One-Side Liouville Theorems for a Class of Hypoelliptic Ultraparabolic Equations

Alessia Elisabetta Kogoj and Ermanno Lanconelli

1. Introduction

The aim of this paper is to show a one-side Liouville theorem for a class of hypoelliptic ultraparabolic equations and for their "stationary" counterpart.

The operators we shall deal with are of the following type:

(1.1)
$$\mathcal{L} = \sum_{i,j=1}^{N} \partial_{x_i}(a_{ij}(x)\partial_{x_j}) + \sum_{i=1}^{N} b_i(x)\partial_{x_i} - \partial_t \quad \text{in } \mathbb{R}^{N+1},$$

where the coefficients a_{ij} and b_i are smooth functions defined in \mathbb{R}^N . The matrix $A = (a_{ij}), i, j = 1, \ldots, N$, is supposed to be symmetric and nonnegative definite at any point of \mathbb{R}^N .

Throughout the paper we shall denote by $z = (x, t), x \in \mathbb{R}^N, t \in \mathbb{R}$, the point of \mathbb{R}^{N+1} and by Y the vector field in \mathbb{R}^{N+1}

(1.2)
$$Y := \sum_{i=1}^{N} b_i(x) \partial_{x_i} - \partial_t.$$

Moreover, we shall denote by \mathcal{L}_0 the *stationary* part of \mathcal{L} , i. e.

(1.3)
$$\mathcal{L}_0 = \sum_{i,j=1}^N \partial_{x_i} (a_{ij}(x)\partial_{x_j}) + \sum_{i=1}^N b_i(x)\partial_{x_i}.$$

We assume the following hypotheses.

(H1) \mathcal{L} is hypoelliptic in \mathbb{R}^{N+1} and homogeneous of degree two with respect to the group of dilations $(d_{\lambda})_{\lambda>0}$ given by

(1.4)
$$\begin{aligned} d_{\lambda}(x,t) &= (D_{\lambda}(x),\lambda^2 t) \\ D_{\lambda}(x) &= D_{\lambda}(x_1,\ldots,x_N) = (\lambda^{\sigma_1} x_1,\ldots,\lambda^{\sigma_N} x_N), \end{aligned}$$

where $\sigma = (\sigma_1, \ldots, \sigma_N)$ is an *N*-tuple of natural numbers satisfying $1 = \sigma_1 \leq \sigma_2 \leq \ldots \leq \sigma_N$. \mathcal{L} is d_{λ} -homogeneous of degree two if

$$\mathcal{L}(u(d_{\lambda}(x,t))) = \lambda^{2}(\mathcal{L}u)(d_{\lambda}(x,t)) \qquad \forall u \in C^{\infty}(\mathbb{R}^{N+1}).$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 35B05; Secondary 35H10, 35K70. Key words and phrases. Liouville theorems, Hörmander operators, ultraparabolic operators.

^{©0000 (}copyright holder)

(H2) For every $(x,t), (y,\tau) \in \mathbb{R}^{N+1}, t > \tau$, there exists an \mathcal{L} - admissible path $\eta : [0,T] \longrightarrow \mathbb{R}^{N+1}$ such that $\eta(0) = (x,t), \eta(T) = (y,\tau)$.

An \mathcal{L} -admissible path is any continuous path η which is the sum of a finite number of diffusion and drift trajectories.

A diffusion trajectory is a curve η satisfying, at any points of its domain, the inequality

$$\left(\langle \eta'(s),\xi\rangle\right)^2 \le \langle \hat{A}(\eta(s)\xi,\xi) \qquad \forall \xi \in \mathbb{R}^N$$

Here \langle,\rangle denotes the inner product in \mathbb{R}^{N+1} and $\hat{A}(z) = \hat{A}(x,t) = \hat{A}(x)$ stands for the $(N+1) \times (N+1)$ matrix

$$\hat{A} = \left(\begin{array}{cc} A & 0\\ 0 & 0 \end{array}\right).$$

A *drift trajectory* is a positively oriented integral curve of Y.

Throughout the paper we shall denote by Q the homogeneous dimension of \mathbb{R}^{N+1} with respect to the dilations (1.4), i.e.

$$Q = \sigma_1 + \ldots + \sigma_N + 2$$

and we assume

 $Q \ge 5.$

Then, the D_{λ} -homogeneous dimension of \mathbb{R}^N is $Q-2 \geq 3$.

We explicitly remark that the smoothness of the coefficients of \mathcal{L} and the homogeneity assumption in (H1) imply that the a_{ij} 's and the b_i 's are polynomial functions (see [L], Lemma 2).

