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BV SPACES AND RECTIFIABILITY FOR CARNOT-CARATHÉODORY
METRICS: AN INTRODUCTION

BRUNO FRANCHI

1. Introduction.

The aim of these lectures is to illustrate some recent results concerning rectifiable sets in
Carnot groups, and to provide a short introduction to the subject, and, more generally, to some
aspects of Geometric Measure Theory in Carnot–Carathéodory spaces.

I must thank the organizers of the Spring School NAFSA 7, and professors Bohumir Opic and
Lubos Pick in particular, for this opportunity, for their warm hospitality, and for the friendly
atmosphere of the School.

It is also a great pleasure to acknowledge the help and the support of several friends that made
possible this work: first of all, all the results concerning BV functions and Geometric Measure
Theory in Carnot–Carathéodory spaces presented here have been obtained jointly with Raul
Serapioni and Francesco Serra Cassano. Our long collaboration has been always an invaluable
source of scientific and human enrichment. Without their collaboration and their friendship, I
would never have been able to attack this hard subject. I have to thank them also for permitting
the large quotation of our joint papers.

Special thanks go also to Ermanno Lanconelli and Richard L. Wheeden. With them not only
I shared mathematical interests and a fruitul scientific collaboration that goes far behind the
number of joint papers we have written, but also the great pleasure of a long friendship. It is
a pleasure to aknowledge that I owe to Ermanno Lanconelli the idea of approaching degenerate
elliptic equations by means of the control metric associated with a family of vector fields (that
is currently called Carnot–Carathéodory metric). This approach in the early 80’s was the be-
ginning of my interest toward the study of Carnot–Carathéodory spaces, and the origins of the
present paper can be tracked to those pioneering works. I learned from Dick Wheeden plenty of
mathematics and of new ideas. He introduced me to the magic of integral inequalities, and the
section below concerning Poincaré inequality relies on several of our joint papers with Sylvain
Gallot, Cristian Gutiérrez, Guozhen Lu, and Carlos Pérez.

I am very grateful to Valentino Magnani and Roberto Monti, who made their beautiful PhD
theses [89] and [98] available to me. In fact, I followed [98] at several points.

I have to thank also several friends with whom I shared hours of fruitful discussions and
whose work appears here, more or less explicitly: Luigi Ambrosio, Zoltan Balogh, Giovanna
Citti, Thierry Coulhon, Piotr Haj�lasz, Martin H. Reimann, Fulvio Ricci.

These notes are not meant to be a complete – and not even a partial – survey of the field
of Carnot–Carathéodory metrics, since they are based on the content of few lectures given in
Prague during the NAFSA 7. The reader interested to an exhaustive overview of the subject,
with a full bibliography, sharp statements, and detailed proofs, may refer to P. Haj�lasz [67], P.
Haj�lasz & P. Koskela [68], and to the PhD theses of V. Magnani and R. Monti [98], whereas, for
more specific facets we restrict ourselves to recommend the reader to the general monographes
[30], [68], [70], [65], [64], [116], [119], [96], to the papers [3], [4], [5], [20], [27], [29], [51], [54], [61],
[63], [73], [105], [104], [106], [107], [108], [120] and to the references therein.
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Since these lectures are focused on Geometric Measure Theory and rectifiability theorems in
particular, there are two wide fields of research that are not mentioned at all here, the fields of
degenerate elliptic equations associated with a family of vector fields, or subelliptic equations,
as they are currently called by several authors, and control theory. A not utterly unsatisfactory
picture of these fields goes indeed behind the aim (and the size) of these lectures.

2. Sobolev spaces and Poincaré inequality.

2.1. Vector fields. Consider a family X of vector fields X = (X1, ..., Xm) ∈ Lip (Rn; Rn)m.
Since we are dealing with local properties, for sake of simplicity, we assume X1, ..., Xm are
bounded in Rn. This assumption gives a simpler form to some statements below. Later on,
when the vector fields will be associated with a Carnot group structure, we shall drop the
boundedness assumption. This will not yield contradiction or lack of coherence, since the local
estimates we are dealing with are easily extended in groups to the whole space by translations
and dilations.

As usual we shall identify vector fields and differential operators. If

Xj(x) =
n∑

i=1

cj
i (x)∂i, j = 1, ..., m,

we define the m × n matrix
C(x) = [cj

i (x)] i=1,...,n
j=1,...,m

.

We shall denote by X∗
j the operator formally adjoint to Xj in L2(Rn), that is the operator which

for all ϕ, ψ ∈ C∞
0 (Rn) satisfies∫

Rn

ϕ(x)Xjψ(x) dx =
∫

Rn

ψ(x)X∗
j ϕ(x) dx.

Moreover, if f ∈ L1
loc is a scalar function and ϕ ∈ (L1

loc)
m is a m-vector valued function, we

define the X-gradient and X-divergence as the following distributions:

Xf := (X1f, ..., Xmf), divX (ϕ) := −
m∑

j=1

X∗
j ϕj .

Let Ω be an open subset of Rn. One can define the Sobolev space W 1,p
X (Ω), 1 ≤ p ≤ ∞, associated

with the family X as the space of all the functions with finite norm ‖u‖
W 1,p

X
= ‖u‖p + ‖Xu‖p,

where |Xu|2 =
∑

|Xju|2 and the derivatives Xju are understood in the sense of distributions.
The Lp-norms should be meant with respect to Lebesgue measure.

Throughout this paper, if E ⊂ Rn, both |E| and Ln(E) denote its Lebesgue measure. Analo-
gously, if µ is a measure in a set X, we write µ(E) or |E|µ for the µ-measure of the set E ⊂ X.

2.2. Sobolev spaces associated with vector fields.

Proposition 2.1. Endowed with its natural norm, W 1,p(Ω), 1 ≤ p ≤ ∞, is a Banach space,
reflexive if 1 < p < ∞. Moreover, W 1,2(Ω) is a Hilbert space.

Another way to define the space for 1 ≤ p < ∞ is to take the closure of C∞ functions in the
above norm. As in the Euclidean case, the two approaches are equivalent. This was obtained
independently in [52] and [61]. The method goes, however, back to Friedrichs [60]. The result
can be stated as follows. The statement for smooth manifolds in due to [34] and [35].

Theorem 2.2. Let X be a family of Lipschitz continuous vector fields. Then, if 1 ≤ p < ∞,
we have

C∞(Ω) ∩ W 1,p
X (Ω) is dense in W 1,p

X (Ω).
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If in addition ∂Ω is a smooth manifold, then

C∞(Ω) is dense in W 1,p
X (Ω).

The following definition is natural keeping in mind Theorem 2.2.

Definition 2.3. Let X be a family of Lipschitz continuous vector fields. Then, if 1 ≤ p < ∞,
we put

◦
W

1,p

X (Ω) := D(Ω)
W 1,p

X (Ω)
.

Theorem 2.2 provides also a further characterization of the spaces W 1,p
X (Ω) when 1 < p < ∞

through a relaxation argument. To this end, let p ≥ 1 and let f : Ω × Rm → [0,∞) be a
Carathéodory function such that

f(x, ·) is a convex function on Rm for every x ∈ Ω ;(1)

there exist two positive constants λ0 and Λ0 for which

λ0|η|p ≤ f(x, η) ≤ Λ0(1 + |η|p) for every (x, η) ∈ Ω × Rm.(2)

Let us define the functional Fp : Lp(Ω) → [0,∞]

Fp(u) :=

{∫
Ω f(x, Xu(x))dx if u ∈ C1

0 (Ω)
+∞ otherwise

and its relaxed functional (see [114] and [17])

F̄p(u) := inf
{

lim inf
h→∞

Fp(uh) : (uh)h ⊂ Lp(Ω), uh → u

}
(3)

It is well known (see, for instance, [17]) that F̄p is the greatest Lp(Ω)-lower semicontinuous
functional smaller or equal to Fp and that it coincides with Fp on C1

0 (Ω) ∩ Lp(Ω). Then the
following characterization of the spaces W 1,p

X (Ω) holds when 1 < p < ∞ (see [51]).

Theorem 2.4. Let p > 1 and let Ω be an open subset of Rn; let f : Ω × Rm → [0,∞) be a
Carathéodory function for which (1) and (2) hold. Then

(i) dom F̄p :=
{
u ∈ Lp(Ω) : F̄p(u) < ∞

}
= W 1,p

X (Ω) ;
(ii) F̄p(u) =

∫
Ω f(x, Xu(x))dx for every u ∈ W 1,p

X (Ω) .

Remark 2.5. We have discussed here spaces of order 1. Fractional order spaces are discussed
by D. Morbidelli in [102]. For higher order spaces, see for instance [40], [80], [7], [24], [26], [25],
[82], [79] [22], [83].

2.3. Carnot–Carathéodory distance. Let us recall now the following standard definition of
Carnot–Carathéodory metric associated with X (see, e.g., [38], [46], [103]).

Definition 2.6. We say that an absolutely continuous curve γ : [0, T ] −→ Rn is a sub-unit
curve with respect to X if for any ξ ∈ Rn

〈γ̇(t), ξ〉2 ≤
m∑

j=1

〈Xj(γ(t)), ξ〉2

for a.e. t ∈ [0, T ]. If x1, x2 ∈ Rn, we define

d(x1, x2) = inf {T > 0 : there exists a sub-unit curve γ

γ : [0, T ] −→ Rn, γ(0) = x1, γ(T ) = x2}.
If the above set of curves is empty, we put d(x1, x2) = ∞.

Throughout this paper we shall assume the following hypothesis (H1) holds:
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(H1) d(x, y) < ∞ for any x, y ∈ Rn, so that d is a distance in Rn. Moreover, the distance d is
continuous with respect to the usual topology of Rn.

If x ∈ Rn and r > 0 we will denote by Ud(x, r) = {y ∈ Rn : d(x, y) < r} the metric balls with
respect to d. The boundedness of X1, . . . , Xm yields the existence of C > 0 such that

d(x, y) ≥ C|x − y| for all x, y ∈ Rn.

In particular, metric balls are bounded with respect to the Euclidean distance.
We stress explicitly that in general Carnot–Carathéodory distances are not Euclidean at any

scale, and hence not Riemannian. A beautiful proof can be found in [115] (for a more general
statement see also [87]).

If X satisfies (H1), then the total variation of a curve γ : [0, 1] → Rn is by definition

VarX(γ) = sup
0≤t1<...<tk≤1

k−1∑
i=1

d(γ(ti+1), γ(ti)).

The supremum is taken over all finite partition of [0, 1]. If VarX(γ) < +∞ the curve γ is said
rectifiable.

A continuous rectifiable curve γ : [0, 1] → Rn is said to be a geodesic, or a segment, if
VarX(γ) = d(γ(0), γ(1)). By an arclength reparametrization, a geodesic γ can always be
reparametrized on the interval [0,VarX(γ)] in such a way that d(γ(t), γ(s)) = |t − s| for all
s, t ∈ [0,VarX(γ)] (see [16]).

Theorem 2.7. Let X be a family of bounded Lipschitz continuous vector fields satisfying (H1).
Then for all x, y ∈ Rn there exists a geodesic connecting them.

Carnot–Carathódory metrics can be viewed as “limits” of Riemannian metrics (see [41], [65]
and [98]).

Indeed, for sake of simplicity, assume X = (X1, ..., Xm) is a system of smooth vector fields.
Then for any k ∈ N let d(k) be the C-C metric induced on Rn by the vector fields

X(k) = (X1, ..., Xm,
1
k
∂1, ...,

1
k
∂n).

The distance d(k) is in fact a Riemannian distance (see again [98]), basically since X(k) contains
n linearly independent vector fields. Every X(k)−subunit curve is X(h)−subunit for all h > k
and also X−subunit. Then

d(k)(x, y) ≤ d(k+1)(x, y) ≤ d(x, y) for all k ∈ N and x, y ∈ Rn.(4)

In addition, since C-C balls in the metric d(1) are bounded in the Euclidean metric, then, by
an Ascoli-Arzelà argument, we can obtain that

lim
k→∞

d(k)(x, y) = d(x, y)(5)

for all x, y ∈ Rn and finally, by (H.1), the convergence is uniform on compact sets.

The following property is known as doubling property of d. It is not always satisfied by
Carnot–Carathéodory distances associated with vector fields satisfying (H.1), but it holds in
several important cases and most of the subsequent results rely on it.

(H2) For any compact K ⊂ Rn there exists a positive constant CK such that

|Ud(x, 2r)| ≤ CK |Ud(x, r)|
for any x ∈ K and r < rK .
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From now on we will call geometric constant any constant depending only on the dimension n,
on the Lipschitz norm of the coefficients, and on the constants appearing in (H1) and (H2).

Moreover, for the sake of simplicity, we will omit the index d in Ud when there is no way of
misunderstanding, and we will denote by the same letter C different geometric constants.

Remark 2.8. Assumptions (H1) and (H2) are satisfied by several important families of vector
fields. For instance:

(i) If the vector fields are smooth and the rank of the Lie algebra generated by X1 . . . , Xm

equals n at any point of Rn (Hörmander condition), then (H1) and (H2) hold ([103]).
(ii) If the vector fields are as in [46] and [42], then (H1) and (H2) hold. These assumptions

still hold if the vector fields are as in [44].
On the other hand, keeping into account Proposition 2.9 (i) and Corollary 6.2 below, it is easy
to see that the Carnot–Carathéodory distance associated with X = (∂x1 , exp(−1/x2

1)∂x2) in R2

satisfies (H.1) but not (H.2).

The following properties of the metric balls follow straightforwardly from (H2).

