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1. Introduction

The aim of this paper is to show a one-side Liouville theorem for a class of
hypoelliptic ultraparabolic equations and for their “stationary” counterpart.

The operators we shall deal with are of the following type:

L =
N∑

i,j=1

∂xi(aij(x)∂xj ) +
N∑

i=1

bi(x)∂xi − ∂t in RN+1,(1.1)

where the coefficients aij and bi are smooth functions defined in RN . The matrix
A = (aij), i, j = 1, . . . , N , is supposed to be symmetric and nonnegative definite
at any point of RN .

Throughout the paper we shall denote by z = (x, t), x ∈ RN , t ∈ R, the point
of RN+1 and by Y the vector field in RN+1

Y :=
N∑

i=1

bi(x)∂xi − ∂t.(1.2)

Moreover, we shall denote by L0 the stationary part of L, i. e.

L0 =
N∑

i,j=1

∂xi(aij(x)∂xj ) +
N∑

i=1

bi(x)∂xi .(1.3)

We assume the following hypotheses.
(H1) L is hypoelliptic in RN+1 and homogeneous of degree two with respect to

the group of dilations (dλ)λ>0 given by

dλ(x, t) = (Dλ(x), λ2t)(1.4)
Dλ(x) = Dλ(x1, . . . , xN ) = (λσ1x1, . . . , λ

σN xN ),

where σ = (σ1, . . . , σN ) is an N -tuple of natural numbers satisfying
1 = σ1 ≤ σ2 ≤ . . . ≤ σN . L is dλ-homogeneous of degree two if

L(u(dλ(x, t))) = λ2(Lu)(dλ(x, t)) ∀u ∈ C∞(RN+1).
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(H2) For every (x, t), (y, τ) ∈ RN+1, t > τ , there exists an L- admissible path
η : [0, T ] −→ RN+1 such that η(0) = (x, t), η(T ) = (y, τ).

An L-admissible path is any continuous path η which is the sum of a finite number
of diffusion and drift trajectories.
A diffusion trajectory is a curve η satisfying, at any points of its domain, the
inequality

(〈η′(s), ξ〉)2 ≤ 〈Â(η(s)ξ, ξ〉 ∀ξ ∈ RN .

Here 〈, 〉 denotes the inner product in RN+1 and Â(z) = Â(x, t) = Â(x) stands for
the (N + 1)× (N + 1) matrix

Â =
(

A 0
0 0

)
.

A drift trajectory is a positively oriented integral curve of Y .
Throughout the paper we shall denote by Q the homogeneous dimension of

RN+1 with respect to the dilations (1.4), i.e.

Q = σ1 + . . . + σN + 2

and we assume

Q ≥ 5.

Then, the Dλ-homogeneous dimension of RN is Q− 2 ≥ 3.
We explicitly remark that the smoothness of the coefficients of L and the homogene-
ity assumption in (H1) imply that the aij ’ s and the bi’ s are polynomial functions
(see [L], Lemma 2).

For any z = (x, t) ∈ RN+1 we define the dλ-homogeneous norm | · | by

|z| = |(x, t)| := (|x|4 + t2)
1
4

where

|x| = |(x1, . . . , xN )| =



N∑

j=1

(x2
j )

σ
σj




1
2σ

, σ =
N∏

j=1

σj .

The class of the operators just introduced contains the one recently considered
in [KL]. In particular, it contains the heat operators on Carnot groups, the proto-
type of Kolmogorov operators and the operators obtained by linking the previous
ones (see [KL], Example 9.3 and 9.7). An example of operators satisfying our hy-
potheses (H1) and (H2), and not contained in [KL] is given by L = ∂2

x1
+x3

1∂x2−∂t

in R3.
The main result of this paper is the following Liouville-type theorem.

Theorem 1.1. Let u : RN+1 −→ R be a (smooth) solution to Lu = 0 in RN+1.
Suppose u ≥ 0 and

u(0, t) = O(tm) as t −→∞(1.5)

for some m ≥ 0. Then

u = const. in RN+1.(1.6)
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Before proceeding we want to note that condition (1.5) cannot be removed in
order to get (1.6). Indeed, for example, the function

u(x, t) = exp(x1 + x2 + . . . + xN + Nt), x ∈ RN , t ∈ R,

is nonnegative, non-constant and satisfies the heat equation

∆u− ∂t = 0 in RN+1, ∆ =
N∑

j=1

∂2
xj

.

