1. Some properties of the linear
heat equation

The linear heat equation
= Au, u(0)=ug

(e.g. on R™) defines a linear semigroup {73 }+>0
on each LP space, p € [1,4o0]. Moreover

e [} is positivity preserving: ug > 0 = Tiug >
0Vt > 0;

e T} is a contraction on each LP: ||[Tiugllp <
luollp Vuo € LP, p € [1,400],t > 0.

This corresponds, (via Beurling—Deny theory)
to properties of the energy functional associ-
ated to the operator —A:

E(u) =/|Vu|2d:c



which decreases under normal contractions. e.d.

E((unl)vo)<&(u) Yu:

E is a Dirichlet form.

Finer LP—L9 reqgularizing properties hold: if ¢ >
p € [1,40o0] then

Juollp
ﬁ(ﬁ‘&)
This is called supercontractivity if ¢ < o0,
ultracontractivity if ¢ = +o0.

These facts are related to stronger properties
of the energy functional. e.g.:

e Sobolev or Nash inequalities;
e Logarithmic Sobolev inequalities (in principle

weaker, valid also in some infinite dimensional
setting).



Problems. 1) To prove, in a suitable nonlinear
setting an analogue of the implication

Markov property

)

Beurling — —Deny conditions.

2) To relate LP—LY regularization to Sobolev—
type inequalities.

2. Nonlinear Dirichlet forms

(see F. Cipriani, G.G., J. reine angew. Math.
(2003)).

Definition A (nonlinear) Markov semigroup
(Ty)¢>0 on H = L?(X,m) is a strongly continu-
ous, nonexpansive semigroup on H which pre-
serves order (i.e. u < v = Tywu < Tyw) and is
non—expansive in the L°° norm (i.e. ||Tyu —
Tyvlloo < [lu —vl]o0).



Consequence: the semigroup is non expansive
in each LP,

In view of the Beurling—Deny theory, we shall
consider those operators which ‘“‘come from a
functional”. Let then

E:H— (—o0,Foa]

be convex and lower semicontinuous in the
strong topology of ‘'H. Consider the semigroup
associated to the subgradient OF of such a
functional:

E(u) —EW) < (OE(u),u—v) Yv e H.

It is well-known (Brezis) that such semigroups
are strongly continuous and non—expansive.

A sufficient condition for Markovianity has been
given by Benilan and Crandall.



Lemma 1. The order preserving property for
(T3) is equivalent to the fact that

7 (u,v) = (Tyu, Tiv)
leaves invariant the closed and convex set:
Ci1 ={(u,v) eHE®H :u < v}

The Markov property is equivalent to the fact
that Tt(z) leaves invariant the closed and con-
vex sets

Co(a) :=={(u,v) E HEH : |Ju — v||o < a}.

Fundamental Lemma A strongly continuous
non—expansive semigroup associated to the con-
vex |.s.c. £ leaves invariant a closed and convex
set C if and only if

E(Projo(x)) < &(x) V.



Theorem A A strongly continuous non—ex-
pansive semigroup associated to the convex
l.s.c. & is order preserving iff the functional
E2)(u,v) 1= E() + E(v) satisfies
5(2)(Proj01(u,v)) < 5(2)(u,v).

It is non—expansive in L°° iff, Vo > O:

£ (Proje, (o) (4, ) < 2 (u,v).

We then call a functional as above a nonlinear
Dirichlet form.

The projections can be calculated explicitly,
e.g.:
(u,v) if u<w
Projc, (u,v) = (u—l—'v u—+ v
2 7 2

) otherwise.



3. Examples

3.1 The p—Laplacian. It is associated to

Ep(u) =/\Vu|pdaz.

The generator is given formally by

Au = div (|[VulP72Vu).

Immediate generalization: the p—Laplacian with
measurable coefficients on a manifold M, given
formally in local coordinates by

d
Hpu:= Y 9;(a; ;j(-)|VulP~?8;u)
i,j=1
((a) measurable, nonnegative and symmetric).

It is associated to the functional

&89 (u) = /M az(Vu(z), Vu(z))|[Vu(z) [P~ 2mq(dz).



Theorem. Under the local strict ellipticity
condition

Cng(’U, U) Z >‘Kg$(va U)

valid VK CC M, Vx € K,v € T'M and a suitable
M, E5% is a nonlinear Dirichlet form.

(generalizable to convex |.s.c functionals of the
gradient).

e [ he Riemannian gradient can be generalized
by “any” derivation (closable operator satisfy-
ing the Leibniz rule), possibly vector valued.
Technically difficult. E.qg.:

e The subelliptic p—laplacian. Let {X;}I” ; be a
collection of closable vector fields on an open
connected set or on a manifold. Let

m
Xu2= XU 2.
7
1=1



Let finally

ex(w) = [ |XufPda,
associated formally to
Au = ZX;(|Xu|p_2XZ-u).

It is a Dirichlet form. It can be generalized to
the subriemannian p—Laplacian associated to a
subriemannian structure on a manifold.

3.2 I=limits. The Dirichlet properties pass to
the ' —limit. If &, is a sequence of convex func-
tionals, it T—converges to & iff for all (xzp) C H
with z,, — = in 'H

E(x) < Iliminf &,(xn)

and there exists at least on of such sequences
S.t.

E(x) =Ilim&p(xn).



