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We consider a class of quasilinear parabolic equations whose model is the heat
equation corresponding to the p-Laplacian operator, u̇=Dpu :=;d

i=1 “i(|Nu|
p−2
“iu)

with p ¥ [2, d), on a domain D … Rd of finite measure. We prove that |u(t, x)| [
c |D|a t−b ||u0 ||

c
r for all t > 0, x ¥ D and for all initial data u0 ¥ L r(D), provided r is

not smaller than a suitable r0, where a, b, c are positive constants explicitly
computed in terms of d, p, r. The nonlinear cases associated with the case p=2
display exactly the same contractivity properties which hold for the linear heat
equation. We also show that the nonlinear evolution considered is contractive on
any Lq space for any q ¥ [2,+.]. © 2001 Elsevier Science
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The purpose of the present paper is to prove global quantitative estimates
for weak solutions to quasilinear parabolic equations of the form

u̇(t, x)=div a(t, x, u(t, x), Nu(t, x)), t > 0(1.1)

on a domain D … Rd having finite measure. We consider initial data u0
belonging to some Lq(D) space and solutions to (1.1) corresponding to
Dirichlet boundary conditions.



Concerning the structure function a: (0,+.)×D×R×Rd
Q Rd, d \ 3,

we assume that it satisfies a Caratheodory condition, that is that
a(t, x, s, t) is measurable in (t, x) and continuous in (s, t), and that suit-
able structure conditions, of uniform elliptic type, hold true (see (1.9)
below). The first model case is

a (1)(t, x, s, t)=|t|p−2 t

which corresponds to the nonlinear heat equation associated with the
p-Laplacian operator

u̇=Dpu :=div (|Nu|p−2 Nu)(1.2)

with 2 [ p < d. The second model case corresponds to the choice:

a (2)(t, x, s, t)=(|t1 |p−2 t1 , ..., |td |p−2 td ).(1.3)

The conditions required will be sufficiently general to consider, as a further
example, the case

a (3)(t, x, s, t)=b(t, x, s, t) |t|p−2 t(1.4)

with b Caratheodory and satisfying the pointwise conditions c−1 [

b(t, x, s, t) [ c for a suitable positive constant c or similar modifications
of a (2).

By weak solution to Eq. (1.1) corresponding to the initial datum
u0 ¥ L2(D) we mean that u ¥ Lp((0, T); W1, p

0 (D)) 5 C([0, T]; L2(D)) for
any T > 0 and that, for any positive and bounded test function

j ¥W1, 2(0, T; L2(D)) 5 Lp((0, T); W1, p
0 (D)), j(T)=0,

one has:

F
D
u0(x) j(0, x) dx=−F

T

0
F
D
u(t, x) j −(t, x) dx dt

(1.5)

+F
T

0
F
D

a(t, x, u(t, x), Nu(t, x)) ·Nj(t, x) dx dt.

Let u be a weak solution to (1.1) corresponding to an initial datum
u0=u(0). We aim at proving explicit global bounds for ||u(t)||. depending
on time t, on the Lebesgue measure of the domain D, on suitable L r-norms
of u0, on d, on p and on the ellipticity constants involved.
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The resulting bounds will be of the form

||u(t)||. [ C
|D|a

tb
||u(0)||cr -t > 0(1.6)

and will be referred to, following the terminology of [DS], as ultracontrac-
tive bounds. Notice that similar smoothing properties are well-known for the
linear heat equation. We find it remarkable that the ultracontractive
bounds valid for the nonlinear cases associated with the choice p=2 (but
with a( · , · , · , · ) depending on all its variables) are identical to the bounds
valid for the linear heat equations corresponding to uniformly elliptic
second order operators in divergence form, that is to

||u(t)||. [
C
td/(2r)

||u(0)||r .

To the best of our knowledge no such bound seems to be present in the
literature, although it is well-known (and will be used in the proofs) that,
for the class of equations considered, the solutions corresponding to L.

data belong to L. as well (see [CP]), no quantitatively precise bounds on
the L.-norms of the solutions being known. Some local space-time bounds
of a somewhat similar nature are given in [Di].

The basic idea is to show that, for any C1 function r( · ): [0, t)Q
[2,+.), the function y(s) :=log(||u(s, · )||r(s)) is differentiable and satisfies
a suitable first order differential inequality whose coefficients depend only
on r(s), on the Lebesgue measure of the domain D, on d, on p and on the
ellipticity constants. It will then be possible to integrate such a differential
inequality so that, by an appropriate choice of r(s), the above mentioned
bounds will follow.

To arrive at such a differential inequality, the fundamental step
(Proposition 2.1) will consist in showing that the usual Sobolev inequality

||f||pd/(d−p) [ c ||Nf||p ,

valid for any f ¥W1, p
0 (D), implies the validity of a new family of energy-

entropy inequalities similar to the well-known Gross’ logarithmic Sobolev
inequalities (see [Gr] and the book of E. B. Davies [Da]) but involving the
p-energy functional

Qp(u) := F
D
|Nu|p dx u ¥W1, p(D)(1.7)

naturally associated with the p-Laplacian operator: Qp(u)=− >D u Dpu dx.
We notice that an application of logarithmic Sobolev inequalities to the
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smoothing properties of solutions of nonlinear parabolic equations of
Burgers’s and Navier–Stokes type has been given by [CL].

We shall then prove that y(s) :=log(||u(s, · )||r(s)) is differentiable for
L.(D) initial data and compute explicitly the derivative using the differen-
tial equation satisfied by u (Lemma 3.3); the derivative involves the
p-energy and a (convex) entropy functional. By combining the ellipticity
and growth assumptions, the logarithmic Sobolev inequalities and con-
vexity arguments, we arrive at the above mentioned differential inequality
(Lemma 3.7). These steps will use the fact (cf. [Di], [CP] and references
quoted therein) that the solutions corresponding to L. initial data are
bounded as functions of space and time. The boundedness assumption on
the initial datum is then removed by using the known space-time Hölder
continuity for locally bounded solutions to Eq. (1.1) (cf. [Di] and references
quoted therein) and standard results on the weakg topology of L..

