
1. Some properties of the linear
heat equation

The linear heat equation

u̇ = 4u, u(0) = u0

(e.g. on Rn) defines a linear semigroup {Tt}t≥0

on each Lp space, p ∈ [1,+∞]. Moreover

• Tt is positivity preserving: u0 ≥ 0 ⇒ Ttu0 ≥
0 ∀t > 0;

• Tt is a contraction on each Lp: ‖Ttu0‖p ≤
‖u0‖p ∀u0 ∈ Lp, p ∈ [1,+∞], t > 0.

This corresponds, (via Beurling–Deny theory)
to properties of the energy functional associ-
ated to the operator −4:

E(u) =
∫
|∇u|2dx



which decreases under normal contractions: e.g.

E((u ∧ 1) ∨ 0) ≤ E(u) ∀u :

E is a Dirichlet form.

Finer Lp–Lq regularizing properties hold: if q ≥
p ∈ [1,+∞] then

‖u(t)‖q ≤ Cp,q
‖u0‖p

t
n
2
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1
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1
q
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This is called supercontractivity if q < +∞,

ultracontractivity if q = +∞.

These facts are related to stronger properties

of the energy functional. e.g.:

• Sobolev or Nash inequalities;

• Logarithmic Sobolev inequalities (in principle

weaker, valid also in some infinite dimensional

setting).



Problems. 1) To prove, in a suitable nonlinear

setting an analogue of the implication

Markov property

m
Beurling−−Deny conditions.

2) To relate Lp–Lq regularization to Sobolev–

type inequalities.

2. Nonlinear Dirichlet forms

(see F. Cipriani, G.G., J. reine angew. Math.

(2003)).

Definition A (nonlinear) Markov semigroup

(Tt)t≥0 on H = L2(X, m) is a strongly continu-

ous, nonexpansive semigroup on H which pre-

serves order (i.e. u ≤ v ⇒ Ttu ≤ Ttv) and is

non–expansive in the L∞ norm (i.e. ‖Ttu −
Ttv‖∞ ≤ ‖u− v‖∞).



Consequence: the semigroup is non expansive

in each Lp.

In view of the Beurling–Deny theory, we shall

consider those operators which “come from a

functional”. Let then

E : H → (−∞,+∞]

be convex and lower semicontinuous in the

strong topology of H. Consider the semigroup

associated to the subgradient ∂E of such a

functional:

E(u)− E(v) ≤ (∂E(u), u− v) ∀v ∈ H.

It is well–known (Brezis) that such semigroups

are strongly continuous and non–expansive.

A sufficient condition for Markovianity has been

given by Benilan and Crandall.



Lemma 1. The order preserving property for

(Tt) is equivalent to the fact that

T
(2)
t (u, v) := (Ttu, Ttv)

leaves invariant the closed and convex set:

C1 := {(u, v) ∈ H⊕H : u ≤ v}.

The Markov property is equivalent to the fact

that T
(2)
t leaves invariant the closed and con-

vex sets

C2(α) := {(u, v) ∈ H⊕H : ‖u− v‖∞ ≤ α}.

Fundamental Lemma A strongly continuous

non–expansive semigroup associated to the con-

vex l.s.c. E leaves invariant a closed and convex

set C if and only if

E(ProjC(x)) ≤ E(x) ∀x.



Theorem A A strongly continuous non–ex-

pansive semigroup associated to the convex

l.s.c. E is order preserving iff the functional

E(2)(u, v) := E(u) + E(v) satisfies

E(2)(ProjC1
(u, v)) ≤ E(2)(u, v).

It is non–expansive in L∞ iff, ∀α > 0:

E(2)(ProjC2(α)(u, v)) ≤ E(2)(u, v).

We then call a functional as above a nonlinear

Dirichlet form.

The projections can be calculated explicitly,

e.g.:

ProjC1
(u, v) =


(u, v) if u ≤ v(

u + v

2
,
u + v

2

)
otherwise.



