One-Side Liouville Theorems for a Class of Hypoelliptic Ultraparabolic Equations

Alessia Elisabetta Kogoj and Ermanno Lanconelli

1. Introduction

The aim of this paper is to show a one-side Liouville theorem for a class of hypoelliptic ultraparabolic equations and for their "stationary" counterpart.

The operators we shall deal with are of the following type:

$$
\begin{equation*}
\mathcal{L}=\sum_{i, j=1}^{N} \partial_{x_{i}}\left(a_{i j}(x) \partial_{x_{j}}\right)+\sum_{i=1}^{N} b_{i}(x) \partial_{x_{i}}-\partial_{t} \quad \text { in } \mathbb{R}^{N+1} \tag{1.1}
\end{equation*}
$$

where the coefficients $a_{i j}$ and b_{i} are smooth functions defined in \mathbb{R}^{N}. The matrix $A=\left(a_{i j}\right), i, j=1, \ldots, N$, is supposed to be symmetric and nonnegative definite at any point of \mathbb{R}^{N}.

Throughout the paper we shall denote by $z=(x, t), x \in \mathbb{R}^{N}, t \in \mathbb{R}$, the point of \mathbb{R}^{N+1} and by Y the vector field in \mathbb{R}^{N+1}

$$
\begin{equation*}
Y:=\sum_{i=1}^{N} b_{i}(x) \partial_{x_{i}}-\partial_{t} . \tag{1.2}
\end{equation*}
$$

Moreover, we shall denote by \mathcal{L}_{0} the stationary part of \mathcal{L}, i. e.

$$
\begin{equation*}
\mathcal{L}_{0}=\sum_{i, j=1}^{N} \partial_{x_{i}}\left(a_{i j}(x) \partial_{x_{j}}\right)+\sum_{i=1}^{N} b_{i}(x) \partial_{x_{i}} . \tag{1.3}
\end{equation*}
$$

We assume the following hypotheses.
(H1) \mathcal{L} is hypoelliptic in \mathbb{R}^{N+1} and homogeneous of degree two with respect to the group of dilations $\left(d_{\lambda}\right)_{\lambda>0}$ given by

$$
\begin{align*}
d_{\lambda}(x, t) & =\left(D_{\lambda}(x), \lambda^{2} t\right) \tag{1.4}\\
D_{\lambda}(x) & =D_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\left(\lambda^{\sigma_{1}} x_{1}, \ldots, \lambda^{\sigma_{N}} x_{N}\right)
\end{align*}
$$

where $\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right)$ is an N-tuple of natural numbers satisfying $1=\sigma_{1} \leq \sigma_{2} \leq \ldots \leq \sigma_{N} . \mathcal{L}$ is d_{λ}-homogeneous of degree two if

$$
\mathcal{L}\left(u\left(d_{\lambda}(x, t)\right)\right)=\lambda^{2}(\mathcal{L} u)\left(d_{\lambda}(x, t)\right) \quad \forall u \in C^{\infty}\left(\mathbb{R}^{N+1}\right)
$$

(H2) For every $(x, t),(y, \tau) \in \mathbb{R}^{N+1}, t>\tau$, there exists an \mathcal{L} - admissible path $\eta:[0, T] \longrightarrow \mathbb{R}^{N+1}$ such that $\eta(0)=(x, t), \eta(T)=(y, \tau)$.
An \mathcal{L}-admissible path is any continuous path η which is the sum of a finite number of diffusion and drift trajectories.
A diffusion trajectory is a curve η satisfying, at any points of its domain, the inequality

$$
\left(\left\langle\eta^{\prime}(s), \xi\right\rangle\right)^{2} \leq\left\langle\hat{A}(\eta(s) \xi, \xi\rangle \quad \forall \xi \in \mathbb{R}^{N}\right.
$$

Here \langle,$\rangle denotes the inner product in \mathbb{R}^{N+1}$ and $\hat{A}(z)=\hat{A}(x, t)=\hat{A}(x)$ stands for the $(N+1) \times(N+1)$ matrix

$$
\hat{A}=\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right)
$$

A drift trajectory is a positively oriented integral curve of Y.
Throughout the paper we shall denote by Q the homogeneous dimension of \mathbb{R}^{N+1} with respect to the dilations (1.4), i.e.

$$
Q=\sigma_{1}+\ldots+\sigma_{N}+2
$$

and we assume

$$
Q \geq 5
$$

Then, the D_{λ}-homogeneous dimension of \mathbb{R}^{N} is $Q-2 \geq 3$.
We explicitly remark that the smoothness of the coefficients of \mathcal{L} and the homogeneity assumption in (H1) imply that the $a_{i j}$'s and the b_{i} 's are polynomial functions (see [L], Lemma 2).

