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Introduction

The Cauchy Riemann manifolds, in brief CR manifolds, arise in a natural way in func-
tion theory of several complex variables, as we will try to illustrate in the development of
these lectures. The CR manifolds have drawn a considerable amount of interest in recent
years for their connection with several different research areas in analysis and geometry.

For an account on the hystorical background we refer the reader to the monograph [FK]
and the survey paper [AK]. For an extensive account on CR manifolds we refer to the
monographs [Bo] and [BER].

1. CR manifolds

We begin by introducing the setting on which we will be working on.

Definition 1.1. Let M be a smooth manifold of real dimension 2n + k with n, k ≥ 1.
We say that M is a CR manifold of CR dimension n and codimension k is there exists a
subbundle L of the complexified tangent bundle TCM such that the following conditions
hold:

(1) dimC L = n;
(2) L ∩ L = {0};
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(3) the subbundle L is integrable, that is if L1, L2 are smooth sections of L then their
commutator [L1, L2] is also a smooth section of L.

We assume that M is equipped with a Hermitean metric for TCM so that L and L are
orthogonal. For each z ∈ M let Nz be the orthogonal complement of Lz ⊕ Lz in TC

z M .
This gives rise to a k-dimensional real subbundle of TCM denoted by N(M). Then

TCM = L ⊕ L⊕N(M) . (1)

The pointwise metric on TCM induces a pointwise dual metric on the space of 1-forms
on M, TC∗M .

Let {L1, . . . , Ln, L1, . . . , Ln, T1, . . . , Tk} be a basis for the smooth sections of the tangent
bundle TCM , with L1, . . . , Ln smooth sections of L, L1, . . . , Ln smooth sections of L and
T1, . . . , Tk smooth sections of N(M). We can find a basis of 1-forms dual to the above
basis; let this basis be

{ω1, . . . , ωn, ω1, . . . , ωn, τ1, . . . , τn} .
The metric on TC∗M extend to the exterior algebras of forms in such a way that

{ωI ∧ τK ∧ ωJ : |I|+ |K| = p, |J | = q, }

is an orthonormal basis. Here I, J and K increasing multiindeces, e.g. I = (i1, . . . , ip),
1 ≤ i1 < · · · < ip ≤ n, and p, q ≤ n, r ≤ k. We also define

Λp,q = Λp(L∗ ⊕N∗(M))⊗̂Λq(L∗)

and call the space of its sections the space of (p, q)-forms on M .
We now introduce the so-called tangential Cauchy-Riemann complex, or ∂b-complex.

Let f be a smooth function on M . Then ∂bf is the (0, 1)-form on M defined by

〈∂bf, L〉 = L(f) ,

for any smooth section L of L. This definition can extended to smooth forms on M , by
the standard derivation formula. If φ is a (0, q)-form on M and L1, . . . , Lq+1 are smooth
sections of L, then

〈∂bφ, (L1, . . . , Lq+1)〉 =
1

q + 1

{ q+1∑
j=1

(−1)j+1Lj〈φ, (L1, . . . , L̂j, . . . , Lq+1)〉

+
∑
i<j

(−1)i+j〈φ, ([Li, Lj], L1, . . . , L̂i, . . . , L̂j, . . . , Lq+1)〉
}

where L̂j indicates the fact that the term L̂j is omitted.
Finally, if ψ = φ ∧ ωI ∧ τK , where φ is a (0, q)-form, then

∂bψ = ∂bφ ∧ ωI ∧ τK .

Thus, the operator ∂b acts only on the Λq(L∗)-component of a form. It is then sufficient
to consider ∂b acting on (0, q)-forms, and we shall do this in these lectures.
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The pointwise pairing between forms on M can be extended to sections with coefficients
in L2(M), with respect to the given volume form dV :

(ω, ω′) =

∫
M

〈ω, ω′〉dV .

We denote by L2ΛkM (or L2Λp,qM) the space of k-forms ((p, q)-forms resp.) with
coefficients in L2(M). Then, the operator ∂b can be viewed as an unbounded operator,
with dense domain,

∂b : L2Λ0,q(M) → L2Λ0,q+1(M)

(recall the convention we are adopting).
It is important to notice that, the integrability condition implies the the following

sequence

0 −→ L2(M)
∂b−→ L2Λ0,1(M)

∂b−→ · · · ∂b−→ L2Λ0,n−1(M) −→ 0 (2)

forms a complex.

Proposition 1.2. On a CR manifold M we have that ∂
2

b = 0.

Proof. This follows from the observation that, on Λ0,qM , ∂b = π0,q+1 ◦ d, where π0,q+1

is the projection from q + 1-forms onto their (0, q + 1)-components, d is the exterior
differentiation and the integrability property of L. (more??) 2

Definition 1.3. The complex defined in (2) on M is called the Cauchy-Riemann complex,
or ∂b-complex.

We now define the Kohn Laplacian. Let ∂
∗
b be the L2-Hilbert space adjoint of ∂b, when

acting on L2Λ0,q. Then,

∂
∗
b : L2Λ0,q+1 → L2Λ0,q

is a densely defined unbounded operator.

Definition 1.4. The Kohn Laplacian on M is the operator 2b = 2b,q = ∂b∂
∗
b + ∂

∗
b∂b;

then as unbounded operator

2b : L2Λ0,q → L2Λ0,q .

We now present a few noticeable examples of CR manifolds.

1.5. The Heisenberg group. Let Hn be the Lie group whose underlying manifold is
Cn × R and product rule given by

(z, t)(z′, t′) =
(
z + z′, t+ t′ − 1

2
Im (z · z′)

)
.

Here z · z′ =
∑

j zjz
′
j, so that if z = x+ iy, z′ = x′ + iy′, −Im (z · z′) = x · y′− x′ · y is the

symplectic form on Rn × Rn. This group law makes Hn into a non-commutative group.
The neutral element is (0, 0) and the inverse (z, t) is the element (−z,−t). The center of
the group is constituted by the elements (0, t).
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A detailed analysis of the Kohn Laplacian (and much more) appears in the seminal
paper [FS1]. Further information on the Kohn Laplacian on the Heisenberg group can be
found in [Ta] and in [Th], for instance.

Define the vector fields

Xj = ∂xj
− 1

2
yj∂t, Yj = ∂yj

+ 1
2
xj∂t, for j = 1, . . . , n, and T = ∂t .

Then {X1, . . . , Xn, Y1, . . . , Yn, T} form a basis for the left-invariant vector fields on Hn,
that is for the tangent bundle of Hn. A basis for the complexified tangent bundle is then
given by

{B1, . . . , Bn, B1, . . . , Bn, T}

where Bj = 1√
2
(Xj − iYj) and Bj = 1√

2
(Xj + iYj), j = 1, . . . , n.

Notice that the only non-trivial commutators of these vector fields are

[Xj, Yj] = T, ([Bj, Bj] = iT resp.) j = 1, . . . , n .

Define the subbundle L as span {B1, . . . , Bn}. Then Hn is a CR manifold, of CR
dimension n and codimension 1.

