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PLAN OF THE TALKS

• Introduction to CR manifolds
Definition, the Cauchy-Riemann complex, the Kohn Laplacian �b .
A few examples: the Heisenberg group, hypersurfaces in Cn . The
Levi form.

• A few applications
Extensions of CR functions.

• Local solvability, hypoellipticity and subellipticity
Definition of these fundamental notions and first analysis of ∂b and
�b .

• The Folland-Stein operators on the Heisenberg group
Fundamental and relative fundamental solutions. Local solvability
and hypoellipticity.

• The Kohn Laplacian on quadratic CR manifolds
Definition of quadratic CR manifolds. Characterization of local solv-
ability and hypoellipticity for �b in this case.

• The Kohn Laplacian and the condition Y (q) on general
CR manifolds
This condition is sufficient in general.
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1. CR manifolds

Definition 1.1. Let M be a smooth man. of real dim. 2n + k with
n, k ≥ 1. We say that M is a CR man. of CR dim. n and codim. k is
there exists a subbundle L of the complexified tangent bundle TCM such
that:

(1) dimCL = n;

(2) L ∩ L = {0};

(3) the subbundle L is integrable, that is if L1, L2 are smooth sections
of L then their commutator [L1, L2] is also a smooth section of L.

We assume that L and L are orthogonal. There exists a k -dimensional
real subbundle of TCM denoted by N(M) such that

TCM = L ⊕ L⊕N(M) .

Let {L1, . . . , Ln, L1, . . . , Ln, T1, . . . , Tk} be a basis for the smooth sec-
tions of the tangent bundle and

{ω1, . . . , ωn, ω1, . . . , ωn, τ1, . . . , τn} .
be a basis of 1-forms dual to the above basis.

Extend to the exterior algebra

{ωI ∧ τK ∧ ωJ : |I| + |K| = p, |J | = q, }
is an orthonormal basis. Here I, J and K increasing multiindeces, e.g.
I = (i1, . . . , ip), 1 ≤ i1 < · · · < ip ≤ n, and q, |I| ≤ n, |K| ≤ k .

Define
Λp,q = Λp(L∗ ⊕N ∗(M))⊗̂Λq(L∗)

and call the space of its sections the space of (p, q)-forms on M .
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We now describe an alternative way to introduce CR manifolds, as an
embedded manifold of some complex space Cn+k .

We denote by J the complex structure on TCM . Given a point z ∈M
we call the complex tangent space at z the vector space

Hz(M) = Tz(M) ∩ JTz(M) .

Since J2 = −I , the subspace Hz is even dimensional. Notice that

Hz(M) = T 1,0
z (Cn+k) ∩ TC(M) .

We fix an inner product in Tz(M), say the euclidean inner product. We
define the totally real tangent space at z to be the orthogonal complement
of Hz in Tz(M).

Definition 1.2. A submanifold M of Cn+k is called an embedded CR
manifold if dimRHz(M) is independed of z ∈M .

Example 1.3. For instance, if Hz = Tz(M) for all z , then M is a complex
manifold. On the other hand, if Hz = {0}, then M is called totally real.

In general, in order to avoid trivialities, we will rule out these two cases.
That is, we will assume that 0 < dimRHz(M) = n and k > 0.

Of embedded CR manifolds it is useful to have a description in local
coordinates.
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Lemma 1.4. Let M be a CR submanifold in Cn+k , of codimension k .
Then, the following are equivalent:

(1) dimRHz(M) = 2n for all z ∈M ;

(2) Tz(Cn+k) = Tz(M)⊕ J
(
Nz(M)

)
for all z ∈M ;

(3) for any local defining function system for M {ρ1, . . . , ρk}, we
have

∂ρ1(z) ∧ · · · ∧ ∂ρk(z) 6= 0 .

Such a submanifold M in Cn+k will be said to generic. In particular,
locally, on an open set U , we can represent M as

M ∩ U = {z ∈ U : ρ1(z) = · · · = ρk(z) = 0}
and for z ∈M ∩ U

∂ρ1(z) ∧ · · · ∧ ∂ρk(z) 6= 0 .

In this case we can take the subbundle T 1,0(Cn+k) ∩ TCM as the sub-
bundle L in the definition of CR manifold. Here and in what follows, we
denote by T 1,0(CN) the subbundle of the holomorphic vector fields in CN .
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2. The tangential Cauchy-Riemann complex

Define the tangential Cauchy-Riemann complex, or ∂b-complex.
Let f be a smooth function on M . Then ∂bf is the (0, 1)-form on M

〈∂bf, L〉 = L(f ) ,

for any smooth section L of L.

Extend to smooth forms on M , by the standard derivation formula: If φ
is a (0, q)-form on M and L1, . . . , Lq+1 are smooth sections of L, then

〈∂bφ, (L1, . . . , Lq+1)〉 =
1

q + 1


q+1∑
j=1

(−1)j+1Lj〈φ, (L1, . . . , L̂j, . . . , Lq+1)〉

+
∑
i<j

(−1)i+j〈φ, ([Li, Lj], L1, . . . , L̂i, . . . , L̂j, . . . , Lq+1)〉


where L̂j indicates the fact that the term L̂j is omitted.

Finally, if ψ = φ ∧ ωI ∧ τK , where φ is a (0, q)-form, then

∂bψ = ∂bφ ∧ ωI ∧ τK .

The operator ∂b acts only on the Λq(L∗)-component of a form.

It suffices to consider ∂b acting on (0, q)-forms, and we shall do this in
these lectures.

On the space of forms on M with coefficients in L2(M) we have the inner
product

(ω, ω′) =
∫
M
〈ω, ω′〉dV .
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The operator ∂b can be viewed as an unbounded operator, with dense
domain,

∂b : L2Λ0,q(M) → L2Λ0,q+1(M) .