We stress that u does not satisfy condition (1.5) since u(0, t) = exp(Nt).
From Theorem 1.1 a Liouville type theorem for L0 follows.

Corollary 1.2. Let v : RN −→ R be a (smooth) solution1 to L0v = 0 in RN .
Then, if v ≥ 0,

v = const. in RN .

Proof. The function

u : RN+1 −→ R, u(x, t) = v(x)

satisfies Lu = 0 in RN+1. Moreover, u ≥ 0 and

u(0, t) = v(0) ∀t ∈ R.

Then, by Theorem 1.1, u = const. in RN+1 so that v = const. in RN . ¤

This Corollary extends to the present class of operators the Liouville Theorem 7.1
in [KL]. A Liouville type theorem for a very wide class of partial differential oper-
ators, homogeneous with respect to a group of dilations, was proved by Luo Xuebo
in [L]. Luo Xuebo’ s Theorem, which extends previous results by Geller [G] and
Rothschild [R], also applies to our operators and, in this context, reads as follows.

Theorem. Let u be a tempered distribution satisfying, in the weak sense of
distributions, the equation

Lu = 0 in RN+1.

Then u is a polynomial function.

This result reduces the proof of Theorem 1.1 to the proof of the following

Main Lemma. Let u : RN+1 −→ R be a nonnegative smooth solution to
Lu = 0 in RN+1 satisfying condition (1.5). Then,

u(z) = O(|z|n) as |z| −→ ∞
for a suitable n > 0.

This Lemma, together with Luo Xuebo’ s Theorem, immediately gives the

1Obviously, L0 is hypoelliptic in RN since L is hypoelliptic in RN+1. Then, every distribu-
tional solution to L0v = 0 is smooth.
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Proof of Theorem 1.1. Let u be a solution to Lu = 0 satisfying the hy-
potheses of Theorem 1.1. By the Main Lemma, u is a tempered distribution so that,
by Luo Xuebo’s Theorem, u is a polynomial function. Then, u = u0 + . . . + um,
where uk (k = 0, 1, . . . , m) is a polynomial function dλ-homogeneous of degree k and
um ≥ 0, since u ≥ 0. On the other hand, being Lu = 0 and Luk dλ-homogeneous
of degree k − 2, if k ≥ 2, we have Luk = 0 for every k = 0, 1, . . . ,m. In particular
Lum = 0. Since um is nonnegative and dλ-homogeneous of degree m ≥ 0, there
exists z0 = (x0, t0) ∈ RN+1 such that

um(z0) = inf
RN+1

um.

By the strong maximum principle (see next section, Proposition 2.2) we then have

um(x, t) = um(x0, t0) ∀ (x, t) ∈ RN×]−∞, t0[.

Since um is a polynomial function, this obviously implies

um(x, t) = um(x0, t0) ∀ (x, t) ∈ RN+1.

Then m = 0 and u ≡ u0, i.e. u is a constant function. ¤

2. A Harnack Inequality

In this section we shall prove the following Harnack inequality for nonnegative
solutions to Lu = 0.

Theorem 2.1. Let u : RN+1 −→ R be a nonnegative solution to Lu = 0 in
RN+1. Then, there exist two positive constants C = C(L) and θ = θ(L) such that

sup
Cθr

u ≤ Cu(0, r2) ∀ r > 0,(2.1)

where, for ρ > 0, Cρ denotes the dλ-symmetric ball

Cρ := {z ∈ RN+1| |z| < ρ}.
In order to prove this result, our main tool is a Mean-Value Theorem for the

L-harmonic functions, i.e. for the solutions to Lu = 0.
From hypotheses (H1) and (H2), by easily adapting the procedure already used

in [LP1], [BLU] and [KL], we can prove the existence of a fundamental solution
Γ(z, ζ) of L with the following properties.