The dual bases of 1-forms are {dx1, . . . , dxn, dy1, . . . , dyn, θ} and, for the complexfied
bundle

{β1, . . . , βn, β1, . . . , βn, θ}

resp., where βj = 1√
2
(dxj−idyj), βj = 1√

2
(dxj +idyj), and θ = dt− 1

2

∑n
j=1(xjdyj−yjdxj).

Then, a (0, q)-form φ on Hn can be written as

φ =
∑
|I|=q

φIβ
I

and ∂b acts on φ as

∂bφ =
∑
|I|=q

n∑
j=1

BjφIβj ∧ β
I

=
∑

|J |=q+1

(∑
j,I

εjI
J BjφI

)
β

J
,

where εjI
J equals 0 if {j} ∪ I 6= J as sets, and equals the sign of the permutation

(
jI
J

)
if

{j} ∪ I = J as sets.

A simple calculation shows that the adjoint ∂
∗
b has the expression

∂
∗
bφ = ∂

∗
b

(∑
|I|=q

φIβ
I
)

= −
n∑

j=1

∑
|I|=q

BjφIβjyβ
I

= −
∑

|K|=q−1

(∑
j,I

εjK
I BjφI

)
β

K
.

Here y denotes the contraction operator of forms.
The Kohn Laplacian on Hn can now be calculated.
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Proposition 1.6. Let φ =
∑

|I|=q φIβ
I

be a smooth (0, q)-form. Then

2bφ =
∑
|I|=q

(
L0 + i(n

2
− q)

)
φIβ

I
,

where L0 is the scalar (left-invariant) differential operator, called the sublaplacian2

L0 = −1
2

n∑
j=1

X2
j + Y 2

j = −1
2

n∑
j=1

BjBj +BjBj .

It is worth noticing that, on the Heisenberg group Hn, the Kohn Laplacian 2b acting
on (0, q)-forms is diagonal. Thus, it can be analyzed by studying a single scalar operator,
the sublaplacian L0. This phenomenon does not appear on more general CR manifolds,
as we will see in other examples. However, the main term of 2b will remain diagonal in
general.

Proof. . It suffices to consider the case of a simple (0, q)-form φ = fβ
I
. We first compute

∂
∗
b∂bfβ

I
= ∂

∗
b

(∑
j

Bjfβj ∧ β
I
)

= −
∑

k

∑
j

BkBjfβky
(
βj ∧ β

I)
and

∂b∂bf
∗β

I
= −∂b

(∑
k

Bkfβyβ
I
)

= −
∑

j

∑
k

BjBkfβj ∧
(
βkyβ

I)
.

Next, notice that for j 6= k

βk

(
yβj ∧ β

I)
= −βj ∧

(
βkyβ

I)
,

and that, for j = k

βj

(
yβj ∧ β

I)
=

{
βI if j 6∈ I
0 if j ∈ I

and

βj ∧
(
βjyβ

I)
=

{
βI if j ∈ I
0 if j 6∈ I

.

2Although we have already used the symbol L to denote the integrable subbundle in the definition of
a CR manifold, it is a classical notation to denote this differential operator by L0 (or even L). We adopt
the former notation L0 to indicate the sublaplacian. This should cause no confusion.
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Therefore, recalling that [Bk, Bj] = 0 if j 6= k, and that [Bj, Bj] = iT

2bφ = (∂b∂
∗
b + ∂

∗
b∂b)φ

= −
∑
j 6=k

(BkBj −BjBk)fβk

(
yβj ∧ β

I)− (∑
j∈I

BjBj +
∑
j 6∈I

BjBj

)
fβ

I

= −1

2

∑
j

(
BjBj +BjBj

)
fβ

I
+

1

2

∑
j∈I

(
BjBj −BjBj

)
fβ

I − 1

2

∑
j 6∈I

(
BjBj −BjBj

)
fβ

I

= (L0f)β
I − 1

2

∑
j∈I

i(Tf)β
I
+

1

2

∑
j 6∈I

i(Tf)β
I

=
(
L0 + i(

n

2
− q)

)
fβ

I
. 2

We now describe an alternative way to introduce CR manifolds, as an embedded man-
ifold of some complex space Cn+k.

We denote by J the complex structure on TCM . Given a point z ∈ M we call the
complex tangent space at z the vector space

Hz(M) = Tz(M) ∩ JTz(M) .

Since J2 = −I, the subspace Hz is even dimensional. Notice that

Hz(M) = T 1,0
z (Cn+k) ∩ TC(Cn+k) .

We fix an inner product in Tz(M), say the euclidean inner product. We define the
totally real tangent space at z to be the orthogonal complement of Hz in Tz(M).

Definition 1.7. A submanifoldM of Cn+k is called an embedded CR manifold if dimRHz(M)
is independed of z ∈M .

Example 1.8. For instance, if Hz = Tz(M) for all z, then M is a complex manifold. On
the other hand, if Hz = {0}, then M is called totally real.

In general, in order to avoid trivialities, we will rule out these two cases. That is, we
will assume that 0 < dimRHz(M) = n and k > 0.

Of embedded CR manifolds it is useful to have a description in local coordinates.

Lemma 1.9. Let M be a CR submanifold in Cn+k, of codimension k. Then, the following
are equivalent:

(1) dimRHz(M) = 2n for all z ∈M ;
(2) Tz(Cn) = Tz(M)⊕ J

(
Nz(M)

)
for all z ∈M ;

(3) for any local defining function system for M {ρ1, . . . , ρk}, we have

∂ρ1(z) ∧ · · · ∧ ∂ρk(z) 6= 0 .

Such a submanifold M in Cn+k will be said to generic. In particular, locally, on an
open set U , we can represent M as

M ∩ U = {z ∈ U : ρ1(z) = · · · = ρk(z) = 0}
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and for z ∈M ∩ U
∂ρ1(z) ∧ · · · ∧ ∂ρk(z) 6= 0 .

In this case we can take the subbundle T 1,0(Cn+k) ∩ TCM as the subbundle L in the
definition of CR manifold. Here and in what follows, we denote by T 1,0(CN) the subbundle
of the holomorphic vector fields in CN .

We remark that the Heisenberg group can be also realized as an embedded CR manifold.
In fact, if we set

ρ(z, ζ) = Im ζ − |z|2

for (z, ζ) ∈ Cn × C, then

Hn = {(z, ζ) ∈ Cn × C : ρ(z, ζ) = 0} .

1.10. Hypersurfaces in Cn+1. The next example of CR manifold that we encounter is
certainly among the most typical and important ones.

Let D be a smooth domain in Cn+1. This means that there exists a neighborhood U of
the boundary ∂D and a smooth function ρ : U → R such that

D = {z ∈ U : ρ(z) < 0}
and ∇ρ(z) 6= 0 on the set {ρ(z) = 0} = ∂D. It is a simple matter to show that such a
function ρ can be extended to all of Cn+1 in such a way that D = {z ∈ Cn+1 : ρ(z) < 0}
When globally defined, the function ρ is called a defining function for the domain D (in
contrast with a local defining function).

