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Strati�ed Groups and sub-Laplacians

1.1 Vector �elds in R
N . Exponential maps. Lie algebras

of vector �elds

Given an N -tuple of scalar functions a1; : : : ; aN ,

aj : R
N ! R; j 2 f1; : : : ; Ng;

the linear �rst order di�erential operator

X =
PN

j=1 aj @j ; @j = @xj =
@
@xj

; (1.1)

will be called a vector �eld in RN with components a1; : : : ; aN . We shall
always deal with smooth vector �elds, i.e., with vector �elds whose components
a1; : : : ; aN are functions of class C1. We shall denote by T (RN ) the set of all
smooth vector �elds in RN . Equipped with the natural operations, T (RN ) is
a vector space over R. We shall adopt the following notation: I will denote
the identity map on RN and, if X is the vector �eld in (1.1), then

XI := (a1; : : : ; aN )
T (1.2)

will be the column vector of the components of X . By consistency of notation,
we may write

X = r �XI;

where r = (@1; : : : ; @N ) is the gradient operator in RN .
A path 
 : D ! R

N , D = interval of R, will be said an integral curve of
X if _
(t) = XI(
(t)) for every t 2 D. If X is a smooth vector �eld, then, for
every x 2 RN , the Cauchy problem(

_
 = XI(
);


(0) = x
(1.3)
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has a unique solution 
(�; x) : D(X; x)! RN . We agree to denote by D(X; x)
the greatest open interval of R on which 
(�; x) exists.

Since X is smooth, t 7! 
(t; x) is a C1 function whose n-th Taylor expan-
sion in a neighborhood of t = 0 is given by


(t; x) = x+ tX(1)I(x) + t2

2! X
(2)I(x) + � � �+ tn

n! X
(n)I(x)

+
1

n!

Z t

0

(t� s)nX(n+1)I(
(s; x)) ds:
(1.4)

Hereafter we denote by X(k) the vector �eld

X(k) =
PN

j=1(X
k�1aj) @xj ;

being X0 = X and Xh, h � 1, the h-th order iterated of X , i.e.,

Xh := X Æ � � � ÆX| {z }
h

:

We remark that Xh is a di�erential operator of order at most h, whereas
X(h) is a di�erential operator of order at most 1. To check (1.4) we use (1.3).
Writing 
(t) instead of 
(t; x), (1.3) gives: 
(0) = x, (d=dt)jt=0
(t) = XI(x)
and

d2

dt2

��
t=0


(t) = d
dt

��
t=0

(XI)(
(t)) = JXI (
(0)) � _
(0) = JXI (x) �XI(x)

=

0B@ ra1(x) �XI(x)
...

raN (x) �XI(x)

1CA =

0B@ Xa1(x)
...

XaN(x)

1CA = X(2)I(x):

By iterating this argument, we obtain


(k)(0) := dk

dtk

��
t=0


(t) = X(k)I(x); k � 2:

Replacing this identity in the Taylor formula


(t) = x+
Pn

k=1
tk

k! 

(k)(0) + 1

n!

R t
0
(t� s)n 
(n+1)(s) ds;

we obtain (1.4). We observe that, since the identity map I is linear and since
the �rst order part of Xh coincides with X(h), then X(h)I � XhI . Thus
formula (1.4) can be rewritten as


(t; x) =x+ tXI(x) + t2

2! X
2I(x) + � � �+ tn

n! X
nI(x)

+
1

n!

Z t

0

(t� s)nXn+1I(
(s; x)) ds:
(1.5)

This last expansion suggests to put
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exp(tX)(x) := 
(t; x): (1.6)

Then, for every n 2 N,

exp(tX)(x) =

nX
k=0

tk

k!
XkI(x) +

1

n!

Z t

0

(t� s)nXn+1I
�
exp(sX)(x)

�
ds: (1.7)

In particular, for n = 1,

exp(tX)(x) = x+ tXI(x) +

Z t

0

(t� s)X2I
�
exp(sX)(x)

�
ds: (1.8)

If we de�ne

U := f(t; x) 2 R � R
N j x 2 R

N ; t 2 D(X; x) g;

from the basic theory of ordinary di�erential equations we know that U is
open and the map

U 3 (t; x) 7! exp(tX)(x) 2 R
N

is smooth. Moreover, from the unique solvability of the Cauchy problem re-
lated to smooth vector �elds we get: t 2 D(�X; x) i� �t 2 D(X; x) and

exp(�tX)(x) = exp(t(�X))(x); (1.9)

exp(�tX)
�
exp(tX)(x)

�
= x; (1.10)

exp((t+ �)X)(x) = exp(tX)
�
exp(tX)(x)

�
; (1.11)

when all the terms are de�ned. If D(X; x) = R, identities (1.9)-(1.11) hold for
every t; � 2 R.

Remark 1.1.1. For our aims the vector �elds of the following type

X =
PN

j=1 aj(x1; : : : ; xj�1) @xj (1.12)

will play a crucial rôle. In (1.12) the function aj only depends on the variables
x1; : : : ; xj�1 and we agree to let aj(x1; : : : ; xj�1) = constant when j = 1.

For any smooth vector �eld X of the form (1.12), the map

(x; t) 7! exp(tX)(x)

is well de�ned for every x 2 R
N and t 2 R.