For any $z=(x, t) \in \mathbb{R}^{N+1}$ we define the d_{λ}-homogeneous norm $|\cdot|$ by

$$
|z|=|(x, t)|:=\left(|x|^{4}+t^{2}\right)^{\frac{1}{4}}
$$

where

$$
|x|=\left|\left(x_{1}, \ldots, x_{N}\right)\right|=\left(\sum_{j=1}^{N}\left(x_{j}^{2}\right)^{\frac{\sigma}{\sigma_{j}}}\right)^{\frac{1}{2 \sigma}}, \sigma=\prod_{j=1}^{N} \sigma_{j} .
$$

The class of the operators just introduced contains the one recently considered in $[\mathbf{K L}]$. In particular, it contains the heat operators on Carnot groups, the prototype of Kolmogorov operators and the operators obtained by linking the previous ones (see [KL], Example 9.3 and 9.7). An example of operators satisfying our hypotheses (H1) and (H2), and not contained in $[\mathbf{K L}]$ is given by $\mathcal{L}=\partial_{x_{1}}^{2}+x_{1}^{3} \partial_{x_{2}}-\partial_{t}$ in \mathbb{R}^{3}.

The main result of this paper is the following Liouville-type theorem.
THEOREM 1.1. Let $u: \mathbb{R}^{N+1} \longrightarrow \mathbb{R}$ be a (smooth) solution to $\mathcal{L} u=0$ in \mathbb{R}^{N+1}. Suppose $u \geq 0$ and

$$
\begin{equation*}
u(0, t)=O\left(t^{m}\right) \quad \text { as } \quad t \longrightarrow \infty \tag{1.5}
\end{equation*}
$$

for some $m \geq 0$. Then

$$
\begin{equation*}
u=\text { const. } \quad \text { in } \quad \mathbb{R}^{N+1} \tag{1.6}
\end{equation*}
$$

Before proceeding we want to note that condition (1.5) cannot be removed in order to get (1.6). Indeed, for example, the function

$$
u(x, t)=\exp \left(x_{1}+x_{2}+\ldots+x_{N}+N t\right), \quad x \in \mathbb{R}^{N}, t \in \mathbb{R}
$$

is nonnegative, non-constant and satisfies the heat equation

$$
\Delta u-\partial_{t}=0 \quad \text { in } \mathbb{R}^{N+1}, \quad \Delta=\sum_{j=1}^{N} \partial_{x_{j}}^{2}
$$

We stress that u does not satisfy condition (1.5) since $u(0, t)=\exp (N t)$.
From Theorem 1.1 a Liouville type theorem for \mathcal{L}_{0} follows.
Corollary 1.2. Let $v: \mathbb{R}^{N} \longrightarrow \mathbb{R}$ be a (smooth) solution ${ }^{1}$ to $\mathcal{L}_{0} v=0$ in \mathbb{R}^{N}. Then, if $v \geq 0$,

$$
v=\text { const. } \quad \text { in } \mathbb{R}^{N}
$$

Proof. The function

$$
u: \mathbb{R}^{N+1} \longrightarrow \mathbb{R}, \quad u(x, t)=v(x)
$$

satisfies $\mathcal{L} u=0$ in \mathbb{R}^{N+1}. Moreover, $u \geq 0$ and

$$
u(0, t)=v(0) \quad \forall t \in \mathbb{R}
$$

Then, by Theorem 1.1, $u=$ const. in \mathbb{R}^{N+1} so that $v=$ const. in \mathbb{R}^{N}.
This Corollary extends to the present class of operators the Liouville Theorem 7.1 in [KL]. A Liouville type theorem for a very wide class of partial differential operators, homogeneous with respect to a group of dilations, was proved by Luo Xuebo in $[\mathbf{L}]$. Luo Xuebo's Theorem, which extends previous results by Geller $[\mathbf{G}]$ and Rothschild [R], also applies to our operators and, in this context, reads as follows.