Lemma 1.11. The boundary of a smooth domain D as above is a smooth real hypersurface
in Cn+1 whose tangent space is

T (∂D) = {(ξ, η) ∈ Rn+1 × Rn+1 : dρ(z)(ξ, η) =
∑

j(∂xj
ρ(z)ξj + ∂yj

ρ(z)ηj) = 0} .

The complex tangent space at a point z ∈ ∂D is the subset of the tangent space given by

H1,0
z = TC,z(∂D) = {ζ = ξ + iη ∈ Cn+1 : ρ(z)(ζ) =

∑
j∂zj

ρ(z)ζj = 0} .

The subset ∪z∈∂DTC,z(∂D) is a subbundle of (complex)dimension n that makes ∂D into a
CR manifold of CR dimension n and codimension 1.

Proof. The first part of the statement follows from the fact that, if ρ̃ is another defining
function, then there exists a smooth positive function h defined on a neighborhood U of
∂D such that ρ̃ = h · ρ on U .

The second part follows from the fact that the set TC,z(∂D) defined in the statement
is precisely the subset of the tangent space at z constitued of the tangent vectors ζ =
ξ + iη = (ξ, η) such that iζ = (−η, ξ) is also tangent.

Finally, we see that TC is a subbundle of TC(∂D) that forms the CR structure on ∂D.
2

We now describe the ∂b-complex on the CR manifoldM = ∂D. SinceM is an embedded
manifold, in alternative to the intrisic deinition, valid on any abstract CR manifold, we
can describe the ∂b-complex extrinsically, using the ambient space complex strucure. In
general, on the complex manifold Cn+1 we have the (Doulbeaut) complex ∂. For instance,
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for a smooth function f , ∂f is the (0, 1)-form
∑

j ∂zj
f , and analogously for ∂. Then, the

exterior differentation operator d can be written as d = ∂ + ∂.

Let U be an open neighborhood of M . Let Ip,q be the ideal of Λp,q(Cn+1) generated by
ρ and ∂ρ; that is any element of Ip,q can be written as

ρω1 + ∂ρ ∧ ω2

where ω1 is a (p, q)-form and ω2 a (p, q − 1)-form. Denote by Λp,q(Cn+1)|M and Ip,q
|M

resp. the restrictions of Λp,q(Cn+1) and Ip,q to M , resp. Then we set Λp,q(M) to be the
orthogonal complement of Ip,q

|M in Λp,q(Cn+1)|M . Let

Π : Λp,q(Cn+1) → Λp,q(M)

be the mapping obtain by first restrict a (p, q)-form to M and then projecting it to
Λp,q(M). It should be noted that Λp,q(M) is not intrisic to M , that is it is a subspace of
the space of complex forms on M , since ∂ρ is not orthogonal to the cotangent bundle of
M .

For a smooth form in Λp,q(M) we define the tangential Cauchy Riemann operator

∂b : Λp,q(M) → Λp,q+1(M)

as

∂b(φ) = Π∂φ̃ ,

where φ̃ is any smooth (p, q)-form such that Π(φ̃) = φ. If φ̂ is another such form, then

φ̃− φ̂ = ρω1 + ∂ ∧ ρω2

for some smooth forms ω1, ω2. Then,

∂(φ̃− φ̂) = ∂(ρω1 + ∂ ∧ ρω2) = ∂ ∧ ρω1 + ρ∂ω1 − ∂ρ ∧ ∂ω2

so that

Π∂(φ̃− φ̂) = 0 .

Hence, the definition is independent of the extension φ̃. Since ∂
2

= 0 it follows that also

∂
2

b = 0.
This approach gives rise to a complex that is isomorphic to the one defined previously,

intrinsically (for a proof, see [Bo], Sect. 8.3). Thus, on an embedded CR manifold, the
two definitions are equivalent3.

We now go back to the operators that we are studying. It is worth mentioning that
the Kohn Laplacian 2b and the Cauchy-Riemann operator ∂b are not scalar-valued in
general. In the top-degree case, and in some particular instances such as the Heisenberg
group, we can reduce ourselves to studying scalar-valued operators, but in general these
are vector-valued operators, begin differential operators between vector bundles.

3We actullay have described the extrinsic approach only in the case of hypersurfaces, that is in case of
codimension 1. We will see that this construction generilizes naturally to the higher codimension cases.
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Let M be an embedded CR manifold of CR dimension n and codimension k. We adopt
the notation of Section 1. Locally, a smooth (p, q)-form φ can be written as

φ
∑

|I|=p, |J |=q

φI,Jω
I ∧ ωJ .

Then

∂bφ =
∑
I,J

n∑
j=1

LjφI,Jωjω
I ∧ ωJ + 0-order terms .

Next, a simple integration by parts yield

∂
∗
bφ = (−1)p−1

∑
I,J

n∑
j=1

LjφI,jKωjω
I ∧ ωK + 0-order terms .

A calculation on the same lines as in the case of the Heisenberg group, we see that

2bφ =
n∑

j=1

(LjLj + LjLj)φIω
I + lower order terms .

2. The Levi form of a CR manifold

We now introduce a geometrical invariant on any CR manifold, the so-called Levi form.
This is a quadratic form acting on 2-tensors of elements of the subbundle that gives rise
to the CR structure and it turns out to be of fundamental importance in the analysis of
the Kohn Laplacian and ∂b-complex.

2.1. Let M be a CR manifold of CR dimension n and codimension k. Let T 1,0M be the
subbundle of TCM that defines the CR structure (previously defined by L) and let T 0,1M
be its complex conjugate. Recall the decomposition (1)

TCM = T 1,0M ⊕ T 0,1M ⊕N(M) .

Let N(M)∗ be the dual bundle of N(M). Then, if τ ∈ N(M)∗ then τ annihillates
T 1,0M ⊕T 0,1M and it is called the characteristic bundle. Notice in fact that the operator
2b is not elliptic and that its characteristic variety is given by

Σ2b
= N∗(M) .

Definition 2.2. Let z ∈ M . The Levi form is defined to be the hermitian form Φ on
T 1,0M taking values in N(M) given by

Φ(L1, L2) = iΘ([L1, L2]) ,

for L1, L2 ∈ T 1,0M and where Θ is the projection of TCM onto N(M). The Levi form in
the direction τ is the quadratic form

〈Φ(L1, L2), τ〉 = i〈[L1, L2]), τ〉 ,
again for L1, L2 ∈ T 1,0M .
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Example 2.3. When M has codimension 1, then N(M)∗ is also 1-dimensional and there
exist only two oriented directions τ and −τ . Moreover, if in particular M = ∂D is the
boundary of smooth domain in Cn+1 with defining function ρ, then the Levi form can be
described as follows. Let a, b ∈ TC(Cn+1) ∩ T 1,0(∂D), then

Φ(a, b) =

( n+1∑
j,k=1

∂2ρ(z)

∂zj∂zk

ajbk

)
J(∇ρ) .