(i) Γ is smooth in {(z, ζ) ∈ RN+1 × RN+1 | z 6= ζ},
(ii) Γ(·, ζ) ∈ L1

loc(RN+1) and LΓ(·, ζ) = −δζ for every ζ ∈ RN+1,
(iii) Γ(z, ·) ∈ L1

loc(RN+1) and L∗Γ(z, ·) = −δz for every z ∈ RN+1,
(iv) lim supζ→z Γ(z, ζ) = ∞ for every z ∈ RN+1,

(v) Γ(0, ζ) −→ 0 as ζ −→∞, Γ(0, dλ(ζ)) = λ−Q+2Γ(0, ζ),
(vi) Γ((x, t), (ξ, τ)) ≥ 0, > 0 iff t > τ ,
(vii) Γ((x, t), (ξ, τ)) = Γ((x, 0), (ξ, τ − t)).

In (iii) L∗ denotes the formal adjoint of L. We would like to stress that property
(vi) follows from the invariance of L with respect to the translations parallel to the
t-axis. The second part of property (vi) can be proved as in [KL], Section 2, by
using the following strong maximum principle.

Proposition 2.2. Let u be a nonnegative solution to the equation Lu = 0 in
the halfspace

S := RN×]−∞, t0[, t0 ∈ R.
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Suppose there exists a point z1 = (x1, t1) ∈ S such that

u(x1, t1) = 0.

Then u = 0 in RN×]−∞, t1[.

Proof. Let us denote by Pz1(S) the propagation set of z1 in S, i.e. the set

Pz1(S) = {z ∈ S : there exists an L-admissible path
η : [0, T ] −→ S s. t. η(0) = z1, η(T ) = z}.

The hypothesis (H2) implies Pz1(S) = RN×]−∞, t1[. On the other hand since z1

is a minimum point of u and the minimum spreads all over Pz1 (see [A]), we get

u(z) = u(z1) ∀ z ∈ RN×]−∞, t1[.

Then, the assertion follows since u(z1) = 0. ¤
For every (0, T ) ∈ RN+1 and r > 0 we define the L-ball centered at (0, T ) and

with radius r, as follows

Ωr(0, T ) :=

{
ζ ∈ RN+1 : Γ((0, T ), ζ) >

(
1
r

)Q−2
}

.

Then, if Lu = 0 in RN+1, the following Mean Value formula holds

u(0, T ) =
(

1
r

)Q−2 ∫

Ωr(0,T )

K(T, ζ) u(ζ) dζ,(2.2)

where

K(T, ζ) =
< A(ξ)∇ξΓ,∇ξΓ >

Γ2
, ζ = (ξ, τ),

and Γ stands for Γ((0, T ), (ξ, τ)). Moreover, <,> denotes the inner product in RN

and ∇ξ is the gradient operator (∂ξ1 , . . . , ∂ξN
).

Formula (2.2) is one of the numerous extensions of the classical Gauss Mean
Value Theorem for harmonic functions. For a proof of it we directly refer to [LP2],
Theorem 1.5.

The following lemmas will be crucial for our purposes.

Lemma 2.3. Let U be an open connected subset of RN+1. Let u : U −→ R be
a smooth function such that

A(x)∇xu(x, t) = 0, Y u(x, t) = 0 ∀ (x, t) ∈ U.(2.3)

Then u is constant in U .

Proof. Let us denote by Xk the vector field

Xk :=
N∑

j=1

akj∂xj .

Since L is hypoelliptic and its coefficients are polynomial functions, the following
rank condition holds (see [D])

rank Lie(X1, . . . , XN , Y )(x, t) = N + 1 ∀ (x, t) ∈ RN+1.(2.4)

On the other hand, by hypothesis (2.3),

Zu = 0 in U ∀ Z ∈ Lie(X1, . . . , XN , Y ).
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Then, by the rank condition (2.4), ∇zu(z) = 0 at any point z ∈ U , and u is
constant. ¤

Lemma 2.4. The closed set

U := {ζ = (ξ, τ) : K(T, ζ) = 0, τ < T}
does not contain interior points.