Indeed, if 
 = (
1; : : : ; 
N ) is the solution to the Cauchy problem(
_
 = XI(
)


(0) = x; x = (x1; : : : ; xN );

then _
1 = a1 and _
j = aj(
1; : : : ; 
j�1) for j = 2; : : : ; N . As a consequence
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1(x; t) = x1 + ta1; 
j(x; t) = xj +

Z t

0

aj(
1(x; s); : : : ; 
j�1(x; s)) ds

and 
j(x; t) is de�ned for every x 2 RN and t 2 R. Moreover, 
1(�; t) only
depends on x1, whereas for j = 2; : : : ; N , 
j(�; t) only depends on x1; : : : ; xj .
Let us put A1(x; t) = A1(x1; t) = x1 + ta1 and, for j = 2; : : : ; N ,

Aj(x; t) = Aj(x1; : : : ; xj�1; t) :=

Z t

0

aj(
1(x; s); : : : ; 
j�1(x; s)) ds:

Then, for every x 2 RN , t 2 R,

exp(tX)(x) =
�
x1+ta1; x2+A2(x1; t); : : : ; xN+AN (x1; : : : ; xN�1; t)

�
(1.13)

and the map x 7! exp(tX)(x) is a global di�eomorphism of RN onto RN , for
every �xed t 2 R. Its inverse map y 7! L(y; t) is given by

y 7! L(y; t) = exp(�tX)(y): (1.14)

This last statement follows from identity (1.10).
Let us now consider a smooth function u : RN ! R and the vector �eld

in (1.1). Then

Xu(x) = lim
t!0

u(exp(tX)(x)) � u(x)

t
; 8x 2 R

N : (1.15)

Indeed, since exp(tX)(x) = x + tXI(x) + O(t2), the limit on the right-hand
side of (1.15) is equal to the following one:

lim
t!0

u(x+ tXI(x))� u(x)

t
= ru(x) �XI(x) = Xu(x):

Given two smooth vector �elds X and Y , we de�ne the Lie-bracket [X;Y ]
as follows

[X;Y ] := XY � Y X:

Then, if X =
PN

j=1 aj@j and Y =
PN

j=1 bj@j , the Lie bracket [X;Y ] is the
vector �eld

[X;Y ] =
PN

j=1(Xbj � Y aj)@j :

As a consequence

[X;Y ]I = (Xb1; : : : ; XbN)
T � (Y a1; : : : ; Y aN )

T = JY I �XI �JXI � Y I:

It is quite trivial to check that (X;Y ) 7! [X;Y ] is a bilinear map on the vector
space T (RN ) satisfying the Jacobi identity

[X; [Y; Z]] + [Y; [Z;X ]] + [Z; [X;Y ]] = 0
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for every X;Y; Z 2 T (RN ). We shall refer to T (RN ) (equipped with the above
Lie-bracket) as the Lie algebra of the vector �elds on RN . Any sub-algebra
a of T (RN ) will be called a Lie algebra of vector �elds. More explicitly, a is
a Lie algebra of vector �elds if a is a vector subspace of T (RN ), closed with
respect to [ ; ], i.e., [X;Y ] 2 a for every X;Y 2 a.

We now �x some other notation on algebras of vector �elds. Given a set
of vector �elds Z1; : : : ; Zm 2 T (RN ), and given a multi-index

J = (j1; : : : ; jk) 2 f1; : : : ;mg
k

we set
ZJ := [Zj1 ; : : : [Zjk�1

; Zjk ] : : :]:

We say that ZJ is a commutator of length k of Z1; : : : ; Zm. If J = j1, we also
say that ZJ := Zj1 is a commutator of length 1 of Z1; : : : ; Zm.

If U is any subset of T (RN ), we denote by LiefUg the least sub-algebra of
T (RN ) containing U , i.e.,

LiefUg :=
\

h where h is a sub-algebra of T (RN ) with U � h:

We de�ne
rank

�
LiefUg(x)

�
= dimfZI(x) jZ 2 LiefUg g:

The following result holds.

Proposition 1.1.2. Let U � T (RN ). We set

U1 := spanfUg; Un := spanf[u; v] j u 2 U; v 2 Un�1 g; n � 2:

Then, we have
LiefUg = spanfUn jn 2 Ng:

We explicitly remark that the very vector �elds in Un are linear combination
of \nested" brackets, i.e., brackets of the following type

[u1[u2[u3[� � � [un�1; un] � � � ]]]];

with u1; : : : ; un 2 U . The above proposition then states that whatever element
of LiefUg is a linear combination of nested brackets. To show the idea of
the proof, let us take u1; u2, v1; v2 2 U and prove that [[u1; u2]; [v1; v2]] is a
linear combination of nested brackets. By the Jacobi identity, [X; [Y; Z]] =
�[Y; [Z;X ]]� [Z; [X;Y ]] one has

[[u1; u2]| {z }
X

; [ v1|{z}
Y

; v2|{z}
Z

]] = �[v1; [v2; [u1; u2]]]� [v2; [[u1; u2]; v1]]

= �[v1; [v2; [u1; u2]]] + [v2; [v1; [u1; u2]]] 2 U4:



6 1 Strati�ed Groups and sub-Laplacians

Proof. (of Proposition 1.1.2.) We set U� := spanfUn jn 2 Ng. Obviously, U�

contains U and is contained in any algebra of vector �elds which contains U .
Hence, we are left to prove that U� is closed under the bracket operation.
Obviously, it is enough to show that, for any i; j 2 N and for any u1; : : : ; ui,
v1; : : : ; vj 2 U we haveh

[u1[u2[� � � [ui�1; ui] � � � ]]]; [v1[v2[� � � [vj�1; vj ] � � � ]]]
i
2 Ui+j :

We argue by induction on k := i + j � 2. For k = 2 and 3 the assertion is
obvious. Let us now suppose the thesis holds for every i+ j � k, with k � 4,
and prove it also holds when i+j = k+1. We can suppose, by skew-symmetry,
j � 3. Exploiting repeatedly the induction hypothesis and the Jacobi identity,
we haveh

u; [v1[v2[� � � [vj�1; vj ] � � � ]]]
i

= �[v1; [[v2; [v3; � � � ]]; u]| {z }
length k

]� [[v2; [v3; � � � ]]; [u; v1]]

= felement of Uk+1g � [[v1; u]; [v2; [v3; � � � ]]]

= felement of Uk+1g+ [v2; [[v3; � � � ]; [v1; u]]| {z }
length k

] + [[v3; � � � ]; [[v1; u]v2]]

= felement of Uk+1g+ [[v2; [v1; u]]; [v3; � � � ]]

(after �nitely many steps)

= felement of Uk+1g+ (�1)j�1[[vj�i; [vj�2; � � � [v1; u]]]; vj ]

= felement of Uk+1g+ (�1)j [vj ; [vj�i; [vj�2; � � � [v1; u]]]]

2 Uk+1:

This ends the proof. utThe following notation will be used when dealing with
\strati�ed" Lie algebras. If V1; V2 are subsets of T (RN ), we denote

[V1; V2] := span
�
[v1; v2] j vi 2 Vi; i = 1; 2

	
:

From Proposition 1.1.2 it follows that, if Z1; : : : ; Zm 2 T (RN ), then a
system of generators spanning LiefZ1; : : : ; Zmg is given by the ZJ 's with
J = (j1; : : : ; jk) 2 f1; : : : ;mgk, k 2 N. This (non-trivial) fact will be used
throughout the next sections.