For any $z = (x, t) \in \mathbb{R}^{N+1}$ we define the d_{λ} -homogeneous norm $|\cdot|$ by

$$|z| = |(x,t)| := (|x|^4 + t^2)^{\frac{1}{4}}$$

where

$$|x| = |(x_1, \dots, x_N)| = \left(\sum_{j=1}^N (x_j^2)^{\frac{\sigma}{\sigma_j}}\right)^{\frac{1}{2\sigma}}, \ \sigma = \prod_{j=1}^N \sigma_j.$$

The class of the operators just introduced contains the one recently considered in **[KL]**. In particular, it contains the heat operators on Carnot groups, the prototype of Kolmogorov operators and the operators obtained by *linking* the previous ones (see **[KL]**, Example 9.3 and 9.7). An example of operators satisfying our hypotheses (H1) and (H2), and not contained in **[KL]** is given by $\mathcal{L} = \partial_{x_1}^2 + x_1^3 \partial_{x_2} - \partial_t$ in \mathbb{R}^3 .

The main result of this paper is the following Liouville-type theorem.

THEOREM 1.1. Let $u : \mathbb{R}^{N+1} \longrightarrow \mathbb{R}$ be a (smooth) solution to $\mathcal{L}u = 0$ in \mathbb{R}^{N+1} . Suppose $u \ge 0$ and

(1.5)
$$u(0,t) = O(t^m) \quad as \quad t \longrightarrow \infty$$

for some $m \ge 0$. Then

(1.6)
$$u = \text{const.} \quad in \quad \mathbb{R}^{N+1}.$$

Before proceeding we want to note that condition (1.5) cannot be removed in order to get (1.6). Indeed, for example, the function

$$u(x,t) = \exp(x_1 + x_2 + \ldots + x_N + Nt), \qquad x \in \mathbb{R}^N, \ t \in \mathbb{R},$$

is nonnegative, non-constant and satisfies the heat equation

$$\Delta u - \partial_t = 0$$
 in \mathbb{R}^{N+1} , $\Delta = \sum_{j=1}^N \partial_{x_j}^2$.

We stress that u does not satisfy condition (1.5) since $u(0,t) = \exp(Nt)$. From Theorem 1.1 a Liouville type theorem for \mathcal{L}_0 follows.

COROLLARY 1.2. Let $v : \mathbb{R}^N \longrightarrow \mathbb{R}$ be a (smooth) solution¹ to $\mathcal{L}_0 v = 0$ in \mathbb{R}^N . Then, if $v \ge 0$,

$$v = \text{const.}$$
 in \mathbb{R}^N .

PROOF. The function

$$u: \mathbb{R}^{N+1} \longrightarrow \mathbb{R}, \qquad u(x,t) = v(x)$$

satisfies $\mathcal{L}u = 0$ in \mathbb{R}^{N+1} . Moreover, $u \ge 0$ and

$$u(0,t) = v(0) \qquad \forall t \in \mathbb{R}$$

Then, by Theorem 1.1, u = const. in \mathbb{R}^{N+1} so that v = const. in \mathbb{R}^N .

This Corollary extends to the present class of operators the Liouville Theorem 7.1 in $[\mathbf{KL}]$. A Liouville type theorem for a very wide class of partial differential operators, homogeneous with respect to a group of dilations, was proved by Luo Xuebo in $[\mathbf{L}]$. Luo Xuebo's Theorem, which extends previous results by Geller $[\mathbf{G}]$ and Rothschild $[\mathbf{R}]$, also applies to our operators and, in this context, reads as follows.

THEOREM. Let u be a tempered distribution satisfying, in the weak sense of distributions, the equation

$$\mathcal{L}u = 0 \qquad in \ \mathbb{R}^{N+1}.$$

Then u is a polynomial function.

This result reduces the proof of Theorem 1.1 to the proof of the following

MAIN LEMMA. Let $u : \mathbb{R}^{N+1} \longrightarrow \mathbb{R}$ be a nonnegative smooth solution to $\mathcal{L}u = 0$ in \mathbb{R}^{N+1} satisfying condition (1.5). Then,

$$u(z) = O(|z|^n) \qquad as \ |z| \longrightarrow \infty$$

for a suitable n > 0.

This Lemma, together with Luo Xuebo's Theorem, immediately gives the

¹Obviously, \mathcal{L}_0 is hypoelliptic in \mathbb{R}^N since \mathcal{L} is hypoelliptic in \mathbb{R}^{N+1} . Then, every distributional solution to $\mathcal{L}_0 v = 0$ is smooth.