The integrability condition implies the the sequence

0 −→ L2(M)
∂b−→ L2Λ0,1(M)

∂b−→ · · · ∂b−→ L2Λ0,n−1(M) −→ 0

forms a complex, that is on a CR manifold M we have that

∂
2
b = 0 .

Proof.

This follows from the observation that, on Λ0,qM , ∂b = π0,q+1 ◦ d, where
π0,q+1 is the projection from q+ 1-forms onto their (0, q+ 1)-components,
d is the exterior differentiation and the integrability property of L. �

The complex defined above on M is called the Cauchy-Riemann
complex, or ∂b-complex.

We now define the Kohn Laplacian.

Let ∂
∗
b be the L2-Hilbert space adjoint of ∂b , when acting on L2Λ0,q .

Then,
∂
∗
b : L2Λ0,q+1 → L2Λ0,q

is a densely defined unbounded operator.

The Kohn Laplacian on M is the operator

�b = �b,q = ∂b∂
∗
b + ∂

∗
b∂b ;

then as unbounded operator

�b : L2Λ0,q → L2Λ0,q .
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The Heisenberg group.

Let Hn be the Lie group whose underlying manifold is Cn × R and
product rule given by

(z, t)(z′, t′) =
(
z + z′, t + t′ − 1

2Im (z · z′)
)
.

Here z · z′ =
∑
j zjz

′
j , so that if z = x + iy , z′ = x′ + iy′ , −Im (z · z′) =

x · y′ − x′ · y This group law makes Hn into a non-commutative group.

The neutral element is (0, 0) and the inverse (z, t) is the element (−z,−t).
The center of the group is constituted by the elements (0, t).

Define the vector fields

Xj = ∂xj
− 1

2yj∂t, Yj = ∂yj + 1
2xj∂t, for j = 1, . . . , n, and T = ∂t .

A basis for the complexified tangent bundle is then given by

{B1, . . . , Bn, B1, . . . , Bn, T}

where Bj = 1√
2
(Xj − iYj) and Bj = 1√

2
(Xj + iYj), j = 1, . . . , n.

Notice that the only non-trivial commutators of these vector fields are

[Xj, Yj] = T, ([Bj, Bj] = iT resp.) j = 1, . . . , n .

The Heisenberg group can be also realized as an embedded CR manifold.
In fact, if we set

ρ(z, ζ) = Im ζ − |z|2

for (z, ζ) ∈ Cn × C, then

Hn = {(z, ζ) ∈ Cn × C : ρ(z, ζ) = 0} .
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The dual bases of 1-forms are {dx1, . . . , dxn, dy1, . . . , dyn, θ} and, for
the complexfied bundle

{β1, . . . , βn, β1, . . . , βn, θ}
resp., where βj = 1√

2
(dxj + idyj), βj = 1√

2
(dxj − idyj), and θ = dt −

1
2

∑n
j=1(xjdyj − yjdxj).

A (0, q)-form φ on Hn can be written as

φ =
∑
|I|=q

φIβ
I

and ∂b acts on φ as

∂bφ =
∑
|I|=q

n∑
j=1

BjφIβj ∧ β
I

=
∑

|J |=q+1

∑
j,I
εjIJ BjφI

βJ ,
where εjIJ equals 0 if {j} ∪ I 6= J as sets, and equals the sign of the

permutation

jI
J

 if {j} ∪ I = J as sets.

The adjoint ∂
∗
b is defined by the relation

〈∂∗bφ, ψ〉 = 〈φ, ∂bψ〉

and has the expression

∂
∗
bφ = ∂

∗
b

 ∑
|I|=q

φIβ
I

 = −
n∑
j=1

∑
|I|=q

BjφIβjyβ
I

= − ∑
|K|=q−1

∑
j,I
εjKI BjφI

βK .
Here y denotes the contraction operator of forms.
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The Kohn Laplacian on Hn can now be calculated.

Proposition 2.1. Let φ =
∑
|I|=q φIβ

I
be a smooth (0, q)-form. Then

�bφ =
∑
|I|=q

L0 + i
(n
2
− q

)
T

φIβI ,
where L0 is the scalar (left-invariant) differential operator, called the
sublaplacian

L0 = −1
2

∑n
j=1X

2
j + Y 2

j = −1
2

∑n
j=1BjBj +BjBj .

It is worth noticing that, on the Heisenberg group Hn , the Kohn Lapla-
cian �b acting on (0, q)-forms is diagonal. Thus, it can be analyzed by
studying a single scalar operator, the sublaplacian L0 . This phenomenon
does not appear on more general CR manifolds, as we will see in other
examples. However, the main term of �b will remain diagonal in general.

Proof.

It suffices to consider the case of a simple (0, q)-form φ = fβ
I
. We first

compute

∂
∗
b∂bfβ

I
= ∂

∗
b

∑
j
Bjfβj ∧ β

I


= −∑

k

∑
j
BkBjfβky

(
βj ∧ β

I
)

and

∂b∂bf
∗β

I
= −∂b

∑
k
Bkfβyβ

I


= −∑

j

∑
k
BjBkfβj ∧

(
βkyβ

I
)
.

Next, notice that for j 6= k

βk
(
yβj ∧ β

I
)

= −βj ∧
(
βkyβ

I
)
,
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and that, for j = k

βj
(
yβj ∧ β

I
)

=


βI if j 6∈ I
0 if j ∈ I

and

βj ∧
(
βjyβ

I
)

=


βI if j ∈ I
0 if j 6∈ I

.

Then, the terms with j 6= k cancel out. The terms with j = k give rise to
the sublaplacian

�bφ = (∂b∂
∗
b + ∂

∗
b∂b)φ

= − ∑
j 6=k

(BkBj −BjBk)fβk
(
yβj ∧ β

I
)
−

 ∑
j∈I

BjBj +
∑
j 6∈I

BjBj

fβI

= −1

2

∑
j

(
BjBj +BjBj

)
fβ

I
+

1

2

∑
j∈I

(
BjBj −BjBj

)
fβ

I

− 1

2

∑
j 6∈I

(
BjBj −BjBj

)
fβ

I

= (L0f )β
I − 1

2

∑
j∈I

i(Tf )β
I

+
1

2

∑
j 6∈I

i(Tf )β
I

=
(
L0 + i(

n

2
− q)

)
fβ

I
.