We want to stress that the proof of similar results in the linear case,
for parabolic equations associated to uniformly elliptic linear operators
in divergence form, relies heavily on the Spectral Theorem, on complex
interpolation and on the theory of Markovian semigroups. None of these
tools is presently available in the nonlinear setting, causing several technical
problems and somewhat involved calculations. It should also be mentioned
that, while the assumption 2 [ d < p makes the discussion of the present
paper close in some sense to the linear case, it will be shown elsewhere that
results of a completely similar nature also hold when p \ d.

We also stress that our bounds have an a-priori nature and in particular
do not rely either upon existence results and monotonicity assumptions on
the generator of the evolution considered or on the theory of nonlinear
semigroups ([B2], [Sh], [BMP]).

Our second main result will concern, under the same assumptions of
Theorem 1.1, some other contractivity properties for the evolution equa-
tions considered. In fact we prove that, for any q ¥ [2,+.] and t > 0, the
Lq-norm of the solution u(t) is not greater than the corresponding Lq-norm
of the initial datum u(0). It is remarkable that the result for q=+.
follows straight from Theorem 1.1, thus reversing the usual method of
proof valid in the linear case.

We shall discuss in a companion paper, in the framework of nonlinear
semigroups associated with convex, lower semicontinuous functionals on
Hilbert spaces ([B2], [Sh]), a definition of Markovianity and ultracontract-
ivity for nonlinear semigroups and shall show there that such properties
are related to contractivity properties of the generating functional.

It is a pleasure to thank M. Porzio for an interesting discussion and the
referee for the very careful reading of the manuscript.

We now state our main results.
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Theorem 1.1. LetD … Rd, d \ 3, be a domain of finite measure, 2 [ p < d,
and r0 :=2K[p(p−2)/(d−p)]. Let also u be a weak solution to the equation

u̇(t, x)=div a(t, x, u(t, x), Nu(t, x)),(1.8)

belonging to the space

Lp((0, T); W1, p
0 (D)) 5 C(0, T; L2(D))

for all T > 0 and corresponding to the initial datum u(0) ¥ Lq0(D), with
q0 \ r0, where the Caratheodory function a: (0,+.)×D×R×Rd

Q Rd is
assumed to satisfy the following ellipticity and growth conditions

a(t, x, u, t) ·t \ c1 |t|p

|a(t, x, u, t)| [ c2 |tu|p−1
(1.9)

almost everywhere, for some positive costants c1 , c2.
Then u belongs to the space L.((e,+.); L.(D)) for all e > 0, and the

following ultracontractive bound holds true,

||u(t)||. [ C
|D|a

tb
||u(0)||cq0 ,(1.10)

for all t > 0 and for a suitable constant C=C(d, p, q0 ), where, if p ] 2,

a=
d−p
d
51−1 q0

q0+p−2
2d/p6

b=
1
p−2
51−1 q0

q0+p−2
2d/p6

c=1 q0
q0+p−2
2d/p

(1.11)

and, if p=2:

||u(t)||. [
C
td/(2q0 )

||u(0)||.(1.12)

Theorem 1.2. Under the assumptions of Theorem 1.1, the nonlinear
evolution under discussion is Lq contractive in the sense that

||u(t, · )||q [ ||u(0, · )||q for any t > 0, q ¥ [2,+.].(1.13)
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2. SOBOLEV AND LOGARITHMIC SOBOLEV INEQUALITIES

In this section we first collect some known results concerning the con-
nection between Sobolev inequalities, logarithmic Sobolev inequalities and
L. bounds for solutions to linear parabolic equations. Then we prove that
the classical Sobolev inequality

||f||pd/(d−p) [ c ||Nf||p (2 [ p < d),(2.1)

valid for f ¥W1, p
0 (D), D … Rd being an open domain, also implies the

validity of a family of logarithmic Sobolev inequalities which will be crucial
in the proof of our main result

It has been shown by E. B. Davies [Da] that a family of Gross
logarithmic Sobolev inequalities of the form [Gr]

F
D
|f|2 log |f| dx−1F

D
|f|2 dx2 log 1F

D
|f|2 dx2

1/2

(2.2)

[ e F
D
|Nf|2 dx+b(e) F

D
|f|2 dx,

valid for all e > 0 and for all f belonging to the Sobolev space W1, 2
0 (D),

with

b(e) :=
d
4

log e+
d
4

log 1cd
4
2 (c > 0)(2.3)

is equivalent to the ordinary Sobolev inequality

||f||2d/(d−2) [ c ||Nf||2(2.4)

for all such functions f, with the same value of the constant c > 0.
E. B. Davies also showed that the above inequalities also imply the validity
of a different family of logarithmic Sobolev inequalities, namely,

F
D
|f|q log |f| dx−1F

D
|f|q dx2 log 1F

D
|f|q dx2

1/q

(2.5)

[ e F
D
(Hqf) fq dx+2b(e) q−1 F

D
|f|q dx,

where fq :=sgn f |f|q−1. The above inequality holds for any f belonging
to the domain of the operator Hq obtained by closure, in the Banach space
Lq(D), of the operator −Df=−;d

i=1 “
2f/“x2

i , initially defined on smooth
compactly supported functions in D.
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In turn, any of the above inequalities has been shown again by
E. B. Davies and B. Simon [DS] to be equivalent to the ultracontractive
bound for the heat semigroup generated by the Dirichlet Laplacian DD.

||e+tDDf||. [
const.
td/(2r0 )

||f||r0(2.6)

for all f ¥ L r0(D), t > 0, r0 \ 1. A final result which is of special importance
is the fact that each of the above inequalities is equivalent to a Gaussian,
off-diagonal bounds for the Dirichlet heat kernel KD associated to the heat
semigroup on D, in the form

KD(t, x, y) [
1

(4pt)d/2
exp 5−|x−y|

2

4t
6(2.7)

for all (t, x, y) in R+×D×D. It is remarkable that similar estimates also
hold for the solutions to parabolic equations associated to uniformly
elliptic, second order, differential operators with measurable coefficients. In
particular, bounds similar to (2.7) (with different constants) still hold.