Proposition 2.9. Let (H1) and (H2) hold. If K ⊂⊂ Rn, then there exist geometric constants
Q ≥ n, rK > 0, c1 > 0, c2 > 0, c3 > 0, c4 > 0 such that

(i) |U(x, s)| ≥ c1

(
s
r

)Q |U(x, r)| ∀x ∈ K, ∀r, s 0 < s < r ≤ rK ;
(ii) |U(x, s)| ≤ c2 sn ∀x ∈ K, ∀s 0 < s ≤ rK ;
(iii) c3|U(x, d(x, y))| ≤ |U(y, d(x, y))| ≤ c4|U(x, d(x, y))|

for any x, y ∈ K, d(x, y) ≤ rK .
We refer to Q as to the (local) homogeneous dimension of (Rn, d,Ln) (with some ambiguity,
since Q is clearly not uniquely defined).

Lipschitz functions in general C-C spaces always have weak derivatives along the vector fields
that are essentially bounded functions. When the function is the distance function this result
was first proved in [52], and then in [62] for a generic Lipschitz function. A more precise result
in the following one, taken from [45] (see also [19]).

Theorem 2.10. Let (Rn, d) be a C-C space associated with a family of locally Lipschitz vector
fields X = (X1, ..., Xm). Assume (H.1) holds. If f : Rn → R is a function such that for some
L ≥ 0

|f(x) − f(y)| ≤ Ld(x, y) for all x, y ∈ Rn,(6)

then the derivatives Xjf , j = 1, ..., m exist in distributional sense, are measurable functions and
|Xf(x)| ≤ L for a.e. x ∈ Rn.

Another relevant property of Carnot–Carathéodory distance is that it satisfies (at least in
several important cases) an eikonal equation, like the Euclidean distance. This beautiful result
has been proved by R. Monti & F. Serra Cassano.

Theorem 2.11. Let X be a family of Lipschitz continuous vector fields in Rn and assume the
associated Carnot–Carathéodory distance d satisfies (H1) and (H2). Suppose that the vector
fields satisfy one of the cases A, B or C below:

Case A. X1, ..., Xm ∈ C∞(Rn; Rn), m < n, satisfy the Hörmander’s rank condition, and they
are of the form

Xj = ∂j +
n∑

i=m+1

aij(x)∂i, j = 1, ..., m,(7)

where aij ∈ C∞(Rn).
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Case B. X1, ..., Xn ∈ C∞(Rn; Rn) are of the form

X1 = ∂1, X2 = p2(x1)∂2, ... Xn = pn(x1, ..., xn−1)∂n,(8)

where pj ∈ C∞(Rj−1), j = 2, ..., n, are functions vanishing on a set of null (j − 1)−dimensional
Lebesgue measure.

Case C. X1, ..., Xm ∈ C∞(Rn; Rn) and span {X1(x), ..., Xm(x)} = Rn for every x ∈ Rn.

Let K ⊂ Rn be a closed set and let dK be the distance from K. Then

|XdK(x)| = 1(9)

for a.e. x ∈ Rn \ K.

Remark 2.12. Vector fields in Case A may be called “of Carnot type”. This expression is
motivated by the analogy with the canonical generating vector fields of a Carnot group (see
below). Analogously, vector fields in Case B may be called “of Grushin type”, since the model
is provided by the so-called Grushin type vector fields studied in [46], [42], [44] (see below).
Finally, vector fields in Case C may be called “of Riemann type”, since in this case the distance
d is the Riemannian distance associated with the matrix C CT .

2.4. Poincaré inequality.

Definition 2.13. Let 1 ≤ p ≤ q < ∞. We say that the system X satisfies a (p, q)-Poincaré
inequality (in a compact set K) if for any x ∈ K , for any r ∈ (0, rK), and for any Lipschitz
continuous function f the following Poincaré inequality holds: let U = U(x, r(U)) be a Carnot–
Carathéodory ball, and denote by fU the average of f in U . Then(

1
|U |

∫
U
|f(x) − fU |q dx

)1/q

≤ c r(U)
(

1
|U |

∫
U
|Xf(x)|p dx

)1/p

.(10)

Examples of systems of vector fields satisfying a (p, q)-Poincaré inequality are provided by
systems of smooth vector fields of Hörmander’s type, as we see below. Further classes of non-
smooth vector fields yielding a (p, q)-Poincaré inequality are introduced in [46], [42] (see also
Appendix 6), [74], and [94].

Sometimes in the literature, when p < q we refer to (10) as to a Sobolev-Poincaré inequality,
the term “Poincaré inequality” being reserved to the case q = p. On the other hand, the
expression “(p, q)-Sobolev inequality” indicates the weaker property(

1
|U |

∫
U
|f(x)|q dx

)1/q

≤ c r(U)
(

1
|U |

∫
U
|Xf(x)|p dx

)1/p

(11)

for all Lipschitz continuous functions f supported in U .
For systems of smooth vector fields of Hörmander’s type, a (p, p)-Poincaré inequality was

proved first by D. Jerison in [71]. This result was improved in case p > 1 in [77] by showing that
the estimate holds for 1 < p < Q and q = pQ/(Q − p). In fact, (10) holds for 1 ≤ p < q < ∞
if p and q are related by a natural balance condition which involves the local doubling order
of Lebesgue measure (for metric balls). The limit case p = 1 is very important, since it is
equivalent, as we see later, to an intrinsic isoperimetric inequality. This inequality was proved
independently by [21], [47], [68], and [90] (see also [12]). Here we give a simple formulation.

Theorem 2.14. Let X be a system of smooth vector fields satisfying Hörmander’s rank condi-
tion. Let 1 ≤ p < q < ∞ be such that the following balance condition holds:

r(Ũ)
r(U)

(
|Ũ |
|U |

)1/q

≤ C

(
|Ũ |
|U |

)1/p

(12)
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for all balls Ũ , U such that Ũ ⊂ U . Then, denoting by fU the average of f on U ,(
1
|U |

∫
U
|f − fU |q dx

)1/q

≤ C r(U)
(

1
|U |

∫
U
|Xf |p dx

)1/p

(13)

with C independent of f .

The proof of Theorem 2.14 can be carried out directly. However, the (p, q)-Poincaré inequality
can be derived from the (1, 1)-Poincaré inequality of [71]. This is a more elegant (and deeper)
proof relying on the so-called self-improving property of Poincaré inequality. In fact, starting
with work of Saloff-Coste [111], it is known that – thanks to the doubling property of the
Carnot–Carathéodory metric with respect to Lebesgue measure – Poincaré inequalities have a
self-improving nature, in the sense that it is possible to derive estimates for general p, q from
particular special cases such as

1
|U |

∫
U
|f(x) − fU | dx ≤ c r(U)

(
1
|U |

∫
U
|Xf |p0 dx

)1/p0

(14)

for some p0, provided p and q satisfy a suitable balance condition involving the volume of the
metric balls.

We refer to [112] for an introduction to this property of Poincaré inequalities.
Saloff-Coste’s result has been successively extended to more general situations in [49] and

[50]. In fact, Theorem 2.14 can be derived from the (1, 1)-Poincaré inequality of [71] by means
of the following result (Corollary 2.16 of [50]).

Theorem 2.15. Let µ and ν be doubling Borel measures in (Rn, d), p0 > 0 and T be a differ-
ential operator for which

1
|U |µ

∫
U
|f − fU | dµ ≤ C r(U)

(
1

|U |ν

∫
U
|Tf |p0 dν

)1/p0

(15)

for all balls U and all Lipschitz functions f . Let p0 ≤ p < q < ∞, and assume that ω is a
doubling measure in (Rn, d), and the following balance condition holds:

r(Ũ)
r(U)

(
|Ũ |ω
|U |ω

)1/q

≤ C

(
|Ũ |ν
|U |ν

)1/p

(16)

for all balls Ũ , U such that Ũ ⊂ U . Then(
1

|U |ω

∫
U
|f − fU |q dω

)1/q

≤ C r(U)
(

1
|U |ν

∫
U
|Tf |p dν

)1/p

(17)

with C independent of f and U .

Remark 2.16. We stress that the self-improving property of Theorem 2.15 does not rely on any
smoothness of the vector fields. In fact, the smoothness of the vector fields – together with
Hörmander’s rank hypothesis – is required only in order to obtain the doubling property of
the d-balls and the (1, 1)-Poincaré inequality providing the starting point in order to apply
Theorem 2.15. Thus, Theorem 2.15 applies whenever the doubling property of the d-balls and
the (1, 1)-Poincaré inequality hold.

There is another proof of Theorem 2.14 starting from the (1, 1)-Poincaré inequality, that
relies on a representation formula of a function f with zero average on a metric ball in terms
of the norm of its X-gradient |Xf |. In fact, it is possible to prove that the (1, 1)-Poincaré
inequality associated with X is equivalent to such a formula. This result was proved first under
supplementary hypotheses in [48], and then in the present sharp form in [59] and [81].
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Theorem 2.17. Let (S, 
, m) be a complete metric measure space, where 
 is a distance in S,
and m is a doubling Borel measure in S. Suppose that (S, 
) has the segment property, i.e.
suppose for each pair of points x, y ∈ S there exists a continuous curve γ connecting x and y
such that 
(γ(t), γ(s)) = |t− s|. Let µ, ν be locally doubling measures on (S, 
, m) with doubling
constants Aµ and Aν , respectively. Let U0 = U(x0, r0) be a ball, and let f, g ∈ L1(U0) be given
functions. Assume there exists P > 0 such that, for all balls U ⊆ U0,

1
ν(U)

∫
U
|f − fU,ν | dν ≤ P

r(U)
µ(U)

∫
U
|g| dµ,

where fU,ν = 1
ν(U)

∫
U fdν =

∫
U fdν. If there is a constant ϑ > 0 such that for all balls U , Ũ

with Ũ ⊆ U ⊆ U0,
µ(U)
µ(Ũ)

≥ ϑ
r(U)
r(Ũ)

,

then for (dν)-a.e. x ∈ U0,

|f(x) − fU0,ν | ≤ C

∫
U0

|g(y)| 
(x, y)
µ(U(x, 
(x, y)))

dµ(y),

were C is a geometric constant depending on P, Aµ, Aν .

As it is proved in [59], S = Rn, 
 = d, m = µ = ν = Ln, and g = |Xf | satisfy the assumptions
of Theorem 2.17 and then the following representation formula holds:

|f(x) − fU0 | ≤ C

∫
U0

|Xf(y)| d(x, y)
|U(x, d(x, y)| dy for a.e. x ∈ U0.(18)

Once (18) is proved, then Theorem 2.14 can be derived by means of Lp−Lq continuity theorems
for singular integral operators of potential type, as in [44].

A typical example of this kind of (weak type) continuity results is provided by Theorem 4.1
in [44] that reads as follows.

Theorem 2.18. Let (X, 
̃, dν) be a space of homogeneous type in the sense of [23], i.e. a metric
space (X, 
̃) endowed with a doubling Radon measure ν, and let κ be the quasi-metric constant
of 
̃. Let K̃ be a nonnegative kernel and put

T̃ f(x) =
∫

U0

K̃(x, y)f(y)dν(y)(19)

where f ≥ 0 and U0 = U(x0, r0) is a fixed ball. Assume for simplicity that ν({x}) = 0 for x ∈ U0

and that ν(U(x, r)) is a continuous function of r for x ∈ U0. If 1 ≤ p < q < ∞ and ũ, ṽ are
weights (i.e. nonnegative locally summable functions), then∫

U0∩{Tf>t}
ũdν ≤ c

(
L̃||f ||Lp

ṽdν(U0)

t

)q

, t > 0,(20)

with

L̃ =


sup

(∫
c1U(x,r) ũdν

) 1
q
(∫

U0\U(x,r) K̃(x, y)p′ ṽ(y)−
1

p−1 dν(y)
) 1

p′
, if p > 1

sup
(∫

c1U(x,r) ũdν
) 1

q

(
ess supy∈U0\U(x,r) K̃(x, y)

1
ṽ(y)

)
, if p = 1,

where the sup is taken over all x, r such that U(x, r) ⊂ c2U0 and x ∈ U0, and the ess sup is taken
with respect to the measure ṽdν. The constants c1 and c2 can be written explicitly and depend
only on the constant κ.
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In fact, Theorem 2.18 provides only a weak type continuity estimate, but here we can pass
from the weak type estimate to the strong type one, thanks to the fact that the right hand side
of Poincaré inequality contains a first order differential operator. Indeed, the main property we
need to pass from weak type estimates to strong type estimates is a certain “stability” property
under truncations. This idea was originally introduced in [76] and exploited in [113], [43], [47]
and [8]. We refer to [49] and [50] for a detailed presentation of this technique.

The proof of the (1, 1)-Poincaré inequality relies on the lifting technique for vector fields
introduced by Rotschild & Stein [110], but it becomes particularly simple and elegant in the
setting of groups, when X is a complete system of left invariant vector fields in a Carnot group
identified with Rn through the exponential map. The notion of Carnot group, together with all
related definitions and properties, will be the subject of Section 4. The following proof is due
to Varopoulos ([118]); in the present form it is taken from [98].

Proof of (1, 1)-Poincaré inequality for Carnot groups. Let a structure of Carnot group induced
by X = (X1, ..., Xm) be given on Rn. The group product of x, y ∈ Rn will be denoted by x · y.
We shall see below that |U(x, r)| = krQ for all x ∈ Rn and r ≥ 0 with k = |U(0, 1)|.

Fix U = U(x0, r) with x0 ∈ Rn and r > 0 and let u ∈ C1
0 (Rn). Notice that∫

U
|u(x) − uU | dx =

∫
U

∣∣∣ ∫
U
(u(x) − u(y))dy

∣∣∣ dx ≤
∫

U

∫
U
|u(x) − u(y)| dxdy.