1.2 Lie groups on R
N

Let Æ be a given group law on RN and suppose that the map (x; y) 7! y�1 Æx
is smooth. Then G = (RN ; Æ) is called a Lie group. We shall assume that the
origin 0 is the identity of G .

We denote by ��(x) = � Æ x the left-translations on G . A (smooth) vector
�eld X on RN is called left-invariant on G if
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X(' Æ ��) = (X') Æ ��;

for every � 2 G and for every smooth function '. We denote by g the set
of left-invariant vector �elds on G . It is quite obvious to recognize that, for
every X;Y 2 g and for every �; � 2 R, �X + �Y 2 g and [X;Y ] 2 g. Then,
g is a Lie algebra of vector �elds , sub-algebra of T (RN ). It will be called the
Lie algebra of G .

From the Theorem of di�erentiation of composite functions, we easily get
the following characterization of left-invariant vector �elds on G .

Proposition 1.2.1. The vector �eld X belongs to g if and only if

(XI)(� Æ x) = J��(x) � (XI)(x); 8 �; x 2 G : (1.16)

Proof. For every smooth function ' on RN we have

(X(' Æ ��))(x) = r(' Æ ��)(x) �XI(x) =
�
(r')(��(x)) � J��(x)

�
�XI(x)

and
(X')(��(x)) = (r')(��(x)) �XI(��(x)):

Then, X 2 g if and only if

(r')(��(x)) �
�
J��(x) �XI(x)

�
= (r')(��(x)) �XI(��(x)); (1.17)

for every �; x 2 RN and for every ' 2 C1(C1;R). By choosing '(x) =PN
j=1 hjxj , with hj 2 R for 1 � j � N , (1.17) gives hT � J��(x) � XI(x) =

hT �XI(��(x)) for every h 2 R
N , which obviously implies (1.16). utSwapping

� with x in (1.16), we obtain (XI)(x Æ�) = J�x(�) � (XI)(�) for all �; x 2 G ,
so that, when � = 0,

(XI)(x) = J�x(0) (XI)(0); 8x 2 G : (1.18)

This identity says that a left-invariant vector �eld on G is determined by
its value at the origin and by the Jacobian matrix at the origin of the left-
translation. The following result shows that (1.18) characterizes the vector
�elds in g.

Proposition 1.2.2. Let � be a �xed vector of RN and de�ne the vector �eld
X as follows

XI(x) = J�x(0) � �; x 2 R
N : (1.19)

Then X 2 g.

Proof. De�nition (1.19) gives

XI(� Æ x) = J��Æx(0) � �; �; x 2 R
N : (1.20)
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On the other hand, since the composition law on G is associative, we have
��Æx = �� Æ �x, so that J��Æx(0) = J��(x) � J�x(0). Replacing this identity
in (1.20) we get XI(� Æ x) = J��(x) � J�x(0) � � which implies, by (1.19),
XI(� Æ x) = J��(x) � XI(x). Then, by Proposition 1.2.1, X 2 g. utFrom
Proposition 1.2.1 and identity (1.18) it follows that g is a vector space of
dimension N . Indeed, the following proposition holds.

Proposition 1.2.3. The map

J : RN ! g; � 7! J(�)

with J(�) de�ned by
J(�)I(x) = J�x(0) � �;

is an isomorphism of vector spaces. In particular,

dim g = N:

Proof. We �rst observe that J is well de�ned since, by Proposition 1.2.2,
J(�) 2 g for every � 2 RN . Moreover, by identity (1.18), J(RN ) = g. The
linearity of J is obvious. Then. it remains to prove that J is injective. Suppose
J(�) = 0. This means that J�x(0) � � = 0 for every x 2 RN . In particular
J�0(0) � � = 0. On the other hand, since the left-translation �0 is the identity
map, J�0(0) � � = �. Then � = 0 and J is one-to-one. utFor what follows, the
next remarks will be useful.

Remark 1.2.4. Let X 2 g and denote by � the value of XI at t = 0, i.e.,
� = XI(0). Then, by the identity (1.18),XI(x) = J�x(0)��. As a consequence,
for every smooth function ' on RN ,

d
dt

��
t=0

'(x Æ t�) = d
dt

��
t=0

'(�x(t�))

= r'(x) � J�x(0) � � = r'(x) �XI(x):

Then
(X')(x) = d

dt

��
t=0

'(x Æ t�); � = XI(0): (1.21)

Identity (1.21) characterizes the left-invariant vector �elds on G . This follows
from the next remark.

Remark 1.2.5. Let X be a vector �eld on RN . Assume that, for every ' 2
C1(RN ;R),

(X')(x) = d
dt

��
t=0

'(x Æ t�); 8x 2 R
N ; (1.22)

where � = XI(0). Then X 2 g.