Our goal in the present section will be to show that Sobolev inequalities
in W1, p

0 (D) imply a new family of logarithmic Sobolev inequalities
involving theW1, p norm. In fact we have

Proposition 2.1. The logarithmic Sobolev inequality

F
D
|f|p log |f|p dx−1F

D
|f|p dx2 log 1F

D
|f|p dx2(2.8)

[
d
p
5−||f||pp log e+ec F

D
|Nf|p dx6

holds true for any e > 0 and for all f ¥W1, p
0 , where 2 [ p < d, and c is the

constant appearing in the Sobolev inequality (2.1).

Proof. By homogeneity and because ||Nf||p=||(N |f|)||p for all f ¥

W1, p
0 (D), it suffices to prove the claim for nonnegative functions f ¥

W1, p
0 (D) such that ||f||p=1. Define the probability measure m(x)=

f(x)p dx. Then

F
D
fp log f dx [

d
p2 log ||f||pdp/(d−p)

[
d
p2 (− log e+e ||f||pdp/(d−p))

[
d
p2 (− log e+ec ||Nf||pp),
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where the first inequality follows from Jensen’s inequality (since log is
concave), the second one from the numerical inequality log t < t and the
last one from the Sobolev inequality. L

We remark that in the following it will be crucial that the constant c
appearing in the above lemma does not depend upon the domain.

3. PROOF OF THE MAIN RESULTS

Our strategy will be to consider first essentially bounded initial data u0.
The cut-off will be removed in the last steps. We comment that the follow-
ing results will be first proved in the case p > 2: the simpler case p=2 will
be discussed at the end of the section.

Lemma 3.1. Let u be a weak solution of (1.1), corresponding to an
essentially bounded initial datum. For any r \ 2 consider the function
fr : (0,.)Q (0,.) defined by

fr(t)=F
D
|u(t, x)| r dx.

Then fr is differentiable and

ḟr(t)=−r(r−1) F
D
|u(t, x)| r−2 a(t, x, u(t, x), Nu(t, x)) ·Nu(t) dx.(3.1)

Proof. We first notice that fr is well-defined because the solution u is
bounded in D×(0,+.) ([CP], [Di]), and because D has finite measure.
Let us then recall the definition of the Lebesgue–Steklov average uh of the
solution u, for h > 0:

uh(t, x) :=
1
h
F

t+h

t
u(s, x) ds.

This function is well-defined by definition of weak solution and takes
values in the Sobolev space W1, p(D). Moreover, it is differentiable in time
for all h > 0, and its derivative equals [u(t+h)−u(t)]/h. Define now

gh(t)=F
D
|uh(t, x)| r dx,
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which exists by the above mentioned boundedness properties of the
solution and since |D| < +.. Then, for all positive s, e,

gh(s+e)−gh(s)=F
s+e

s
ġh(t) dt=F

s+e

s
dt
d
dt

F
D
|uh(t, x)| r dx

(3.2)

=F
s+e

s
dt F

D

d
dt
|uh(t, x)| r dx

=r F
s+e

s
dt F

D
|uh(t, x)| r−1 (u̇h(t, x)) sgn[uh(t, x)] dx

=−r F
s+e

s
dt F

D
(a(t, x, u(t, x) Nu(t, x)))h N |uh(t, x)| r−1)

× sgn uh(t, x) dx,

where we have used the fact [Di] that uh satisfies the equation

F
D×{t}

{u̇h(t, x) j(t, x)+[a(t, x, u(t, x), Nu(t, x))]h ·Nj(t, x)} dx=0

for all t and for all non-negative j ¥W1, p
0 (D) 5 L.loc(D)). We have there-

fore chosen j(t)=|uh(t)| r−1 sgn uh(t), which satisfies the above require-
ments because, as a function of the spatial variable, u is essentially
bounded, it belongs to W1, p(D), it vanishes in the sense of traces on “D by
definition and so, by [B1], it also belongs to W1, p

0 (D). We have also used
the fact that

d
dt

F
D
|uh(t, x)| r dx=F

D

d
dt
|uh(t, x)| r dx

because

u̇h(t, x) |uh(t, x)| r−1 sgn[uh(t, x)]

=
1
h
[u(t+h, x)−u(t, x)] |uh(t, x)| r−1 sgn[uh(t, x)]

for almost all t, x, and the absolute value of the r.h.s. is bounded by an
integrable function of x, locally uniformly in t, by the above mentioned
boundedness properties of u and because |D| <.. Finally, the last term in
the r.h.s. of (3.2) makes sense because

F
D
(a(t, x, u(t, x), Nu(t, x)))h ·N |uh(t, x)| r−1) sgn[uh(t, x)] dx
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is locally integrable in time. In fact, by using the convexity of the norm
function, Jensen’s and Hölder inequalities, we obtain

:F
D
(a(t, x, u(t, x), Nu(t, x)))h ·N[|uh(t, x)| r−1] sgn[uh(t, x)] dx :