We perform in the inner integral the change of variable z = y−1 ·x, which has Jacobian identically
1, getting∫

U
|u(x) − uU | dx ≤

∫
U

∫
y−1·U

|u(y · z) − u(y)| dzdy ≤
∫

U

∫
U(0,2r)

|u(y · z) − u(y)| dzdy.

Indeed, if y ∈ U then y−1 · U ⊂ U(0, 2r).
Let now z ∈ U(0, 2r) be fixed, let δ = d(0, z) and take a geodesic γ : [0, δ] → Rn such that

γ(0) = 0 and γ(δ) = z with δ ≤ 2r. For some h ∈ L∞(0, δ)m

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) and |h(t)| ≤ 1 for a.e. t ∈ [0, δ].

Then

u(y · z) − u(y) =
∫ δ

0

d

dt
u(y · γ(t)) dt =

∫ δ

0
〈Du(y · γ(t)),

d

dt
(y · γ(t))〉 dt

=
∫ δ

0
〈Du(y · γ(t)),

m∑
j=1

hj(t)Xj(y · γ(t))〉 dt

=
∫ δ

0
〈Xu(y · γ(t)), h(t)〉 dt.

We used the left invariance of X1, ..., Xm. As h∞ ≤ 1 we obtain∫
U
|u(x) − uU | dx ≤

∫
U

∫
U(0,2r)

∫ δ

0
|Xu(y · γ(t))| dtdzdy

≤
∫ δ

0

∫
U(0,2r)

∫
U
|Xu(y · γ(t))| dydzdt.

The curve γ depends on z. Since γ(t) ∈ U(0, 2r) for all t ∈ [0, δ], if y ∈ U then y · γ(t) ∈ 3U =
U(x0, 3r). Indeed

d(y · γ(t), x0) ≤ d(y · γ(t), y) + d(y, x0) = d(γ(t), 0) + d(y, x0) ≤ 3r.
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Thus we finally get∫
U
|u(x) − uU | dx ≤ 1

|U(0, r)|

∫ δ

0

∫
U(0,2r)

∫
3U

|Xu(y)| dydzdt

≤ 2r
|U(0, 2r)|
|U(0, r)|

∫
3U

|Xu(y)| dy = r2Q+1

∫
3U

|Xu(y)| dy.

Finally, we can get rid of the constant 3 in the last integral
∫
3U |Xu(y)| dy by means of an

argument that goes back to Boman, and that was generalized to the setting of doubling metric
spaces in [44]. It relies on the fact that – as proved in [44] – metric balls are Boman domains,
as they will be defined below.

From Poincaré inequality Theorem 2.14 we can derive the following Rellich-type theorem.

Theorem 2.19. Suppose the assumptions of Theorem 2.14 hold, and let Ω ⊂ Rn be a bounded
open set. Then the seminorm

|u| ◦
W

1,p

X (Ω)
:=

( ∫
Ω
|Xu|pdx

)1/p

is a norm in
◦

W
1,p

X (Ω). Moreover
◦

W
1,p

X (Ω) is compactly embedded in Lq(Ω).

Another interesting consequence of the Poincaré inequality for Hörmander’s vector fields is
that the associated Sobolev spaces fit in the general setting of Sobolev spaces on metric spaces,
as defined by Haj�lasz [66]. We refer the reader to [45].

2.5. Geometry of domains. The present section is largely taken from [98]. We refer also to
the exhaustive bibliography of [98] for a detailed account of the different contributions to this
field.

We consider a metric space (M, d). A domain Ω ⊂ M is a connected open set. The metric
space (M, d) will be said with geodesics if every couple of point x, y ∈ M can be connected
by a continuous rectifiable (i.e. of finite length) curve with length d(x, y). By Theorem 2.7,
Carnot–Carathéodory distances yield a metric space with geodesics.

We want now to discuss Poincaré inequality in open sets different from balls. Clearly, not
any open set admits a Poincaré inequality (as already happens in the Euclidean setting), and
the main issue consists of providing a reasonable class of sets. Let us start with few general
definitions.

Definition 2.20. Let (M, d) be a metric space. A bounded open set Ω ⊂ M is a John domain
if there exist x0 ∈ Ω and C > 0 such that for every x ∈ Ω there exists a continuous rectifiable
curve parametrized by arclength γ : [0, T ] → Ω, T ≥ 0, such that γ(0) = x, γ(T ) = x0 and

dist(γ(t); ∂Ω) ≥ Ct.(21)

Definition 2.21. Let (M, d) be a metric space. A bounded open set Ω ⊂ M is a weak John
domain if there exist x0 ∈ Ω and 0 < C ≤ 1 such that for every x ∈ Ω there exists a continuous
curve γ : [0, 1] → Ω such that γ(0) = x, γ(1) = x0 and

dist(γ(t); ∂Ω) ≥ Cd(γ(t), x).(22)

The following result is basically proved in [44] and provides a key tool in the setting of Poincaré
inequalities for Carnot–Carathéodory spaces.

Remark 2.22. If (M, d) is a metric space with geodesics, then every ball U(x0, r), x0 ∈ M and
r > 0, is a John domain with constant C = 1 in (21).
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Definition 2.23. Let (M, d) be a metric space. A set E ⊂ M satisfies the interior (exterior)
corkscrew condition if there exist r0 > 0 and k ≥ 1 such that for all 0 < r ≤ r0 and x ∈ ∂E
there exist y ∈ E (y ∈ M \ E) such that

r

k
≤ dist(y; ∂E) and d(x, y) ≤ r.

A set E satisfies the corkscrew condition if it satisfies both the interior and the exterior corkscrew
condition. The constant k will be called the corkscrew constant of E .

Clearly, if Ω is a John domain then it satisfies the interior corkscrew condition.

Proposition 2.24. Let (M, d, µ) be a doubling metric space with arcwise connected balls. If
E ⊂ M satisfies the interior corkscrew condition then there exist r0 > 0 and C > 0 such that
for all x ∈ ∂E and 0 ≤ r ≤ r0

µ(E ∩ U(x, r)) ≥ Cµ(U(x, r)).

Theorem 2.25. Let (M, d, µ) be a doubling metric space with geodesics. Then Ω ⊂ M is a
weak John domain if and only if it is a John domain.

Corollary 2.26. Suppose X is a system of bounded Lipschitz continuous vector fields in Rn

satisfying (H.1) and (H.2). Then Ω ⊂ Rn is a weak John domain for the Carnot–Carathéodory
distance d if and only if it is a John domain for d.

The proof of Theorem 2.25 can be found in [68, Proposition 9.6] and for the Euclidean case
in [91, Lemma 2.7].

Definition 2.27. An open set Ω ⊂ M is a Boman domain if there exists a covering F of Ω
with balls and there exist N ≥ 1, λ > 1 and ν ≥ 1 such that

(i) λU ⊂ Ω for all U ∈ F ;
(ii)

∑
U∈F 1λU (x) ≤ N for all x ∈ Ω;

(iii) there exists U0 ∈ F such that for any U ∈ F there exist U1, ..., Uk such that Uk = U ,
µ(Ui ∩ Ui+1) ≥ 1/N max{µ(Ui), µ(Ui+1)} and U ⊂ νUi for all i = 0, 1, ..., k.

Under additional hypotheses on the metric space the definition of John domain is equivalent
to that of Boman domain (see [15] and [61, section 6]).

Theorem 2.28. Let (M, d, µ) be a doubling metric space. If Ω ⊂ M , Ω 
= M , is a weak John
domain then it is a Boman domain.

Theorem 2.29. Let (M, d, µ) be a doubling metric space with geodesics. If Ω ⊂ M is a Boman
domain then it is a John domain.

Corollary 2.30. Suppose X is a system of bounded Lipschitz continuous vector fields in Rn sat-
isfying (H.1) and (H.2). Then Ω ⊂ Rn, Ω 
= Rn, is a John domain for the Carnot–Carathéodory
distance d if and only if it is a Boman domain for d. In particular, metric balls are Boman
domains.

We can state now a Poincaré inequality for Boman (= John) domains (see [47]).

Theorem 2.31. Let X be a family of vector fields satisfying Hörmander’s rank condition, and
let Ω be a Boman (= John) domain. Suppose p and q as in Theorem 2.14 can be chosen uniformly
in Ω. Then (∫

Ω
|f − fΩ|q dx

)1/q

≤ CΩ

(∫
Ω
|Xf |p dx

)1/p

(23)

with CΩ independent of f .
If 1 ≤ p < Q we can always choose q = p∗ := pQ/(Q− p), if Q is the homogeneous dimension

of a compact neighborhood of Ω.
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Sharp characterization of John domains with respect to families of vector fields are given in
[99] and [100].

Theorem 2.31 yields the following Rellich type theorem.

Theorem 2.32. Suppose the assumption of Theorem 2.31 hold. Then:
(i) if 1 ≤ p < Q and 1 ≤ q < p∗ the embedding W 1,p(Ω) ↪→ Lq(Ω) is compact;
(ii) if p ≥ Q and q ≥ 1 the embedding W 1,p(Ω) ↪→ Lq(Ω) is compact.

3. BV space

Let us remind now the notion of functions of bounded X-variation and recall some of their
properties (see [51] and [61]). Let Ω ⊂ Rn be an open set and set

F (Ω; Rm) := {ϕ ∈ C1
0 (Ω; Rm) : |ϕ(x)| ≤ 1 ∀x ∈ Ω}.(24)

The space BVX(Ω) is the set of functions f ∈ L1(Ω) such that

||Xf ||(Ω) := sup
ϕ∈F (Ω;Rm)

∫
Ω

f(x) divX (ϕ)(x) dx < ∞.(25)

The space BVX,loc(Ω) is the set of functions belonging to BVX(U) for each open set U ⊂⊂ Ω.
Observe that if f ∈ W 1,1

X;loc(Ω) then∫
Ω

d‖Xf‖ =
∫

Ω
|Xf | dx.

A measurable set E ⊂ Rn is of locally finite X-perimeter in Ω (or is a X-Caccioppoli set) if
the indicatrix function 1E ∈ BVX,loc(Ω), namely if

|∂E|X(U) := ||X1E ||(U) < ∞(26)

for every open set U ⊂⊂ Ω.
For each f ∈ BVX(Ω) the functional Xf can be extended to all of C0

0(Ω; Rm). We keep
calling Xu such an extension. By means of Riesz representation theorem one can prove that if
f ∈ BVX,loc(Ω) then ||Xf || is a Radon measures on Ω (see [37], 2.2.5). Moreover, the following
results hold (see [51] and [20], respectively).

Proposition 3.1 (Lower semicontinuity). Let f, fk ∈ L1(Ω), k ∈ N, be such that fk → f in
L1(Ω); then

lim inf
k→∞

||Xfk||(Ω) ≥ ||Xf ||(Ω).

Proposition 3.2. If E is a X-Caccioppoli set with C1 boundary, then the X-perimeter has the
following representation

|∂E|X(Ω) =
∫

∂E∩Ω

( ∑
j

〈Xj , n〉2
)1/2

dHn−1,

here n(x) is the Euclidean unit outward normal to E and Hs is the Euclidean s-dimensional
Hausdorff measure.

Theorem 3.3 (Structure of BVX functions). Let f ∈ BVX(Ω) and write µ = ||Xf ||. There
exists a µ-measurable function σf : Ω → Rm such that |σf | = 1 µ-almost everywhere and∫

Ω
f(x)divX (ϕ)(x) dx =

∫
Ω
〈ϕ(x), σf (x)〉dµ,

for all ϕ ∈ F (Ω; Rm).
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When f = 1E in Theorem 3.3, then we call X-generalized inner normal of E in Ω the vector

νE(x) := −σ1E (x).(27)

As for the Sobolev spaces W 1,p
X , 1 < p < ∞, the space BVX can be defined as the domain

of a relaxed functional. In particular, this shows that our space BVX fits into the setting of
BV -spaces in metric spaces introduced by M. Miranda jr. [93] and L. Ambrosio [1].

To this end, let us state preliminarily an approximation theorem in BVX that is the exact
counterpart of the corresponding result for usual BV functions proved by Anzellotti & Giaquinta
[6]. The following result is proved in [51], Theorem 2.2.2.

Theorem 3.4. Let u ∈ BVX(Ω). Then there exists a sequence (uh)h ⊂ C∞
0 (Ω) such that

lim
h→+∞

‖uh − u‖L1(Ω) = 0

lim
h→+∞

∫
Ω

d‖Xuh‖ =
∫

Ω
d‖Xu‖.

Moreover ([51], Corollary 2.2.3) we have:

Corollary 3.5. For u ∈ L1(Ω) we define∫
Ω

√
1 + |Xu|2

= sup
{∫

Ω
(ϕ + u divXψ) dx : (ϕ, ψ) ∈ C∞

0 (Ω, R × Rm), |ϕ(x)|2 + |ψ(x)|2 ≤ 1
}

.

Then the following facts hold:
(i) ∫

Ω
d|Xu| ≤

∫
Ω

√
1 + |Xu|2 ≤ |Ω| +

∫
Ω

d|Xu| for every u ∈ L1(Ω) ,∫
Ω

√
1 + |Xu|2 =

∫
Ω

√
1 + |Xu(x)|2dx for every u ∈ W 1,1

X;loc(Ω) .

(ii) Let (uh)h, u ∈ L1(Ω) be such that uh → u in L1(Ω). Then∫
Ω

√
1 + |Xu|2 ≤ lim inf

h→∞

∫
Ω

√
1 + |Xuh|2 .

(iii) Let u ∈ BV (Ω); then there exists a sequence (uh)h in C1(Ω) ∩ BVX(Ω) such that

uh → u in L1(Ω), and
∫

Ω

√
1 + |Xuh|2dx →

∫
Ω

√
1 + |Xu|2 .