3. Examples

3.1 The p–Laplacian. It is associated to

Ep(u) =
∫
|∇u|pdx.

The generator is given formally by

Au = div (|∇u|p−2∇u).

Immediate generalization: the p–Laplacian with

measurable coefficients on a manifold M , given

formally in local coordinates by

Hpu :=
d∑

i,j=1

∂i(ai,j(·)|∇u|p−2∂ju)

((a) measurable, nonnegative and symmetric).

It is associated to the functional

E(a)
p (u) :=

∫
M

ax(∇u(x),∇u(x))|∇u(x)|p−2
x mg(dx).



Theorem. Under the local strict ellipticity

condition

ax(v, v) ≥ λKgx(v, v)

valid ∀K ⊂⊂ M , ∀x ∈ K, v ∈ TM and a suitable

λK, E(a)
p is a nonlinear Dirichlet form.

(generalizable to convex l.s.c functionals of the

gradient).

• The Riemannian gradient can be generalized

by “any” derivation (closable operator satisfy-

ing the Leibniz rule), possibly vector valued.

Technically difficult. E.g.:

• The subelliptic p–laplacian. Let {Xi}m
i=1 be a

collection of closable vector fields on an open

connected set or on a manifold. Let

|Xu|2 =
m∑

i=1

|Xiu|2.



Let finally

EX(u) =
∫
|Xu|pdx,

associated formally to

Au =
∑

X∗
i (|Xu|p−2Xiu).

It is a Dirichlet form. It can be generalized to

the subriemannian p–Laplacian associated to a

subriemannian structure on a manifold.

3.2 Γ–limits. The Dirichlet properties pass to

the Γ–limit. If En is a sequence of convex func-

tionals, it Γ–converges to E iff for all (xn) ⊂ H
with xn → x in H

E(x) ≤ lim inf En(xn)

and there exists at least on of such sequences

s.t.

E(x) = lim En(xn).



Then:

En proper, convex (not nec. l.s.c.)

+contraction properties

⇒ Γ− lim En is a Dirichlet form.

This is true in particular for the relaxed func-

tional sc−E:

sc−E := sup{G l.s.c., G ≤ E}

of a convex functional satisfying the requested

contraction properties. sc−E is then a Dirich-

let form.

Technical application: closability. If a con-

vex l.s.c. functional satisfies the requested

contraction properties on a dense subset of H,

it has an extension which is a Dirichlet form.



3.3 The perimeter functional. Let Ω ⊂ Rn

be bounded with Lipschitz boundary. Let

E(u) =
∫
Ω
|Du| ∀u ∈ BV(Ω) ∩ L2(Ω)

where Du is the vector–valued Radon measure

representing the distributional derivative of u.

It is a nonlinear Dirichlet form, giving rise to

the so called total variation flow. It is obtained

as the relaxed functional of

E0(u) =
∫
Ω
|∇u|dx u ∈ C1(Ω)

3.4 The area functional. Let Ω be bounded

with Lipschitz boundary. Let

E(u) =
∫
Ω

√
1 + |Du|2 +

∫
∂Ω

|trΩu− ϕ|dHn−1

on BV(Ω) ∩ L2(Ω), with ϕ continuous. Then:

∫
Ω

√
1 + |Du|2 := sup


∫
Ω

gn+1 −
n∑

i=1

u∂ig

dx,

g = (g1, . . . gn+1) ∈ C1
c (Ω;Rn+1) : |g| ≤ 1,

}
.



This is called the area functional with boundary

contour ϕ. It is a Dirichlet form. Indeed the

first quantity is obtained by relaxation of

E0(u) =
∫
Ω

√
1 + |Du|2, u ∈ C1(Ω).

As for the second, for all Lipschitz function p :

R → R and all u ∈ BV (Ω), then p(u) ∈ BV (Ω)

and

trΩ(p(u)) = p(trΩu).

4. Ultracontractivity and asymp-
totic behaviour

In the linear case:

Markov property

+ Sobolev (or log-Sobolev, or Nash)

+spectral theorem...