From here the statement follows. �
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Hypersurfaces in Cn+1.

Let D be a smooth domain in Cn+1 . Then there exists a neighborhood
U of the boundary ∂D and a smooth function ρ : U → R such that

D = {z ∈ U : ρ(z) < 0}
and ∇ρ(z) 6= 0 on the set {ρ(z) = 0} = ∂D .

Such a function ρ can be extended to all of Cn+1 in such a way that
D = {z ∈ Cn+1 : ρ(z) < 0}. Then ρ is called a defining function for the
domain D .

Lemma 2.2. The boundary of a smooth domain D as above is a
smooth real hypersurface in Cn+1 whose tangent space is

T (∂D) = {(ξ, η) ∈ Rn+1×Rn+1 : dρ(z)(ξ, η) =
∑
j(∂xj

ρ(z)ξj+∂yjρ(z)ηj) = 0} .
The complex tangent space at a point z ∈ ∂D is the subset of the
tangent space given by

H1,0
z = TC,z(∂D) = {ζ = ξ + iη ∈ Cn+1 : ρ(z)(ζ) =

∑
j∂zjρ(z)ζj = 0} .

The subset ∪z∈∂DTC,z(∂D) is a subbundle of (complex)dimension n
that makes ∂D into a CR manifold of CR dimension n and codimen-
sion 1.

Proof.

The first part of the statement follows from the fact that, if ρ̃ is another
defining function, then there exists a smooth positive function h defined
on a neighborhood U of ∂D such that ρ̃ = h · ρ on U .

The second part follows from the fact that the set TC,z(∂D) defined in
the statement is precisely the subset of the tangent space at z constitued
of the tangent vectors ζ = ξ + iη = (ξ, η) such that iζ = (−η, ξ) is also
tangent.
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Finally, we see that TC is a subbundle of TC(∂D) that forms the CR
structure on ∂D . �

We now describe the ∂b-complex on the CR manifold M = ∂D . Since

M is an embedded manifold, in alternative to the intrisic deinition, valid
on any abstract CR manifold, we can describe the ∂b-complex extrinsically,
using the ambient space complex strucure.

Recall that for a smooth function f , ∂f is the (0, 1)-form
∑
j ∂zjfdzj ,

and analogously for ∂ . Then, the exterior differentation operator d can be
written as d = ∂ + ∂ .

Let U be an open neighborhood of M . Let Ip,q be the ideal of Λp,q(Cn+1)
generated by ρ and ∂ρ; that is any element of Ip,q can be written as

ρω1 + ∂ρ ∧ ω2

where ω1 is a (p, q)-form and ω2 a (p, q−1)-form. Denote by Λp,q(Cn+1)|M
and Ip,q|M resp. the restrictions of Λp,q(Cn+1) and Ip,q to M , resp.

Then we set Λp,q(M) to be the orthogonal complement of Ip,q|M in
Λp,q(Cn+1)|M . Let

Π : Λp,q(Cn+1) → Λp,q(M)

be the mapping obtain by first restrict a (p, q)-form to M and then pro-
jecting it to Λp,q(M).

It should be noted that Λp,q(M) is not intrisic to M , that is it is a
subspace of the space of complex forms on M , since ∂ρ is not orthogonal
to the cotangent bundle of M .

For a smooth form in Λp,q(M) we define the tangential Cauchy Riemann
operator

∂b : Λp,q(M) → Λp,q+1(M)
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as

∂b(φ) = Π∂φ̃ ,

where φ̃ is any smooth (p, q)-form such that Π(φ̃) = φ. If φ̂ is another
such form, then

φ̃− φ̂ = ρω1 + ∂ρ ∧ ω2

for some smooth forms ω1, ω2 . Then,

∂(φ̃− φ̂) = ∂(ρω1 + ∂ ∧ ρω2) = ∂ ∧ ρω1 + ρ∂ω1 − ∂ρ ∧ ∂ω2

so that
Π∂(φ̃− φ̂) = 0 .

Hence, the definition is independent of the extension φ̃. Since ∂
2

= 0 it
follows that also ∂

2
b = 0.

This approach gives rise to a complex that is isomorphic to the one defined
previously, intrinsically.

Thus, on an embedded CR manifold, the two definitions are equivalent.
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The Levi form of M .

Let M be a CR manifold of CR dimension n and codimension k . Let
T 1,0M be the subbundle of TCM that defines the CR structure (previ-
ously defined by L) and let T 0,1M be its complex conjugate. Recall the
decomposition

TCM = T 1,0M ⊕ T 0,1M ⊕N(M) .

Let N(M)∗ be the dual bundle of N(M). Then, if τ ∈ N(M)∗ then τ
annihillates T 1,0M ⊕ T 0,1M and it is called the characteristic bundle.

Definition 2.3. Let z ∈M . The Levi form is defined to be the hermitian
form Φ on T 1,0M taking values in N(M) given by

Φ(L1, L2) = iΘ([L1, L2]) ,

for L1, L2 ∈ T 1,0M and where Θ is the projection of TCM onto N(M).
The Levi form in the direction τ is the quadratic form

〈Φ(L1, L2), τ〉 = i〈[L1, L2]), τ〉 ,
again for L1, L2 ∈ T 1,0M .

If M = ∂D is the boundary of smooth domain in Cn+1 with defining
function ρ, then the Levi form can be described as follows. Let a, b ∈
TC(Cn+1) ∩ T 1,0(∂D), then

Φ(a, b) =

 n+1∑
j,k=1

∂2ρ(z)

∂zj∂zk
ajbk

J(∇ρ) .