It is a simple exercise that this definition is (essentially) independent of the choiche of
the defining function for D. Indeed, if ρ̃ = h · ρ is another defining function for D, then
Φρ̃ = hΦρ, where Φρ̃ and Φρ denote the expressions for the Levi form obtained using the
definying function ρ̃ and ρ resp. Thus, the Levi form turns out to be defined modulo the
multiplication of a positive smooth function on M .

Moreover, M can be thought as the boundary of the interior of cM . This ammounts
to replace ρ with −ρ, thus to replace the direction τ with −τ .

The next definition introduces a concept of fundamental importance in the analysis of
holomorphic functions in domain in complex space.

Definition 2.4. A real hypersurface M ⊆ Cn+1 is called pseudoconvex if the Levi form
is either positive semidefinite or negative semidefinite at every point on M . It is said to
be strictly pseudoconvex if it is either positive definite or negative definite at every point.

The previous example can be generalized to the case of CR manifolds of higher codi-
mensions.

Example 2.5. Let M ⊆ Cn+k be an embedded generic CR manifold of codimension
k > 1. There exist k smooth real-valued functions ρ1, . . . , ρk such that

M = {z ∈ Cn+k : ρ1(z) = · · · = ρk(z) = 0}

and ∂ρ1(z)∧· · ·∧∂ρk(z) 6= 0. Without loss of generality, we may assume that∇ρ1, . . . ,∇ρk

form an orthonormal basis for N(M) at every point of M .

Proposition 2.6. With the above hypotheses, the Levi form Φ of M is given by

Φ(W,W ′) =
k∑

`=1

( n+k∑
i,j=1

∂2ρ`(z)

∂zi∂zj

wiw
′
j

)
J(∇ρ`)(z) .

Proof. By definition Φ(W,W ′) = iΘ([W,W
′
]). Since {∇ρ1, . . . ,∇ρk} is an orthonormal

system it is a basis for orthogonal complement of TCM in TC(Cn+k). Let J denote the
complex structure in TC(Cn+k). Obviously, T 1,0⊕T 0,1 is J-invariant. Then Θ([L1, L2]) =
Θ̃(J [L1, L2]), where Θ̃ is the orthogonal projection onto Ñ(M) at every point of M , the
projection Θ is given by

Θ(V ) =
k∑

`=1

〈dρ`, V 〉∇ρ` .
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3. The tangential Cauchy-Riemann equations

In this section we present some applications of the differential operators ∂b and 2b.
Our goal is just to illustrate some problems that lead to studying the above operators.
We will not be able to present most of the proofs of the results we present, since the
techniques involved would require a background that goes beyond the scope of these
lectures. However, we hope this part would serve as a motivation and a suggestion for
further reading.

Let D be a smoothly bounded domain in Cn+1 with boundary M = ∂D. Let ω be a
smooth (p, q)-form on M . We wish to answer the following two questions about extensions
of ω to the ambient space Cn+1:

(1) Does there exist a smooth form ω̃ in Cn+1 such that Πω̃ = ω on M?
(2) Doest there exist a smooth form φ in Cn+1 such that φ|M = ω and ∂φ = 0 on D?

Recall that the holomorphic degree p of the form is irrelevant, so we will put p = 0. Recall
also that 0 ≤ q ≤ n.

Consider question (2) first. If φ is a ∂-closed form, then ∂bφ|MΠ∂ = 0. Then ∂b=0 is
a necessary condition in order for (2) to be satisfied. We now show that if M is compact
(i.e. if the domain D is bounded) and its Levi form is semidefinite in a given direction,
then (2) is also sufficient in the case q = 0 (i.e. when ω is a function). We say that a
function on M is a CR function if ∂bf = 0. In order to state the condition on the Levi
form, we need the following definition.

Definition 3.1. A smooth domain in CN

D = {z ∈ CN : ρ(z) < 0}

(or more generally C2-smoothness of the boundary suffices) is said to be (Levi) pseudo-
convex if the quadradic form

N∑
j,k=1

∂2ρ(z)

∂zj∂zk

ζjζk ≥ 0

for all ζ ∈ T 1,0(∂D).

Notice that the above quadratic form (which is called the Levi form of the domain D
corrispond to the Levi form of the CR manifold ∂D in the direction J∂ρ. Recall also that
T 1,0(∂D) = {ζ ∈ CN :

∑
j ζj∂zj

ρ(z) = 0, z ∈ ∂D}.

Theorem 3.2. Let D be a smooth domain in Cn+1. Let ω be a smooth (p, q)-form on
M = ∂D, 0 ≤ p ≤ n, 1 ≤ q ≤ n. Then, there exists a form ω̃ ∈ C∞(p,q)(D) such that

Πω̃ = ω and ∂ω̃ = 0 in D if and only if∫
M

ω ∧ ψ = 0 for every ψ ∈ C∞(n−p,n−q−1)(D) ∩Ker (∂) .

Moreover, if 1 ≤ q < n, the above condition is equivalent to

∂bω = 0 on M.
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Proof. The proof is based on an appropriate choice of the coordinates in Cn+1. 2

Since ∂b and ∂
∗
b form complexes, we see that

∂b2b = ∂b(∂b∂
∗
b + ∂

∗
b∂b) = ∂b∂

∗
b∂b

= (∂b∂
∗
b + ∂

∗
b∂b)∂b = 2b∂b .

Hence, ∂b and 2b commute. The same is true for ∂
∗
b and 2b.

Now, suppose 2b,q is invertible. Let Gq be its inverse. Let f be a (0, q)-form such that

∂bf = 0. Then set

u = Gq∂
∗
bf .

Then u satisfies

∂bu = ∂bGq∂
∗
bf = Gq∂b∂

∗
bf

= Gq(∂b∂
∗
b + ∂

∗
b∂b)f = Gq2b,qf

= f .

Therefore, from the solvability of 2b,q we obtain the solvabilty of the Cauchy-Riemann

equation for a given ∂b-closed (0, q + 1)-form f .

4. Local solvability, hypoellipticity, subellipticity

We recall some well-known facts and definitions about scalar differential operators with
smooth coefficients in some open set Ω in the real space RN .

Let P =
∑

|α|≤m aα(x)(i−1∂)α
x be a differential operator with smooth coeffients in a

given open set Ω. We say that P is locally solvable at a point x0 ∈ Ω if there exists an
open neighborhood U of x0 such that for every f ∈ C∞0 (Ω) there exists a distribution
u ∈ D′(Ω) such that

Pu = f in U .

Moreover, we say that P is hypoelliptic in Ω if Pu ∈ C∞(Ω′), with Ω′ ⊆ Ω implies that
also u ∈ C∞(Ω′).

In the previous section we have mentioned that the Lewy operator is not locally solvable
at the origin in R3. It came as big surprise when H. Lewy showed his example of a (so
simple) partial differential operator which is not locally solvable. Considerable research
was made after this discovery. We will not even make any attempt to describe this fertile
area of research and the extremely vast bibliography. We mention though that, in a series
of fundamental results, Eskin, Niremberg/Trevés, Beals/Fefferman characterized the local
solvability for operators of principal type.