Thanks to the above approximation theorem (Theorem 3.4), we can pass to the limit in
the Poincaré inequality of Theorem 2.14 and we obtain an intrinsic isoperimetric inequality.
This result is proved in [61], but appears also in a slightly less general form in [47] (see also
[43]). However, in the setting of the Heisenberg group (see below), a (different but a posteriori
equivalent, by Theorem 5.7) isoperimetric inequality was proved by P.Pansu in [106] (see also
[105]).

Theorem 3.6 (Isoperimetric inequality). Let X be a system of smooth vector fields satisfying
Hörmander’s rank condition. Let 1 ≤ q < ∞ be such that the following balance condition holds:

r(Ũ)
r(U)

(
|Ũ |
|U |

)1/q

≤ C
|Ũ |
|U |(28)
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for all balls Ũ , U such that Ũ ⊂ U . Then

min{|E ∩ Ω|, |(Rn \ E) ∩ Ω|}
q−1

q ≤ C
r(U)
|U |1/q

|∂E|X(Ω).(29)

with C independent of E.

A similar result with balls replaced by John (= Boman)-domains can be analogously derived
from Theorem 2.31.

A coarea formula for vector fields has been proved in [62], [51], [85], [88] [86] and [101]. A
similar coarea formula in the setting of metric spaces has been proved also in [3] and [93]. In
the coarea formula a solid integral is expressed as a superposition of surface integrals and the
integration measure is the perimeter of the boundary of the level sets of a Lipschitz function.
The following statement follows that of [98].

Theorem 3.7. Let X1, ..., Xm ∈ Liploc(Rn; Rn) and let Ω ⊂ Rn be an open set. If f ∈ BVX(Ω)
then

‖Xf‖(Ω) =
∫ +∞

−∞
|∂Et|X(Ω) dt,(30)

where Et = {x ∈ Ω : f(x) > t}.
Moreover, if (H.1) holds, f ∈ Lip(Ω, d) and u ∈ L1(Ω), then∫

Ω
u |Xf | dx =

∫ +∞

−∞

( ∫
{x∈Ω:f(x)=t}

u d|∂Et|X
)

dt.(31)

Finally we recall that from the approximation result and the coarea formula we get the
following approximation result for bounded subsets of Rn of finite X-perimeter.

Corollary 3.8. Let E be a bounded subset of Rn of finite X-perimeter. Then E can be approx-
imated by a sequence of C∞ sets Eh such that∫

Rn

|1Eh
− 1E |dx → 0,

∫
Rn

d‖X1Eh
‖ →

∫
Rn

d‖X1E‖.

Let now f : Ω×Rm → [0,∞) be a Borel function verifying (1). We denote by f∞ : Ω×Rm →
[0,∞) the recession function of f , that is

f∞(x, η) := lim
t→0+

f(x,
η

t
)t for every x ∈ Ω, η ∈ Rm

and by f̄ : Ω × Rm × [0,∞) → [0,∞) the function

f̄(x, η, t) :=

{
f(x, η

t )t t > 0
f∞(x, η) t = 0

.(32)

Moreover, if µ is a m-vector-valued Radon measure, let us set∫
Ω

f(x, µ) :=
∫

Ω
f(x, [µ]a(x))dx +

∫
Ω

f∞(x,
d[µ]s
d|[µ]s|

(x))d|[µ]s|(33)

where µ = [µ]adx + [µ]s is the Lebesgue decomposition of µ in its absolutely continuous and
singular parts with respect to Lebesgue measure. As usual d[µ]s

d|[µ]s|(x) and [µ]a(x) are respectively
the density of [µ]s with respect to |[µ]s| and the density of [µ]adx with the respect to Lebesgue
measure.

The following semicontinuity and continuity properties of functional (33) on the set of m-
vector-valued Radon measures are extensions of well known results proved by Reschetnyak in
[109] (for a proof of these versions see the appendix of [84] or Theorems 4.4 and 4.6 in [33]).
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Theorem 3.9. Let f : Ω × Rm → [0,∞) be a Borel function verifying (1), and assume that
the function f̄ defined in (32) is lower semicontinuous. Then, for every µ ∈ M(Ω, Rm) and
(µh)h ⊂ M(Ω; Rm) with µh → µ weakly in M(Ω; Rm)∫

Ω
f(x, µ) ≤ lim inf

h→∞

∫
Ω

f(x, µh) .

Theorem 3.10. Let Ω be a bounded open subset of Rn and let f : Ω × Rm → [0,∞) be a Borel
function verifying (1) and (2) with p = 1. Let us suppose that the function f̄ defined in (32) is
continuous. Then, for every µ ∈ M(Ω; Rm) and (µh)h ⊂ M(Ω; Rm) with

µh → µ weakly in M(Ω; Rm) and
∫

Ω

√
1 + |µh|2 →

∫
Ω

√
1 + |µ|2 ,

it follows

lim
h→∞

∫
Ω

f(x, µh) =
∫

Ω
f(x, µ) .

We are now in position to state the characterization result for the relaxed functional F̄1, which
extends well known results for the classical Euclidean case that is when X = ( ∂

∂x1
, . . . , ∂

∂xn
).

Theorem 3.11. Let Ω be a bounded open subset of Rn and let f : Ω × Rm → [0,∞) be a Borel
function verifying (1) and (2) with p = 1. Let us suppose that the function f̄ defined in (32) is
continuous. Then

(i) dom F̄1 :=
{
u ∈ L1(Ω) : F̄1(u) < ∞

}
= BVX(Ω);

(ii) F̄1(u) =
∫
Ω f(x, Xu) for every u ∈ BVX(Ω).

Remark 3.12. If f verifies (1), the continuity of the function f̄ defined in (32) is equivalent to
the existence, for every x and x0 ∈ Ω and for every ε > 0, of a δ = δ(x0, ε) > 0 such that

|x − x0| < δ =⇒ |f(x, η) − f(x0, η)| ≤ ε (1 + |η|) for every η ∈ Rm .

By Theorem 3.11 and Remark 3.12, we get the following characterization of the relaxed area
functional.

Corollary 3.13. Let Ω be a bounded open subset of Rn, then for every u ∈ BVX(Ω)∫
Ω

√
1 + |Xu|2 =

∫
Ω

√
1 + |[Xu]a(x)|2dx +

∫
Ω

d|[Xu]s|.

The original definition of perimeter given by De Giorgi [31], [32] involves the approximation
by means of polyhedral hypersurfaces. It may be surprising to see that the same result holds for
the X-perimeter, even if there are no intrinsic polyhedral hypersurfaces. This result has been
proved by F. Montefalcone [95].

Definition 3.14. Let A(n, n − 1) denote the set of (n − 1)-dimensional affine manifolds (i.e.
the hyperplanes) in Rn. We say that Σ is an Euclidean polyhedral domain if there exist κ ∈ N
and J := {Ji}κ

i=1 ⊆ A(n, n − 1) such that

Fr(Σ) ⊆
κ⋃

i=1

Ji .

By Pn we denote the set of all Euclidean polyhedral domains of Rn .

Then the following approximation result holds.

Theorem 3.15. Let X be a family of Lipschitz continuous vector fields. Let E ⊆ Rn with
|E| < ∞. Then there exists a family Σ of polyhedral domains, Σ := {Σi}i∈N ⊆ Pn, such that

1. limi ‖1Σi − 1E‖L1(Ω) = 0
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2. limi ‖∂Σi‖X(Ω) = ‖∂E‖X(Ω)
for any open set Ω ⊂ Rn.

When a family of Lipschitz continuous vector fields X = (X1, . . . , Xm) is given, we can define
the j-th partial perimeter ‖∂E‖Xj of a set E ⊆ Rn as the perimeter associated with the family
(Xj) given by the vector field Xj alone. Then the following characterization of X-Caccioppoli
sets is proved in [95].

Theorem 3.16. Let X, E, and Ω be as in Theorem 3.15. If for each j = 1, . . . , m there exist
{Σj

i}i∈N ⊆ Pn and Aj < ∞ such that
(i) limi ‖1Σj

i
− 1E‖L1(Ω) = 0,

(ii) supi∈N ‖∂Σj
i‖Xj (Ω) ≤ Aj ,

then E has finite X-perimeter in Ω and there exists {Σi}i∈N ⊆ Pn such that
(iii) limi ‖1Σi − 1E‖L1(Ω) = 0,
(iv) limi ‖∂Σi‖X(Ω) = ‖∂E‖X(Ω).

The perimeter appears in the Euclidean setting also in connection with the notion of Minkowski
content, that is, roughly speaking, the derivative with respect to ε of the volume of a ε-
neighborhood of the boundary. It is well known that in the Euclidean setting the two notion
coincide for sufficiently regular sets. A similar result for the X-perimeter has been proved by R.
Monti & F. Serra Cassano in [101].

Let E ⊂ Rn be a bounded open set, and let X = (X1, ..., Xm) be a family of smooth vector
fields. Suppose (H.1) and (H.2) hold, and let d be the Carnot–Carathéodory distance associated
with X1, ..., Xm. Set d∂E(x) = infy∈∂E d(x, y), and for r > 0 define the tubular neighborhood
Ir,X(∂E) = {x ∈ Rn : d∂E(x) < r}. The upper and lower Minkowski content of ∂E in an open
set Ω ⊂ Rn are respectively defined by

M+
X (∂E)(Ω) := lim sup

r→0+

|Ir,X(∂E) ∩ Ω|
2r

,

M−
X (∂E)(Ω) := lim inf

r→0+

|Ir,X(∂E) ∩ Ω|
2r

.

The following theorem states that if E is regular and Ω has regular boundary, then

M+
X (∂E)(Ω) = M−

X (∂E)(Ω),

and this common value, which we shall call X-Minkowski content of ∂E in Ω and we denote
by MX(∂E)(Ω), coincides with the X−perimeter of E in Ω as defined in (26). The proof is
based on a Riemannian approximation of the C-C space (Rn, d). Here Hn−1 stands for the
(n − 1)−dimensional Euclidean Hausdorff measure.

Theorem 3.17. Let Ω ⊂ Rn be an open set with C∞ boundary or Ω = Rn. Let E ⊂ Rn be a
bounded open set with C∞ boundary and suppose that Hn−1(∂E∩∂Ω) = 0. Then M+

X (∂E)(Ω) =
M−

X (∂E)(Ω) and in addition

MX(∂E)(Ω) = ||∂E||X(Ω).

There is another important characterization of the X-perimeter of a set E ⊂ Rn in terms
of variational convergence (De Giorgi’s Γ-convergence) of “solid” integrals. In the Euclidean
setting, this result is known in the literature as Modica-Mortola convergence result.

This variational characterization has been extended to the X-perimeter by R. Monti & F.
Serra Cassano in [101].

We recall first the definition of Γ−convergence (for a comprehensive introduction see [28]).
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Definition 3.18. Let (M, d) be a metric space, and let F, Fh : M → [−∞,+∞], h ∈ N. F is
said to be the Γ−limit of the sequence (Fh)h∈N, and we shall write F = Γ(M) − limh→∞ Fh, if
the following conditions hold

if x ∈ M and xh → x then F (x) ≤ lim inf
h→∞

Fh(xh),(34)

∀x ∈ M ∃(xh)h∈N such that xh → x and F (x) ≥ lim sup
h→∞

Fh(xh).(35)

First, in [101] the authors prove that the X-perimeter is the Γ-limit of a family of Riemannian
perimeters, as the Carnot–Carathéodory distance is the limit of Riemannian distances.

For ε > 0 define the new family Xε = (X1, ..., Xm, ε∂1, ..., ε∂n). Let Ω ⊂ Rn be an open set
and define the functionals P, Pε : L1(Ω) → [0,+∞]

P (u) =
{

||∂E||X(Ω) if u = χE ∈ BVX(Ω)
+∞ otherwise,

and

Pε(u) =
{

||∂E||Xε(Ω) if u = χE ∈ BVXε(Ω)
+∞ otherwise.

Let εh → 0 and write Ph = Pεh
. In the following theorem we prove that the “elliptic-

Riemannian” regularization of the perimeter Γ−converges to the perimeter.

Theorem 3.19. If Ω ⊂ Rn is a bounded open set with C∞ boundary then

P = Γ(L1(Ω)) − lim
h→∞

Ph.

Finally, fix a bounded open set Ω ⊂ Rn. For ε > 0 define the functionals F, Fε : L1(Ω) →
[0,+∞]

Fε(u) =


∫

Ω
(ε|Xu|2 +

1
ε
W (u))dx if u ∈ W 1,2

X (Ω)

+∞ otherwise
(36)

where W (u) = u2(1 − u)2, and

F (u) =
{

2α||∂E||X(Ω) if u = χE ∈ BVX(Ω)
+∞ otherwise,(37)

where α =
∫ 1

0

√
W (s)ds. Let εh → 0 and write Fh := Fεh

.

Theorem 3.20. Suppose that X1, ..., Xm ∈ C∞(Rn; Rn) satisfy hypotheses (H1) and (H2). If
Ω ⊂ Rn is a bounded open set with C∞ boundary then

F = Γ(L1(Ω)) − lim
h→∞

Fh.(38)
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4. Carnot groups.

4.1. Definition and first properties. The present subsection is largely taken from [57] and
[54] (see also [56]). A Carnot group G of step k (see [39], [71], [101], [69], [104], [118], and [119])
is a connected, simply connected Lie group whose Lie algebra g admits a step k stratification,
i.e. there exist linear subspaces V1, ..., Vk such that

g = V1 ⊕ ... ⊕ Vk, [V1, Vi] = Vi+1, Vk 
= {0}, Vi = {0} if i > k,(39)

where [V1, Vi] is the subspace of g generated by the commutators [X, Y ] with X ∈ V1 and Y ∈ Vi.
Let mi = dim(Vi), for i = 1, . . . , k and hi = m1 + · · · + mi with h0 = 0 and, clearly, hk = n.
Choose a basis e1, . . . , en of g adapted to the stratification, that is such that

ehj−1+1, . . . , ehj
is a base of Vj for each j = 1, . . . , k.