Theorem. Let u be a tempered distribution satisfying, in the weak sense of distributions, the equation

$$
\mathcal{L} u=0 \quad \text { in } \mathbb{R}^{N+1}
$$

Then u is a polynomial function.
This result reduces the proof of Theorem 1.1 to the proof of the following
Main Lemma. Let $u: \mathbb{R}^{N+1} \longrightarrow \mathbb{R}$ be a nonnegative smooth solution to $\mathcal{L} u=0$ in \mathbb{R}^{N+1} satisfying condition (1.5). Then,

$$
u(z)=O\left(|z|^{n}\right) \quad \text { as }|z| \longrightarrow \infty
$$

for a suitable $n>0$.
This Lemma, together with Luo Xuebo's Theorem, immediately gives the

[^0]Proof of Theorem 1.1. Let u be a solution to $\mathcal{L} u=0$ satisfying the hypotheses of Theorem 1.1. By the Main Lemma, u is a tempered distribution so that, by Luo Xuebo's Theorem, u is a polynomial function. Then, $u=u_{0}+\ldots+u_{m}$, where $u_{k}(k=0,1, \ldots, m)$ is a polynomial function d_{λ}-homogeneous of degree k and $u_{m} \geq 0$, since $u \geq 0$. On the other hand, being $\mathcal{L} u=0$ and $\mathcal{L} u_{k} d_{\lambda}$-homogeneous of degree $k-2$, if $k \geq 2$, we have $\mathcal{L} u_{k}=0$ for every $k=0,1, \ldots, m$. In particular $\mathcal{L} u_{m}=0$. Since u_{m} is nonnegative and d_{λ}-homogeneous of degree $m \geq 0$, there exists $z_{0}=\left(x_{0}, t_{0}\right) \in \mathbb{R}^{N+1}$ such that

$$
u_{m}\left(z_{0}\right)=\inf _{\mathbb{R}^{N+1}} u_{m}
$$

By the strong maximum principle (see next section, Proposition 2.2) we then have

$$
\left.u_{m}(x, t)=u_{m}\left(x_{0}, t_{0}\right) \quad \forall(x, t) \in \mathbb{R}^{N} \times\right]-\infty, t_{0}[
$$

Since u_{m} is a polynomial function, this obviously implies

$$
u_{m}(x, t)=u_{m}\left(x_{0}, t_{0}\right) \quad \forall(x, t) \in \mathbb{R}^{N+1}
$$

Then $m=0$ and $u \equiv u_{0}$, i.e. u is a constant function.

2. A Harnack Inequality

In this section we shall prove the following Harnack inequality for nonnegative solutions to $\mathcal{L} u=0$.

THEOREM 2.1. Let $u: \mathbb{R}^{N+1} \longrightarrow \mathbb{R}$ be a nonnegative solution to $\mathcal{L} u=0$ in \mathbb{R}^{N+1}. Then, there exist two positive constants $C=C(\mathcal{L})$ and $\theta=\theta(\mathcal{L})$ such that

$$
\begin{equation*}
\sup _{C_{\theta r}} u \leq C u\left(0, r^{2}\right) \quad \forall r>0 \tag{2.1}
\end{equation*}
$$

where, for $\rho>0, C_{\rho}$ denotes the d_{λ}-symmetric ball

$$
C_{\rho}:=\left\{z \in \mathbb{R}^{N+1}| | z \mid<\rho\right\}
$$

In order to prove this result, our main tool is a Mean-Value Theorem for the \mathcal{L}-harmonic functions, i.e. for the solutions to $\mathcal{L} u=0$.

From hypotheses (H1) and (H2), by easily adapting the procedure already used in $[\mathbf{L P} \mathbf{1}],[\mathbf{B L U}]$ and $[\mathbf{K L}]$, we can prove the existence of a fundamental solution $\Gamma(z, \zeta)$ of \mathcal{L} with the following properties.
(i) Γ is smooth in $\left\{(z, \zeta) \in \mathbb{R}^{N+1} \times \mathbb{R}^{N+1} \mid z \neq \zeta\right\}$,
(ii) $\Gamma(\cdot, \zeta) \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N+1}\right)$ and $\mathcal{L} \Gamma(\cdot, \zeta)=-\delta_{\zeta}$ for every $\zeta \in \mathbb{R}^{N+1}$,
(iii) $\Gamma(z, \cdot) \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N+1}\right)$ and $\mathcal{L}^{*} \Gamma(z, \cdot)=-\delta_{z}$ for every $z \in \mathbb{R}^{N+1}$,
(iv) $\lim \sup _{\zeta \rightarrow z} \Gamma(z, \zeta)=\infty$ for every $z \in \mathbb{R}^{N+1}$,
(v) $\Gamma(0, \zeta) \longrightarrow 0$ as $\zeta \longrightarrow \infty, \Gamma\left(0, d_{\lambda}(\zeta)\right)=\lambda^{-Q+2} \Gamma(0, \zeta)$,
(vi) $\Gamma((x, t),(\xi, \tau)) \geq 0,>0$ iff $t>\tau$,
(vii) $\Gamma((x, t),(\xi, \tau))=\Gamma((x, 0),(\xi, \tau-t))$.

