notation, if H = (Rm+n ; Æ; Æ�) is a H-type
group, then z = f(0; t) j t 2 Rng is the center of H . Indeed, let (y; t) 2 H

be such that (x; s) Æ (y; t) = (y; t) Æ (x; s) for every (x; s) 2 H . This holds i�
hB(k)x; yi = hB(k)y; xi for any x 2 Rm and any k 2 f1; : : : ; ng. Then, since
(B(k))T = �B(k),

hB(k)y; xi = 0; 8x 2 R
m ; 8 k 2 f1; : : : ; ng;

so that y = 0 because B(k) is orthogonal, hence non-singular.

Remark 1.5.7. The classical Heisenberg group on R2k+1 is a H-type group. It
corresponds to the case m = 2k, n = 1 and

B(1) = diag
n�0 �1

1 0

�
; : : : ;

�
0 �1
1 0

�o
; the block occurring k times.

The classical Heisenberg groups are the only (up to isomorphism) H-type
groups with one-dimensional center.

Remark 1.5.8. Groups of Heisenberg type with center of dimension n � 2 do
exist. For example, the following two matrices

B(1) =

0
BB@
0 �1 0 0
1 0 0 0
0 0 0 �1
0 0 1 0

1
CCA ; B(2) =

0
BB@

0 0 1 0
0 0 0 �1
�1 0 0 0
0 1 0 0

1
CCA

satisfy conditions (1)-(2) and hence they de�ne in R6 = R4�R2 a H-type group
whose center has dimension 2. The above matrices B(1) and B(2) together with

B(3) =

0
BB@

0 0 0 1
0 0 1 0
0 �1 0 0
�1 0 0 0

1
CCA

de�ne in R
7 = R

4 � R
3 a H-type group whose center has dimension 3.

Remark 1.5.9. The following result holds (see [30, Corollary 1]). Let m, n be
two positive integers. Then there exists a H-type group of dimension m + n
whose center has dimension n if and only if it holds n < �(m), where � is the
so-called Hurwitz-Radon function, i.e.,

� : N ! N; �(m) := 8p+ q; ove m = (odd) � 24p+q ; 0 � q � 3:

We explicitly remark that if m is odd, then �(m) = 0, whence the �rst layer
of any H-type group has even dimension (as we already proved in Remark
1.5.5).
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Remark 1.5.10. The groups of Heisenberg-type were introduced by A. Kaplan
in [30]. Kaplan's de�nition of H-type groups is more abstract than the one
given here. We shall show that, up to an isomorphism, the two de�nitions are
equivalent.

1.5.7 Sum of Carnot Groups

Suppose we are given two homogeneous strati�ed groups G (1) = (RN ; Æ(1)),
G (2) = (RM ; Æ(2)) with dilations

Æ
(1)
� (x) = (�x(1); : : : ; �rx(r)); x 2 G

(1) ;

Æ
(2)
� (y) = (� y(1); : : : ; �sy(s)); y 2 G

(2)

where x(i) 2 RNi , i � r, N1+ � � �+Nr = N and y(i) 2 RMi , i � s, M1+ � � �+
Ms = M . Let �G(1) =

PN1

j=1X
2
j and �G(2) =

PM1

j=1 Y
2
j be the canonical sub-

Laplacians on G (1) and G (2) , respectively. We de�ne a homogeneous strati�ed
group G on RN+M as follows. Suppose r � s. If (x; y) 2 RN �RM , we consider
the following permutation of the coordinates

R(x; y) = (x(1); y(1); : : : ; x(r); y(r); y(r+1); : : : ; y(s)):

We then denote the point of G � RN+M by z = R(x; y). We �nally de�ne
the group law Æ and the dilations Æ� on G as one can expect: for every z =
R(x; y); � = R(�; �) 2 G , we set

z Æ � = R(x Æ(1) �; y Æ(2) �); Æ�z = R(Æ
(1)
� x; Æ

(2)
� y):

It is then easily checked that (G ; Æ; Æ� ) is a homogeneous strati�ed group of
step s and N1 +M1 generators. Moreover, the canonical sub-Laplacian on G

is the sum of the sub-Laplacians on G (1) and G (2) :

�G = �G(1) +�G(2) =
PN1

j=1X
2
j +

PM1

j=1Y
2
j :

1.5.8 Carnot groups with homogeneous dimension Q � 3

Let G = (RN ; Æ; Æ�) be a Carnot group with homogeneous dimension Q � 3.
We recall that Q =

Pr
j=1 j Nj , where r and N1; : : : ; Nr are, respectively, the

step of G and the dimensions of the layers g1; : : : ; gr of G . Obviously, the
group is not the Euclidean group in RN i� g2 6= f0g, i.e., r � 2. In this case,
the �rst layer g1 must be at least two-dimensional since [g1; g1] = g2 6= f0g.
This shows that any non-Euclidean Carnot group has homogeneous dimension
Q � 4. Thus, if Q � 3 then G is the Euclidean group in R

N , i.e., Æ = + and
Æ�(x) = �x. The sub-Laplacians on G are the second order elliptic operators
with constant coeÆcients. The canonical sub-Laplacians are d2=dx21 in R (Q =
N = 1), @2x1 +@2x2 in R2 (Q = N = 2), and @2x1 +@2x2 +@2x3 in R3 (Q = N = 3).