Let X = X1, . . . , Xn be the family of left invariant vector fields such that Xi(0) = ei. Given
(39), the subset X1, . . . , Xm1 generates by commutations all the other vector fields; we will refer
to X1, . . . , Xm1 as generating vector fields of the group. The exponential map is a one to one
map from g onto G, i.e. any p ∈ G can be written in a unique way as p = exp(p1X1+· · ·+pnXn).
Using these exponential coordinates, we identify p with the n-tuple (p1, . . . , pn) ∈ Rn and we
identify G with (Rn, ·) where the explicit expression of the group operation · is determined by
the Campbell-Hausdorff formula (see [39]) and some of its features are described in the following
Proposition 4.2. If p ∈ G and i = 1, . . . , k, we put pi = (phi−1+1, . . . , phi

) ∈ Rmi , so that we can
also identify p with [p1, . . . , pk] ∈ Rm1 × · · · × Rmk = Rn.

The subbundle of the tangent bundle TG that is spanned by the vector fields X1, . . . , Xm1

plays a particularly important role in the theory, it is called the horizontal bundle HG; the fibers
of HG are

HGx = span {X1(x), . . . , Xm1(x)}, x ∈ G.

A subriemannian structure is defined on G, endowing each fiber of HG with a scalar product
〈·, ·〉x and with a norm | · |x that make the basis X1(x), . . . , Xm1(x) an orthonormal basis. That
is if v =

∑m1
i=1 viXi(x) = (v1, . . . , vm1) and w =

∑m1
i=1 wiXi(x) = (w1, . . . , wm1) are in HGx, then

〈v, w〉x :=
∑m1

j=1 vjwj and |v|2x := 〈v, v〉x.
The sections of HG are called horizontal sections, a vector of HGx is an horizontal vector while
any vector in TGx that is not horizontal is a vertical vector. Each horizontal section is identified
by its canonical coordinates with respect to this moving frame X1(x), . . . , Xm1(x). This way, an
horizontal section ϕ is identified with a function ϕ = (ϕ1, . . . , ϕm1) : Rn → Rm1 . When dealing
with two such sections ϕ and ψ whose argument is not explicitly written, we drop the index x
in the scalar product writing 〈ψ, ϕ〉 for 〈ψ(x), ϕ(x)〉x. The same convention is adopted for the
norm.

Two important families of automorphism of G are the so called intrinsic translations and the
intrinsic dilations of G. For any x ∈ G, the (left) translation τx : G → G is defined as

z �→ τxz := x · z.

For any λ > 0, the dilation δλ : G → G, is defined as

δλ(x1, ..., xn) = (λα1x1, ..., λ
αnxn),(40)

where αi ∈ N is called homogeneity of the variable xi in G (see [40] Chapter 1) and is defined as

αj = i whenever hi−1 + 1 ≤ j ≤ hi,(41)

hence 1 = α1 = ... = αm1 < αm1+1 = 2 ≤ ... ≤ αn = k.
The simplest example of Carnot group is provided by the Heisenberg group Hn = Cn × R.

We denote the points of Hn by P = [z, t] = [x + iy, t], z ∈ Cn, x, y ∈ Rn, t ∈ R. If P = [z, t],
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Q = [ζ, τ ] ∈ Hn and r > 0, following the notations of [116], where the reader can find an
exhaustive introduction to the Heisenberg group, we define the group operation

P · Q := [z + ζ, t + τ + 2�m(zζ̄)]

and the family of non isotropic dilations

δr(P ) := [rz, r2t].

The Lie algebra of left invariant vector fields in Hn is given by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, . . . , n

Yj =
∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n

T =
∂

∂t
,

the only non-trivial commutator relations being

[Xj , Yj ] = −4T, j = 1, . . . , n.

Thus the vector fields X1, . . . , Xn, Y1 . . . , Yn satisfy Hörmander’s rank condition, and Hn is a
step 2 Carnot group, the stratification of the Lie algebra of left invariant vector fields being
given by

V1 = span {X1, . . . , Xn, Y1, . . . , Yn} and V1 = span {T}.

An alternative approach to Carnot groups is given by A. Bonfiglioli & F. Uguzzoni and A.
Bonfiglioli in [14] and [13]. Let us sketch it. Basically, it is an alternative presentation that
corresponds to the standard definition when the last one is seen in a particular coordinate
system (the exponential coordinates).

Theorem 4.1. If x, y ∈ Rn, let (x, y) → x ◦ y be a multiplication in Rn. Assume the origin
is the identity element and G = (Rn, ◦) is a Lie group, i.e. the multiplication and the inverse
x → x−1 : Rn → Rn operations are smooth maps.

Assume also G is a homogenous group (see [116], 13.5), in the following sense: we write
n = m1 + m2 + · · · + mk, and, given x ∈ Rn, we put x = [x1, x2, · · · , xk] with xj ∈ Rmj for
j = 1, · · · , k. Then assume that the family of dilations

δλx = [λx1, λ2x2 · · · , λkxk], λ > 0,(42)

forms a group of automorphisms of G, i.e. δλ(x ◦ y) = δλx ◦ δλy.
Let g denote the Lie algebra of G, i.e. the class of left invariant vector fields on G, and take

a basis X1, · · · , XN of g such that Xj(0) = Dj, j = 1, · · · , n (left invariant vector fields are fully
determined by their value at the origin).

Assume that the Lie algebra generated by X1, . . . , Xm1 coincides with g. Then G = (Rn, ◦) is
a Carnot group of step k with m1 generators.

We collect in the following proposition some more or less elementary properties of the group
operation and of the canonical vector fields .

Proposition 4.2. The group product has the form

x · y = x + y + Q(x, y), ∀x, y ∈ Rn(43)

where Q = (Q1, . . . ,Qn) : Rn ×Rn → Rn and each Qi is a homogeneous polynomial of degree αi

with respect to the intrinsic dilations of G defined in (40), that is

Qi(δλx, δλy) = λαiQi(x, y), ∀x, y ∈ G.
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Moreover, again ∀x, y ∈ G

Q1(x, y) = ... = Qm1(x, y) = 0,

Qj(x, 0) = Qj(0, y) = 0 and Qj(x, x) = Qj(x,−x) = 0, for m1 < j ≤ n,(44)

Qj(x, y) = Qj(x1, . . . , xhi−1
, y1, . . . , yhi−1

), if 1 < i ≤ k and j ≤ hi.(45)

Proof. For the first part see [116], Chapter 12, Section 5. The last statement follows the
homogeneity of Qj .

Note that from Proposition 4.2 it follows that

δλx · δλy = δλ(x · y)

and that the inverse x−1 of an element x = (x1, . . . , xn) ∈ (Rn, ·) has the form

x−1 = (−x1, . . . ,−xn),

(see [40], Proposition 2.1 and also [71]).

Proposition 4.3. The vector fields Xj have polynomial coefficients and if h�−1 < j ≤ h�,
1 ≤ � ≤ k, then

Xj(x) = ∂j +
n∑

i>hl

qi,j(x)∂i,(46)

where qi,j(x) = ∂Qi

∂yj
(x, y)|y=0 so that if h�−1 < j ≤ h�, then qi,j(x) = qi,j(x1, ..., xhl−1

) and
qi,j(0) = 0.

By (39), the rank of the Lie algebra generated by X1, . . . , Xm1 is n; hence X = (X1, . . . , Xm1)
is a system of smooth vector fields satisfying Hörmander’s condition.

Several distances equivalent to d have been used in the literature. Later on, we shall use the
following one, that can also be computed explicitly

d∞(x, y) = d∞(y−1 · x, 0),

where, if p = [p1, . . . , p̃k] ∈ Rm1 × · · · × Rmk = Rn, then

d∞(p, 0) = max{εj ||pj ||1/j

Rmj , j = 1, . . . , k}.(47)

Here ε1 = 1, and ε2, . . . εk ∈ (0, 1) are suitable positive constants depending on the group
structure. As above, we shall denote U∞(p, r) and B∞(p, r) respectively the open and closed
balls associated with d∞.
Both the Carnot–Carathéodory metric d and the metric d∞ are well behaved with respect to
left translations and dilations, that is

d(z · x, z · y) = d(x, y) , d(δλ(x), δλ(y)) = λd(x, y)

d∞(z · x, z · y) = d∞(x, y) , d∞(δλ(x), δλ(y)) = λd∞(x, y)
(48)

for x, y, z ∈ G and λ > 0.
Related with these distances, different Hausdorff measures, obtained by Carathédory’s con-

struction as in [37] Section 2.10.2, are used in this paper: we denote by Hm the m-dimensional
Hausdorff measure obtained from the Euclidean distance in Rn � G, by Hm

c the m-dimensional
Hausdorff measure obtained from the distance d in G, and by Hm

∞ the m-dimensional Haus-
dorff measure obtained from the distance d∞ in G. Analogously, Sm, Sm

c , and Sm
∞ denote the

corresponding spherical Hausdorff measures.
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The integer

Q =
n∑

j=1

αj =
k∑

i=1

idimVi(49)

is the homogeneous dimension of G. It is also the Hausdorff dimension of Rn with respect to
the Carnot–Carathéodory distance d. For this statement, see [97]. However, in the setting of
Carnot groups, this property follows easily from (50) below. Indeed, (50) implies that Lebesgue
measure is Q-Ahlfors-David regular, and hence that it is equivalent to HQ

c (for instance by [37],
2.10-17 and 2.10-18).

The n-dimensional Lebesgue measure Ln, is the Haar measure of the group G. Hence if
E ⊂ Rn is measurable, then Ln(x · E) = Ln(E) for all x ∈ G. Moreover, if λ > 0 then
Ln(δλ(E)) = λQLn(E). We explicitly observe that

Ln(U(p, r)) = rQLn(U(p, 1)) = rQLn(U(0, 1)).(50)

4.2. Calculus in Carnot groups. This section is entirely taken from [57]. The following
definitions and results about intrinsic differentiability in Carnot groups are basically due to P.
Pansu ([104]), or are inspired by his ideas.

A map L : G → R is G-linear if it is a homomorphism from G ≡ (Rn, ·) to (R,+) and if it is
positively homogeneous of degree 1 with respect to the dilations of G, that is L(δλx) = λLx for
λ > 0 and x ∈ G. The R-linear set of G-linear functionals G → R is indicated as LG and it is
endowed with the norm

‖L‖LG := sup{|L(p)| : dc(p, 0) ≤ 1}.
Given a basis X1, . . . , Xn, all G-linear maps are represented as the follows.

Proposition 4.4. A map L : G → R is G-linear if and only if there is a = (a1, . . . , am1) ∈ Rm1

such that, if x = (x1, . . . , xn) ∈ G, then L(x) =
∑m1

i=1 aixi.

Definition 4.5. Let Ω be an open set in G, then f : Ω → R is Pansu-differentiable (differ-
entiable in the sense of Pansu: see [104] and [73]) at x0 if there is a G-linear map L such
that

lim
x→x0

f(x) − f(x0) − L(x−1
0 · x)

d(x, x0)
= 0.

Remark 4.6. The above definition is equivalent to the following one: there exists a homomor-
phism L from G to (R,+) such that

lim
λ→0+

f(τx0(δλv)) − f(x0)
λ

= L(v)

uniformly with respect to v belonging to compact sets in G. In particular, L is unique and
we shall write L = dGf(x0). Notice that this definition of differential depends only on G and
not on the particular choice of the canonical generating vector fields. Indeed any two Carnot–
Carathéodory distances induced by different choices of (equivalent) scalar products in HG are
equivalent as distances.

Definition 4.7. If Ω is an open set in G, we denote by C1
G(Ω) the set of continuous real functions

in Ω such that dGf : Ω → LG is continuous in Ω. Moreover, we shall denote by C1
G(Ω, HG) the

set of all sections ϕ of HG whose canonical coordinates ϕj ∈ C1
G(Ω) for j = 1, . . . , m1.

Remark 4.8. We recall that C1(Ω) ⊂ C1
G(Ω) and that the inclusion may be strict, for an example

see Remark 6 in [54].
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We say that f is differentiable along Xj , j = 1, . . . , m1, at x0 if the map λ �→ f(τx0(δλej)) is
differentiable at λ = 0, where ej is the j-th vector of the canonical basis of Rn.

Once a generating family of vector fields X1, . . . , Xm1 is fixed, we define, for any function
f : G → R for which the partial derivatives Xjf exist, the horizontal gradient of f , denoted by
∇Gf , as the horizontal section

∇Gf :=
m1∑
i=1

(Xif)Xi.

whose coordinates are (X1f, ..., Xm1f). Moreover, if ϕ = (ϕ1, . . . , ϕm1) is an horizontal section
such that Xjϕj ∈ L1

loc(G) for j = 1, . . . , m1, we define divG ϕ as the real valued function

divG (ϕ) := −
m1∑
j=1

X∗
j ϕj =

m1∑
j=1

Xjϕj

(see also Section 2.1).

Remark 4.9. The notation we have used for the gradient in a group is partially imprecise, indeed
∇Gf really depends on the choice of the basis X1, ..., Xm1 . If we choose a different base, say
Y1, ..., Ym1 , then in general

∑
i(Xif)Xi 
=

∑
i(Yif)Yi. Only if the two bases are one orthonormal

with respect to the scalar product induced by the other, we have that∑
i

(Xif)Xi =
∑

i

(Yif)Yi.

On the contrary, the notation divG used for the divergence is correct. Indeed divG is an intrinsic
notion and it can be computed using the previous formula for any fixed generating family.