PROOF OF THEOREM 1.1. Let u be a solution to $\mathcal{L}u = 0$ satisfying the hypotheses of Theorem 1.1. By the Main Lemma, u is a tempered distribution so that, by Luo Xuebo's Theorem, u is a polynomial function. Then, $u = u_0 + \ldots + u_m$, where u_k (k = 0, 1, ..., m) is a polynomial function d_{λ} -homogeneous of degree k and $u_m \geq 0$, since $u \geq 0$. On the other hand, being $\mathcal{L}u = 0$ and $\mathcal{L}u_k d_{\lambda}$ -homogeneous of degree k-2, if $k \ge 2$, we have $\mathcal{L}u_k = 0$ for every $k = 0, 1, \ldots, m$. In particular $\mathcal{L}u_m = 0$. Since u_m is nonnegative and d_{λ} -homogeneous of degree $m \geq 0$, there exists $z_0 = (x_0, t_0) \in \mathbb{R}^{N+1}$ such that

$$u_m(z_0) = \inf_{m \in N+1} u_m.$$

By the strong maximum principle (see next section, Proposition 2.2) we then have

$$u_m(x,t) = u_m(x_0,t_0) \qquad \forall \ (x,t) \in \mathbb{R}^N \times] - \infty, t_0[.$$

Since u_m is a polynomial function, this obviously implies

$$u_m(x,t) = u_m(x_0,t_0) \qquad \forall \ (x,t) \in \mathbb{R}^{N+1}.$$

Then m = 0 and $u \equiv u_0$, i.e. u is a constant function.

2. A Harnack Inequality

In this section we shall prove the following Harnack inequality for nonnegative solutions to $\mathcal{L}u = 0$.

THEOREM 2.1. Let $u: \mathbb{R}^{N+1} \longrightarrow \mathbb{R}$ be a nonnegative solution to $\mathcal{L}u = 0$ in \mathbb{R}^{N+1} . Then, there exist two positive constants $C = C(\mathcal{L})$ and $\theta = \theta(\mathcal{L})$ such that

(2.1)
$$\sup_{C_{\theta r}} u \le Cu(0, r^2) \quad \forall r > 0,$$

where, for $\rho > 0$, C_{ρ} denotes the d_{λ} -symmetric ball

$$C_{\rho} := \{ z \in \mathbb{R}^{N+1} | |z| < \rho \}.$$

In order to prove this result, our main tool is a Mean-Value Theorem for the \mathcal{L} -harmonic functions, i.e. for the solutions to $\mathcal{L}u = 0$.

From hypotheses (H1) and (H2), by easily adapting the procedure already used in [LP1], [BLU] and [KL], we can prove the existence of a fundamental solution $\Gamma(z,\zeta)$ of \mathcal{L} with the following properties.

(i)
$$\Gamma$$
 is smooth in $\{(z,\zeta) \in \mathbb{R}^{N+1} \times \mathbb{R}^{N+1} \mid z \neq \zeta\}$,

- (ii) $\Gamma(\cdot,\zeta) \in L^1_{\text{loc}}(\mathbb{R}^{N+1})$ and $\mathcal{L}\Gamma(\cdot,\zeta) = -\delta_{\zeta}$ for every $\zeta \in \mathbb{R}^{N+1}$, (iii) $\Gamma(z,\cdot) \in L^1_{\text{loc}}(\mathbb{R}^{N+1})$ and $\mathcal{L}^*\Gamma(z,\cdot) = -\delta_z$ for every $z \in \mathbb{R}^{N+1}$,
- (iv) $\limsup_{\zeta \to z} \Gamma(z,\zeta) = \infty$ for every $z \in \mathbb{R}^{\tilde{N}+1}$,
- $({\rm v}) \ \ \Gamma(0,\zeta) \longrightarrow 0 \ {\rm as} \ \zeta \longrightarrow \infty, \ \Gamma(0,d_\lambda(\zeta)) = \lambda^{-Q+2} \Gamma(0,\zeta),$
- (vi) $\Gamma((x,t),(\xi,\tau)) \ge 0, > 0$ iff $t > \tau$,
- (vii) $\Gamma((x,t), (\xi,\tau)) = \Gamma((x,0), (\xi,\tau-t)).$

In (iii) \mathcal{L}^* denotes the formal adjoint of \mathcal{L} . We would like to stress that property (vi) follows from the invariance of \mathcal{L} with respect to the translations parallel to the t-axis. The second part of property (vi) can be proved as in $[\mathbf{KL}]$, Section 2, by using the following strong maximum principle.