Definition 2.4. A real hypersurface M ⊆ Cn+1 is called pseudoconvex
if the Levi form is either positive semidefinite or negative semidefinite at
every point on M . It is said to be strictly pseudoconvex if it is either
positive definite or negative definite at every point.
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The previous example can be generalized to the case of CR manifolds of
higher codimensions.

Let M ⊆ Cn+k be an embedded generic CR manifold of codimension
k > 1. There exist k smooth real-valued functions ρ1, . . . , ρk such that

M = {z ∈ Cn+k : ρ1(z) = · · · = ρk(z) = 0}
and ∂ρ1(z)∧ · · · ∧ ∂ρk(z) 6= 0. Without loss of generality, we may assume
that ∇ρ1, . . . ,∇ρk form an orthonormal basis for N(M) at every point of
M .

Proposition 2.5. With the above hypotheses, the Levi form Φ of M
is given by

Φ(W,W ′) =
k∑
`=1

 n+k∑
i,j=1

∂2ρ`(z)

∂zi∂zj
wiw

′
j

J(∇ρ`)(z) .

where W = (w1, . . . , wn), W
′ = (w′

1, . . . , w
′
n)
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The tangential Cauchy-Riemann equations

Let D be a smoothly bounded domain in Cn+1 with boundary M = ∂D .
Let ω be a smooth (p, q)-form on M . We wish to answer the following
two questions about extensions of ω to the ambient space Cn+1 :

(1) Does there exist a smooth form ω̃ in Cn+1 such that Πω̃ = ω on M ?
(2) Does there exist a smooth form φ in Cn+1 such that φ|M = ω and

∂φ = 0 on D?

Recall that the holomorphic degree p of the form is irrelevant, so we will
put p = 0. Recall also that 0 ≤ q ≤ n.

Consider question (2) first. If φ is a ∂ -closed form, then ∂bφ|MΠ∂ = 0.
Then ∂bω = 0 is a necessary condition in order for (2) to be satisfied.

We say that a function on M is a CR function if ∂bf = 0. In order to
state the condition on the Levi form, we need the following definition.

Definition 2.6. A smooth domain in CN

D = {z ∈ CN : ρ(z) < 0}

(or more generally C2-smoothness of the boundary suffices) is said to be
(Levi) pseudoconvex if the quadradic form

N∑
j,k=1

∂2ρ(z)

∂zj∂zk
ζjζk ≥ 0

for all ζ ∈ T 1,0(∂D).

Notice that the above quadratic form (which is called the Levi form of
the domain D corrispond to the Levi form of the CR manifold ∂D in the
direction J∂ρ. Recall also that T 1,0(∂D) = {ζ ∈ CN :

∑
j ζj∂zjρ(z) =

0, z ∈ ∂D}.
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Theorem 2.7. Let D be a smooth domain in Cn+1. Let ω be a smooth
(p, q)-form on M = ∂D, 0 ≤ p ≤ n, 1 ≤ q ≤ n. Then, there exists a
form ω̃ ∈ C∞(p,q)(D) such that Πω̃ = ω and ∂ω̃ = 0 in D if and only if∫

M
ω ∧ ψ = 0 for every ψ ∈ C∞(n−p,n−q−1)(D) ∩Ker (∂) .

Moreover, if 1 ≤ q < n, the above condition is equivalent to

∂bω = 0 on M.
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Local solvability, hypoellipticity, subellipticity.

Let P =
∑
|α|≤m aα(x)(i−1∂)αx be a differential operator with smooth

coeffients in a given open set Ω. We say that P is locally solvable at a
point x0 ∈ Ω if there exists an open neighborhood U of x0 such that for
every f ∈ C∞0 (Ω) there exists a distribution u ∈ D′(Ω) such that

Pu = f in U .

Given the operator P as above, we call principal symbol of P the
smooth function pm(x, ξ) =

∑
|α|=m aα(x)ξα defined on the cotangent bun-

dle T ∗(Ω). The characteristic variety of P is the set

ΣP = {(x, ξ) ∈ T ∗(Ω) : pm(xξ) = 0} .
The operator P is called of principal type if (x0, ξ0) ∈ ΣP implies that
dpm(x0, ξ0) 6= 0.

An operator that is not of pricipal type is called of multiple character-
istic. In this generality we have the following criterion of Hörmander.

Theorem 2.8. Let P be as above. Then P is locally solvable at x0 ∈ Ω
if and only if there exists an open neighborhood V of x0 and a positive
integer k such that

‖v‖H−k ≤ C‖tPv‖Hk

for every v ∈ C∞0 (U). (Here ‖ · ‖Hs denotes the norm in the Sobolev
space, s ∈ R.)

We will see next time that the operator B in H1 is not locally solvable
(Lewy unsolvable operator) and this will give rise to a series of questions
concerning the solvability of ∂b .
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3. Realtions between ∂b-complex and �b

Since ∂b and ∂
∗
b form complexes, we see that

∂b�b = ∂b(∂b∂
∗
b + ∂

∗
b∂b) = ∂b∂

∗
b∂b

= (∂b∂
∗
b + ∂

∗
b∂b)∂b = �b∂b .

Hence, ∂b and �b commute:

∂b�b = �b∂b .

This actually means
∂b,q�b,q = �b,q+1∂b,q

The same is true for ∂
∗
b and �b :

∂
∗
b,q�b,q = �b,q−1∂

∗
b,q .

Now, suppose �b,q is invertible. Let Gq be its inverse. Let f be a
(0, q)-form such that ∂bf = 0. Then set

u = Gq∂
∗
bf .

Then u satisfies

∂bu = ∂bGq∂
∗
bf = Gq∂b∂

∗
bf

= Gq(∂b∂
∗
b + ∂

∗
b∂b)f = Gq�b,qf

= f .