Finally, if x = (x1, . . . , xn) ∈ Rn ≡ G and x0 ∈ G are given, we set

πx0(x) =
m1∑
j=1

xjXj(x0).

The map x0 → πx0(x) is a smooth section of HG.

Proposition 4.10. If f is Pansu-differentiable at x0, then it is differentiable along Xj at x0

for j = 1, . . . , m1, and

dGf(x0)(v) = 〈∇Gf, πx0(v)〉x0 .(51)

For a proof see [101] Remark 3.3. The following proposition can be proved via an approxima-
tion argument as in Proposition 5.8 of [54].

Proposition 4.11. A continuous function belongs to C1
G(Ω) if and only if its distributional

derivatives Xjf are continuous in Ω for j = 1, . . . , m1.

Remark 4.12. As we observed both ∇G and the Carnot–Carathéodory distance d depend on
the choice of the canonical generating family Xj . But the eikonal equation connecting the two
notions

|∇Gd(0, x)| = 1(52)

holds for Ln-a.e. x ∈ G and for all generating family (see Theorem 3.1 of [101]).

An extension theorem of Whitney type holds.

Theorem 4.13. (Whitney Extention Theorem) Let F ⊂ G be a closed set, and let f : F →
R, k : F → HG be, respectively, a continuous real function and a continuous horizontal section.
We set

R(x, y) :=
f(x) − f(y) − 〈k(y), πy(y−1 · x)〉y

d(y, x)
,
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and, if K ⊂ F is a compact set,


K(δ) := sup{|R(x, y)| : x, y ∈ K, 0 < d(x, y) < δ}.
Assume


K(δ) → 0 as δ → 0 for every compact set K ⊂ F,

then there exist f̃ : G → R, f̃ ∈ C1
G(G) such that

f̃|F = f, ∇Gf̃|F = k.

4.3. BV -functions and finite perimeter sets. Since with any Carnot group we can associate
a Hörmander’s family of smooth vector fields, then all our previous definitions and results still
hold in this setting. In particular, within a Carnot group, we can define BV spaces in a form
equivalent to that of the previous section as follows.

If Ω ⊆ Rn is open, the space of compactly supported smooth sections of HG is denoted by
C∞

0 (Ω, HG). If k ∈ N, Ck
0(Ω, HG) is defined analogously.

The space BVG(Ω) is the set of functions f ∈ L1(Ω) such that

||∇Gf ||(Ω) := sup
{∫

Ω
f(x)divGϕ(x) dx : ϕ ∈ C1

0(Ω, HG), |ϕ(x)|x ≤ 1
}

< ∞.(53)

The space BVG,loc(Ω) is the set of functions belonging to BVG(U) for each open set U ⊂⊂ Ω.
Notice the use of the intrinsic fiber norm inside the previous definition.

It is easy to see that f ∈ BVG(Ω) if and only if f ∈ BVX(Ω), where X is a family of vector
fields that generate the horizontal layer.

In the setting of Carnot groups, the structure theorem for BV -functions reads as follows.

Theorem 4.14. (Structure of BVG functions) If f ∈ BVG,loc(Ω) then ||∇Gf || is a Radon
measure on Ω. Moreover, there exists a ||∇Gf ||-measurable horizontal section σf : Ω → HG such
that |σf (x)|x = 1 for ||∇Gf ||-a.e. x ∈ Ω, and∫

Ω
f(x)divG ϕ(x) dx =

∫
Ω
〈ϕ, σf 〉 d||∇Gf ||,

for all ϕ ∈ C1
0(Ω, HG). Finally the notion of gradient ∇G can be extended from regular functions

to functions f ∈ BVG defining ∇Gf as the vector valued measure

∇Gf := −σf ||∇Gf || = (−(σf )1 ||∇Gf ||, . . . ,−(σf )m1 ||∇Gf ||) ,

where (σf )j are the components of σf with respect to the moving base Xj.

It is well known that the usefulness of these definitions for the Calculus of Variations, relies
mainly in the validity of the two following theorems. In the context of subriemannian geometries
they are proved respectively in [61] and [51].

Theorem 4.15. (Compactness) BVG,loc(G) is compactly embedded in Lp
loc(G) for 1 ≤ p <

Q
Q−1 where Q, defined in (49), is the homogeneous dimension of G.

Theorem 4.16. (Lower semicontinuity) Let f, fk ∈ L1(Ω), k ∈ N, be such that fk → f in
L1(Ω); then

lim inf
k→∞

||∇Gfk||(Ω) ≥ ||∇Gf ||(Ω).

Definition 4.17. A measurable set E ⊂ Rn is of locally finite G-perimeter in Ω (or is a G-
Caccioppoli set) if the characteristic function 1E ∈ BVG,loc(Ω). In this case we call perimeter of
E the measure

|∂E|G := ||∇G1E ||(54)
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and we call (generalized inward) G-normal to ∂E in Ω the vector

νE(x) := −σ1E (x).(55)

Remark 4.18. This remark is analogous to remark 4.9. The symbol |∂E|G is somehow incor-
rect, indeed the value of the G-perimeter depends on the choice of the generating vector fields
X1, . . . , Xm1 , precisely through the bound |ϕ| ≤ 1 in (53). The values of the perimeters in-
duced by two different families of generating vector fields coincide only if the two families are
mutually orthonormal; nevertheless the perimeters induced by different families are equivalent
as measures and, as a consequence, the notion of being a G-Caccioppoli set is an intrinsic one
depending only on the group G.

Remark 4.19. The G-perimeter is invariant under group translations, that is

|∂E|G(A) = |∂(τpE)|G(τpA), ∀p ∈ G, and for any Borel set A ⊂ G;

indeed divG is invariant under group translations and the Jacobian determinant of τp : G → G
equals 1. Moreover the G-perimeter is homogeneous of degree Q−1 with respect to the dilations
of the group, that is

|∂(δλE)|G(A) = λ1−Q|∂E|G(δλA), for any Borel set A ⊂ G;(56)

also this fact is elementary and can be proved by changing variables in formula (53).

By (50), the isoperimetric inequality in a Carnot group takes the following form ([61]).

Proposition 4.20. (Isoperimetric inequality) There is a positive constant cI > 0 such that
for any G-Caccioppoli set E, for all x ∈ G and r > 0,

min{Ln(E ∩ U(x, r)),Ln(Ec ∩ U(x, r))}
Q−1

Q ≤ cI |∂E|G(U(x, r))(57)

and

min{Ln(E),Ln(Ec)}
Q−1

Q ≤ cI |∂E|G(Rn).(58)

Isoperimetric sets have been recently studied in [75].

5. Regular hypersurfaces in Carnot groups and rectifiability.

5.1. Regular hypersurfaces. This section relies totally on [55]. We define G-regular hyper-
surfaces in a Carnot group G, mimicking Definition 6.1 in [54], as non critical level sets of
functions in C1

G(Rn, R).

Definition 5.1. (G-regular hypersurfaces) Let G be a Carnot group. We shall say that
S ⊂ G is a G-regular hypersurface if for every x ∈ S there exist a neighborhood U of x and a
function f ∈ C1

G(U) such that

S ∩ U = {y ∈ U : f(y) = 0};(i)

∇Gf(y) 
= 0 for y ∈ U .(ii)

G-regular surfaces have a unique tangent plane at each point. This follows from a Taylor
formula for functions in C1

G that is basically proved in [104].

Proposition 5.2. If f ∈ C1
G(U(p, r)), then

f(x) = f(p) +
m∑

j=1

(Xjf)(p)(xj − pj) + o(d(x, p)), as x → p.(59)
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If S = {x : f(x) = 0} ⊂ G is a G-regular hypersurface the tangent group T g
GS(x) to S at x is

T g
G S(x) := {v = (v1, . . . , vn) ∈ G :

m∑
j=1

Xjf(x)vj = 0}.

By (4.2), T g
GS(x) is a proper subgroup of G. We can define the tangent plane to S at x as

TGS(x) := x · T g
GS(x).

We stress that this is a good definition. Indeed the tangent plane does not depend on the
particular function f defining the surface S because of point (iii) of Implicit Function Theorem
below that yields

T g
GS(x) = {v ∈ G : 〈νE(x), πxv〉x = 0}

where νE is the generalized inward unit normal defined in (55) and πx(v) =
∑m

j=1 vjXj(x).
Notice that the map v �→ πx(v), for x ∈ G fixed,

πx(v) =
m∑

j=1

vjXj(x).(60)

is a smooth section of HG.
Notice also that, once more from (iii) of Theorem 5.5, it follows that νE is a continuous

function.
If v0 =

∑m
i=1 viXi(0) ∈ HG0 we define the halfspaces S±

G (0, v0) as

S+
G (0, v0) := {x ∈ G :

m∑
i=1

xivi > 0} and S−
G (0, v0) := {x ∈ G :

m∑
i=1

xivi < 0}.

Their common boundary is the vertical plane

Π(0, v0) := {x :
m∑

i=1

xivi = 0}.

If v =
∑m

i=1 viXi(y) ∈ HGy, S±
G (y, v) and Π(y, v) are the translated sets

S±
G (y, v) := y · S±

G (0, v0) and Π(y, v) = y · Π(0, v0)

where v and v0 have the same components vi with respect to the left invariant basis Xi. Hence

S±
G (y, v) = {x ∈ G :

m∑
i=1

(xi − yi)vi > 0(< 0)}.(61)

Clearly, TGS(x) = Π(x, νE(x)).

Note also that the class of G-regular hypersurfaces is different from the class of Euclidean C1

embedded surfaces in Rn. From one side G-regular surfaces can have ’ridges’ because continuity
of the derivatives of the defining functions f is required only in the horizontal directions; on
the other side an Euclidean C1 surface can have so called characteristic points i.e. points p ∈ S
where the Euclidean tangent plane TpS contains the horizontal fiber HGp.

Definition 5.3. If S is an Euclidean C1 hypersurface in G, we define the characteristic set of
S as

C(S) := {x ∈ S : HGx ⊆ TxS}.(62)
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The points of C(S) are, under many aspects, irregular points of S. Note indeed that the
tangent group does not exist in these points. It is also well known that these points are ’few’
on smooth hypersurfaces, but only recently V. Magnani [88] has obtained precise estimates of
the HQ−1

c measure of the characteristic sets of C1 surfaces in general Carnot groups groups Hn,
extending previous results of Z. Balogh [9] in the Heisenberg group, of V. Magnani [88] and of B.
Franchi, R. Serapioni & F. Serra Cassano [57] in step 2 Carnot groups. Notice that the study of
the size of the characteristic set has a long history. We refer to the contributions of M. Derridj
[36], B. Franchi & R.L. Wheeden [58], D.Danielli, N.Garofalo & D.M.Nhieu [29]. Magnani’s
result reads as follows.

Theorem 5.4. If S is a Euclidean C1-smooth hypersurface in a Carnot group G with homoge-
neous dimension Q. Then

HQ−1
G (C(S)) = 0.(63)

We can state now our Implicit Function Theorem, holding that a G-regular hypersurface
S = {f(y) = 0} boundary of the set E = {f(y) < 0} can be locally parameterized through a
function Φ : Rn−1 → Rn so that the G-perimeter of E can be written explicitly in terms of ∇Gf
and Φ.

Theorem 5.5. (Implicit Function Theorem) Let Ω be an open set in Rn identified with a
Carnot group G, 0 ∈ Ω, and let f ∈ C1

G(Ω) be such that f(0) = 0 and X1f(0) > 0. Define

E = {x ∈ Ω : f(x) < 0}, S = {x ∈ Ω : f(x) = 0},
and, for δ > 0, h > 0

Iδ = {ξ = (ξ2, . . . , ξn) ∈ Rn−1, |ξj | ≤ δ}, Jh = [−h, h].

If ξ = (ξ2, . . . , ξn) ∈ Rn−1 and t ∈ Jh, denote now by γ(t, ξ) the integral curve of the vector field
X1 at the time t issued from (0, ξ) = (0, ξ2, . . . , ξn) ∈ Rn, i.e.

γ(t, ξ) = exp(tX1)(0, ξ).

Then there exist δ, h > 0 such that the map (t, ξ) → γ(t, ξ) is a diffeomorphism of a neighborhood
of Jh × Iδ onto an open subset of Rn, and, if we denote by U ⊂⊂ Ω the image of Int(Jh × Iδ)
through this map, we have

E has finite G-perimeter in U ;(i)

∂E ∩ U = S ∩ U ;(ii)

νE(x) = − ∇Gf(x)
|∇Gf(x)|x

for all x ∈ S ∩ U ,(iii)

where νE is the generalized inner unit normal defined by (55), that can be identified with a
section of HG with |ν(x)|x = 1 for |∂E|G-a.e. x ∈ U . In particular, νE can be identified with a
continuous function and |ν| ≡ 1. Moreover, there exists a unique function

ϕ = ϕ(ξ) : Iδ → Jh

such that the following parameterization holds: if ξ ∈ Iδ, put Φ(ξ) = γ(ϕ(ξ), ξ), then

S ∩ Ũ = {x ∈ Ũ : x = Φ(ξ), ξ ∈ Iδ};(iv)

ϕ is continuous;(v)
the G-perimeter has an integral representation:

|∂E|G(Ũ) =
∫

Iδ

√∑m
j=1 |Xjf(Φ(ξ))|2

X1f(Φ(ξ))
dLn−1

ξ .
(vi)
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Our next Theorem is a mild regularity result. Roughly speaking, it states that G regular
hypersurfaces do not have cusps or spikes if they are studied with respect to the intrinsic Carnot–
Carathéodory distance, while they can be very irregular as Euclidean submanifolds. To make
precise the former statement we recall the notion of essential boundary (or of measure theoretic
boundary) ∂∗F of a set F ⊂ G

∂∗F :=
{

x ∈ G : lim sup
r→0+

min
{Ln(F ∩ U(x, r))

Ln(U(x, r))
,
Ln(F c ∩ U(x, r))

Ln(U(x, r))

}
> 0

}
(64)

Notice that the definition above makes sense in any metric measure space and that the essential
boundary does not change if, in definition 64), the distance d is substituted by an equivalent
distance d′.