=(r−1) :F
D
(a(t, x, u(t, x), Nu(t, x)))h ·N(uh(t, x)) |uh(t, x)| r−2 dx :

=(r−1) :F
D
(a(t, x, u(t, x), Nu(t, x)))h · (Nu(t, x))h (x) |uh(t, x)| r−2 dx :

[ (r−1) F
D
|(a(t, x, u(t, x), Nu(t, x)))h | |(Nu(t, x))h | |uh(t, x)| r−2 dx

[ (r−1) F
D
|(a(t, x, u(t, x), Nuh(t, x)))| |Nu(t, x)|h uh(t, x) r−2 dx

[ (r−1) ||u|| r−2
L.(D×(e, T)) F

D
|(a(t, x, u(t, x), Nu(t, x)))|h |(Nu(t, x)|h dx

[ C ||(|Nu(t)|p−1)h ||p/(p−1) ||(|Nu(t)|)h ||p

[ || |Nu(t)|p−1||p/(p−1) || |Nu(t)| ||p

=|||Nu(t)| ||pp ,

where C depends on r, on the constant appearing in the growth condition
|a(t, x, u, t)| [ c2 |t|p−1 and on the L.(D×(0, T))-norm of u. The latter
function of t is locally integrable in t by the very definition of weak
solution of the equation at hand.

Next we notice that uh(s)Q u(s) as hQ 0 in Lp(D) for all p \ 1, s–a.e.. In
fact, u is also locally integrable in time with values in Lp(D) and, by
Lebesgue theorem, the statement follows.

We want to prove that fr is differentiable and that its derivative has the
form given by (3.1). To this end we have proved that gh is differentiable
and

ġh(t)=−r F
D
(a(t, x, u(t, x), Nu(t, x))h N(|uh(t, x)| r−1) sgn[uh(t, x)] dx

(3.3)

=−r(r−1) F
D
(a(t, x, u(t, x), Nu(t, x))h Nuh(t, x) |uh(t, x)| r−2 dx.

Next we shall prove that, as hQ 0, gh Q f so that ġh Q ḟ in the sense of
distributions. Moreover, since the convergence in the sense of distributions
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restricted to locally integrable functions coincides with the usual conver-
gence in L1

loc , the convergence in L1
loc of both sides of (3.3) to the

corresponding quantities in (3.1) implies the thesis.
We prove that gh Q fr in the sense of distributions as hQ 0. In fact we

have proved above that uh(t)Q u(t) in Lp(D) a.e. in t and, by Jensen’s
inequality

|uh(t, x)| r=:
1
h
F

t+h

t
u(s, x) ds :

r

[
1
h
F

t+h

t
|u(s, x)| r ds

[ ||u|| rL.(D×(t, t+1))

for h sufficiently small. Dominated convergence can therefore be used to
obtain that gh(t)Q fr(t) for almost all t. Moreover, using again Jensen’s
inequality in the third step:

gh(t)=F
D
|uh(t, x)| r dx

=F
D

dx :1
h
F

t+h

t
u(s, x) ds :

r

[ F
D

dx
1
h
F

t+h

t
|u(s, x)| r ds

=
1
h
F

t+h

t
||u(s)|| rr ds

[ |D| r ||u||L.(D×(t, t+1))

so that gh(t) is locally uniformly bounded as a function of t for h suffi-
ciently small. Dominated convergence can therefore be used again to prove
that, as hQ 0,

F
R

+
gh(s) j(s) dsQ F

R
+
f(s) j(s) ds

for every test function belonging to D(R+). This means that gh Q fr in the
sense of distributions, as claimed. Then ġh Q ḟr in the sense of distributions
as well.

Next we shall identify the limit, as hQ 0 of the r.h.s. of (3.3), as a func-
tion of t, for a.e. t. We first observe that Nuh=(Nu)h for almost all t, x by
dominated convergence, because Nu is locally essentially bounded in (t, x)
by [Di].
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We want to prove that the r.h.s. of (3.3) converges as hQ 0, for almost
all t, to

−r(r−1) F
D

a(t, x, u(t, x), Nu(t, x)) ·Nu(t, x)) |u(t, x)| r−2 dx.(3.4)

First notice that the last integral exists since u(s) ¥ L.(D) for almost all s
and, by definition of weak solution, u(s) ¥W1, p(D) for almost all s. More-
over, since Nuh=(Nu)h, we have, for almost all s:

N(|uh(s, x)| r−1)=(r−1) |uh(s, x)| r−2 N |uh(s, x)|

=(r−1) |uh(s, x)| r−2 (Nu(s, x))h sgn[uh(s, x)].

Thus, we have to consider the following quantity (as a function of time):

kh(s) :=F
D
(a(s, x, u(s, x), Nu(s, x)))h (Nu(s, x))h |u(s, x)|

r−2
h dx.

By the growth assumption |a(x, u, t)| [ c2 |t|p−1 and by the fact that
u ¥W1, p, we can observe that the factor a belongs to Lp/(p−1)(D; Rd); in
addition Nu(s) belongs to Lp(D; Rd)) and u(s) is essentially bounded.
Notice that q=p/(p−1) is the conjugate exponent of p. Since the Steklov
average of an L s function g converges in L s to g, an application of Hölder
inequality implies that, for almost all s, one has, as hQ 0:

kh(s)Q F
D

a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r−2 dx.