In (iii) \mathcal{L}^{*} denotes the formal adjoint of \mathcal{L}. We would like to stress that property (vi) follows from the invariance of \mathcal{L} with respect to the translations parallel to the t-axis. The second part of property (vi) can be proved as in [KL], Section 2, by using the following strong maximum principle.

Proposition 2.2. Let u be a nonnegative solution to the equation $\mathcal{L} u=0$ in the halfspace

$$
\left.S:=\mathbb{R}^{N} \times\right]-\infty, t_{0}\left[, t_{0} \in \mathbb{R}\right.
$$

Suppose there exists a point $z_{1}=\left(x_{1}, t_{1}\right) \in S$ such that

$$
u\left(x_{1}, t_{1}\right)=0
$$

Then $u=0$ in $\left.\mathbb{R}^{N} \times\right]-\infty, t_{1}[$.
Proof. Let us denote by $P_{z_{1}}(S)$ the propagation set of z_{1} in S, i.e. the set

$$
\begin{aligned}
P_{z_{1}}(S)=\{z \in S: & \text { there exists an } \mathcal{L} \text {-admissible path } \\
& \left.\eta:[0, T] \longrightarrow S \text { s. t. } \eta(0)=z_{1}, \eta(T)=z\right\} .
\end{aligned}
$$

The hypothesis (H2) implies $\left.P_{z_{1}}(S)=\mathbb{R}^{N} \times\right]-\infty, t_{1}\left[\right.$. On the other hand since z_{1} is a minimum point of u and the minimum spreads all over $P_{z_{1}}$ (see $[\mathbf{A}]$), we get

$$
\left.u(z)=u\left(z_{1}\right) \quad \forall z \in \mathbb{R}^{N} \times\right]-\infty, t_{1}[.
$$

Then, the assertion follows since $u\left(z_{1}\right)=0$.
For every $(0, T) \in \mathbb{R}^{N+1}$ and $r>0$ we define the \mathcal{L}-ball centered at $(0, T)$ and with radius r, as follows

$$
\Omega_{r}(0, T):=\left\{\zeta \in \mathbb{R}^{N+1}: \Gamma((0, T), \zeta)>\left(\frac{1}{r}\right)^{Q-2}\right\}
$$

Then, if $\mathcal{L} u=0$ in \mathbb{R}^{N+1}, the following Mean Value formula holds

$$
\begin{equation*}
u(0, T)=\left(\frac{1}{r}\right)^{Q-2} \int_{\Omega_{r}(0, T)} K(T, \zeta) u(\zeta) d \zeta \tag{2.2}
\end{equation*}
$$

where

$$
K(T, \zeta)=\frac{<A(\xi) \nabla_{\xi} \Gamma, \nabla_{\xi} \Gamma>}{\Gamma^{2}}, \quad \zeta=(\xi, \tau)
$$

and Γ stands for $\Gamma((0, T),(\xi, \tau))$. Moreover, $<,>$ denotes the inner product in \mathbb{R}^{N} and ∇_{ξ} is the gradient operator $\left(\partial_{\xi_{1}}, \ldots, \partial_{\xi_{N}}\right)$.

Formula (2.2) is one of the numerous extensions of the classical Gauss Mean Value Theorem for harmonic functions. For a proof of it we directly refer to $[\mathbf{L P 2}]$, Theorem 1.5.