Given the operator P as above, we call principal symbol of P the smooth function
pm(x, ξ) =

∑
|α|=m aα(x)ξα defined on the cotangent bundle T ∗(Ω). The characteristic

variety of P is the set

ΣP = {(x, ξ) ∈ T ∗(Ω) : pm(xξ) = 0} .
The operator P is called of principal type if (x0, ξ0) ∈ ΣP implies that dpm(x0, ξ0) 6= 0.
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An operator that is not of pricipal type is called of multiple characteristic. In this
generality we have the following criterion of Hörmander.

Theorem 4.1. Let P be as above. Then P is locally solvable at x0 ∈ Ω if and only if
there exists an open neighborhood V of x0 and a positive integer k such that

‖v‖H−k ≤ C‖tPv‖Hk

for every v ∈ C∞0 (U). (Here ‖ · ‖Hs denotes the norm in the Sobolev space, s ∈ R.)

Proof. See ???. 2

We conclude this section by recalling Hörmander theorem on hypoellipticity of sum of
squares.

Let {X1, . . . , Xn} be smooth real vector fields defined on an open set Ω in RN . Define G1

to the collection {X1, . . . , Xn} and, inductively, Gj to be the collection of the commutators
of the form [X, Y ] with X ∈ G1 and Y ∈ Gj−1.

We say that {X1, . . . , Xn} satisfies the Hörmander condition in Ω if there exists an
integer k such that the vector fields Gk span the tangent space of RN at every point in
Ω. In other words if{X1, . . . , Xn} and their commutators up to order k span the tangent
space of RN at every point in Ω.

Theorem 4.2. (Hörmander) If P is an differential operator of the form

P =
n∑

j=1

X2
j +X0 + b(x) ,

where the vector fields Xj are real, j = 0, . . . , n, B is a smooth complex-valued functions
and {X1, . . . , Xn} satisfies the Hörmander condition in Ω, then P is hypoelliptic in Ω.

More precisely, there exists ε > 0 such that, given any compact set K ⊂ Ω and s ≥ 0,
there exists a constant C(K, s) = C > 0 such that for all u ∈ C∞0 (K) we have the estimate

‖u‖Hs+ε+ ≤ C
(
‖Pu‖Hs + ‖u‖

)
.

An estimate like the one above is called a subelliptic estimate. For a proof we refer,
among the many available, to the original paper by Hörmander [Hö1] or the excellent
tractise [T1].

Main goal of these lectures if to describe some results on the solvability and hypolellip-
ticity of 2b in some classes of CR manifolds. The conditions characterizing these classes
stem from the signature of the scalar components of the Levi form of M . We begin by the
simplest case, the Heisenberg group. In this case, the codimension is 1, and the explicit
coordinates and the group structure allow one to obtain rather explicit formulas for the
inverse (and partial inverse) of the operators involved.

5. The operators of Folland-Stein on the Heisenberg group

On the Heisenberg group Hn there a 1-parameter family of non-isotropic dilations that
are group automorphisms. These dilations are

Dr(z, t) = (rz, r2t) ,
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for r > 0. We recall that also the rotations

U(z, t) = (Uz, t)

for U in the unitary group of Cn are automorphisms of Hn.

In Section 1 we saw that for a smooth (0, q)-form φ =
∑

|J |=q φJβ
J

we have

2b(φ) =
∑

J

( n∑
j=1

(
L0 + +i(n

2
− q)T

)
φJ

)
β

J
.

Thus, it becomes natural to study the second order left-invariant differential operators

Lα = L0 + i
α

2
T = −1

2

n∑
j=1

(BjBj +BjBj) + i
α

2
T

for α ∈ C.
We say that a differential operator P on the Heisenberg group is homogenous of degree

d if

P(f(Dr)(z, t)) = rdP(f)(Dr(z, t)) .

It is possible to show that on Hn the only differential operators that are left-invariant,
homogeneous of degree 2 and invariant under rotations are the operators Lα above. (A
proof of this fact requires the notion of group Fourier transform and it is postponed to
Section ??.)

We begin our analysis of the Lα. Notice that we cannot immediatey apply Hörmander’s
theorem since the operator of order 1 does not have real coefficients. The first step is to
construct a fundamental solution for Lα, for the admissible values of α. In the case of the
sublaplacian, that is when α = 0, the fundamental solution was determined by Folland.
Later, this calculation was extended to the considerably more complicated case of non-zero
α by Folland and Stein [FS1].

Proposition 5.1. (Folland-Stein) For α ∈ C define the locally integrable function on
Hn

Eα(z, t) =
(
|z|2 + it

)−(n−α)/2(|z|2 − it
)−(n+α)/2

.

Let

γα = 22−2nπn+1Γ
(
(n+ α)/2

)−1
Γ
(
(n− α)/2

)−1
.

Then, in the sense of distributions,

LαEα = γαδ0 ,

where δ0 denotes the Dirac delta at the origin.

Proof. The proof of this fact is somewhat straightforward. One consider the regularized
version of the Eα:

Eα,ε(z, t) =
(
|z|2 + ε2 + it

)−(n−α)/2(|z|2 + ε2 − it
)−(n+α)/2

.

Now Eα,ε ∈ C∞ and by computing LαEα,ε one obtains that

LαEα,ε(z, t) = Fα,ε(z, t)
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where

Fα,ε(z, t) = ε2(n2 − α2)
(
|z|2 + ε2 + it

)−(n+2−α)/2(|z|2 + ε2 − it
)−(n+2+α)/2

= ε−2n−nFα,1

(
Dε−1(z, t)

)
.

Since ε−2n−n is the Jacobian of the automorphism Dε−1 , if f is any test function on Hn

lim
ε→0

〈f, Fα,ε〉 = lim
ε→0

∫
Hn

f(z, t)Fα,ε(z, t)dV (z, t)

= lim
ε→0

ε−2n−n

∫
Hn

f(z, t)Fα,1

(
Dε−1(z, t)

)
dV (z, t)

= lim
ε→0

∫
Hn

f(εz, ε2t)Fα,1(z, t)dV (z, t)

=

(∫
Hn

Fα,1(z, t)dV (z, t)

)
〈f, δ0〉 .

Thus, it suffices to show that ∫
Hn

Fα,1(z, t)dV (z, t) = γα

where γα is as in the statement. This is a clever but, at this stage for us, unenlighting
calculation, (for which we refer to [FS1]). 2

At this point we notice that the constant γα is non-zero if and only if

α 6= (n± 2k) k = 0, 1, 2, . . . .

We call these values the admissible values.
Notice that when α is not purely imaginary, Hörmander theorem does not apply. It

turns out instead that Lα = L0 + iα
2
T is a family of operators with L0 hypoelliptic (since

in this case Hörmander theorem does apply) that we will show are all hypoelliptic but for
a discrete infinite subset of values of the parameter α.

We now are ready to characterize the local solvability and th hypoellipticity of the
operators Lα. We remark that, due to the invariance by translation, local solvability at
one point is equivalent to local solvability at any other point in Hn. We therefore restric
our attention to the origin.