Thus ḟr(s) is a locally integrable function of time and equals, a.e.:

−r(r−1) F
D

a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r−2 dx. L

Lemma 3.2. Let u be a weak solution to u̇=div a(t, x, u, Nu), under the
running assumptions on a, corresponding to an essentially bounded initial
datum. Let also r: [0,+.)Q [2,+.) be a nondecreasing C1 function. Then

d
ds
((||u(s)||r(s)) r(s))=ṙ(s) F

D
|u(s, x)| r(s) log |u(s, x)| dx(3.5)

−r(s)(r(s)−1) F
D

a(s, x, u(s, x), Nu(s, x))

·Nu(s, x) |u(s, x)| r(s)−2 dx.
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Proof. For any fixed r \ 2 define g(r, s) :=||u(s)|| rr for all s > 0. By the
previous lemma we have:

“

“s
g(r, s)=−r(r−1) F

D
a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r−2 dx.

Moreover

“

“r
g(r, s)=

“

“r
F
D
|u(s, x)| r dx=F

D

“

“r
e r log |u(s, x)| dx

=F
D
|u(s, x)| r log |u(s, x)| dx.

Since ||u(s)|| r(s)r(s)=g(r(s), s) we have:

d
ds
((||u(s)||r(s)) r(s))

=ṙ(s)
“

“r
g(r(s), s))+

“

“s
g(r(s), s)

=ṙ(s) F
D
|u(s, x)| r(s) log |u(s, x)| dx−r(s)(r(s)−1)

×F
D

a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r(s)−2 dx. L

Lemma 3.3. Under the same assumptions of the previous lemma:

d
ds

log ||u(s)||r(s)(3.6)

=
ṙ(s)
r(s)

F
D

|u(s, x)| r(s)

||u(s)|| r(s)r(s)

log
|u(s, x)|
||u(s)||r(s)

dx−
(r(s)−1)
||u(s)|| r(s)r(s)

×F
D

a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r(s)−2 dx.

Proof.

d
ds

log ||u(s)||r(s)

=
d
ds
r(s)−1 log ||u(s)|| r(s)r(s)

=−
ṙ(s)
r(s)2

log ||u(s)|| r(s)r(s)+r(s)
−1 d

ds
log ||u(s)|| r(s)r(s)
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=−
ṙ(s)
r(s)

log ||u(s)||r(s)+
r(s)−1

||u(s)|| r(s)r(s)

d
ds
||u(s)|| r(s)r(s)

=−
ṙ(s)
r(s)

log ||u(s)||r(s)+
r(s)−1

||u(s)|| r(s)r(s)

×1 ṙ(s) F
D
|u(s, x)| r(s) log |u(s, x)| dx−r(s)(r(s)−1)

×F
D

a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r(s)−2 dx2

=
ṙ(s)
r(s)

F
D

|u(s, x)| r(s)

||u(s)|| r(s)r(s)

log
|u(s, x)|
||u(s)||r(s)

dx−
(r(s)−1)
||u(s)|| r(s)r(s)

×F
D

a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r(s)−2 dx. L

Lemma 3.4. Let us define, for any p \ 1, v ¥W1, p(D),

Qp(v) :=F
D
|Nv|p dx.(3.7)

Then, for any function u(s, x) which, for almost all s belongs to L.(D) 5
W1, p(D), the following inequality holds true, for all r \ 2,

c1 1
p

r+p−2
2p Qp(|u(s)| (r+p−2)/p)(3.8)

[ F
D

a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r−2 dx,

where c1 is the constant of strict ellipticity appearing in the Assumption.

Proof. We compute

F
D

a(s, x, u(s, x), Nu(s, x)) ·Nu(s, x) |u(s, x)| r−2 dx

\ c1 F
D
|Nu(s, x)|p |u(s, x)| r−2 dx

=c1 1
p

r+p−2
2p F

D
|Nu(s, x) (r+p−2)/p|p dx

which is the above statement. L
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Lemma 3.5. Under the assumption of Lemma 3.2 the inequality

d
ds

log ||u(s)||r(s) [
ṙ(s)
r(s)

F
D

|u(s, x)| r(s)

||u(s)|| r(s)r(s)

log
|u(s, x)|
||u(s)||r(s)

dx(3.9)

−c1 1
p

r+p−2
2p (r(s)−1)
||u(s)|| r(s)r(s)

Qp(|u(s)| (r(s)+p−2)/p)

holds true.

Proof. It suffices to combine Lemmata 3.2 and 3.4. L

Let us define X :=4p \ 1 Lp. Then, let us consider the Young functional
J: [1,+.)×XQ [0,+.] as follows:

J(q, u) :=F
D

|u|q

||u||qq
log 1 |u|

||u||q
2 .

From the previous lemma and from the logarithmic Sobolev inequalities
proved above starting from ordinary Sobolev inequalities we obtain the
following result.

Lemma 3.6. Under the assumptions of Lemma 3.2 the following inequality
holds true, for any e > 0:

d
ds

log ||u(s)||r(s)(3.10)

[
r −(s)
r(s)
J(r(s), u(s))

−c1(r(s)−1) 1
p

r(s)+p−2
2p−1 ||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

×1 p
2

cde
J(r(s)+p−2, u(s))+

p
r(s)+p−2

log e
ce
2 .

Proof. The lemma is proved by combining Lemma 3.5 with Proposition
2.1, which is used choosing f=|u(s)| r(s)+p−2; this is possible because p and
r are not smaller then 2 and because u(s) is both bounded and belonging
toW1, p

0 . L
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Lemma 3.7. Under the assumptions of Lemma 3.2, define r0 :=2K
[p(p−2)/(d−p)]. Suppose also that r is a C1 function from [0,+.) to
[r0 ,+.). Then, for any s > 0, the inequality

d
ds

log ||u(s)||r(s)

(3.11)

[−
d
p
ṙ(s)
r(s)

p−2
r(s)+p−2

log(||u(s)||r(s))

+
ṙ(s)
r(s)

p−2
r(s)+p−2

1d
p
−12 log |D|

−
d
p
ṙ(s)
r(s)

1
r(s)+p−2

log 5c1 p
2

cd
r(s)(r(s)−1)
ṙ(s)
1 p
r(s)+p−2
2p−16

holds true.