The following lemmas will be crucial for our purposes.
Lemma 2.3. Let U be an open connected subset of \mathbb{R}^{N+1}. Let $u: U \longrightarrow \mathbb{R}$ be a smooth function such that

$$
\begin{equation*}
A(x) \nabla_{x} u(x, t)=0, \quad Y u(x, t)=0 \quad \forall(x, t) \in U \tag{2.3}
\end{equation*}
$$

Then u is constant in U.
Proof. Let us denote by X_{k} the vector field

$$
X_{k}:=\sum_{j=1}^{N} a_{k j} \partial_{x_{j}}
$$

Since \mathcal{L} is hypoelliptic and its coefficients are polynomial functions, the following rank condition holds (see [D])

$$
\begin{equation*}
\operatorname{rank} \operatorname{Lie}\left(X_{1}, \ldots, X_{N}, Y\right)(x, t)=N+1 \quad \forall(x, t) \in \mathbb{R}^{N+1} \tag{2.4}
\end{equation*}
$$

On the other hand, by hypothesis (2.3),

$$
Z u=0 \quad \text { in } U \quad \forall Z \in \operatorname{Lie}\left(X_{1}, \ldots, X_{N}, Y\right)
$$

Then, by the rank condition (2.4), $\nabla_{z} u(z)=0$ at any point $z \in U$, and u is constant.

Lemma 2.4. The closed set

$$
U:=\{\zeta=(\xi, \tau): K(T, \zeta)=0, \tau<T\}
$$

does not contain interior points.
Proof. We argue by contradiction and assume $K(T, \zeta)=0$ for every ζ in a non empty connected open set $\left.U \subseteq \mathbb{R}^{N} \times\right]-\infty, T[$. Then, letting $h(\zeta):=\Gamma((0, T), \zeta)$, we have

$$
A(\xi) \nabla_{\xi} h(\xi, \tau)=0 \quad \forall(\xi, \tau) \in U
$$

hence $\operatorname{div}(A \nabla h) \equiv 0$ in U. The \mathcal{L}^{*}-harmonicity of h now gives $Y h \equiv 0$ in U. Thus, by Lemma 2.3, $h=$ const. in U. This is absurd because $h(\zeta)=h(\xi, \tau)=$ $\Gamma((0,0),(\xi, \tau-T))$ and $z \longmapsto \Gamma(0, z)$ is d_{λ}-homogeneous of degree $2-Q \neq 0$.

Lemma 2.5. There exists a positive constant $\theta=\theta(\mathcal{L})$ such that

$$
C_{\theta} \subseteq \Omega_{r_{0}}(0,1)
$$

Proof. By the property (vi) of Γ, it is $\Gamma((0,1),(0,0))>0$. Then, for a suitable positive constant r_{0} and θ_{0}, we have

$$
\Gamma((0,1), \zeta)>\left(\frac{1}{r_{0}}\right)^{Q-2} \quad \forall \zeta \in C_{\theta}
$$

This means that

$$
C_{\theta_{0}} \subseteq \Omega_{r_{0}}(0,1)
$$

and the assertion is proved.
We are now in the position to give the proof of Theorem 2.1. Next Lemma easily follows from Theorem 7.1 in $[\mathbf{B}]$.

Lemma 2.6. Let $\left(u_{n}\right)$ be a sequence of \mathcal{L}-harmonic function in an open set $\Omega \subseteq \mathbb{R}^{N+1}$:

$$
\mathcal{L} u_{n}=0 \quad \text { in } \Omega \quad \forall n \in \mathbb{N}
$$

Suppose $\left(u_{n}\right)$ is monotone increasing and convergent in a dense subset of Ω. Then $\left(u_{n}\right)$ converges at any point of Ω to a smooth function u such that $\mathcal{L} u=0$ in Ω.

Proof of Theorem 2.1. Since \mathcal{L} is d_{λ}-homogeneous of degree two, it is enough to prove inequality (2.1) for $r=1$. We argue by contradiction and assume that (2.1), with $r=1$, is false. Then, there exists a sequence $\left(u_{n}\right)$ of nonnegative \mathcal{L}-harmonic functions such that

$$
\begin{equation*}
\sup _{C_{\theta}} u_{n} \geq 4^{n} u_{n}(0,1) \tag{2.5}
\end{equation*}
$$

By the Mean Value formula (2.2),

$$
\begin{equation*}
u_{n}(0,1)=\left(\frac{1}{r_{0}}\right)^{Q-2} \int_{\Omega_{r_{0}}(0,1)} K(1, \zeta) u_{n}(\zeta) d \zeta, \quad n \in \mathbb{N} \tag{2.6}
\end{equation*}
$$

so that, since $\Omega_{r_{0}}(0,1) \supseteq C_{\theta}$, see Lemma 2.5,

$$
u_{n}(0,1) \geq\left(\frac{1}{r_{0}}\right)^{Q-2} \int_{C_{\theta}} K(1, \zeta) u_{n}(\zeta) d \zeta
$$