Theorem 5.2. Let Lα be as above. Then the following conditions are equivalent:

(1) Lα is locally solvable at the origin (or at any other point);
(2) Lα is hypoelliptic;
(3) α is an admissible value.

Corollary 5.3. Consider the Kohn Laplacian 2b = 2b,q on Hn acting on (0, q)-forms.
Then the following are equivalent:

(1) 2b,q is locally solvable;
(2) 2b,q is hypoelliptic;
(3) q 6= 0, n.
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Proof of the theorem. Suppose first that α is an admissible value. Then γα 6= 0 and γ−1
α Eα

is a fundamental solution for Lα; fact that of course implies that Lα is locally solvable.
Moreveor, this fundamental solution is a distribution that coincides with a C∞ away

from the origin, and it is homogenous of degree −2n (with respect to the automoriphic
dilations Dr). Thus, γ−1

α Eα is a locally integrable function, smooth away from the origin.
This easily implies that Lα is hypoelliptic in this case. For, suppose that Lαu = f is C∞
in an open set U . By multiplying f by test function which is identically 1 on U , we may
assume that F has compact support. Then u = f ∗ γ−1

α Eα (is a well-defined distribution
and) satisfies

Lu = f on U

and is smooth on U .
Therefore, (3) implies (1) and (2).

Next, suppose that (2) holds. Then t L−α is locally solvable, by Corollary ??.
Finally, to finish the proof we show that if α is not admissible then Lα is not locally

solvable (notice that α is admissible if and only if −α is).
Notice that, if α is not admissible

LαEα = 0 .

We apply Corwin-Rothschild criterion. Let ψ be a Schwarzt function in Hn(≡ R2n+1)
such that ∫

Hn

ψ(z, t)p(z, t) dV (z, t) = 0

for all polynomials p, where dV represents the Lebesgue measure on Hn. Now define

φ = ψ ∗ E−α .

It can be shown that φ is a Schwartz function on Hn (for details see [DPR] Theorem 3.3).
Indeed, the convolution is well defined and gives a smooth function. To show that φ and
all its derivatives decay faster than (1+ |(z, t)|)−N for all N , we use the moment condition
of ψ.

Hence, φ is a Schwartz function on Hn that satisfies

t Lα(φ) = L−α(ψ ∗ E−α) = ψ ∗ (L−αE−α) = 0 .

Hence, Lα is not locally solvable. 2

Proof of the corollary. Notice that this result in particular says that 2b,q is invertible if
and only if 0 < q < n.

The proof follows immediately from the theorem. We only need to show that for
q = 0, . . . , n,

2
(n
2
− q

)
is admissible if and only if q = 0, n . 2

We now discuss the operators Lα for α non-admissible. We saw that these operators are
neither hypoelliptic nor locally solvable. Theorem 5.1 gives us a way to obtain a relative
fundamental solution.
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Theorem 5.4. Let α = ±(n + k), k = 0, 1, . . . , be a non-admissible value. Then there
exist a distribution Fα and an L2(Hn, dV )-Hilbert space orthogonal projection Sα such that

LαFα = δ0 − Sα .

The projection Sα is given by convolution with a locally integrable function Kα. When
α = n i.e. when q = 0, Sα = S is called the Szegö projection.

Proof. Consider the equation
LαEα = γαδ0 ,

given by Proposition 5.1. This is valid in α ∈ C and in fact it is analytic in α. Moreover,
the function γα has simple zeros at the non-admissible values. Differentiating the above
equality and evaluating at a non-admissible value α0 we obtain

iTEα0 + Lα0Fα0 = γ′α0
δ0 ,

where γ′α0
can be calculated using the explicit expression of γα given by Proposition 5.1.

Moreover,

Fα0 =
d

dα

((
|z|2 + it

)−(n−α)/2(|z|2 − it
)−(n+α)/2

)∣∣α0

=
1

2

((
− log(|z|2 − it) + log(|z|2 + it)

)(
|z|2 + it

)−(n−α)/2(|z|2 − it
)−(n+α)/2

)∣∣α0

=
1

2
log

(
|z|2 + it

|z|2 − it

)(
|z|2 + it

)−(n−α0)/2(|z|2 − it
)−(n+α0)/2

.

Finally, we (would) have to show that convolution with iTEα0 is an orthogonal L2

projection. This fact, and the explicit expression for the Szegö projection Sn = S can be
found in [S], Chapter XIII. 2

We remark that the L2-kernel of 2b is given by those (0, q)-forms ω such that

∂bω = ∂
∗
bω = 0 .

For, these forms are certainly in the kernel of 2b. On the other hand, if 2bω = 0, then

0 = 〈2bω, ω〉

= 〈(∂b∂
∗
b + ∂

∗
b∂b)ω, ω〉

= 〈∂∗bω, ∂
∗
bω〉+ 〈∂bω, ∂bω〉

= ‖∂∗bω‖2 + ‖∂bω‖2 .

By the equality 2b,qF = δ0 − S we see that S is exactly the Hilbert space projection
onto ker2b,q. Therefore, when q = 0

ker2b = ker ∂b ∩ ker ∂
∗
b = ker ∂b

since ∂
∗
b is identically zero on functions. Thus, S is the orthogonal projection onto the

subspace of CR functions.

Corollary 5.5. On H1 the operator B is not locally solvable.
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Proof. Notice that on H1, ∂bf = (Bf)β, so that ∂bf = 0 if and only if Bf = 0/
Now, since ker ∂b = ker2b,q, we know that a distribution φ is in f ∈ kerB if and only

if 2b,qf = 0 with q = 0. We know that there exists Schwartz function in the kernel of
2b,q in this case. Hence there are Schwartz functions in the kernel of B. This shows that
B is not locally solvable. 2

Now we go back to the Kohn Laplacian 2b,q and discuss the relation on the Cauchy-
Riemann equations.

Suppose that 0 < q < n, so that 2b,q is invertible. Let Gq be the inverse operator of

Ln−2q. Let f be a (0, q)-form such that ∂bf = 0. Then set

u = Gq∂
∗
bf .

Then., using the fact that f is a CR form, we see that u satisfies

∂bu = ∂bGq∂
∗
bf = Gq∂b∂

∗
bf

= Gq(∂b∂
∗
b + ∂

∗
b∂b)f = Gq2b,qf

= f ,

i.e. u satisfies the Cauchy-Riemann equation ∂bf = u.

6. The case of quadratic CR manifolds

We now consider a class of higher codimension CR manifolds that can be viewed as
generalization of the Heisenberg group. These are called quadratic CR manifolds, (also
called hyperquadric in the very nice introductory paper [T2]). The relevant properties of
the Kohn Laplacian and ∂b-complex all have a precise characterization in terms of the
signatures of the components of the Levi form. For this reason mainly but not only, they
are of great interests in this type of analysis.

Let Φ be a hermitean form on Cn × Cn having value in some Ck:

Φ : Cn × Cn → Ck ,

where Φ(z, z′) = Φ(z′, z). The associated quadratic manifold is

M = {(z, w) ∈ Cn × Ck : Imw = Φ(z, z)} .
Notice that, if k = 1 and Φ(z, z′) = zz′, then M is just the Heisenberg group. In fact,
also in this generality, M has an underlying Lie group structure.

For (z′, w′) ∈M the complex-affine transformation of Cn × Ck

τ(z′,w′)(z, w) =
(
z + z′, w + w′ + 2iΦ(z, z′)

)
maps M onto itself, and

τ(z′,w′)τ(z′′,w′′) = τ(z′+z′′,w′+w′′+2iΦ(z′,z′′))

τ(z′,w′)
−1 = τ(−z′,−w′+2iΦ(z′,z′)).
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Under the identification of τ(z′,w′) with (z′, w′) ∈M , this composition law defines a Lie
group structure on M .

We introduce coordinates (z, t) ∈ Cn ×Ck to denote the element
(
z, t+ iΦ(z, z)

)
∈M .

Once pulled back to M the group multiplication takes the form

(z, t)(z′, t′) =
(
z + z′, t+ t′ + 2=Φ(z, z′)

)
.

We call GΦ this group.

6.1. The Levi form on GΦ. We now describe the Levi form on GΦ. Notice that the
manifold M can be describe by the k defining functions

ρj(z, w) = Imwj − Φj(z, z) j = 1, . . . , k;

where Φj denotes the j-th component of Φ in the given fixed basis. Then Φj is an n× n
hermitean matrix. We first fix our attention to the origin. We wish to compute

∂2ρj(z, w)

∂ζ`∂ζm
ζ`ζm

where we write momentarly ζ = (z, w) ∈ Cn+k.
The tangent bundle T 1,0 is spanned by the vector fields B1, . . . , Bn. Hence, we immedi-

ately see that the j-th component of the Levi form of M is exactly the j-th component of
the form Φ, that is the Levi form of M is just Φ, thought as taking values in the normal
bundle N(M).

For τ ∈ N∗(M) we denote by Φτ the scalar-valued form τ(Φ(·, ·)).
It should be noted that we do not require that the Levi form is non-degerate. Moreover,

it is possible that all the Φτ are degenerate, even though there is no common radical that
can be factored out to decompose GΦ as the product of a nilpotent and an abelian group.

For example let, Φ : C3 × C3 → C2, Φ = (Φ1,Φ2), with Φj(z, z
′) = z′∗Ajz and

A1 =

0 0 0
0 1 0
0 0 −1

 , A2 =

0 1 1
1 0 0
1 0 0

 .

In the following will be significant the following definition.

Definition 6.2. Let n+(τ), resp. n−(τ), the number of positive, resp. negative, eigenval-
ues of Φτ . We define Ωq to be the cone

Ωq = {τ : n+(τ) = q, n−(τ) = n− q} .

6.3. The Kohn Laplacian on GΦ. For v ∈ Cn, denote by ∂vf the directional derivative
of a function f on Cn ×Ck in the direction v and let Xv be the left-invariant vector field
on GΦ that coincides with ∂v at the origin. It is easy to check that

Xvf(z, t) = ∂vf(z, t) + 2=Φ(z, v) · ∇tf(z, t).
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Take the standard basis {v1, . . . , vn} of Cn and define

Bj = 1√
2
(Xvj

− iXJvj
),

Bj = 1√
2
(Xvj

+ iXJvj
) ,

for j = 1, . . . , n; where J denotes the complex structure in Cn.

We denote by β
I

the (0, q)-form βi1 ∧ · · · ∧ βiq , where I = (i1, . . . , iq) is a strictly

increasing multi-index. Given a (0, q)-form φ =
∑

|I|=q φIβ
I

with smooth coefficients, we
set

∂̄bφ =
∑
|I|=q

n∑
k=1

Bk(φI)βk ∧ β
I

=
∑

|J |=q+1

∑
k,|I|=q

εJ
kIBk(φI)β

J
, (3)

where we adopt the previous convention on εJ
kI ’s.

Let dz dt denote the left-invariant Haar measure on GΦ. On the space L2(GΦ)⊗ Λq of
(0, q)-forms with coefficients in L2(GΦ) we consider the inner product

〈φ, ψ〉 =

∫
GΦ

〈φ(z, t), ψ(z, t)〉 dV (z, t) .

The formal adjoint ∂̄∗b of ∂̄b can be easily computed to yield

∂
∗
b

(∑
|I|=q

φIβ
I)

=
∑

|J |=q−1

(
−

∑
k,|I|=q

εI
kJBkφI

)
β

J
. (4)

We now compute the Kohn Laplacian �(q)
b = ∂̄b∂̄

∗
b + ∂̄∗b ∂̄b.

Proposition 6.4. With respect to the selected basis, the operator �(q)
b is represented by

a matrix
(
�LK

)
of scalar left-invariant differential operators on GΦ as

�(q)
b

(∑
K

φKβ
K)

=
∑

L

(∑
K

�LKφK

)
β

L
.

Then,

�LK = δLKL0 +MLK

where δLK is the Kronecker delta, L0 = −1
2

∑n
k=1(BkBk +BkBk) and

MLK =


1
2

(∑
k∈K

[Bk, Bk]−
∑
k 6∈K

[Bk, Bk]
)

if K = L,

ε(K,L)[Bk, B`] if |{K ∩ L}| = q − 1,

0 otherwise.

Here, given two multi-indices K and L such that |K| = |L| = q and |{K ∩L}| = q− 1,
we set

ε(K,L) = (−1)m

where m is the number of elements in K ∩ L between the unique element k ∈ K \ L and
the unique element ` ∈ L \K.



KOHN LAPLACIANS ON CR MANIFOLDS 21

Notice that, even in this relatively fairly simple situation, the Kohn Laplacian is far
from being diagonal.

Proof. The proof follows similar lines to the ones in the case of the Heisenberg group.
One can easily see that

∂̄b(∂̄
∗
bφ) = −

∑
|L|=q

( ∑
k,`,|J |=q−1,|K|=q

εK
kJε

L
`JB`BkφK

)
β

L

and that

∂̄∗b (∂̄bφ) = −
∑
|L|=q

( ∑
i,j,|H|=q+1,|K|=q

εH
jKε

H
iLBiBjφK

)
β

L
.

Hence,

�(q)
b (φ) = −

∑
|L|=q

∑
|K|=q

( ∑
`,k,|J |=q−1

εK
kJε

L
`JB`Bk +

∑
i,j,|H|=q+1

εH
jKε

H
iLBiBj

)
φKβ

L
.

Then,

�LK = −
∑

`,k,|J |=q−1

εK
kJε

L
`JB`Bk −

∑
i,j,|H|=q+1

εH
jKε

H
iLBiBj. (5)

When K = L the indices k and ` are forced to be equal, as well as i and j. Hence,

�LL = −
(∑

k∈L

BkBk +
∑
j 6∈L

BjBj

)
= −1

2

n∑
k=1

(BkBk +BkBk)−
1

2

(∑
k∈L

[Bk, Bk] +
∑
k 6∈L

[Bk, Bk]
)
.