Indeed, (1.22) and the associativity of Æ imply

(X')(� Æ x) = d
dt

��
t=0

'((� Æ x) Æ t�) = d
dt

��
t=0

(' Æ ��)(x Æ t�)

= X(' Æ ��)(x);

for every �; x 2 G . Then X is left-invariant on G .
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Remark 1.2.6. For every x 2 RN and X 2 g the following expansion holds

exp(tX)(x) = x Æ t� + o(t) as t! 0; � = XI(0): (1.23)

Indeed, since XI(x) = J�x(0) � �,

x Æ t� = �x(t�) = �x(0) + tJ�x(0) � � + o(t) = x+ tXI(x) + o(t):

Then (1.23) follows from (1.8).

Remark 1.2.7. From Proposition 1.2.3 it follows that any basis of g is the
image via J of a basis of RN .

If fe1; : : : ; eNg, is the canonical basis of R
N , we call

fZ1; : : : ; ZNg; Zj = J(ej)

the Jacobian basis of g. From the very de�nition of J , we obtain

ZjI(x) = J�x(0) � ej = j-th column of J�x(0); 8x 2 R
N ; (1.24)

so that, since J�x(0) = IN,
ZjI(0) = ej :

Form Remark 1.2.5 we also have

(Zj')(x) =
d

dt

���
t=0

'(x Æ tej) =
@

@yj

���
y=0

'(x Æ y);

for every ' 2 C1(RN ) and every x 2 G .
Then, collecting these results: the Jacobian basis fZ1; : : : ; ZNg of g is given

by the N column of the Jacobian matrix J�x(0) (whence the name). Moreover
Zj(0) = @=@xj and

(Zj')(x) = (@=@yj)jy=0'(x Æ y); 8 ' 2 C1(RN ); x 2 G :

In the sequel, to endow g with a di�erentiable structure, we shall �x a system
of coordinates on g by choosing the Jacobian basis, then identifying g with
RN .

We remark that two vector �elds can be linearly independent in T (RN )
without being linearly independent at every point. Take, for example, @x1 and
x1 @x2 in R2 . Moreover, two vector �elds can be linearly dependent at every
point without being linearly dependent in T (RN ). Take, for example, @x1 and
x1 @x1 in R

2 . The following result shows that neither of the previous situations
can occur for left-invariant vector �elds on a Lie group. Indeed, given a family
of vector �elds X1; : : : ; Xm 2 g, the rank of the subset of RN spanned by
fX1I(x); : : : ; XmI(x)g is independent of x. More precisely we have:

Proposition 1.2.8. Let X1; : : : ; Xm 2 g. Then the following statements are
equivalent:
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(i) X1; : : : ; Xm are linearly independent (in g);
(ii)X1I(0); : : : ; XmI(0) are linearly independent (in RN );
(iii)there exists x0 2 R

N such that X1I(x0); : : : ; XmI(x0) are linearly inde-
pendent (in RN );

(iv)X1I(x); : : : ; XmI(x) are linearly independent (in RN ), for every x 2 RN .

Proof. We �rst recall that, by identity (1.18),

XjI(x) = J�x(0) � �j ; with �j = XjI(0),

for every x 2 RN . On the other hand, since �x�1 Æ �x = I , J�
x�1

(x) � J�x(0) =

IN. Hence J�x(0) is non singular for every x 2 RN . Then (ii), (iii) and (iv)
are equivalent. The equivalence between (i) and (ii) follows from Proposition
1.2.3. Indeed, with the notation of that proposition, for every j 2 f1; : : : ;mg,
Xj = J(�j) with �j = XjI(0) and J is an isomorphism of RN onto g. ut

The next Lemma will be useful to de�ne the notion of exponential map of g
in G , one of the most important tools in Lie group theory.

Lemma 1.2.9. Let X 2 g and let 
 : [t0; t0 + T ] ! RN be an integral curve
of X. Then

(i) � Æ 
 is an integral curve of X, for every � 2 G .
(ii)
 can be continued to an integral curve of X on the interval [t0�T; t0+2T ].

Proof. (i): For every t 2 [t0; t0 + T ] we have (by (1.16))

d
dt (� Æ 
(t)) =

d
dt (��(
(t))) = J��(
(t)) � _
(t)

= J��(
(t)) �XI(
(t)) = X(� Æ 
(t)):

(ii): De�ne � : [t0 � T; t0 + 2T ]! RN as follows:

� (t) :=

8><>:

(t0) Æ (
(t0 + T ))�1 Æ 
(t+ T ); if t0 � T � t � t0;


(t); if t0 � t � t0 + T ;


(t0 + T ) Æ (
(t0))
�1 Æ 
(t� T ); if t0 + T � t � t0 + 2T .

Then, by (i), � is an integral curve of X and, obviously, � j[t0;t0+T ] � 
.
utFrom assertion (ii) of this Lemma, we immediately obtain the following
statement: for every X 2 g, the map

(x; t) 7! exp(tX)(x)

is well-de�ned for every x 2 RN and every t 2 R.
From the assertion (i) of Lemma 1.2.9, the next important corollary easily

follows.
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Corollary 1.2.10. Let X 2 g and x; y 2 G . Then

x Æ exp(tX)(y) = exp(tX)(x Æ y); (1.25)

for every t 2 R. In particular, for y = 0,

exp(tX)(x) = x Æ exp(tX)(0):

Proof. By Lemma 1.2.9-(i), t 7! x Æ exp(tX)(y) is an integral curve of X .
Moreover

(x Æ exp(tX)(y))jt=0 = x Æ y:

Then (1.25) follows. ut

The exponential map of g in G is de�ned as

Exp : g! G ; Exp (X) = exp(X)(0):

From Corollary 1.2.10 and identity (1.10) (with � = �t), we get

Exp (�X) Æ Exp (X) = 0:

Indeed,

Exp (�X) Æ Exp (X) = Exp (�X) Æ exp(X)(0) = exp(X)(Exp (�X))

= exp(X)(exp(�X)(0)) = 0:

Then we have
(Exp (X))�1 = Exp (�X): (1.26)

Let fX1; : : : ; XNg be a basis of g. Then, for every X 2 g,

X =
PN

j=1 �jXj ; � = (�1; : : : ; �N ) 2 RN ;

so that
Exp (X) = exp(

PN

j=1 �jXj)(0):