Therefore, from the solvability of �b,q we obtain the solvabilty of the
Cauchy-Riemann equation for a given ∂b-closed (0, q + 1)-form f .
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4. A non-solvability criterion

Recall Hörmander criterion

Theorem 4.1. Given a partial diff. oper. with smooth coefficients P ,
then P is locally solvable at x0 ∈ Ω if and only if there exists an open
neighborhood V of x0 and a positive integer k such that

‖v‖H−k ≤ C‖tPv‖Hk

for every v ∈ C∞0 (U). (Here ‖ · ‖Hs denotes the norm in the Sobolev
space, s ∈ R.)

In the case of homogenoues Lie groups (i.e. nilpotent Lie groups with
a 1-parameter family of dilations) this can be used to give the following
necessary criterion for local solvability.

Theorem 4.2. (Corwin-Rothschild) Let G be a homogenous Lie
group, let P be a left-invariant partial diff. oper. with smooth coeffi-
cients. Suppose that there exists a non-zero Schwartz function f such
that

t Pf = 0

then P cannot be locally solvable.

We remark that since P is invariant by left translation, locally solvability
at the origin is equivalent to local solvability at any other point. Thus, we
simply talk of local solvability for such operators.
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5. The operators of Folland-Stein on the Heisenberg
group

These are the differential operators

Lα = L0 + i
α

2
T = −1

2

n∑
j=1

(BjBj +BjBj) + i
α

2
T

for α ∈ C.

These operators are related to �b,q by the formula

�b(φ) =
∑
J

 n∑
j=1

(
L0 + +i(n2 − q)T

)
φJ

βJ .

On the Heisenberg group Hn there a 1-parameter family of non-isotropic
dilations that are group automorphisms. These dilations are

Dr(z, t) = (rz, r2t) ,

for r > 0. We recall that also the rotations

U(z, t) = (Uz, t)

for U in the unitary group of Cn are automorphisms of Hn .

We say that a differential operator P on the Heisenberg group is homoge-
nous of degree d if

P(f (Dr)(z, t)) = rdP(f )(Dr(z, t)) .

It is possible to show that on Hn the only differential operators that are
left-invariant, homogeneous of degree 2 and invariant under rotations are
the operators Lα above.
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Theorem 5.1. (Folland-Stein) For α ∈ C define the locally inte-
grable function on Hn

Eα(z, t) =
(
|z|2 + it

)−(n−α)/2(
|z|2 − it

)−(n+α)/2
.

Let

γα = 22−2nπn+1Γ
(
(n + α)/2

)−1
Γ

(
(n− α)/2

)−1
.

Then, in the sense of distributions,

LαEα = γαδ0 ,

where δ0 denotes the Dirac delta at the origin.

Proof.

Let

Eα,ε(z, t) =
(
|z|2 + ε2 + it

)−(n−α)/2(
|z|2 + ε2 − it

)−(n+α)/2
.

Now Eα,ε ∈ C∞ and we compute

LαEα,ε

We obtain

LαEα,ε(z, t) = Fα,ε(z, t)

where

Fα,ε(z, t) = ε2(n2 − α2)
(
|z|2 + ε2 + it

)−(n+2−α)/2(
|z|2 + ε2 − it

)−(n+2+α)/2

= ε−2n−nFα,1
(
Dε−1(z, t)

)
.

In the sense of distributions
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lim
ε→0

〈f, Fα,ε〉 = lim
ε→0

∫
Hn
f (z, t)Fα,ε(z, t)dV (z, t)

= lim
ε→0

ε−2n−n
∫
Hn
f (z, t)Fα,1

(
Dε−1(z, t)

)
dV (z, t)

= lim
ε→0

∫
Hn
f (εz, ε2t)Fα,1(z, t)dV (z, t)

=

∫
Hn
Fα,1(z, t)dV (z, t)

〈f, δ0〉 .
Thus, it suffices to show that∫

Hn
Fα,1(z, t)dV (z, t) = γα

where γα is as in the statement. �

Notice that the constant γα is non-zero if and only if

α 6= (n± 2k) k = 0, 1, 2, . . . .

We call these values the admissible values.
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Theorem 5.2. Let Lα be as above. Then the following conditions are
equivalent:

(1) Lα is locally solvable at the origin (or at any other point);

(2) Lα is hypoelliptic;

(3) α is an admissible value.

Corollary 5.3. Consider the Kohn Laplacian �b = �b,q on Hn acting
on (0, q)-forms. Then the following are equivalent:

(1) �b,q is locally solvable;

(2) �b,q is hypoelliptic;

(3) q 6= 0, n.

Proof of the theorem.

Suppose first that α is an admissible value. Then γα 6= 0 and γ−1
α Eα is a

fundamental solution for Lα ; then Lα is locally solvable.

Moreveor,

γ−1
α Eα ∈ C∞ \ {0}

and it is homogenous of degree −2n (with respect to the automoriphic
dilations Dr).

Thus, γ−1
α Eα is a locally integrable function, smooth away from the ori-

gin.

Then Lα is hypoelliptic in this case.

For, suppose that Lαu = f is C∞ in an open set U . By multiplying f
by test function which is identically 1 on U , we may assume that F has
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compact support. Then u = f ∗γ−1
α Eα (is a well-defined distribution and)

satisfies

Lu = f on U

and is smooth on U .

Therefore, (3) implies (1) and (2).

Next, suppose that (2) holds. Then tL−α is locally solvable.

Finally, to finish the proof we show that if α is not admissible then Lα
is not locally solvable (notice that α is admissible if and only if −α is).

Notice that, if α is not admissible

LαEα = 0 .

We apply Corwin-Rothschild criterion. Let ψ be a Schwarzt function in
Hn(≡ R2n+1) such that

∫
Hn
ψ(z, t)p(z, t) dV (z, t) = 0

for all polynomials p, where dV represents the Lebesgue measure on Hn .
Now define

φ = ψ ∗ E−α .

It can be shown that φ is a Schwartz function on Hn

Hence, φ is a Schwartz function on Hn that satisfies

tLα(φ) = L−α(ψ ∗ E−α) = ψ ∗ (L−αE−α) = 0 .