⇒ ultracontractivity.



Essential tools are lacking in the nonlinear case.
We dealt with the problem in two model cases:

1) the evolution equation driven by the p–sub-
laplacian

u̇ = 4p,Xu :=
n∑

i=1

X∗
i (|Xu|p−2Xiu), p > 2.

2) similar generalizations of the porous media
equation.

Existing results only in nondegenerate, euclidean
case. (Kamin, Vazquez, del Pino, Dolbeault,
Andreucci, Aronsson, Vazquez, Kamin, Beni-
lan, Friedman, Alikakos, Toscani...)

Our aim will be to show that ultracontractive
estimates follow from one single assumption on
the fields at hand: a Sobolev–type inequality.

Sample result: the p–sublaplacian on a com-
pact manifold.



Step 1. A logarithmic Sobolev inequality.:∫
M
|f |p log

(
|f |
‖f‖p

)p

dx

≤ ε‖|Xf |‖p
p + ‖f‖p

p (Cε− log ε) .

proved starting from a Sobolev inequality (to

be assumed!) for the nonlinear Dirichlet form.

Ep(u) := ‖|Xf |‖p
p.

Step 2. Derive the norm w.r.t. a parameter.

Let

u =
1

Vol(M)

∫
M

udmg(x).

The quantity

y(s) := log ‖Tsu− u‖r(s)
r(s)

assume u bounded to start with and r ∈ C1

differentiable w.r.t. s.

The derivative is what is expected. The Markov

property is crucial. The derivative contains



the energy functional and suitable “entropic

terms” like ∫
M
|f |p log

(
|f |
‖f‖p

)p

.

Step 3. A differential inequality for y(s). En-

tirely different from the linear case. Use the

log-Sobolev inequalities and further entropic

bounds.

Integrating the inequality and using again the

Markov property one gets, for bounded data,

choosing r(s) → +∞ if s → t:

‖Ttu− u‖∞ ≤
c

tα
‖u− u‖β

q (∗)

for small times. An approximation argument

allows to prove the Lq–L∞ regularizing prop-

erty.



Step 4. One proves a polynomial L q–L q time

decay The semigroup property and previous

step allow to prove that (∗) holds for large

times as well, with a different power of t.

The Markov property again allows to remove

the boundedness assumption on the initial data.

Generalizations. 1) Lq–L∞ Hölder continuity:

if u and v have the same mean value then

‖Ttu− Ttv‖∞ ≤
c

tα
‖u− v‖β

q .

2) Dirichlet b.c. on bounded domains: similar

bounds, but Ttu → 0 uniformly. No difference

if the b.c. are of Neumann type.



Conversely: suppose that a hypercontractive
bound holds:

‖Ttu‖r(t) ≤ K(t)‖u‖β(t)
2 ∀t > 0, ∀u ∈ L2

with r(0) = 2, r increasing, β(0) = 1. This
is in principle much weaker than the previous
conditions. There are linear semigroups which
are hypercontractive but not super or ultracon-
tractive (e.g. the Ornstein–Uhlenbeck semi-
group).

Assume that the generator H of (Tt) is subho-
mogeneous in the sense that there exists p > 2
s.t.

(H(λu), λu) ≤ Mλp(Hu, u) ∀u ∈ D(H)

and that it is positive in the sense that

(Hu, u) > 0 ∀u ∈ D(H)

Then Nash type inequalities hold for a suitable
ϑ ∈ (0,1):

‖u‖p ≤ C(Hu, u)ϑ/p‖u‖1−ϑ
1 .



This is a striking nonlinear feature: in the linear

case

Nash ⇐⇒ Sobolev.

In fact, under natural further assumptions on

H (true e.g. for the p–sublaplacian), results

by Bakry, Coulhon, Ledoux and Saloff–Coste

show that a whole bunch of Gagliardo–Nirenberg

inequalities then hold, including in particular

the appropriate Sobolev one.