From the classical theory of ODE's, we know that the map

(�1; : : : ; �N ) 7! exp(
PN

j=1 �jXj)(0)

is smooth. Then, we can say that X 7! Exp (X) is smooth. From the Taylor
expansion (1.8), we get

Exp (X) =
PN

j=1 �j �j +O(j�j2); as j�j ! 0;

where �j = XjI(0). It follows that, denoting by E the matrix whose column
vectors are �1; : : : ; �N ,

JExp (0) = E:

In particular, if fX1; : : : ; XNg = fZ1; : : : ; ZNg is the Jacobian basis of g, then
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JExp (0) = IN: (1.27)

As a consequence, Exp is a di�eomorphism from a neighborhood of 0 2 g onto
a neighborhood of 0 2 G . Where de�ned, we denote by Log the inverse map
of Exp . The next proposition is an easy consequence of Corollary 1.2.10 and
shows an important link between the composition law in G and the exponential
map.

Proposition 1.2.11. Let x; y 2 G . Assume Log (y) is de�ned. Then

x Æ y = exp(Log (y))(x): (1.28)

Proof. Let X = Log (y). This means that y = Exp (X) = exp(X)(0). Then,
by Corollary 1.2.10, x Æ y = x Æ exp(X)(0) = exp(X)(x). This is (1.28). ut

We end this section with the following important remark.

Remark 1.2.12. Let G = (RN ; Æ) be a Lie group on R
N and let Z1; : : : ; ZN be

the Jacobian basis of the Lie algebra g of G . For any di�erentiable function u
de�ned on an open set 
 � RN , we consider a sort of intrinsic gradient of u
given by (Z1u; : : : ; ZNu). Then, from (1.24) it follows that

(Z1u(x); : : : ; ZNu(x)) = ru(x) � J�x(0) 8x 2 
: (1.29)

On the other hand, since J�x(0) is non-singular and its inverse is given by
J�

x�1
(0), we can write the Euclidean gradient of u in terms of its intrinsic

gradient in the following way

ru(x) = (Z1u(x); : : : ; ZNu(x)) � J�
x�1

(0) 8x 2 
: (1.30)

From (1.30), we immediately obtain the following result. We shall follow the
notation of Remark 1.2.12.

Proposition 1.2.13. Let 
 � RN be an open connected set. A function u 2
C1(
;R) is constant in 
 if and only if its intrinsic gradient (Z1u; : : : ; ZNu)
vanishes identically on 
.

Proof. From (1.29) and (1.30), it follows that the intrinsic gradient of u van-
ishes at x 2 
 if and only if ru(x) = 0. ut

1.3 Homogeneous Lie groups on R
N

A Lie group G = (RN ; Æ) is a homogeneous group if the following property
holds:

(H.1) There exists an N-tuple of real numbers � = (�1; : : : ; �N ), with
1 � �1 � : : : � �N , such that the dilation

Æ� : RN ! R
N ; Æ�(x1; : : : ; xN ) = (��1x1; : : : ; �

�NxN )

is an automorphism of the group G , for every � > 0.
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The family of dilations fÆ�g�>0 forms a group whose identity is Æ1 = I , the
identity of RN . Moreover, (Æ�)

�1 = Æ��1 . In the sequel, fÆ�g�>0 will be re-
ferred to as the dilation group of G .

We shall denote by G = (RN ; Æ; Æ�) a homogeneous Lie group with com-
position law Æ and dilation group fÆ�g�>0. From (H.1) it follows that

Æ�(x Æ y) = (Æ� x) Æ (Æ� y); 8 x; y 2 G (1.31)

and, if e denotes the identity of G , Æ�(e) = e for every � > 0. This obviously
implies that e = 0. This is consistent with our previous assumption that the
origin is the identity of G .

Before we continue the analysis of homogeneous Lie groups, we show some
basic properties of homogeneous functions and homogeneous di�erential op-
erators.

A real function a de�ned on RN is called Æ�-homogeneous of degree m 2 R

if, for every x 2 RN and � > 0, it holds

a(Æ� (x)) = �ma(x):

A linear di�erential operator X is called Æ�-homogeneous of degree m 2 R

if, for every ' 2 C1(RN ), x 2 RN and � > 0, it holds

X
�
'(Æ�(x))

�
= �m

�
X'

�
(Æ�(x)):

Let a be a smooth Æ�-homogeneous function of degree m and X be a dif-
ferential operator Æ�-homogeneous of degree n. Then Xa is a Æ�-homogeneous
function of degree m� n. Indeed, for every x 2 RN and � > 0, we have

�n(Xa)(Æ�(x)) = X(a(Æ�(x))) = X(�ma(x)) = �m(Xa)(x):

Given a multi-index � 2
�
N [ f0g

�N
, � = (�1; : : : ; �N), we de�ne the

G -length of � as
j�jG = h�; �i =

PN

i=1 �i �i:

Then, since x 7! xj and @=@xj , j 2 f1; : : : ; Ng, are Æ�-homogeneous of de-
gree �j , the function x 7! x� and the di�erential operator D� are both Æ�-
homogeneous of degree j�jG .

If a is a continuous function Æ�-homogeneous of degree m and a(x0) 6= 0
for some x0 2 RN , then m � 0. Indeed, from a(Æ�(x0)) = �ma(x0) we get

lim
�!0

�m = lim
�!0

a(Æ�(x0))

a(x0)
=

a(0)

a(x0)
:

Let us now consider a smooth function a Æ�-homogeneous of degree m and
a multi-index �, and assume D�a is not identically zero. Then, since D�a is
smooth and Æ�-homogeneous of degree m � j�jG , it has to be m � j�jG � 0,
i.e., j�jG � m. This result can be restated as follows:
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D�a � 0 8 � : j�jG > m:

Thus a is a polynomial function. Let a(x) =
P

�2A a� x
�, where A is a �nite

set of multi-indices and a� 2 R for every � 2 A. Since a is Æ�-homogeneous
of degree m, we haveP

�2A �
m a� x

� = �m a(x) = a(Æ�(x)) =
P

�2A a� �
j�jGx�:

Hence �m a� = �j�jGa� for every � > 0, so that j�jG = m if a� 6= 0. Then

a(x) =
X

j�jG=m

a� x
�: (1.32)

It is quite obvious that every polynomial function of the form (1.32) is Æ�-ho-
mogeneous of degree m. Thus, we have proved the following proposition.