PROPOSITION 2.2. Let u be a nonnegative solution to the equation $\mathcal{L}u = 0$ in the halfspace

$$S := \mathbb{R}^N \times] - \infty, t_0[, \ t_0 \in \mathbb{R}.$$

Suppose there exists a point $z_1 = (x_1, t_1) \in S$ such that

$$u(x_1, t_1) = 0.$$

Then u = 0 in $\mathbb{R}^N \times] - \infty, t_1[.$

PROOF. Let us denote by
$$P_{z_1}(S)$$
 the propagation set of z_1 in S, i.e. the set

 $P_{z_1}(S) = \{z \in S : \text{ there exists an } \mathcal{L}\text{-admissible path} \}$

$$\eta: [0,T] \longrightarrow S$$
 s. t. $\eta(0) = z_1, \ \eta(T) = z\}.$

The hypothesis (H2) implies $P_{z_1}(S) = \mathbb{R}^N \times] - \infty, t_1[$. On the other hand since z_1 is a minimum point of u and the minimum spreads all over P_{z_1} (see [A]), we get

$$u(z) = u(z_1) \qquad \forall \ z \in \mathbb{R}^N \times] - \infty, t_1[.$$

Then, the assertion follows since $u(z_1) = 0$.

For every $(0,T) \in \mathbb{R}^{N+1}$ and r > 0 we define the *L*-ball centered at (0,T) and with radius r, as follows

$$\Omega_r(0,T) := \left\{ \zeta \in \mathbb{R}^{N+1} : \Gamma((0,T),\zeta) > \left(\frac{1}{r}\right)^{Q-2} \right\}.$$

Then, if $\mathcal{L}u = 0$ in \mathbb{R}^{N+1} , the following Mean Value formula holds

(2.2)
$$u(0,T) = \left(\frac{1}{r}\right)^{Q-2} \int_{\Omega_r(0,T)} K(T,\zeta) \ u(\zeta) \ d\zeta,$$

where

$$K(T,\zeta) = \frac{\langle A(\xi)\nabla_{\xi}\Gamma, \nabla_{\xi}\Gamma \rangle}{\Gamma^2}, \qquad \zeta = (\xi,\tau),$$

and Γ stands for $\Gamma((0,T), (\xi, \tau))$. Moreover, <,> denotes the inner product in \mathbb{R}^N and ∇_{ξ} is the gradient operator $(\partial_{\xi_1}, \ldots, \partial_{\xi_N})$.

Formula (2.2) is one of the numerous extensions of the classical Gauss Mean Value Theorem for harmonic functions. For a proof of it we directly refer to [LP2], Theorem 1.5.

The following lemmas will be crucial for our purposes.

LEMMA 2.3. Let U be an open connected subset of \mathbb{R}^{N+1} . Let $u: U \longrightarrow \mathbb{R}$ be a smooth function such that

(2.3)
$$A(x)\nabla_x u(x,t) = 0, \quad Yu(x,t) = 0 \quad \forall \ (x,t) \in U.$$

Then u is constant in U.

PROOF. Let us denote by X_k the vector field

$$X_k := \sum_{j=1}^N a_{kj} \partial_{x_j}$$

Since \mathcal{L} is hypoelliptic and its coefficients are polynomial functions, the following rank condition holds (see $[\mathbf{D}]$)

(2.4) rank Lie
$$(X_1, \ldots, X_N, Y)(x, t) = N + 1$$
 $\forall (x, t) \in \mathbb{R}^{N+1}$

On the other hand, by hypothesis (2.3),

$$Zu = 0$$
 in U $\forall Z \in \text{Lie}(X_1, \dots, X_N, Y).$

Then, by the rank condition (2.4), $\nabla_z u(z) = 0$ at any point $z \in U$, and u is constant.

LEMMA 2.4. The closed set

$$U := \{ \zeta = (\xi, \tau) \ : \ K(T, \zeta) = 0, \ \tau < T \}$$

does not contain interior points.