Hence, Lα is not locally solvable. �
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Proof of the corollary.

Notice that this result in particular says that �b,q is invertible if and only
if 0 < q < n.

The proof follows immediately from the theorem. We only need to show
that for q = 0, . . . , n,

2
(n
2
− q

)
is admissible if and only if q = 0, n . �

We now discuss the operators Lα for α non-admissible.

We saw that these operators are neither hypoelliptic nor locally solvable.
Theorem 5.1 gives us a way to obtain a relative fundamental solution.

Theorem 5.4. Let α = ±(n + k), k = 0, 1, . . . , be a non-admissible
value. Then there exist a distribution Fα and an L2(Hn, dV )-Hilbert
space orthogonal projection Sα such that

LαFα = δ0 − Sα .

The projection Sα is given by convolution with a locally integrable
function Kα . When α = n i.e. when q = 0, Sα = S is called the
Szegö projection.

Proof.

Consider the equation

LαEα = γαδ0 ,

given by Proposition 5.1. This is valid in α ∈ C and in fact it is analytic
in α.

Moreover, the function γα has simple zeros at the non-admissible values.
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Differentiating the above equality and evaluating at a non-admissible
value α0 we obtain

iTEα0 + Lα0Fα0 = γ′α0
δ0 ,

where

• γ′α0
can be calculated using the explicit expression of γα ;

• Fα0 is calculated as follows:

Fα0 =
d

dα

(
|z|2 + it

)−(n−α)/2(
|z|2 − it

)−(n+α)/2
∣∣∣∣α0

=
1

2

(
− log(|z|2 − it) + log(|z|2 + it)

)(
|z|2 + it

)−(n−α)/2(
|z|2 − it

)−(n+α)/2
∣∣∣∣α0

=
1

2
log

 |z|2 + it

|z|2 − it

(
|z|2 + it

)−(n−α0)/2
(
|z|2 − it

)−(n+α0)/2
.

Finally, we would have to show that convolution with iTEα0 is an or-
thogonal L2 projection. �

We remark that the L2-kernel of �b is given by those (0, q)-forms ω
such that

∂bω = ∂
∗
bω = 0 .

For, these forms are certainly in the kernel of �b . On the other hand, if
�bω = 0, then

0 = 〈�bω, ω〉
= 〈(∂b∂

∗
b + ∂

∗
b∂b)ω, ω〉

= 〈∂∗bω, ∂
∗
bω〉 + 〈∂bω, ∂bω〉

= ‖∂∗bω‖2 + ‖∂bω‖2 .



29

By the equality �b,qF = δ0 − S we see that S is exactly the Hilbert
space projection onto ker �b,q . Therefore, when q = 0

ker �b = ker ∂b ∩ ker ∂
∗
b = ker ∂b

since ∂
∗
b is identically zero on functions. Thus, S is the orthogonal projec-

tion onto the subspace of CR functions.

Corollary 5.5. On H1 the operator B is not locally solvable.

Proof.

Notice that on H1 , ∂bf = (Bf )β , so that ∂bf = 0 if and only if Bf = 0.

Now, since ker ∂b = ker �b,q , we know that a distribution φ is in f ∈
kerB if and only if �b,qf = 0 with q = 0.

We know that there exists Schwartz function in the kernel of �b,q in this
case. Hence there are Schwartz functions in the kernel of B . This shows
that B is not locally solvable. �

Now we go back to the Kohn Laplacian �b,q and discuss the relation on
the Cauchy-Riemann equations.

Suppose that 0 < q < n, so that �b,q is invertible. Let Gq be the inverse
operator of Ln−2q . Let f be a (0, q)-form such that ∂bf = 0. Then set

u = Gq∂
∗
bf .

Then., using the fact that f is a CR form, we see that u satisfies

∂bu = ∂bGq∂
∗
bf = Gq∂b∂

∗
bf

= Gq(∂b∂
∗
b + ∂

∗
b∂b)f = Gq�b,qf

= f ,

i.e. u satisfies the Cauchy-Riemann equation ∂bf = u.
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6. quadratic CR manifolds

We now consider a class of higher codimension CR manifolds that can
be viewed as generalization of the Heisenberg group. These are called
quadratic CR manifolds.

Let Φ be a hermitean form on Cn × Cn having value in some Ck :

Φ : Cn × Cn → Ck ,

where Φ(z, z′) = Φ(z′, z). The associated quadratic manifold is

M = {(z, w) ∈ Cn × Ck : Imw = Φ(z, z)} .

Notice that, if k = 1 and Φ(z, z′) = zz′ , then M is just the Heisenberg
group. In fact, also in this generality, M has an underlying Lie group
structure.

For (z′, w′) ∈M the complex-affine transformation of Cn × Ck

τ(z′,w′)(z, w) =
(
z + z′, w + w′ + 2iΦ(z, z′)

)

maps M onto itself, and

τ(z′,w′)τ(z′′,w′′) = τ(z′+z′′,w′+w′′+2iΦ(z′,z′′))

τ(z′,w′)
−1 = τ(−z′,−w′+2iΦ(z′,z′)).

Under the identification of τ(z′,w′) with (z′, w′) ∈ M , this composition
law defines a Lie group structure on M .

This defines a group multiplication on M

(z, t)(z′, t′) =
(
z + z′, t + t′ + 2=Φ(z, z′)

)
.
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We call GΦ this group.

The Levi form on GΦ.

Notice that the manifold M can be describe by the k defining functions

ρj(z, w) = Imwj − Φj(z, z) j = 1, . . . , k;

where Φj denotes the j -th component of Φ in the given fixed basis. Then
Φj is an n× n hermitean matrix. We first fix our attention to the origin.
We wish to compute

∂2ρj(z, w)

∂ζ`∂ζm
ζ`ζm

where we write momentarly ζ = (z, w) ∈ Cn+k .

We immediately see that the j -th component of the Levi form of M is
exactly the j -th component of the form Φ, that is the Levi form of M is
just Φ, thought as taking values in the normal bundle N(M).