Proposition 1.3.1. Let a 2 C1(RN ;R). Then a is Æ�-homogeneous of degree
m i� a takes the form (1.32).

From the proposition above one easily obtains the following characterization
of the smooth Æ�-homogeneous vector �elds.

Proposition 1.3.2. Let X be a smooth vector �eld on RN :

X =
PN

j=1 aj(x) @xj :

Then X is Æ�-homogeneous of degree n i� aj is a polynomial function Æ�-ho-
mogeneous of degree �j � n.

Proof. A direct computation shows the \if" part of the proposition. Vicev-
ersa, if X

�
' Æ Æ�

�
= �n

�
X '

�
Æ Æ�, the choice '(x) = xj yields ��j aj(x) =

�n aj(Æ�(x)), whence aj is a (smooth) Æ�-homogeneous function of degree
�j � n. By Proposition 1.3.1, aj is a polynomial function. ut

Corollary 1.3.3. Let X be a smooth vector �eld. Then X is Æ�-homogeneous
of degree n i�

Æ�
�
XI(x)

�
= �nXI(Æ�(x)):

Proof. Let X =
PN

j=1 aj @xj . By Proposition 1.3.2, X is Æ�-homogeneous of

degree n i� aj(Æ�(x)) = ��j�n aj(x) for any j 2 f1; : : : ; Ng. This is equivalent
to say that

Æ�(XI(x)) = Æ�
�
a1(x); : : : ; aN(x)

�T
=
�
��1a1(x); : : : ; �

�NaN (x)
�T

= �n
�
a1(Æ�(x)); : : : ; aN (Æ�(x))

�T
= �nXI(Æ�(x)):

This ends the proof. ut

As a straightforward consequence we have the following simple fact.
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Remark 1.3.4. With the notation of the previous proposition, if aj is not iden-
tically zero, then n � �j . As a consequence, if X 6= 0, it has to be n � �N
and

X =
X

j�N;�j�n

aj(x) @=@xj :

Since aj is a polynomial function of degree �j � n, if n > 0 then aj does not
depend on xj ; : : : ; xN :

aj(x) = aj(x1; : : : ; xj�1)

(we agree to let aj(x1; : : : ; xj�1) = constant when j = 1).

From this remark the next proposition straightforwardly follows.

Proposition 1.3.5. Let X =
PN

j=1 aj(x) @xj be a smooth vector �eld Æ�-
homogeneous of degree n > 0. Then its adjoint X� = �X and

X2 = div(A � rT ); (1.33)

where A is the square matrix (ai aj)i;j�N .

Proof. By the previous remark, the coeÆcient aj does not depend on xj .
Then, for every smooth function ',

X�' = �
PN

j=1 @j(aj ') = �
PN

j=1 aj @j' = �X':

Moreover

X2 =
PN

i;j=1 ai@i(aj @j) =
PN

i=1 @i
�PN

j=1 ai aj @j
�
= div(A � rT );

where A is in the assertion. ut

Vector �elds with di�erent degree of homogeneity are linearly independent, if
they do not vanish at the origin. Indeed, the following proposition holds.

Proposition 1.3.6. Let X1; : : : ; Xk 2 T (RN ) be Æ�-homogeneous vector �elds
of degree n1; : : : ; nk, respectively. If ni 6= nj for i 6= j and if XjI(0) 6= 0 for
every j 2 f1; : : : ; kg, then X1; : : : ; Xk are linearly independent.

Proof. Let c1; : : : ; ck 2 R be such that
Pk

j=1 cj Xj = 0. Then, for every
smooth function '

0 =
Pk

j=1 cj Xj('(Æ�x)) =
Pk

j=1 cj �
nj (Xj')(Æ�x); 8 x 2 RN :

If we take '(x) = hh; xi =
PN

j=1 hj xj , this identity at x = 0 gives

0 =
Pk

j=1 cj �
nj h�j ; hi; 8 h 2 RN ; 8 � > 0;

where �j = XjI(0). Then
Pk

j=1 cj �
nj �j = 0 for all � > 0, so that, since

ni 6= nj if i 6= j, cj �j = 0 for any j 2 f1; : : : ; kg. This implies cj = 0 since
�j 6= 0 (for j = 1; : : : ; k) by hypothesis. ut
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Corollary 1.3.7. Let g be the Lie algebra of G and let X1; : : : ; Xk 2 g be not-
identically vanishing and Æ�-homogeneous of degree n1; : : : ; nk, respectively. If
ni 6= nj for i 6= j, then X1; : : : ; Xk are linearly independent.

Proof. Since XjI(x) = J�x XjI(0) for every x 2 RN , and Xj is not-identically
vanishing, then XjI(0) 6= 0 for any j 2 f1; : : : ; kg. Hence the assertion follows
from the previous proposition. ut

The following simple proposition will be useful in the sequel.

Proposition 1.3.8. Let X1; X2 2 g be Æ�-homogeneous vector �elds of degree
n1; n2, respectively. Then [X1; X2] is Æ�-homogeneous of degree n1 + n2.

Proof. It suÆces to note that, for every smooth function ' on R
N , one has

(X1X2)('(Æ�(x))) = �n2 X1((X2')(Æ�(x))) = �n2+n1 (X1X2)('(Æ�(x))):

This ends the proof. ut

By using the elementary properties of the homogeneous functions showed
above, we shall obtain a structure theorem for the composition law in
(RN ; Æ; Æ�). We �rst prove two lemmas.