T hen:

En proper, convex (not nec. l.s.c.)
-+contraction properties

= [ —Iimé&,, is a Dirichlet form.

This is true in particular for the relaxed func-
tional sc &

sc” & :=sup{G l.s.c.,G L &}

of a convex functional satisfying the requested
contraction properties. sc — & is then a Dirich-
let form.

Technical application: closability. If a con-
vex |.s.c. functional satisfies the requested
contraction properties on a dense subset of 'H,
it has an extension which is a Dirichlet form.



3.3 The perimeter functional. Let 2 C R"
be bounded with Lipschitz boundary. Let

£(u) = /Q Du| Vu e BV()NL2(S)

where Du is the vector—valued Radon measure
representing the distributional derivative of wu.
It is a nonlinear Dirichlet form, giving rise to
the so called total variation flow. It is obtained
as the relaxed functional of

£0(u) = /Q|Vu|dx we L)

3.4 The area functional. Let €2 be bounded
with Lipschitz boundary. Let

) = [ V1+IDuP+ [ _ltrou - pldH !
(W= | Vi+DuP + | ftrou—gl
on BV(Q) N L2(Q), with ¢ continuous. Then:

/Q \/1 -+ |Du|2 = sSup {/Q (Qn—l—l — i u@ig) dzx,

1=1
9=1(91, nt1) € Co(LR"™ ) 1 |g| < 1, ]



This is called the area functional with boundary
contour . It is a Dirichlet form. Indeed the
first quantity is obtained by relaxation of

Eo(u) = /Q V14 [Dul?2, uwecl(Q).

As for the second, for all Lipschitz function p :
R — R and all uw € BV(2), then p(u) € BV(Q2)
and

tro(p(u)) = p(trqu).

4. Ultracontractivity and asymp-
totic behaviour

In the linear case:

Markov property

+ Sobolev (or log-Sobolev, or Nash)
-+spectral theorem...

= ultracontractivity.



Essential tools are lacking in the nonlinear case.
We dealt with the problem in two model cases:

1) the evolution equation driven by the p—sub-
laplacian

n
=0y xu =Y XF(|XulP2Xmu), p>2.
i=1
2) similar generalizations of the porous media
equation.

EXxisting results only in nondegenerate, euclidean
case. (Kamin, Vazquez, del Pino, Dolbeault,

Andreucci, Aronsson, Vazquez, Kamin, Beni-

lan, Friedman, Alikakos, Toscani...)

Our aim will be to show that ultracontractive
estimates follow from one single assumption on
the fields at hand: a Sobolev—type inequality.

Sample result: the p—sublaplacian on a com-
pact manifold.



Step 1. A logarithmic Sobolev inequality.:

11100 <|||ﬁ:p> o

< ell|Xflllp + 1]l (Ce —loge) .

proved starting from a Sobolev inequality (to
be assumed!) for the nonlinear Dirichlet form.

Ep(u) = X111

Step 2. Derive the norm w.r.t. a parameter.
Let

|
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u
The quantity

y(s) == log || Tsu — a[[¢*)

assume u bounded to start with and r € C1
differentiable w.r.t. s.

T he derivative is what is expected. The Markov
property is crucial. The derivative contains



the energy functional and suitable “entropic

terms” like
| f] )
P
fuV? Og(\lfIlp

Step 3. A differential inequality for y(s). En-
tirely different from the linear case. Use the
log-Sobolev inequalities and further entropic
bounds.

Integrating the inequality and using again the
Markov property one gets, for bounded data,
choosing r(s) — +oo if s — ¢:

[T — oo < - llu — all] (+)
for small times. An approximation argument
allows to prove the L9—L°° regularizing prop-
erty.



Step 4. One proves a polynomial L9—L 9 time
decay The semigroup property and previous
step allow to prove that (%) holds for large
times as well, with a different power of t.

The Markov property again allows to remove
the boundedness assumption on the initial data.

Generalizations. 1) L—L°° Holder continuity:
if v and v have the same mean value then

C
| Tvu = Tivlloo < 2 llu— vy

2) Dirichlet b.c. on bounded domains: similar
bounds, but T;u — O uniformly. No difference
if the b.c. are of Neumann type.



Conversely: suppose that a hypercontractive
bound holds:

[Tl oy < K@Ilull5 vt > 0,vu e L2

with »(0) = 2, r increasing, 8(0) = 1. This
IS in principle much weaker than the previous
conditions. There are linear semigroups which
are hypercontractive but not super or ultracon-
tractive (e.g. the Ornstein—Uhlenbeck semi-

group).

Assume that the generator H of (13) is subho-
mogeneous in the sense that there exists p > 2
S.t.

(H(M\uw), ) < MNP(Hu,u) Yué€ D(H)
and that it is positive in the sense that

(Hu,u) >0 Yu e D(H)

Then Nash type inequalities hold for a suitable
¥ € (0,1):

lullp < CC(Hu, w)/P||ul|} 7.



This is a striking nonlinear feature: in the linear
case

Nash <— Sobolev.

In fact, under natural further assumptions on

H (true e.g. for the p—sublaplacian), results

by Bakry, Coulhon, Ledoux and Saloff—Coste

show that a whole bunch of Gagliardo—Nirenberg
inequalities then hold, including in particular

the appropriate Sobolev one.