For τ ∈ N ∗(M) we denote by Φτ the scalar-valued form τ (Φ(·, ·)).
It should be noted that we do not require that the Levi form is non-

degerate. Moreover, it is possible that all the Φτ are degenerate, even
though there is no common radical that can be factored out to decompose
GΦ as the product of a nilpotent and an abelian group.

For example let, Φ : C3 × C3 → C2 , Φ = (Φ1,Φ2), with Φj(z, z
′) =

z′∗Ajz and

A1 =


0 0 0
0 1 0
0 0 −1

 , A2 =


0 1 1
1 0 0
1 0 0

 .

Definition 6.1. Let n+(τ ), resp. n−(τ ), the number of positive, resp.
negative, eigenvalues of Φτ . We define Ωq to be the cone
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Ωq = {τ : n+(τ ) = q, n−(τ ) = n− q} .

The Kohn Laplacian on GΦ .

For v ∈ Cn , denote by ∂vf the directional derivative of a function f on
Cn×Ck in the direction v and let Xv be the left-invariant vector field on
GΦ that coincides with ∂v at the origin. It is easy to check that

Xvf (z, t) = ∂vf (z, t) + 2=Φ(z, v) · ∇tf (z, t).

Take the standard basis {v1, . . . , vn} of Cn and define

Bj = 1√
2
(Xvj − iXJvj),

Bj = 1√
2
(Xvj + iXJvj) ,

for j = 1, . . . , n; where J denotes the complex structure in Cn .

We denote by β
I

the (0, q)-form

βi1 ∧ · · · ∧ βiq,

Given a (0, q)-form φ =
∑
|I|=q φIβ

I
with smooth coefficients, we set

∂̄bφ =
∑
|I|=q

n∑
k=1

Bk(φI)βk ∧ β
I

=
∑

|J |=q+1

∑
k,|I|=q

εJkIBk(φI)β
J
,

The formal adjoint ∂̄∗b of ∂̄b can be easily computed to yield

∂
∗
b

( ∑
|I|=q

φIβ
I
)

=
∑

|J |=q−1

(
− ∑

k,|I|=q
εIkJBkφI

)
β
J
.

We now compute the Kohn Laplacian �b,q
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Proposition 6.2. With respect to the selected basis, the operator �(q)
b

is represented by a matrix
(
�LK

)
of scalar left-invariant differential

operators on GΦ as

�(q)
b

(∑
K
φKβ

K
)

=
∑
L

(∑
K

�LKφK
)
β
L
.

Then,
�LK = δLKL0 +MLK

where δLK is the Kronecker delta,

L0 = −1
2

∑n
k=1(BkBk +BkBk)

and

MLK =



1
2

( ∑
k∈K

[Bk, Bk]−
∑
k 6∈K

[Bk, Bk]
)

if K = L,

ε(K,L)[Bk, B`] if |{K ∩ L}| = q − 1,

0 otherwise.

Here, given two multi-indices K and L such that |K| = |L| = q and
|{K ∩ L}| = q − 1, we set

ε(K,L) = (−1)m

where m is the number of elements in K ∩L between the unique element
k ∈ K \ L and the unique element ` ∈ L \K .

Notice that, even in this relatively fairly simple situation, the Kohn Lapla-
cian is far from being diagonal.
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Proof.

One can easily see that

∂̄b(∂̄
∗
bφ) = − ∑

|L|=q

 ∑
k,`,|J |=q−1,|K|=q

εKkJε
L
`JB`BkφK

βL

and that

∂̄∗b (∂̄bφ) = − ∑
|L|=q

 ∑
i,j,|H|=q+1,|K|=q

εHjKε
H
iLBiBjφK

βL .
Hence,

�(q)
b (φ) = − ∑

|L|=q

∑
|K|=q

 ∑
`,k,|J |=q−1

εKkJε
L
`JB`Bk+

∑
i,j,|H|=q+1

εHjKε
H
iLBiBj

φKβL.
Then,

(1) �LK = − ∑
`,k,|J |=q−1

εKkJε
L
`JB`Bk −

∑
i,j,|H|=q+1

εHjKε
H
iLBiBj.

When K = L the indices k and ` are forced to be equal, as well as i
and j . Hence,

�LL = −
( ∑
k∈L

BkBk +
∑
j 6∈L

BjBj

)

= −1

2

n∑
k=1

(BkBk +BkBk)−
1

2

( ∑
k∈L

[Bk, Bk] +
∑
k 6∈L

[Bk, Bk]
)
.

This proves the statement for the terms along the diagonal.

When K 6= L, the coefficient εKkJε
L
`J is different from 0 if only if K =

J ∪ {k} and L = J ∪ {`}. Notice that, given K and L such that
|{K ∩ L}| = q − 1, they uniquely determine J, k and `. Analogously,
εHjKε

H
iL 6= 0 if and only if H = K ∪ {j} = L ∪ {i}. Then, necessarily,

|{K∩L}| = q−1 as before, and if k and ` are as above, j = ` and i = k .
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It follows that �LK = 0 unless |{K ∩ L}| = q − 1. In this case, each of
the sums in (1) reduces to one single term, and

�LK = −εKkJεL`JB`Bk − εH`Kε
H
kLBkB`,

with J = K ∩ L and H = K ∪ L. Moreover,

εKkJε
L
`J = −εH`KεHkL = ε(K,L) .

Thus,
�LK = ε(K,L)[Bk, B`],

which proves the proposition. �
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The main results on GΦ.

We begin with the local solvability for �b,q .

Theorem 6.3. The Kohn Laplacian �b,q is locally solvable if and only
if there is no τ ∈ N ∗(M) such that n+(τ ) = q and n−(τ ) = n− q .

More precisely, the following conditions are equivalent.