Lemma 1.3.9. Let P : RN � R
N ! R be a smooth function such that

P (Æ�(x); Æ�(y)) = ��j P (x; y); 8 x; y 2 R
N ; 8 � > 0;

where 1 � j � N . Assume also that

P (x; 0) = xj ; P (0; y) = yj (1.34)

where 1 � j � N . Then

P (x; y) = xj + yj + eP (x1; : : : ; xj�1; y1; : : : ; yj�1);
where eP is a polynomial sum of mixed monomials in x1; : : : ; xj�1; y1; : : : ; yj�1.

Moreover, eP (Æ�(x); Æ�(y)) = ��j eP (x; y).
Proof. By Proposition 1.3.1, P is a polynomial function of the following type:

P (x; y) =
X

j�jG+j�jG=�j

c�;� x
� y�; c�;� 2 R:

On the other hand, by (1.34),

xj = P (x; 0) =
P
j�jG=�j

c�;0 x
�

and
yj = P (0; y) =

P
j�jG=�j

c0;� y
�:
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Then
P (x; y) = xj + yj +

X
j�jG+j�jG=�j ; �;� 6=0

c�;� x
� y�:

We can complete the proof by noticing that the condition j�jG + j�jG = �j ,
�; � 6= 0 is empty when j = 1, whereas it implies � = (�1; : : : ; �j�1; 0; : : : ; 0),
� = (�1; : : : ; �j�1; 0; : : : ; 0) when j � 2. ut

Lemma 1.3.10. Let Q : RN � RN ! R be a smooth function such that

Q(Æ�(x); Æ�(y)) = �mQ(x; y); 8 x; y 2 R
N ; 8 � > 0;

where m � 0. Then

x 7!
@ Q

@ yj
(x; 0)

is Æ�-homogeneous of degree m� �j .

Proof. By Proposition 1.3.9, Q is a polynomial of the following type

Q(x; y) =
X

j�jG+j�jG=m

c�;� x
� y�:

Then, if we denote by ej the j-th element of the canonical basis of RN , we
have

@ Q

@ yj
(x; y) =

X
j�jG+j�jG=m

c�;� �j x
� y��ej ;

so that, since jej jG = �j ,

@ Q

@ yj
(x; 0) =

X
j�jG=m��j ; �=ej

c�;� x
�:

This completes the proof. ut

Now, we are in the position to prove the previously mentioned structure the-
orem for the composition law.

Theorem 1.3.11. Let (RN ; Æ; Æ�) be a homogeneous Lie group. Then Æ has
polynomial component functions. Furthermore we have

(x Æ y)1 = x1 + y1; (x Æ y)j = xj + yj +Qj(x; y); 2 � j � N

where

1. Qj only depends on x1; : : : ; xj�1 and y1; : : : ; yj�1;
2. Qj is a sum of mixed monomials in x, y;
3. Qj(Æ�x; Æ�y) = ��j Qj(x; y).
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Proof. Let j 2 f1; : : : ; Ng and de�ne

Pj : R
N � R

N ! R; Pj(x; y) = (x Æ y)j :

Since Æ� is an automorphism of G , we have

Pj(Æ�(x); Æ�(y)) = (Æ�(x Æ y))j = ��j (x Æ y)j = ��j Pj(x; y):

Moreover, since x Æ 0 = x, 0 Æ y = y, we have

Pj(x; 0) = xj ; Pj(0; y) = yj :

Then, the proof follows from Lemma 1.3.9. ut

Corollary 1.3.12. Let (RN ; Æ; Æ�) be a homogeneous Lie group. Then, we
have

J�x(0) =

0BBBB@
1 0 � � � 0

a
(1)
2 1

. . .
...

...
. . .

. . . 0

a
(1)
N � � � a

(N�1)
N 1

1CCCCA (1.35)

where a
(j)
i is a polynomial function Æ�-homogeneous of degree �i � �j . As a

consequence, if we let

Zj = @xj +
PN

i=j+1 a
(j)
i @xi for 1 � j � N � 1 and ZN = @xN ;

then Zj is a left-invariant vector �eld Æ�-homogeneous of degree �j . Moreover

J�x(0) =
�
Z1(x) � � �ZN (x)

�
:

Proof. By Theorem 1.3.11, the Jacobian matrix J�x(0) takes the form (1.35)
with

a
(j)
i (x) =

@ Qi

@ yj
(x; 0):

Then, by Lemma 1.3.10, a
(j)
i (x) is a polynomial function Æ�-homogeneous of

degree �i � �j . This proves the �rst part of the corollary. The second one
follows from Proposition 1.3.2. ut

The structure theorem of the composition law in (RN ; Æ; Æ�) implies that the
Lebesgue measure on RN is invariant under left and right translations on G .
Indeed, by Theorem 1.3.11, the Jacobian matrices of the functions x 7! � Æ x
and x 7! x Æ � have the following lower triangular form0BBBB@

1 0 � � � 0

F 1
. . .

...
...
. . .

. . . 0
F � � � F 1

1CCCCA :

Then, we can state the following proposition.
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Proposition 1.3.13. The Lebesgue measure on RN is invariant with respect
to the left and the right translations on G .

If we denote by jEj the Lebesgue measure of a measurable set E � RN , we
then have

j� ÆEj = jEj = jE Æ �j 8 � 2 G :

We also have that the Lebesgue measure is homogeneous with respect to the
dilations fÆ�g�>0. More precisely, as a trivial computation shows,

jÆ�(E)j = �Q jEj;

where
Q =

PN

j=1 �j : (1.36)

The positive number Q is called the homogeneous dimension of the group
G = (RN ; Æ; Æ�).

Remark 1.3.14. From Corollary 1.3.12, we easily obtain the splitting of g as
direct sum of linear spaces spanned by vector �elds of constant degree of
homogeneity.