On the other hand, by inequality (2.5) and Lemma 2.4, u_{n} and $K(1, \cdot)$ are strictly positive in a non-empty open subset of C_{θ}. It follows that $u_{n}(0,1)>0$ for every $n \in \mathbb{N}$. Let us now put

$$
v_{n}=\frac{u_{n}}{u_{n}(0,1)} \quad \text { and } \quad v=\sum_{n=1}^{\infty} \frac{v_{n}}{2^{n}} .
$$

From the Mean Value formulas (2.6) we obtain

$$
1=v(0)=\left(\frac{1}{r_{0}}\right)^{Q-2} \int_{\Omega_{r_{0}}(0,1)} K(1, \zeta) v(\zeta) d \zeta
$$

so that, $v<\infty$ at any point of

$$
T:=\left\{\zeta \in \Omega_{r_{0}}(0,1): K(1, \zeta)>0\right\}
$$

By Proposition 2.2 the closure of T contains $\Omega_{r_{0}}(0,1)$. Then, by Lemma 2.6, v is finite and smooth in $\Omega_{r_{0}}(0,1)$. In particular v is continuous in C_{θ}. Then,

$$
\begin{equation*}
\sup _{C_{\theta}} v<\infty . \tag{2.7}
\end{equation*}
$$

On the other hand, by inequality (2.5),

$$
\sup _{C_{\theta}} \theta \geq \sup _{C_{\theta}} \frac{v_{n}}{2^{n}}=\frac{1}{2^{n}} \sup \frac{u_{n}}{u_{n}(0)} \geq 2^{n}
$$

Hence $\sup _{C_{\theta}} v \geq 2^{n}$ for every $n \in \mathbb{N}$. This contradicts (2.7) and proves the Theorem.

With Theorem 2.1 at hand, the Main Lemma stated in the Introduction easily follows.

Proof of Main Lemma. Let u be a nonnegative \mathcal{L}-harmonic function in \mathbb{R}^{N+1} satisfying the growth condition (2.2). Then, by Theorem 2.1,

$$
\sup _{|z| \leq \theta r} u(z) \leq C u\left(0, r^{2}\right) \leq C_{1}\left(1+r^{2 n}\right)
$$

This obviously implies

$$
u(z) \leq C_{2}\left(1+|z|^{2 n}\right) \quad \forall z \in \mathbb{R}^{N}
$$

References

[A] K. Amano, Maximum principle for degenerate elliptic-parabolic operators, Indiana Univ. Math. J. 29 (1979), 545-557.
[B] J.M. Bony, Principe de maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, Grenoble 19 (1969), 277-304.
[BLU] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Uniform gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Advances Diff. Equat. 7 (2002), 1153-1192.
[D] M. Derridj, Un problème aux limites pour une classe d' operatéurs du second ordre hypoelliptiques, Ann. Inst. Fourier (Grenoble) 21 (1971), 147-171.
[G] D. Geller, Liouville's Theorem for homogeneous groups, Comm. in Partial Diff. Eq. 8 (1983), 1665-1677.
[KL] A.E. Kogoj and E. Lanconelli, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math., to appear.
[L] Luo Xuebo, Liouville's Theorem for homogeneous differential operators, Comm. in Partial Diff. Eq. 22 (1997), 1813-1848.
[LP1] E. Lanconelli and A. Pascucci, On the fundamental solution for hypoelliptic second order partial differential equations with non-negative characteristic form, Ricerche di matematica 43 (1999), 81-106.
[LP2] , Superparabolic Functions Related to Second Order Hypoelliptic Operators, Potential Analysis 11 (1999), 303-323.
[R] L.P. Rothschild, A remark on hypoellipticity of homogeneous invariant differential operators on nilpotent Lie groups, Comm. P.D.E. 8 (1983), 1679-1682.

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5, IT-40126 Bologna, Italy

E-mail address: kogoj@dm.unibo.it
Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5, IT-40126 Bologna, Italy

E-mail address: lanconel@dm.unibo.it

[^0]: ${ }^{1}$ Obviously, \mathcal{L}_{0} is hypoelliptic in \mathbb{R}^{N} since \mathcal{L} is hypoelliptic in \mathbb{R}^{N+1}. Then, every distributional solution to $\mathcal{L}_{0} v=0$ is smooth.