Theorem 5.6. Let Ω ⊂ G be a fixed open set, and E be such that ∂E ∩ Ω = S ∩ Ω, where S is
a G-regular hypersurface. Then

∂E ∩ Ω = ∂∗E ∩ Ω.(65)

We want now to compare the perimeter measure, on a G-regular hypersurface S, and the
intrinsic (Q− 1)-Hausdorff measure of S. Observe that it makes sense to speak of the perimeter
measure of S given that S is locally the boundary of a finite G-perimeter set (as proved in
Theorem 5.5). The next theorem gives an explicit form of the density of the perimeter with
respect to the intrinsic Hausdorff measure concentrated on S. As a consequence – as it is
stated in the following corollary – G-regular hypersurfaces have coherently intrinsic Hausdorff
dimension Q − 1.

Theorem 5.7. Let 
 be a distance on G such that, for all x, y, z ∈ G and λ > 0


(x · y, x · z) = 
(y, z) and 
(δλy, δλz) = λ
(y, z),(66)

and there exists c
 > 1 such that
1
c

(y, z) ≤ d(y, z) ≤ c
(y, z), for all y, z ∈ G.(67)

. If s
 : HG0 \ {0} → R, is the 1-homogeneous function defined as

s
(v) := Ln−1 (U
(0, 1) ∩ Π(0, v)) ,

then
|∂E|G Ω = s
 ◦ νE SQ−1

G (S ∩ Ω)

= Ln−1
(
U
(0, 1) ∩ T g

GS(x)
)
SQ−1

G (S ∩ Ω).
(68)

Moreover, there is a constant α
 > 1, depending only on the distance 
, such that

0 <
1
α


≤ s
(v) ≤ α
 < ∞.

Remark 5.8. If the distance 
 under consideration is invariant with respect to rotations of HG0 �
Rm, then the function s
 is constant and, with an appropriate choice of the normalization
constant in the definition of the Hausdorff measure, (68) takes the particularly neat form

|∂E|G = SQ−1

 S.(69)

We do not know how large is the class of groups whose Carnot–Carathéodory distance enjoys
this property. It certainly comprises the Heisenberg groups. For the groups in this class we have

|∂E|G = SQ−1
c S.(70)

Nevertheless, even if 
 were not rotationally invariant, it always exists another true metric
invariant, homogeneous, comparable with that is also invariant by rotations of HG0 (for an
example see (47)). If one computes the Hausdorff measure with respect to it, then (69) holds.
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Corollary 5.9. If S is a G-regular hypersurface then the Hausdorff dimension of S, with respect
to the Carnot–Carathéodory metric d or any other metric d′ comparable with it, is Q − 1.

Corollary 5.9 combined with Theorem 5.4 yields the following comparison result between
Euclidean C1-smooth hypersurfaces and G-regular hypersurfaces. We have

Theorem 5.10. If S is a Euclidean C1-smooth hypersurface in a Carnot group G with homoge-
neous dimension Q, then the Hausdorff dimension of S, with respect to the Carnot–Carathéodory
metric d or any other metric d′ comparable with it, is Q − 1.

The reverse assertion is false: there exist G-regular hypersurfaces in G ≡ Rn that have
Euclidean Hausdorff dimension greater than n − 1: indeed, recently B. Kirchheim and F. Serra
Cassano ([72]) have shown that there exist G-regular hypersurfaces in the Heisenberg group H1

(Q = 4, n = 3) with Euclidean Hausdorff dimension 2.5.

5.2. Rectifiability in Carnot groups. The following results are the core of [57] (see also [56]).
We remind that De Giorgi’s celebrated structure theorem in Euclidean spaces ([31], [32]) states
that if E ⊂ Rn is a set of locally finite perimeter, then the associated perimeter measure |∂E|
is concentrated on a portion of the topological boundary ∂E, the so-called reduced boundary
∂∗E ⊂ ∂E. In addition, ∂∗E is Hd−1-rectifiable, i.e. ∂∗E, up to a set of (d − 1)-Hausdorff
measure zero, is a countable union of compact subsets of C1 submanifolds and the perimeter
measure is the (n− 1)-Hausdorff measure of the reduced boundary. Roughly speaking, this says
that the perimeter measure in supported on a portion of the topological boundary ∂E, that
can be expressed – after removing a negligible set of “bad points” – as the countable union of
compact subsets of “good hypersurfaces”.

If in the spirit of De Giorgi’s theorem we want to describe the structure of sets of finite
intrinsic perimeter in a Carnot group G, we need a natural notion of rectifiable subsets, and
in this perspective, the correct definition of “good hypersurfaces”, i.e. of intrinsic C1-regular
submanifold of G given in the previous Section provides a key tool. Keeping in mind this notion,
the following definition is the natural counterpart of the corresponding Euclidean definition.

Definition 5.11. Γ ⊂ G is said to be ( (Q − 1)-dimensional) G-rectifiable if there exists a
sequence of G-regular hypersurfaces (Sj)j∈N such that

HQ−1
c

Γ \
⋃
j∈N

Sj

 = 0.(71)

Before we enter the study of the rectifiability of the reduced boundary (whatever this means,
as we shall see below), let us point out the relationships between our definition in Carnot
groups and the standard Euclidean notion. The following result proved in [57] yields that “
negligible” subsets of codimension 1 in a Carnot group with respect to the Euclidean distance
are “ negligible” subsets of codimension 1 with respect to Carnot–Carathédory distance.

Proposition 5.12. Let G be a Carnot group. For any α ≥ 0 and R > 0 there is a constant
c(α, R) > 0 such that for any set E ⊂ G ∩ U(0, R)

Hα+Q−n
c (E) ≤ c(α, R)Hα(E), α ≥ 0.(72)

In particular, for all E ⊂ G,

Hα(E) = 0 =⇒ Hα+Q−n
c (E) = 0, α ≥ 0.(73)

Proposition 5.12 combined with Theorem 5.4 yields

Theorem 5.13. Let G = Rn be a Carnot group. Then, if S is a (n− 1)-dimensional Euclidean
rectifiable set of Rn then S is also (Q − 1)-dimensional G-rectifiable.
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On the other hand, there are (Q − 1)-dimensional G-rectifiable sets in a Carnot groups G
identified with Rn that are not (n − 1)-dimensional Euclidean rectifiable. Indeed, in [10] a set
N ⊂ R3 is constructed, such that for an appropriate ε > 0,

H3
c(N) = 0 and H2+ε(N) > 0.

Hence N is (trivially) 3 = (Q − 1)-dimensional H1-rectifiable, but it is not 2-dimensional Eu-
clidean rectifiable because its Euclidean Hausdorff dimension is strictly larger than 2. As we
mentioned above, a sharper result in this direction is contained in [72]: there exist G-regular
hypersurfaces in the Heisenberg group H1 (Q = 4, n = 3) with Euclidean Hausdorff dimension
2.5. We recall here that relationships between Euclidean and intrinsic Hausdorff measure in
Heisenberg groups have been deeply investigated in [10], where also sharp results were obtained.

Thus we are left with the notion of reduced boundary for subsets of a Carnot group. The
definition we give is a simple translation of the Euclidean one, as follows.

Definition 5.14. (Reduced boundary) Let E be a G-Caccioppoli set; we say that x ∈ ∂∗
GE

if

|∂E|G(U(x, r)) > 0 for any r > 0;(i)

there exists lim
r→0

∫
U(x,r)

νE d|∂E|G;(ii) ∥∥∥∥∥lim
r→0

∫
U(x,r)

νE d|∂E|G

∥∥∥∥∥
Rm1

= 1.(iii)

The limits in Definition 5.14 should be understood as a convergence of the averages of the
coordinates of νE with respect to the chosen moving base of the fibers.

Definition 5.14 is a straightforward extention of its Euclidean counterpart, but its utility is not
obvious. Indeed, in the Euclidean setting, it is immediate to show that the perimeter measure is
concentrated on the reduced boundary, since, by Lebesgue–Besicovitch Differentiation Lemma,
given a Radon measure µ, for any f ∈ L1

loc(dµ)

lim
r→0

∫
|y−x|<r

f(y) dµE → f(x)

as r → 0 for µ-a.e. x. This implies that |∂E| = |∂E| ∂∗
G.

Unfortunately, Besicovitch covering lemma, that is the main tool of the proof of Lebesgue–
Besicovitch Differentiation Lemma, fails to hold in Carnot groups, see [73] and [113].

We do not know whether nevertheless Lebesgue–Besicovitch Differentiation Lemma still holds
in Carnot groups, but at least it holds when µ is the perimeter measure, thanks to a deep
asymptotic estimate proved by Ambrosio in [1]. The corresponding differentiation lemma reads
as follows.

Lemma 5.15. (Differentiation Lemma) Assume E is a G-Caccioppoli set, then

lim
r→0

∫
U(x,r)

νE d|∂E|G = νE(x), for |∂E|G-a.e. x,

that is |∂E|G-a.e. x ∈ G belongs to the reduced boundary ∂∗
GE.

From now on the group G will be a step 2 Carnot group.

Indeed, the keystep for the main result of this paper, i.e. the so-called Blow-up Theorem stated
below, fails to be true for general groups of step greater than 2, as we can see from the Example
1.

Specializing our notations, in step 2 Carnot groups, we have

g = V1 ⊕ V2, [V1, V1] = V2, [V1, V2] = {0},
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and
Q = m1 + 2(n − m1).

We can prove now the following results.
i) At each point of the reduced boundary of a G-Caccioppoli set there is a (generalized) tangent
group;
ii) Both the reduced boundary and the measure-theoretic boundary are (Q − 1)-dimensional
G-rectifiable sets;
iii) |∂E|G = cSQ−1

∞ ∂∗E, i.e. the perimeter measure equals a constant times the spherical
(Q − 1)-dimensional Hausdorff measure restricted to the reduced boundary.
iv) An intrinsic divergence theorem holds for G-Caccioppoli sets.

The precise meaning of statement i) is the content of the following Blow-up Theorem. It is
precisely point i) that can be false in a general Carnot group. Indeed we provide an example
of a G-regular hypersurface S = ∂E in a step 3 group (the so-called Engel group, see e.g. [64],
[96]) such that 0 ∈ ∂∗

GE but E has not generalized tangent group at that point.
Statement iii) fits in the general problem of comparing different geometric measures in Carnot

groups. A good reference for this problem, in Euclidean spaces, is Matilla’s book [92]. In the
setting of the Heisenberg group, in [29] it is proved that the perimeter of an Euclidean C1,1-
hypersurface is equivalent to its (Q−1)-dimensional intrinsic Hausdorff measure, whereas in [54]
it is proved that on the boundary of sets of finite intrinsic perimeter the (Q− 1)-dimensional in-
trinsic spherical Hausdorff measure coincide – after a suitable normalization – with the perimeter
measure. In the setting of general Carnot groups the problem is essentially open. The equiva-
lence of the intrinsic perimeter and of the (Q − 1)-dimensional intrinsic Hausdorff measure for
C1

G-hypersurfaces in a general Carnot groups has been proved in the previous subsection. In
addition, the perimeter measure of a smooth set in general subriemannian spaces equals the
intrinsic Minkowski content, as it is proved in Theorem 3.17. In Ahlfors-regular metric spaces,
a general representation theorem of the perimeter measure of sets of finite perimeter in terms of
the Hausdorff measure is proved in [1] (see also the refined result for subriemannian manifolds
in [2]), showing that the intrinsic perimeter admits a density ϑ with respect to the Hausdorff
measure that is locally summable and bounded away from zero. Statement iii) says precisely
that, thanks to i) and ii), in step 2 Carnot groups the function ϑ is constant.

To state our result, let us fix few notations. For any set E ⊂ G, x0 ∈ G and r > 0 we consider
the translated and dilated sets Er,x0 defined as

Er,x0 = {x : x0 · δr(x) ∈ E} = δ 1
r
τx−1

0
E.

If x0 is fixed and there is no ambiguity, we shall write simply Er, and in addition we set
Ex0 = E1,x0 . Moreover if v ∈ HGx0 we define the halfspaces S+

G (v) and S−
G (v) as

S+
G (v) := {x : 〈πx0x, v〉x0 ≥ 0}

S−
G (v) := {x : 〈πx0x, v〉x0 ≤ 0}.

(74)

The common topological boundary T g
G(v) of S+

G (v) and of S−
G (v) is the subgroup of G

T g
G(v) := {x : 〈πx0x, v〉x0 = 0}.

Theorem 5.16. (Blow-up Theorem) If E is a G-Caccioppoli set, x0 ∈ ∂∗
GE and νE(x0) ∈

HGx0 is the inward normal as defined in (55) then

lim
r→0

1Er,x0
= 1S+

G (νE(x0)) in L1
loc(G)(75)

and for all R > 0

lim
r→0

|∂Er,x0 |G(U(0, R)) = |∂S+
G (νE(x0))|G(U(0, R)).(76)
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Notice that, by Proposition 3.2,

|∂S+
G (νE(x0))|G(U(0, R)) = Hn−1(T g

G(νE(0)) ∩ U(0, R)).

As we have already pointed out, Theorem 5.16 fails to hold in general Carnot groups of step
k > 2. In fact, the core of the following example consists in showing that in Carnot groups of
step greater than 2 can exists cones (i.e. dilation-invariant sets) that are not flat (they are not
of the form S±

G (v) for some horizontal vector v) but nevertheless with vertex belonging to the
reduced boundary.