Let us denote by n1; : : : ; nr and N1; : : : ; Nr real and natural numbers,
respectively, such that

n1 < n2 < : : : < nr; N1 +N2 + � � �+Nr = N;

de�ned by8>>>><>>>>:
n1 = �j for 1 � j � N1;

n2 = �j for N1 < j � N1 +N2;
...

nr = �j for N1 + � � �+Nr�1 < j � N1 + � � �+Nr�1 +Nr:

Let Z1; : : : ; ZN be the Jacobian basis of g, and de�ne

g1 = spanfZj j 1 � j � N1 g; and, for i = 2; : : : ; r

gi = spanfZj jN1 + � � �+Ni�1 < j � N1 + � � �+Ni�1 +Ni g:

By Corollary 1.3.12, the generators of gi are Æ�-homogeneous vector �elds of
degree ni, 1 � i � r. Moreover, we obviously have

g = g1 � � � � � gr:

We also explicitly notice that, by Proposition 1.3.6, a vector �eld X 2 g is Æ�-
homogeneous of degree n i�, for a suitable i 2 f1; : : : ; rg, n = ni and X 2 gi.

In the next section, we shall deal with homogeneous groups in which ni = i
for 1 � i � r, and the layer gi, i 2 f1; : : : ; rg, is generated by commutators
of length i of vector �elds in g1.
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The Exp map on the Lie algebra g has some remarkable properties, due to
the homogeneous structure of G . We prove them in what follows.

Let Z1; : : : ; ZN be the Jacobian basis of g. By Corollary 1.3.12, Zj is Æ�-
homogeneous of degree �j and takes the form

Zj =
PN

k=j a
(j)
k (x1; : : : ; xk�1) @xk ; (1.37)

where a
(j)
k is a polynomial function Æ�-homogeneous of degree �k � �j and

a
(j)
j � 1. We now introduce on g a dilation group, again denoted by fÆ�g�>0,
de�ning

Æ� : g �! g

as follows:
Æ�
�PN

j=1 �j Zj
�
:=
PN

j=1 �
�j �j Zj : (1.38)

Remark 1.3.15. The dilation (1.38) is consistent with the one in RN . More
precisely, if Z 2 g then

Æ�(ZI(x)) = (Æ�Z)I(Æ�(x)); 8x 2 R
N : (1.39)

We �rst check this identity in the case Z = Zj , j = 1; : : : ; N . Since Zj
is homogeneous of degree �j , by Corollary 1.3.3, we have Æ�(ZjI(x)) =
��j (ZjI)(Æ�(x)) so that Æ�(ZjI(x)) = (Æ�Zj)I(Æ�(x)). Then, given Z =PN

j=1 �j Zj 2 g, we have

Æ�(ZI(x)) =
PN

j=1 �j Æ�(ZjI(x)) =
PN

j=1 �j
�
(Æ�Zj)I(Æ�(x))

�
=
�PN

j=1 �j (Æ�Zj)
�
I(Æ�(x)) = (Æ�Z)I(Æ�(x)):

From the previous remark, we easily obtain the following lemma.

Lemma 1.3.16. Let 
 : [0; T ] ! RN be an integral curve of Z, with Z 2 g.
Then � := Æ�(
) is an integral curve of Æ�(Z).

Proof. Identity (1.39) gives

_� = Æ�( _
) = Æ�(ZI(
)) = (Æ�Z)I(Æ�(
)) = (Æ�Z)I(� ):

This ends the proof. ut

We are now in the position to prove the following important theorem.

Theorem 1.3.17. Let G = (RN ; Æ; Æ�) be a homogeneous Lie group. Then
Exp : g ! G and Log : G ! g are globally de�ned di�eomorphisms with
polynomial components. Moreover, for every Z 2 g and x 2 G

Exp
�
Æ�(Z)

�
= Æ�(Exp (Z)) and Log (Æ�(x)) = Æ�(Log (x)): (1.40)
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Proof. Let Z 2 g, Z =
PN

j=1 �j Zj . From (1.37) we obtain

Z =
PN

k=1

�Pk
j=1 �j a

(j)
k (x1; : : : ; xk�1)

�
@xk : (1.41)

Then, the �rst part of the theorem follows from Remark 1.1.1. In order to
prove the �rst identity in (1.40), we consider the solution 
 to the Cauchy
problem

_
 = ZI(
); 
(0) = 0:

By the very de�nition of Exp (Z), we have 
(1) = Exp (Z). Let us put � =
Æ�(
). By Lemma (1.3.16), � is an integral curve of Æ�(Z). Moreover � (0) =
Æ�(
(0)) = Æ�(0) = 0. Then � (1) = Exp (Æ�(Z)), so that

Exp (Æ�(Z)) = � (1) = Æ�(
(1)) = Æ�(Exp (Z)):

This proves the �rst identity in (1.40). The second one is trivially equivalent
to the �rst one. ut

The �rst part of this theorem together with (1.26) and Proposition 1.2.11 give
the following corollary.

Corollary 1.3.18. For every x; y 2 G we have

x Æ y = exp(Log (y))(x) and x�1 = Exp
�
� Log (x)

�
:

Remark 1.3.19. If Z is the vector �eld (1.41), then

ZI(x) =
�
�1; �2 + �1 a

(1)
2 (x1); : : : ; �N +

PN�1
j=1 a

(j)
N (x1; : : : ; xN�1)

�
:

This implies (see (1.13))

Exp (Z) = exp(Z)(0) =
�
�1; �1 +B2(�1); : : : ; �N +BN (�1; : : : ; �N�1)

�
;

where the Bj 's are suitable polynomial functions. Then, the Jacobian matrix
of the map

(�1; : : : ; �N ) 7! Exp (�1 Z1 + � � �+ �N ZN)

takes the following form 0BBBB@
1 0 � � � 0

F 1
. . .

...
...
. . .

. . . 0
F � � � F 1

1CCCCA :

Thus, with respect to the Jacobian basis of g and the canonical basis of G ,
Exp preserves the Lebesgue measure. The same property holds for the map
Log since Log = (Exp )�1.