(1) Ωq is non-empty;

(2) �b,q is not locally solvable;

(3) ker �b,q ∩ L2Λ0,q(GΦ) is non-empty;

When �b,q is not solvable, the orthogonal projection onto its L2-null-
space is given by convolution on GΦ with an operator-valued distribu-
tion Sq for which it is possible to give an explicit formula.
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Next we discuss the hypoellipticity of the Kohn Laplacian.

Definition 6.4. We say that a CR manifold M with Levi form Φ satisfies
condition Y (q) at a point z ∈ M is for every τ ∈ N ∗(M), Φτ

z has at
least max(q + 1, n − q + 1) eigenvalues with the same sign, or at least
min(q + 1, n− q + 1) pairs of eigenvalues with opposite signs.

Theorem 6.5. The following conditions are equivalent:

(1) span R{Φ(z, z)} = N(M) and there exists C > 0 such that for
each φ in the Schwartz space

‖
(
L0 ⊗ I

)
φ‖L2 ≤ C‖�b,qφ‖L2;

(2) �b,q is hypoelliptic;

(3) there exists no non-zero τ ∈ N ∗(M) such that n+(τ ) ≤ n−q and
n−(τ ) ≤ q ;

(4) Φ satisfies condition Y (q).

We remark that condition (3) and (4) are both equivalent to the following
condition: There exists no non-zero τ ∈ N ∗(M) such that


min

(
n+(τ ), n−(τ )

)
≤ min(q, n− q)

max
(
n+(τ ), n−(τ )

)
≤ max(q, n− q) .
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Sufficiency of the Y (q) condition for hypoellipticity

In this final section we return to the case of a general CR manifold. The
result we present are due to Shaw and Wang.

Recall the decomposition of the complexified tangent space of M

TCM = L ⊕ L⊕N(M) .

Let {L1, . . . , Ln, L1, . . . , Ln, T1, . . . , Tk} be a basis for the smooth sec-
tions of the tangent bundle TCM , with L1, . . . , Ln smooth sections of L,

Lemma 6.6. Assume that M satisfies condition Y (q) at a point z ∈
M . Then there exists an open neighborhood U of z on which the vector
fields {X1, . . . , Xn} satisfy Hörmander’s condition, where

Xj = <Lj j = 1, . . . , n; Xj = =Lj j = n + 1, . . . , 2n .

Proof.

In fact, it suffices to consider the first order commutators in order to span
the tangent space R2n+k . For, let τ` be a given direction in N(M)∗ .

Since Pz satisfies condition Y (q), Phiτ` is such that

min(q, n− q) ≤ n+(τ`), n
−(τ`) ≤ max(q, n− q) .

In particular Phiτ` has at least a non-zero eigenvalue. Since Phiτ` is the
matrix whose entries with respect to the basis {L1, . . . , Ln} are

δjk[Lj, Lk]

we see that there exists at least one j such that [Lj, Lj] has non-trivial
component in the direction J(τ`). �
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This lemma alone does not guarantees that �b,q is hypoelliptic, since
(�b,q is not a scalar operator and) the lower order terms are not real.

Theorem 6.7. Suppose that M is a CR manifold of CR dimension
n and codimension k ≥ 1. Assume that satisfies condition Y (q) at
a point z ∈ M . Then there exists an open neighborhood U of z on
which the Kohn Laplacian �b,q satisfies the subelliptic estimates

‖η1φ‖Hs+1 ≤ C
(
‖η2�b,qφ‖Hs + ‖φ‖

)
,

where η1, η2 are C∞ cut-off fucntions supported in U , η2 = 1 on
supp η1.

Proof.

Define

Qb(φ, φ) = ‖∂bφ‖2 + ‖dbb∗φ2‖2 + ‖φ‖2

One begins by showing that, by setting

n∑
j=1

‖Ljφ‖2 = ‖φ‖2
L ,

n∑
j=1

‖Ljφ‖2 = ‖φ‖2
L ,

we have

‖φ‖2
L + ‖φ‖2

L +
k∑
`=1

∑
I,j
|<(T`φIJ , φIJ)| ≤ CQb(φ, φ) .

From this, using the Hörmander condition on the vector fields {X1, . . . , X2n}
and the corresponding subelliptic estimates, it follows that

‖φ‖H1/2 ≤ CQb(φ, φ) ,

which in turns implies the desired estimate.
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In order to prove the estimate above, one manipulates the energy form
Qb(φ, φ) to obtain the estimate from below (here we assume k = 1 for
simplicity of notation)

Qb(φ, φ) ≥ ε‖φ‖2
L +

∑
I,J
aIJ<(T`φIJ , φIJ)− δ

(
‖φ‖2

L + ‖φ‖2) ,

where

aIJ =
∑

j∈J\σI,J
λj − (1− ε)

∑
j∈σI,J\J

λj + ε
∑

j∈σI,J∩\J
λj ,

the λj ’s are the eigeinvalues of Φ (that we are assume to be scalar-valued
for simplicity now) and

σI, J = {j : λj < 0 if <(T`φIJ , φIJ) > 0 and λj > 0 if <(T`φIJ , φIJ) < 0} .

Since M satisfies the condition Y (q), one of the following cases must
hold:

(1) if the Levi form has max(n + 1 − q, q + 1) positive eigenvalues of
the same sign, then there exists a j ∈ J and an ` 6∈ J such that λj
and λ` have the same sign (which we may assume to be positive by
replacing T with −T );

(2) if the Levi form has min(n + 1 − q, q + 1) pairs of eigenvalues of
the opposite sign, then there exist j, ` 6∈ J so that λj and λ` have
opposite signs;

(3) if the Levi form has min(n + 1 − q, q + 1) pairs of eigenvalues of
the opposite sign, then there exist j, ` ∈ J so that λj and λ` have
opposite signs;
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From this, we can select ε > 0 and small so that

aIJ > 0 ,

if
<(T`φIJ , φIJ) > 0} .

and

aIJ < 0 ,

if
<(T`φIJ , φIJ) < 0} .

From this the result follows. �


