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1. Introduction

The aim of this paper is to show a one-side Liouville theorem for a class of
hypoelliptic ultraparabolic equations and for their “stationary” counterpart.
The operators we shall deal with are of the following type:

N N
(1.1) L= 0p(aij(x)0s,) + Y bi(2)0p, — 0 in RV,
ij=1 i=1

where the coefficients a;; and b; are smooth functions defined in RY. The matrix
A = (aij), 4,j=1,...,N, is supposed to be symmetric and nonnegative definite
at any point of RY.

Throughout the paper we shall denote by z = (z,t), z € RY, t € R, the point
of RN*1 and by Y the vector field in RN+1

N
(1.2) Y =) bi(2)0a, — 0y

Moreover, we shall denote by Ly the stationary part of L, i. e.

N N
(1.3) Lo=Y Ou,(aij(2)0s,) + > bi(x)0n,.

i,j=1 i=1
We assume the following hypotheses.

(H1) £ is hypoelliptic in R¥+! and homogeneous of degree two with respect to
the group of dilations (dy)xso given by

(1.4) da(e,t) = (Dalw),X20)
Dy(z) = Dx(z1,...,2n) = (AN"21,..., A VaN),
where o = (01,...,0x) is an N-tuple of natural numbers satisfying

1=01; <oy <...<opn. L is dy-homogeneous of degree two if
L(u(dx(z,t))) = )\2(£u)(d,\(x,t)) Yu € COO(RN+1).
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(H2) For every (z,t), (y,7) € R¥*1 ¢ > 7 there exists an £- admissible path
n:[0,T] — RN+ guch that n(0) = (z,t), n(T) = (y, 7).
An L-admissible path is any continuous path 7 which is the sum of a finite number
of diffusion and drift trajectories.
A diffusion trajectory is a curve 7 satisfying, at any points of its domain, the
inequality

((1'(5),6)* < (A(n(s)€,€) Ve RV,

Here (,) denotes the inner product in RN+ and A(z) = A(x,t) = A(x) stands for
the (N + 1) x (N + 1) matrix

; A 0

(2,

A drift trajectory is a positively oriented integral curve of Y.
Throughout the paper we shall denote by ) the homogeneous dimension of
RN+ with respect to the dilations (1.4), i.e.

Q=o01+...+ony+2

and we assume

Q=5.

Then, the Dy-homogeneous dimension of RY is Q — 2 > 3.
We explicitly remark that the smoothness of the coeflicients of £ and the homogene-
ity assumption in (H1) imply that the a;;’ s and the b;’ s are polynomial functions
(see [L], Lemma 2).

For any z = (z,t) € RV*! we define the dy-homogeneous norm | - | by

|z| = |(z,t)] == (|=|* +t2)%

where
1
N 20 N
|lz| = |(z1,...,2n)| = (z3)i ,o=1|]oj.
J
j=1

Jj=1

The class of the operators just introduced contains the one recently considered
in [KL]. In particular, it contains the heat operators on Carnot groups, the proto-
type of Kolmogorov operators and the operators obtained by linking the previous
ones (see [KL], Example 9.3 and 9.7). An example of operators satisfying our hy-
potheses (H1) and (H2), and not contained in [KL] is given by £ = 92 +230,, — 0
in R3.

The main result of this paper is the following Liouville-type theorem.

THEOREM 1.1. Let u: RNT! — R be a (smooth) solution to Lu = 0 in RNFL,
Suppose u > 0 and

(1.5) u(0,t) = O(™) as t— o0
for some m > 0. Then

(1.6) u = const. in RN*HL
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Before proceeding we want to note that condition (1.5) cannot be removed in
order to get (1.6). Indeed, for example, the function

u(z,t) = exp(x1 + 22+ ... + x5 + Nt), zeRY, teR,

is nonnegative, non-constant and satisfies the heat equation
N
_ N+l _ 2
Au—0,=0 inRVM,  A=3"92.
j=1

We stress that u does not satisfy condition (1.5) since u(0,t) = exp(Nt).
From Theorem 1.1 a Liouville type theorem for Ly follows.

COROLLARY 1.2. Let v : RN — R be a (smooth) solution® to Lov = 0 in RV,
Then, if v >0,

v = const. in RY.
PrOOF. The function
w: RN SR, u(z,t) = v(z)
satisfies Lu = 0 in RN, Moreover, u > 0 and
u(0,t) = v(0) vt e R.
Then, by Theorem 1.1, u = const. in R¥*! so that v = const. in RV. [l

This Corollary extends to the present class of operators the Liouville Theorem 7.1
in [KL]. A Liouville type theorem for a very wide class of partial differential oper-
ators, homogeneous with respect to a group of dilations, was proved by Luo Xuebo
in [L]. Luo Xuebo’ s Theorem, which extends previous results by Geller [G] and
Rothschild [R], also applies to our operators and, in this context, reads as follows.

THEOREM. Let u be a tempered distribution satisfying, in the weak sense of
distributions, the equation

Lu=0 in RVHL

Then w is a polynomial function.
This result reduces the proof of Theorem 1.1 to the proof of the following

MAIN LEMMA. Let u : RNt — R be a nonnegative smooth solution to
Lu =0 in RNTL satisfying condition (1.5). Then,

u(z) = O(|z")  as|z] — o0

for a suitable n > 0.

This Lemma, together with Luo Xuebo’ s Theorem, immediately gives the

1Obviously7 Lo is hypoelliptic in RY since £ is hypoelliptic in RV*1. Then, every distribu-
tional solution to Lov = 0 is smooth.
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PrROOF OF THEOREM 1.1. Let u be a solution to Lu = 0 satisfying the hy-
potheses of Theorem 1.1. By the Main Lemma, u is a tempered distribution so that,
by Luo Xuebo’s Theorem, w is a polynomial function. Then, u = ug + ... + Um,
where uy, (k= 0,1,...,m) is a polynomial function dy-homogeneous of degree k and
Uy, > 0, since u > 0. On the other hand, being Lu = 0 and Luy dy-homogeneous
of degree k — 2, if £ > 2, we have Luy = 0 for every £ = 0,1,...,m. In particular
L, = 0. Since u,, is nonnegative and dy-homogeneous of degree m > 0, there
exists 2o = (zg,t0) € RN+ such that

Um (20) = Ri}glfl Uy -
By the strong maximum principle (see next section, Proposition 2.2) we then have
U (2, 1) = U (20, o) V (2,t) € RN x] — 00, to].
Since u,, is a polynomial function, this obviously implies
U (X, 1) = Um (x0, to) V (z,t) € RVHL

Then m = 0 and u = uyg, i.e. u is a constant function. (]

2. A Harnack Inequality

In this section we shall prove the following Harnack inequality for nonnegative
solutions to Lu = 0.

THEOREM 2.1. Let u : RN+l — R be a nonnegative solution to Lu = 0 in
RN*L. Then, there exist two positive constants C = C(L) and § = 0(L) such that
(2.1) supu < Cu(0,7?) vr>0,

or

where, for p >0, C, denotes the dx-symmetric ball
C, = {z e RV |2] < p}.

In order to prove this result, our main tool is a Mean-Value Theorem for the
L-harmonic functions, i.e. for the solutions to Lu = 0.

From hypotheses (H1) and (H2), by easily adapting the procedure already used
in [LP1], [BLU] and [KL], we can prove the existence of a fundamental solution
['(z,¢) of £ with the following properties.

(i) T is smooth in {(z,¢) € RN+*L x RN+1 | 2 £ (},
ii) T(-,¢) € LL (RN*1) and LT(-,¢) = =5 for every ¢ € RN*HL
) T(z,-) € LL (RN+1) and L*T'(2,-) = -4, for every z € RN*+1
(iv) limsup,_, ['(z,¢) = oo for every z € RN+,
) T(0,¢) — 0 as ¢ — o0, ['(0,dx(¢)) = A=9F21(0,¢),
) T((x,t),(&,7)) >0,>0iff t > 7,

(vii) T((z,1), (§,7)) = [((2,0), (§, 7 — 1))

In (iii) £* denotes the formal adjoint of £. We would like to stress that property
(vi) follows from the invariance of £ with respect to the translations parallel to the
t-axis. The second part of property (vi) can be proved as in [KL], Section 2, by
using the following strong maximum principle.

PROPOSITION 2.2. Let u be a nonnegative solution to the equation Lu = 0 in
the halfspace
S = RNX] — OO,to[, tg € R.
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Suppose there exists a point z1 = (x1,t1) € S such that
u(zy,t1) = 0.

Then u = 0 in RN x] — oo, t1].

PROOF. Let us denote by P, (S) the propagation set of z; in S, i.e. the set

P, (S)={z€S : thereexists an L-admissible path
n:[0,T] — S's. t. n(0) = 21, 9(T) = z}.
The hypothesis (H2) implies P,, (S) = RY x] — 0o, 1[. On the other hand since z;
is a minimum point of u and the minimum spreads all over P,, (see [A]), we get
u(z) = u(z) ¥ z € RV x] — oo, t4].

Then, the assertion follows since u(z1) = 0. O

For every (0,7) € RN*! and r > 0 we define the £-ball centered at (0,7) and
with radius r, as follows

Q,
Q,(0,7) := {geRN“ . T((0,7),¢) > (i) 2}.

Then, if Lu = 0 in RV, the following Mean Value formula holds

(2.2) u(0,T) = (1>Q2/QMmT)Kx11<>1wc>d4

r

where
<AV, VT >
K(T.() = S (=),
and I' stands for T'((0,7T), (¢, 7)). Moreover, <, > denotes the inner product in RY
and V¢ is the gradient operator (Og,, ..., 0y )-

Formula (2.2) is one of the numerous extensions of the classical Gauss Mean
Value Theorem for harmonic functions. For a proof of it we directly refer to [LP2],
Theorem 1.5.

The following lemmas will be crucial for our purposes.

LEMMA 2.3. Let U be an open connected subset of RN*L. Let u: U — R be
a smooth function such that

(2.3) A(x)Vu(z,t) =0, Yu(z,t)=0 Y (z,t) € U.
Then u is constant in U.

PROOF. Let us denote by X, the vector field

N
Xk = E akjamj.
Jj=1

Since L is hypoelliptic and its coefficients are polynomial functions, the following
rank condition holds (see [D])

(2.4)  rank Lie(Xq,..., XN, Y)(2,) = N+1 V¥ (z,t) € RN,
On the other hand, by hypothesis (2.3),
Zu=0 inU VZeLie(Xy,...,Xn,Y).
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Then, by the rank condition (2.4), V,u(z) = 0 at any point z € U, and u is
constant. (]

LEMMA 2.4. The closed set
U:={C=(&7) : K(T,()=0, 7<T}
does not contain interior points.

PROOF. We argue by contradiction and assume K (7T, ¢) = 0 for every ¢ in a non
empty connected open set U C RY x] — oo, T'[. Then, letting h(¢) := T'((0,T),(),
we have

A(E)Veh(&,m)=0 vV, T)eU,
hence div(AVh) = 0 in U. The L*-harmonicity of A now gives Yh = 0 in U.

Thus, by Lemma 2.3, h = const. in U. This is absurd because h(() = h({,7) =
I'((0,0), (,, 7 —1T)) and z — T'(0, 2) is dy-homogeneous of degree 2 —Q #0. O

LEMMA 2.5. There exists a positive constant 0 = 0(L) such that
Cyp C 02,,(0,1).

PRrROOF. By the property (vi) of T, it is I'((0, 1), (0,0)) > 0. Then, for a suitable
positive constant rg and 6y, we have

1\97?
r'((0,1),¢) > (7"0) V ¢ € Cy.
This means that

Co, C Qy, (0,1)
and the assertion is proved. O

We are now in the position to give the proof of Theorem 2.1.
Next Lemma easily follows from Theorem 7.1 in [B].

LEMMA 2.6. Let (uy) be a sequence of L-harmonic function in an open set
O C RN+L.

Lu, =0 1inQ Vn € N.

Suppose (uy,) is monotone increasing and convergent in a dense subset of Q. Then
(un) converges at any point of Q to a smooth function u such that Lu =0 in Q.

PROOF OF THEOREM 2.1. Since L is dx-homogeneous of degree two, it is enough
to prove inequality (2.1) for » = 1. We argue by contradiction and assume that

(2.1), with » = 1, is false. Then, there exists a sequence (u,) of nonnegative
L-harmonic functions such that
(2.5) sup uy, > 4"u,(0,1).

Co

By the Mean Value formula (2.2),

1\97?
(2.6)  un(0,1) = () / K(1,0) un(C) d¢, m €N,
Q. (0,1)

To

so that, since Q,,(0,1) 2 Cy, see Lemma 2.5,

Q-2
1 (0,1) > (1) [ K00 w0 dc
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On the other hand, by inequality (2.5) and Lemma 2.4, u,, and K(1,-) are strictly
positive in a non-empty open subset of Cy. It follows that u,(0,1) > 0 for every
n € N. Let us now put

Up, OOU
’Un:m and ’U:Z

n"

M‘ﬁ

n=1

From the Mean Value formulas (2.6) we obtain

1 = v(0) = (:())Qz / IRRGIORERS

so that,v < oo at any point of
T:={(e€,(0,1) : K(1,¢) > 0}.

By Proposition 2.2 the closure of T' contains €,,(0,1). Then, by Lemma 2.6, v is
finite and smooth in €2,,(0,1). In particular v is continuous in Cy. Then,

(2.7) sup v < oo.
Co
On the other hand, by inequality (2.5),
Un, 1 Up,
supf > sup — = —sup ——~ > 2",
TR TR SR (O
Hence supg, v > 2" for every n € N. This contradicts (2.7) and proves the Theorem.

O

With Theorem 2.1 at hand, the Main Lemma stated in the Introduction easily
follows.

PRrROOF OF MAIN LEMMA. Let u be a nonnegative L£-harmonic function in
RN+ satisfying the growth condition (2.2). Then, by Theorem 2.1,

sup u(z) < Cu(0,7?) < Cy(1 4 r*™).
|2 <0r

This obviously implies
u(z) < Co(1+ |2*™) Vz e RV,
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