The following counterexample was inspired by Martin Reimann, and then Roberto Monti
found a preliminary form of the counterexample itself.

Example 1. Let us recall the definition of Engel algebra and group. Let E = (R4, ·) be the
Carnot group whose Lie algebra is g = V1 ⊕ V2 ⊕ V3 with V1 = span {X1, X2}, V2 = span {X3},
and V3 = span {X4}, the only non zero commutation relations being

[X1, X2] = −X3 , [X1, X3] = −X4.

In exponential coordinates the group law takes the form

x · y = H(
4∑

i=1

xiXi,
4∑

i=1

yiXi),

where H is given by the Campbell-Hausdorff formula

H(X, Y ) = X + Y +
1
2
[X, Y ] +

1
12

([X, [X, Y ]] − [Y, [X, Y ]]) .(77)

In exponential coordinates an explicit representation of the vector fields is

X1 = ∂1 +
x2

2
∂3 + (

x3

2
− x1x2

12
)∂4 , X2 = ∂2 −

x1

2
∂3 +

x2
1

12
∂4

X3 = ∂3 −
x1

2
∂4 , X4 = ∂4.

Let E = {x ∈ R4 : f(x) ≥ 0}, where

f(x) =
1
6
x2(x2

1 + x2
2) −

1
2
x1x3 + x4.

Since ∂E = {x ∈ R4 : f(x) = 0} is a smooth Euclidean manifold, then E is a G-Caccioppoli set
(see Proposition 3.2). Moreover,

∇Ef(x) =
(
0,

1
2
(x2

1 + x2
2)

)
,

and, by the Implicit Function Theorem (Theorem 5.5),

νE(x) = − ∇Ef(x)
|∇Ef(x)| = (0,−1)

for all x ∈ ∂E \ N , where N = {x ∈ E : x1 = x2 = 0}. Since |∂E|E(N) = 0, then the origin
belongs to the reduced boundary of E. On the other hand, since f(δλx) = λ3f(x) for λ > 0, it
follows that Eλ,0 = δλE = E, so that (75) fails to be true since E is not a vertical halfspace.

Even if we do not enter into the details of the proof of Theorem 5.16, we want to stress the
technical point where the assumption on the step of G is used. In the Euclidean setting an
elementary statement says that ∂f

∂x2
= · · · = ∂f

∂xn
= 0 implies f = f(x1). In Carnot groups

the corresponding statement should be that the vanishing of X2f to Xm1f yields that f is a
function of just one variable. But this is false as simple examples in the Heisenberg group H1

show. What is possible to prove in step 2 groups is that if Y1, . . . , Ym1 are left invariant smooth
orthonormal (horizontal) sections, if Y2f = · · · = Ym1f = 0 and if Y1f is positive, then f is an
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increasing function of one variable. Example 1 shows that in groups of step 3 or larger, even
this last weaker statement is false.

Lemma 5.17. Let G be a step 2 group and let Y1, . . . , Ym1 be left invariant smooth orthonormal
sections of HG. Assume that g : G → R satisfies

Y1g ≥ 0 and Yj(g) = 0 if j = 2, . . . , m1.(78)

Then the level lines of g are ”vertical hyperplanes orthogonal to Y1” that is sets that are group
translations of

S(Y1) := {p : 〈π0p, Y1(0)〉 = 0}.

We can state now our main structure theorem for G-Caccioppoli sets.

Theorem 5.18. (Structure of G-Caccioppoli sets) If E ⊆ G is a G-Caccioppoli set, then

∂∗
GE is (Q − 1)-dimensional G-rectifiable,(i)

that is ∂∗
GE = N ∪

⋃∞
h=1 Kh, where HQ−1

c (N) = 0 and Kh is a compact subset of a G-regular
hypersurface Sh;

νE(p) is the G-normal to Sh at p, for all p ∈ Kh;(ii)

|∂E|G = ϑcSQ−1
c ∂∗

GE,(iii)

where

ϑc(x) =
1

ωQ−1
Hn−1

(
∂S+

G (νE(x)) ∩ U(0, 1)
)
.

As usual ωk is the k-dimensional measure of the k-dimensional ball in Rk. If we replace the
Sc-measure by the S∞-measure, the corresponding density ϑ∞ turns out to be a constant. More
precisely

|∂E|G = ϑ∞ SQ−1
∞ ∂∗

GE,(iv)

where

ϑ∞ =
ωm1−1ωm2ε

m2
2

ωQ−1
=

1
ωQ−1

Hn−1
(
∂S+

G (νE(0)) ∩ U∞(0, 1)
)
.

Here ε2 is the constant appearing in (47) and ωk is the k-dimensional Lebesgue measure of the
unit ball in Rk.

Finally, the following divergence theorem is then an easy consequence of Theorem 5.18, but
we stress the fact that the measure theoretic boundary appears in the identity (ii). As in the
Euclidean space, the corresponding statement for the reduced boundary holds straightforwardly.
However, the interest of the statement for the measure theoretic boundary comes not only from
the fact that – as in the Euclidean setting – the last one is sometimes easier to deal with, but
mainly from the fact that the measure theoretic boundary – unlike the reduced boundary – is
independent of the choice of the metric.

Theorem 5.19. (Divergence Theorem) Let E be a G-Caccioppoli set, then

|∂E|G = ϑ∞ SQ−1
∞ ∂∗,GE,(i)

and the following version of the divergence theorem holds

−
∫

E
div Gϕ dLn = ϑ∞

∫
∂∗,GE

〈νE , ϕ〉 dSQ−1
∞ , ∀ϕ ∈ C1

0(G, HG).(ii)



BV SPACES AND RECTIFIABILITY FOR CC-METRICS 33

6. The Grushin plane

In this Section we discuss some problems related to Poincaré inequality associated with non-
smooth vector fields. As we have already mentioned, fairly general results in this direction can
be found in [46], [42], [74] and [94]. However, here we restrict ourselves to the case of n = 2,
where the results take a simpler form, however full of interesting features. In [59] it is proved
that, after a change of variables, we can assume that the vector fields X1, X2 have the form

X1 = ∂1 , X2 = λ(x1, x2)∂2,

where λ is Lipschitz continuous and nonnegative. For sake of simplicity we assume that λ is
independent of x2, i.e. λ(x1, x2) ≡ λ(x1). Moreover, we write x1 = x, x2 = y. The plane R2

(x,y)

endowed with the Carnot–Carathéodory metric associated with X1 = ∂x and X2 = λ(x)∂y is
called sometimes the Grushin plane.

In [42], Theorem 2.3 we proved the following characterization of the metric balls of the Grushin
plane.

Proposition 6.1. If z0 = (x0, y0) and t > 0, set
(i) Λ(z0, t) = sup|x−x0|<t λ(x);
(ii) F (z0, t) = tΛ(z0, t),
(iii) Q(z0, t) = (x0 − t, x0 + t) × (y0 − F (z0, t), y0 + F (z0, t)).
If Λ(z, t) > 0 for t > 0 and for any z ∈ R2, then there exists b > 1 such that

Q(z0, t/b) ⊂ B(z0, t) ⊂ Q(z0, bt), t > 0.

Corollary 6.2. If Λ(z, t) > 0 for t > 0 and for any z ∈ R2, then the Carnot–Carathéodory
metric in the Grushin plane is locally doubling with respect to Lebesgue measure if and only if
the map t → Λ(z, t) is locally uniformly doubling with respect to z, i.e. if and only if for any
compact set K there exist CK > 0, tK > 0 such that

Λ(z, 2t) ≤ CKΛ(z, t) if z ∈ K and 0 < t < tK .(79)

In particular, if (79) holds, then

|B(z0, t)| ≈ t2Λ(z0, t),


(z1, z2) ≈ |x1 − x2| + F−1(z1, |y1 − y2|),
where F−1(z1, t) = (F (z1, ·))−1 (t) (notice the map F (z1, ·) is strictly increasing).

Proof. Suppose (79) holds. If z ∈ K and we have

|B(z, 2t)| ≤ |Q(z, 2bt)| = 16b2t2Λ(z, 2bt)

≤ Cb,K(t/b)2Λ(z, t/b) = Cb,K |Q(z, t/b)| ≤ Cb,K |B(z, t)|.
Suppose now d is doubling. Then

Λ(z, 2t) =
|Q(z, 2t)|

16t2
≤ |B(z, 2bt)|

16t2

≤ Cb,K
|B(z, t/b)|

4t2
≤ Cb,K

|Q(z, t)|
4t2

= Cb,KΛ(z, t).

Let us remind now the RH∞ condition introduced in [44]. Let X be a metric space endowed
with a metric ϑ and a doubling measure µ. Then, if ω ≥ 0 belongs to L1

loc(X), we say that
ω ∈ RH∞ if ∫

B
ωdµ ≈ ess supBω

for all ϑ-balls B.
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Proposition 2.3 in [44] reads as follows.

Proposition 6.3. Let (X, ϑ, µ) be a homogeneous space and let ω ∈ L1
loc and ω > 0 µ-a.e. Then

(i) ω ∈ RH∞ iff ωβ ∈ RH∞ for β > 0;
(ii) if ω ∈ RH∞, then ω ∈ A∞, and hence ωµ is a doubling measure;
(iii) if ω ∈ RH∞ and u ∈ A∞, then ωu ∈ A∞.

We can state now a necessary and sufficient condition in the Grushin plane in order that
the Carnot–Carathéodory distance is locally doubling and a (1, 1)-Poincaré inequality holds. In
turn, this implies a (p, q)-Poincaré inequality, as pointed out in Remark 2.16.

Theorem 6.4. Let λ ≥ 0 be a Lipschitz continuous function. If λ ∈ RH∞, then the Carnot–
Carathéodory distance d is doubling and a (1, 1)-Poincaré inequality holds, i.e. for any Lipschitz
continuous function f and for any Carnot–Carathéodory ball B∫

B
|f − fB| dL2 ≤ C r(B)

∫
B
|Xf | dL2,(80)

where r(B) is the radius of B, and C is independent of B and f .
Conversely, if the Carnot–Carathéodory distance d is doubling and (80) holds, then λ ∈ RH∞.

Proof. Suppose λ ∈ RH∞. Then, by Proposition 6.3, (ii), λL2 is a doubling measure, and
hence, by the very definition of RH∞, Λ(z, .) is uniformly doubling, too. On the other hand,
(80) follows by [42], Example 2 of Section 6.

Suppose now the Carnot–Carathéodory distance d is doubling and (80) holds. Then, arguing
as in Theorem 3.6, we can conclude that, if E ⊂ R2 is an open set with C1-boundary, then for
any Carnot–Carathéodory ball B we have

min{|E ∩ B|, |B \ E|} ≤ Cr(B)
∫

B∩∂E

(
n2

x + λ(x)2n2
y

)1/2
dH1,(81)

where n = (nx, ny) is the outward unit normal to ∂E, and H1 is the 1-dimensional Hausdorff
measure supported by ∂E. For sake of simplicity take now B = B(0, br), and choose

E = {(x, y) ∈ R2 : y < Λ0(x)}, where Λ0(x) =
∫ x

0
λ(t)dt.

Since Q := Q(0, r) ⊂ B, then in (81) we can replace min{|E∩B|, |B\E|} by min{|E∩Q|, |Q\E|}.
Analogously, the integral on B∩∂E at the right hand side of (81) can be replaced by the integral
on Q̃ ∩ ∂E, where Q̃ = Q(0, b2r), i.e. we get

min{|E ∩ Q|, |Q \ E|} ≤ Cr

∫
Q̃∩∂E

(
n2

x + λ(x)2n2
y

)1/2
dH1,(82)

In addition, when |x| ≤ b2r we have |Λ0(x)| ≤ b2rΛ(0, b2r) = F (0, b2r), and analogously
|Λ0(x)| ≤ F (0, r) when |x| ≤ r, so that

Q ∩ E = {(x, y) ∈ R2 : |x| < r , −F (0, r) < y < Λ0(x)},(83)

and

Q̃ ∩ ∂E = {(x, y) ∈ R2 : |x| < b2r , y = Λ0(x)}.(84)

Since Λ0(x) ≥ 0 for x ≥ 0, and Λ0(x) ≤ 0 for x ≤ 0, then, by (83), (0, r)× (−F (0, r), 0) ⊂ Q∩E,
and (−r, 0) × (0, F (0, r)) ⊂ Q \ E. Thus

min{|E ∩ Q|, |Q \ E|} ≥ rF (0, r).
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Finally, by (84), a parametrization of Q̃ ∩ ∂E is given by γ(t) = (t, Λ0(t)), with |t| < b2r.
Replacing in (82) we get

rF (0, r) ≤ Cr

∫ b2r

−b2r
λ(t)dt.(85)

Dividing now both sides in (85) by r2 and keeping in mind that Λ(0, r) ≈ Λ(0, b2r) by doubling
(Λ(0, ·) is doubling by Corollary 6.2) we get eventually that λ ∈ RH∞.

If λ = |ϕ|, ϕ being a smooth function, then it is possible to prove that Poincaré inequality (80)
holds if the associated Carnot–Carathéodory distance is doubling (with respect to Lebesgue
measure). This follows from Theorem 6.4 by the final Remark in [42], Section 6 that reads as
follows.

Proposition 6.5. If λ = |ϕ|, where ϕ ∈ C∞(R2), then Λ(z, ·) is doubling if and only if λ ∈
RH∞.
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Anal., 1 (1992), 343–353.
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Pures Appl. 51 (1972), 219–230.
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versità di Bologna, (1983), VIII-1 – VIII-17.
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[49] B. Franchi, C. Pérez & R. L. Wheeden, Self-improving properties of John–Nirenberg and Poincaré
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