This proves the statement for the terms along the diagonal.
When K 6= L, the coefficient εK

kJε
L
`J is different from 0 if only if K = J ∪ {k} and

L = J ∪ {`}. Notice that, given K and L such that |{K ∩ L}| = q − 1, they uniquely
determine J, k and `. Analogously, εH

jKε
H
iL 6= 0 if and only if H = K ∪ {j} = L ∪ {i}.

Then, necessarily, |{K ∩ L}| = q − 1 as before, and if k and ` are as above, j = ` and
i = k.

It follows that �LK = 0 unless |{K ∩ L}| = q − 1. In this case, each of the sums in (5)
reduces to one single term, and

�LK = −εK
kJε

L
`JB`Bk − εH

`Kε
H
kLBkB`,

with J = K ∩ L and H = K ∪ L. Moreover,

εK
kJε

L
`J = −εH

`Kε
H
kL = ε(K,L) .

Thus,
�LK = ε(K,L)[Bk, B`],

which proves the proposition. 2

6.5. The main results on GΦ. We now present the main theorems on the Kohn
Laplacian and the ∂b-equations on GΦ. References for these results are [PR1, PR2].

We begin with the local solvability for 2b,q.
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Theorem 6.6. The Kohn Laplacian 2b,q is locally solvable if and only if there is no
τ ∈ N ∗ (M) such that n+(τ) = q and n−(τ) = n− q.

More precisely, the following conditions are equivalent.

(1) Ωq is non-empty;
(2) 2b,q is not locally solvable;
(3) ker2b,q ∩ L2Λ0,q(GΦ) is non-empty;

When 2b,q is not solvable, the orthogonal projection onto its L2-null-space is given by
convolution on GΦ with an operator-valued distribution Sq for which it is possible to give
an explicit formula.

Next we discuss the hypoellipticity of the Kohn Laplacian.

Definition 6.7. We say that a CR manifold M with Levi form Φ satisfies condition Y (q)
at a point z ∈M is for every τ ∈ N∗(M), Φτ

z has at least max(q+1, n−q+1) eigenvalues
with the same sign, or at least min(q + 1, n − q + 1) pairs of eigenvalues with opposite
signs.

Theorem 6.8. The following conditions are equivalent:

(1) span R{Φ(z, z)} = N(M) and there exists C > 0 such that for each φ in the
Schwartz space

‖
(
L0 ⊗ I

)
φ‖L2 ≤ C‖2b,qφ‖L2 ;

(2) 2b,q is hypoelliptic;

(3) there exists no non-zero τ ∈ N∗(M) such that n+(τ) ≤ n− q and n−(τ) ≤ q;

(4) Φ satisfies condition Y (q).

We remark that condition (3) and (4) are both equivalent to the following condition:
There exists no non-zero τ ∈ N∗(M) such that{

min
(
n+(τ), n−(τ)

)
≤ min(q, n− q)

max
(
n+(τ), n−(τ)

)
≤ max(q, n− q) .

Proofs of these theorems are based on the group Fourier transform, introduction and
discussion of which would require space and effort that go beyond the scope of these
lectures. We refer to the paper [PR1] for some details.

7. Sufficiency of the Y (q) condition for hypoellipticity

In this final section we return to the case of a general CR manifold. The result we
present are due to Shaw and Wang [ShW].

Recall the decomposition (1) of the complexified tangent space of M

TCM = L ⊕ L⊕N(M) .

Let {L1, . . . , Ln, L1, . . . , Ln, T1, . . . , Tk} be a basis for the smooth sections of the tangent
bundle TCM , with L1, . . . , Ln smooth sections of L,
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Lemma 7.1. Assume that M satisfies condition Y (q) at a point z ∈M . Then there exists
an open neighborhood U of z on which the vector fields {X1, . . . , Xn} satisfy Hörmander’s
condition, where

Xj = <Lj j = 1, . . . , n; Xj = =Lj j = n+ 1, . . . , 2n .

Proof. In fact, it suffices to consider the first order commutators in order to span the
tangent space R2n+k. For, let τ` be a given direction inN(M)∗. Since Pz satisfies condition
Y (q), Phiτ` is such that

min(q, n− q) ≤ n+(τ`), n
−(τ`) ≤ max(q, n− q) .

In particular Phiτ` has at least a non-zero eigenvalue. Since Phiτ` is the matrix whose
entries with respect to the basis {L1, . . . , Ln} are

δjk[Lj, Lk]

we see that there exists at least one j such that [Lj, Lj] has non-trivial component in the
direction J(τ`). 2

This lemma alone does not guarantees that 2b,q is hypoelliptic, since (2b,q is not a
scalar operator and) the lower order terms are not real.

Theorem 7.2. Suppose that M is a CR manifold of CR dimension n and codimension
k ≥ 1. Assume that satisfies condition Y (q) at a point z ∈M . Then there exists an open
neighborhood U of z on which the Kohn Laplacian 2b,q satisfies the subelliptic estimates

‖η1φ‖Hs+1 ≤ C
(
‖η22b,qφ‖Hs + ‖φ‖

)
,

where η1, η2 are C∞ cut-off fucntions supported in U , η2 = 1 on supp η1.

Proof. For a complete proof we refer the reader to [ShW]. Here we sketch the argument.
Define

Qb(φ, φ) = ‖∂bφ‖2 + ‖dbb∗φ2‖2 + ‖φ‖2

One begins by showing that, by setting
n∑

j=1

‖Ljφ‖2 = ‖φ‖2
L ,

n∑
j=1

‖Ljφ‖2 = ‖φ‖2
L ,

we have

‖φ‖2
L + ‖φ‖2

L +
k∑

`=1

∑
I,j

|<(T`φIJ , φIJ)| ≤ CQb(φ, φ) . (6)

From this, using the Hörmander condition on the vector fields {X1, . . . , X2n} and the
corresponding subelliptic estimates, it follows that

‖φ‖H1/2 ≤ CQb(φ, φ) , (7)

which in turns implies the desired estimate.
In order to prove (6) one manipulates the energy form Qb(φ, φ) to obtain the estimate

from below (here we assume k = 1 for simplicity of notation)

Qb(φ, φ) ≥ ε‖φ‖2
L +

∑
I,J

aIJ<(T`φIJ , φIJ)− δ
(
‖φ‖2

L + ‖φ‖2) ,
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where
aIJ =

∑
j∈J\σI,J

λj − (1− ε)
∑

j∈σI,J\J

λj + ε
∑

j∈σI,J∩\J

λj ,

the λj’s are the eigeinvalues of Φ (that we are assume to be scalar-valued for simplicitynow)
and

σI, J = {j : λj < 0 if <(T`φIJ , φIJ) > 0 and λj > 0 if <(T`φIJ , φIJ) < 0} .
Since M satisfies the condition Y (q), we can select ε > 0 and small so that

aIJ > 0 .

From this the result follows. 2
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