Proof. We argue by contradiction and assume K(T, ζ) = 0 for every ζ in a non
empty connected open set U ⊆ RN×] −∞, T [. Then, letting h(ζ) := Γ((0, T ), ζ),
we have

A(ξ)∇ξh(ξ, τ) = 0 ∀(ξ, τ) ∈ U,

hence div(A∇h) ≡ 0 in U . The L∗-harmonicity of h now gives Y h ≡ 0 in U .
Thus, by Lemma 2.3, h = const. in U . This is absurd because h(ζ) = h(ξ, τ) =
Γ((0, 0), (ξ, τ − T )) and z 7−→ Γ(0, z) is dλ-homogeneous of degree 2−Q 6= 0. ¤

Lemma 2.5. There exists a positive constant θ = θ(L) such that

Cθ ⊆ Ωr0(0, 1).

Proof. By the property (vi) of Γ, it is Γ((0, 1), (0, 0)) > 0. Then, for a suitable
positive constant r0 and θ0, we have

Γ((0, 1), ζ) >

(
1
r0

)Q−2

∀ ζ ∈ Cθ.

This means that
Cθ0 ⊆ Ωr0(0, 1)

and the assertion is proved. ¤

We are now in the position to give the proof of Theorem 2.1.
Next Lemma easily follows from Theorem 7.1 in [B].

Lemma 2.6. Let (un) be a sequence of L-harmonic function in an open set
Ω ⊆ RN+1:

Lun = 0 in Ω ∀n ∈ N.

Suppose (un) is monotone increasing and convergent in a dense subset of Ω. Then
(un) converges at any point of Ω to a smooth function u such that Lu = 0 in Ω.

Proof of Theorem 2.1. Since L is dλ-homogeneous of degree two, it is enough
to prove inequality (2.1) for r = 1. We argue by contradiction and assume that
(2.1), with r = 1, is false. Then, there exists a sequence (un) of nonnegative
L-harmonic functions such that

sup
Cθ

un ≥ 4nun(0, 1).(2.5)

By the Mean Value formula (2.2),

un(0, 1) =
(

1
r0

)Q−2 ∫

Ωr0 (0,1)

K(1, ζ) un(ζ) dζ, n ∈ N,(2.6)

so that, since Ωr0(0, 1) ⊇ Cθ, see Lemma 2.5,

un(0, 1) ≥
(

1
r0

)Q−2 ∫

Cθ

K(1, ζ) un(ζ) dζ.
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On the other hand, by inequality (2.5) and Lemma 2.4, un and K(1, ·) are strictly
positive in a non-empty open subset of Cθ. It follows that un(0, 1) > 0 for every
n ∈ N. Let us now put

vn =
un

un(0, 1)
and v =

∞∑
n=1

vn

2n
.

From the Mean Value formulas (2.6) we obtain

1 = v(0) =
(

1
r0

)Q−2 ∫

Ωr0 (0,1)

K(1, ζ) v(ζ) dζ,

so that,v < ∞ at any point of

T := {ζ ∈ Ωr0(0, 1) : K(1, ζ) > 0}.
By Proposition 2.2 the closure of T contains Ωr0(0, 1). Then, by Lemma 2.6, v is
finite and smooth in Ωr0(0, 1). In particular v is continuous in Cθ. Then,

sup
Cθ

v < ∞.(2.7)

On the other hand, by inequality (2.5),

sup
Cθ

θ ≥ sup
Cθ

vn

2n
=

1
2n

sup
un

un(0)
≥ 2n.

Hence supCθ
v ≥ 2n for every n ∈ N. This contradicts (2.7) and proves the Theorem.

¤
With Theorem 2.1 at hand, the Main Lemma stated in the Introduction easily

follows.

Proof of Main Lemma. Let u be a nonnegative L-harmonic function in
RN+1 satisfying the growth condition (2.2). Then, by Theorem 2.1,

sup
|z|≤θr

u(z) ≤ Cu(0, r2) ≤ C1(1 + r2n).

This obviously implies

u(z) ≤ C2(1 + |z|2n) ∀z ∈ RN .

¤
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