Proof. In inequality (3.10), let us choose

e(s)=
c1 p2

cd
r(s)(r(s)−1)
ṙ(s)
1 p
r(s)+p−2
2p−1 ||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

.

The above mentioned inequality then becomes

d
ds

log ||u(s)||r(s) [
ṙ(s)
r(s)
[Jr(s)(u(s))−Jr(s)+p−2(u(s))]

(3.12)

−c1(r(s)−1) 1
p

r(s)+p−2
2p ||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

log e(s)
ce(s)

.

Consider the funcion N: [1,+.)×XQ R by

N(q, u) :=log ||u||qq .

For every fixed u ¥X this is a convex function of q so that its derivative
exists a.e. and

d
dq
N(q, u)=F

D

|u|q

||u||qq
log |u| dx=Jq(u)+log ||u||q
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a.e. By convexity, the above derivative is a monotonically nondecreasing
function. Thus, for any q1 [ q2:

J(q1 , u)−J(q2 , u)=
d
dq
N(q, u)|q1 − log ||u||q1 −1

d
dq
N(q, u)|q2 − log ||u||q2 2

[ log
||u||q2
||u||q1

.

Using this inequality in (3.12) yields, by recalling that p \ 2 so that
r(s)+p−2 is not smaller than r(s) for all s:

d
ds

log ||u(s)||r(s) [
ṙ(s)
r(s)

log
||u||r(s)+p−2

||u||r(s)
−c1(r(s)−1)(3.13)

×1 p
r(s)+p−2
2p ||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

log e(s)
ce(s)

.

The last term in (3.13) becomes, with the present choice of e(s):

c1(r(s)−1) 1
p

r(s)+p−2
2p ||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

log e(s)
ce(s)

=c1(r(s)−1) 1
p

r(s)+p−2
2p ||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

cdṙ(s)
cc1 p2r(s)(r(s)−1)

×1 r(s)+p−2
p
2p−1 ||u(s)|| r(s)r(s)

||u(s)|| r(s)+p−2
r(s)+p−2

log e(s)

=
d
p2

ṙ(s)
r(s)
1 p
r(s)+p−2
2

× log 5c1 p
2

cd
r(s)(r(s)−1)
ṙ(s)
1 p
r(s)+p−2
2p−1 ||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

6 .

From the latter formulas we get:

d
ds

log ||u(s)||r(s) [
ṙ(s)
r(s)

log
||u||r(s)+p−2

||u||r(s)
(3.14)

−
d
p
ṙ(s)
r(s)

1
r(s)+p−2

log
||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

−
d
p
ṙ(s)
r(s)

1
r(s)+p−2

× log 5c1 p
2

cd
r(s)(r(s)−1)
ṙ(s)
1 p
r(s)+p−2
2p−16 .
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Now we proceed estimating the logarithm of the ratio of Lq norms
appearing above. In fact, since

||u(s)||r(s)+p−2 \ |D|−(p−2)/[r(s)(r(s)+p−2)] ||u(s)||r(s)(3.15)

the following calculations hold:

log
||u(s)|| r(s)+p−2

r(s)+p−2

||u(s)|| r(s)r(s)

(3.16)

=log 5||u(s)||
r(s)
r(s)+p−2

||u(s)|| r(s)r(s)

||u(s)||p−2
r(s)+p−2
6

=r(s) log
||u(s)||r(s)+p−2

||u(s)||r(s)
+(p−2) log ||u(s)||r(s)+p−2 .

From (3.14), (3.15) and (3.16) we get, recalling also that r is nondecreasing
and that r(0) \ r0 with r0 as in the statement

d
ds

log ||u(s)||r(s)

(3.17)

[
ṙ(s)
r(s)
51−d

p
r(s)

r(s)+p−2
6 log

||u(s)||r(s)+p−2

||u(s)||r(s)

−
d
p
ṙ(s)
r(s)

p−2
r(s)+p−2

log (||u(s)||r(s)+p−2)

−
d
p
ṙ(s)
r(s)

1
r(s)+p−2

log 5c1 p
2

cd
r(s)(r(s)−1)
ṙ(s)
1 p
r(s)+p−2
2p−16

[
ṙ(s)
r(s)
51−d

p
r(s)

r(s)+p−2
6 log(|D|−(p−2)/(r(s)+p−2))

−
d
p
ṙ(s)
r(s)

p−2
r(s)+p−2

log(|D|−(p−2)/(r(s)+p−2) ||u(s)||r(s))

−
d
p
ṙ(s)
r(s)

1
r(s)+p−2

log 5c1 p
2

cd
r(s)(r(s)−1)
ṙ(s)
1 p
r(s)+p−2
2p−16
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[−
d
p
ṙ(s)
r(s)

p−2
r(s)+p−2

log(||u(s)||r(s))

+
ṙ(s)
r(s)

p−2
r(s)+p−2

1d
p
−12 log |D|

−
d
p
ṙ(s)
r(s)

1
r(s)+p−2

log 5c1 p
2

cd
r(s)(r(s)−1)
ṙ(s)
1 p
r(s)+p−2
2p−16

as stated. L

From the previous lemma and from elementary calculus considerations it
is easy to obtain our next result.

Proposition 3.8. Define the following functions of the time variable s > 0:

y(s)=log ||u(s)||r(s) ;

p(s)=
d
p
ṙ(s)
r(s)

p−2
r(s)+p−2

;

q(s)=−
ṙ(s)
r(s)

p−2
r(s)+p−2

1d
p
−12 log |D|+

d
p
ṙ(s)
r(s)

1
r(s)+p−2

× log 5c1 p
2

cd
r(s)(r(s)−1)
ṙ(s)
1 p
r(s)+p−2
2p−16 .

(3.18)

Then y satisfies the following differential inequality:

ẏ(s)+p(s) y(s)+q(s) [ 0 -s \ 0.

Thus y(s) [ ȳ(s), provided y(0) [ ȳ(0), where

ȳ(s)=exp 5−F s

0
p(u) du61 ȳ(0)−F s

0
q(u) exp 5F u

0
p(v) dv62(3.19)

is a solution of the ordinary differential equation

ż(s)+p(s) z(s)+q(s)=0 -s \ 0.

Lemma 3.9. Let us fix t > 0, q0 \ r0 where r0 is as in Lemma 3.7. Then
the solution ȳ to Eq. (3.19) with the choice r(s)=q0t/(t−s) satisfies
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w(t) := lim
s Q t −

ȳ(s)(3.20)

=1 q0
q0+p−2
2d/p 5ȳ(0)− 1

p−2
11q0+p−2

q0
2d/p−12 log t

−
d−p
d
51q0+p−2

q0
2d/p−16 log |D|+K6 ,

where K depends only upon r0 , p and d.

Proof. We apply the above Proposition with the choice r(s)=
q0t/(t−s) for all s ¥ [0, t), so that we also have ṙ(s)/r(s)=1/(t−s). By
the explicit expression for p(s) and q(s) and by the present choice of the
function r(s), we have

p(v)=
d(p−2)
p

1
tq0+(t−v)(p−2)

q(v)=C
5

i=1
qi(v),

where

q1(v)=
d
p
[tq0+(t−v)(p−2)]−1 log 1c1 p

p+1

cd
2

q2(v)=
d
p
(p−1)[tq0+(t−v)(p−2)]−1 log(t−v)

q3(v)=
d
p
[tq0+(t−v)(p−2)]−1 log[tq0−(t−v)]

q4(v)=−
d
p
(p−1)[tq0+(t−v)(p−2)]−1

× log[tq0+(t−v)(p−2)]

q5(v)=
p−d
p

p−2
tq0+(t−v)(p−2)

log |D|.

Thus:

F
s

0
p(v) dv=

d(p−2)
p

F
s

0

1
tq0+(t−v)(p−2)

dv(3.21)

=
d
p

log
t((q0+p−2)

tq0+(t−s)(p−2)
.
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We then have

F
t

0
dv q(v) exp 5F v

0
p(w) dw6

=F
t

0
dv q(v) 5 t(q0+p−2)

tq0+(t−v)(p−2)
6d/p=C

5

i=1
Ii ,

(3.22)

where

I1=
d
p
[t(q0+p−2)]d/p log 5c1 p

p+1

cd
6 F t

0
dv[tq0+(t−v)(p−2)]−1−(d/p)

I2=
d
p
[t(q0+p−2)]d/p (p−1) F

t

0
dv[tq0+(t−v)(p−2)]−1−(d/p) log(t−v)

I3=
d
p
[t(q0+p−2)]d/p F

t

0
dv[tq0+(t−v)(p−2)]−1−(d/p) log[tq0−(t−v)]

I4=−
d
p
[t(q0+p−2)]d/p (p−1)

×F
t

0
dv[tq0+(t−v)(p−2)]−1−(d/p) log[tq0+(t−v)(p−2)]

I5=−5(p−2) 1
d
p
−12 log |D|6 [t(q0+p−2)]d/p

×F
t

0
dv[tq0+(t−v)(p−2)]−1−(d/p).

By elementary calculation this yields the following results

I1=
1
p−2
11q0+p−2

q0
2d/p−12 log 1c1 p

p+1

cd
2

I2=1
p−1
p−2
211q0+p−2

q0
2d/p−12 log t+R2

I3=1
1
p−2
211q0+p−2

q0
2d/p−12 log t+R3

I4=−1
p−1
p−2
211q0+p−2

q0
2d/p−12 log t+R4

I5=−
d−p
d
51q0+p−2

q0
2d/p−16 log |D|,
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where the terms R2 , R3 , R4 depend only upon d, p and q0 and are
independent from t and |D|. In fact their explicit values are:

R2=
d
p
(p−1)(q0+p−2)d/p F

1

0
dv[q0+v(p−2)]−1−(d/p) log v

R3=
d
p
(q0+p−2)d/p F

1

0
dv[q0+v(p−2)]−1−(d/p) log(q0−v)

R4=−
d
p
(p−1)(q0+p−2)d/p F

1

0
dv[q0+v(p−2)]−1−(d/p)

× log(q0+v(p−2)).

One can therefore conclude that

w(t)=1 q0
q0+p−2
2d/p 3 ȳ(0)− 1

p−2
11 r0+p−2

r0
2d/p−12 log t

−1−d−p
d
51q0+p−2

q0
2d/p−16 log |D|+I1+R2+R3+R4

24 . L

Proof of Theorem 1.1. If u is a solution corresponding to a bounded
initial datum, we notice that, by Lemma 3.1, the following contractivity
property holds true for all 0 [ s [ t and for all r \ 2:

||u(t)||r [ ||u(s)||r .

Therefore, by Proposition 3.8 and Lemma 3.9, one has, for all such s and t,

||u(t)||r(s) [ ||u(s)||r(s)

=exp[log ||u(s)||r(s)]=ey(s) [ e ȳ(s),

whence, letting sQ t− and recalling that r(s)Q+. as sQ t−, we deduce,
by also using the explicit form of ȳ,

||u(t)||.= lim
sQ t −

||u(t)||r(s)

[ lim
sQ t −

e ȳ(s)=ew(t)

=C(d, p, q0 )
|D|a

tb
||u(0)||cq0 ,
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where the values of a, b, c are those appearing in the statement of the
theorem. Therefore, the claimed L r(0)–L. contractivity property holds true
for the solutions which correspond to bounded initial data.

We conclude the proof of the present theorem by removing the bounded-
ness assumption on the initial datum.

Consider an initial datum u(0) ¥ Lq0(D) with q0 \ r0. Let uk(0) be a
sequence of L. functions on D, converging to u(0) in Lq0 as kQ+.. Let
also uk(t) be the solution to the equation at hand corresponding to the
essentially bounded initial datum uk(0). By the previous calculations:

||uk(t)||. [ C(d, p, q0 )
|D|a

tb
||uk(0)||

c
q0 .

By letting k tend to infinity, we notice that the r.h.s. converges to

C(d, p, q0 )
|D|a

tb
||u(0)||cq0 .

Hence, uk is a bounded sequence in L.((e, T); L.(D)). Possibly by passing
to a subsequence we can suppose that uk converges to a suitable function v
in the weakg topology of the above space. Hence, it also converges to v in
the weakg topology of the space L.((e, T); L2(D)), since D has finite
measure and thus L2(D) … L1(D). We claim that v(t) coincides with the
solution u(t) corresponding to the initial datum u(0), for almost all t > 0.
In fact, by [Li, p. 159], one knows that uk converges, in the weakg topol-
ogy of L.((e, T); L2(D)) to u. Thus, u=v as functions of L.((e, T);
L.(D)). We can conclude that, at least for almost all t > 0 (because e and
T are arbitrary):

||u(t)||. [ C(d, p, q0 )
|D|a

tb
||u(0)||cq0 for almost all t > 0.(3.23)

We now show that the latter estimate holds for all positive t. To this end,
first notice that, since u is a solution to the equation at hand, it is locally
bounded above as a function of x and t by [Di, Chap. 5]. Moreover, the
function v=−u satisfies the parabolic equation

v̇=div(b(t, x, v, Nv))

with b(t, x, s, t)=−a(t, x, −s, −t). The function b satisfies, by elementary
calculations, the same ellipticity and growth bounds satisfied by the func-
tion a, so that v=−u is locally bounded above as a function of x and t as
well. Thus u is locally bounded. We can therefore apply the results of
[Di, Chap. 2] to prove the local Hölder continuity of u in space and time,
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so that in particular, for any compact set K … D, u( · ) is continuous in time
with values in L.(K). The validity of the bound (3.23) obviously implies
the validity of a similar bound with || · ||L.(K) replacing || · ||L.(D) in the left-
hand side. By using this fact, the above mentioned continuity property of
u( · ) and the lower semicontinuity of the norm || · ||L.(K) with respect to the
weakg topology, we arrive at proving that

||u(t)||L.(K) [ C(d, p, q0 )
|D|a

tb
||u(0)||cq0 for all t > 0

and for all compact sets K … D. The thesis is thus proven for the case p > 2.
If p=2 we return to the calculations which led to to Lemma 3.9. It can be
shown by an identical procedure that the function ȳ(t) appearing in that
Lemma takes the form

w(t) := lim
s Q t −

ȳ(s)=ȳ(0)−
d
2q0

log t+K,

where K depends only on d since p=2 implies r0=2. The thesis follows as
above. L

Proof of Theorem 1.2. We start by proving the contractivity property
on L.. In fact, consider the ultracontractive estimate proven in Theorem
1.1. The constants a, b, c involved depend on q0 and satisfy:

lim
q0 Q+.

a(q0 )= lim
q0 Q+.

b(q0 )=0; lim
q0 Q+.

c(q0 )=1.

Moreover, the explicit expression of the constants I1 , R2 , R3 , R4 appearing
in the proof of Theorem 1.1 show that all of them converge to zero as
q0 Q+.. Therefore, the bound

||u(t)||. [ exp[I1+R2+R3+R4]
|D|a

tb
||u(0)||cq0

appearing in the proof of Theorem 1.1 implies, when u(0) ¥ L.(D) and,
thus, to all Lq(D) spaces, that

||u(t)||. [ ||u(0)||.

for all t > 0, since || · ||q Q || · ||. as qQ.. The contraction property on L. is
thus proven.

To prove the analogous statement on Lq with 2 [ q <+., we use an
approximation argument similar to the one used in the final part of the
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proof of Theorem 1.1. In fact, let u0 ¥ Lq(D) for 2 [ q <+.. Consider a
sequence of essentially bounded functions uk(0) converging to u(0) in
Lq(D). We denote by uk(t) the solutions to the equation at hand corre-
sponding to the initial data uk(0). Then

1
q

d
dt
||uk(t)||

q
q=−(q−1) F

D
|uk(t, x)|q−2 a(t, x, uk(t, x), Nuk(t, x))

×Nuk(t, x) dx

[−c1(q−1) F
D
|uk(t, x)|q−2 |Nuk(t, x)|p dx

[ 0

by the ellipticity conditions, since all the above integrals make sense. Then

||uk(t)||q [ ||uk(0)||q

for any t > 0, k ¥N. Let now kQ+.; since uk(0) converges to u(0) in Lq,
the sequence {uk} is bounded in L.((0,+.); Lq(D)). Possibly by choosing
a subsequence ukh , we can suppose that it is weaklyg convergent in such a
space to a function v. Since L2(D) … Lq Œ(D), where q−1+q −−1=1, we can
conclude that is also weaklyg convergent to v in the space L.((0,+.);
L2(D)). By the above mentioned Lions’s result it follows that u=v in such
space and

||u(t)||q [ ||u(0)||q

at least for almost all positive t. The passage from this to the analogous
statement for all positive t is accomplished exactly as in the final part of the
proof of Theorem 1.1. L
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