PROOF. We argue by contradiction and assume $K(T, \zeta) = 0$ for every ζ in a non empty connected open set $U \subseteq \mathbb{R}^N \times] - \infty, T[$. Then, letting $h(\zeta) := \Gamma((0,T),\zeta)$, we have

$$A(\xi)\nabla_{\xi}h(\xi,\tau) = 0 \qquad \forall (\xi,\tau) \in U,$$

hence div $(A\nabla h) \equiv 0$ in U. The \mathcal{L}^* -harmonicity of h now gives $Yh \equiv 0$ in U. Thus, by Lemma 2.3, h = const. in U. This is absurd because $h(\zeta) = h(\xi, \tau) = \Gamma((0,0), (\xi, \tau - T))$ and $z \mapsto \Gamma(0, z)$ is d_{λ} -homogeneous of degree $2 - Q \neq 0$. \Box

LEMMA 2.5. There exists a positive constant $\theta = \theta(\mathcal{L})$ such that

$$C_{\theta} \subseteq \Omega_{r_0}(0,1).$$

PROOF. By the property (vi) of Γ , it is $\Gamma((0,1), (0,0)) > 0$. Then, for a suitable positive constant r_0 and θ_0 , we have

$$\Gamma((0,1),\zeta) > \left(\frac{1}{r_0}\right)^{Q-2} \quad \forall \zeta \in C_{\theta}.$$

This means that

$$C_{\theta_0} \subseteq \Omega_{r_0}(0,1)$$

and the assertion is proved.

We are now in the position to give the proof of Theorem 2.1. Next Lemma easily follows from Theorem 7.1 in $[\mathbf{B}]$.

LEMMA 2.6. Let (u_n) be a sequence of \mathcal{L} -harmonic function in an open set $\Omega \subseteq \mathbb{R}^{N+1}$:

$$\mathcal{L}u_n = 0 \quad in \ \Omega \qquad \forall n \in \mathbb{N}.$$

Suppose (u_n) is monotone increasing and convergent in a dense subset of Ω . Then (u_n) converges at any point of Ω to a smooth function u such that $\mathcal{L}u = 0$ in Ω .

PROOF OF THEOREM 2.1. Since \mathcal{L} is d_{λ} -homogeneous of degree two, it is enough to prove inequality (2.1) for r = 1. We argue by contradiction and assume that (2.1), with r = 1, is false. Then, there exists a sequence (u_n) of nonnegative \mathcal{L} -harmonic functions such that

(2.5)
$$\sup_{C_{\theta}} u_n \ge 4^n u_n(0,1).$$

By the Mean Value formula (2.2),

(2.6)
$$u_n(0,1) = \left(\frac{1}{r_0}\right)^{Q-2} \int_{\Omega_{r_0}(0,1)} K(1,\zeta) \ u_n(\zeta) \ d\zeta, \quad n \in \mathbb{N},$$

so that, since $\Omega_{r_0}(0,1) \supseteq C_{\theta}$, see Lemma 2.5,

$$u_n(0,1) \ge \left(\frac{1}{r_0}\right)^{Q-2} \int_{C_\theta} K(1,\zeta) \ u_n(\zeta) \ d\zeta.$$

6

On the other hand, by inequality (2.5) and Lemma 2.4, u_n and $K(1, \cdot)$ are strictly positive in a non-empty open subset of C_{θ} . It follows that $u_n(0, 1) > 0$ for every $n \in \mathbb{N}$. Let us now put

$$v_n = \frac{u_n}{u_n(0,1)}$$
 and $v = \sum_{n=1}^{\infty} \frac{v_n}{2^n}$

From the Mean Value formulas (2.6) we obtain

$$1 = v(0) = \left(\frac{1}{r_0}\right)^{Q-2} \int_{\Omega_{r_0}(0,1)} K(1,\zeta) \ v(\zeta) \ d\zeta,$$

so that, $v < \infty$ at any point of

$$T := \{ \zeta \in \Omega_{r_0}(0,1) : K(1,\zeta) > 0 \}.$$

By Proposition 2.2 the closure of T contains $\Omega_{r_0}(0,1)$. Then, by Lemma 2.6, v is finite and smooth in $\Omega_{r_0}(0,1)$. In particular v is continuous in C_{θ} . Then,

$$(2.7)\qquad\qquad\qquad \sup_{C}v<\infty$$

On the other hand, by inequality (2.5),

$$\sup_{C_{\theta}} \theta \ge \sup_{C_{\theta}} \frac{v_n}{2^n} = \frac{1}{2^n} \sup \frac{u_n}{u_n(0)} \ge 2^n.$$

Hence $\sup_{C_{\theta}} v \ge 2^n$ for every $n \in \mathbb{N}$. This contradicts (2.7) and proves the Theorem.

With Theorem 2.1 at hand, the Main Lemma stated in the Introduction easily follows.

PROOF OF MAIN LEMMA. Let u be a nonnegative \mathcal{L} -harmonic function in \mathbb{R}^{N+1} satisfying the growth condition (2.2). Then, by Theorem 2.1,

$$\sup_{|z| \le \theta r} u(z) \le Cu(0, r^2) \le C_1(1 + r^{2n}).$$

This obviously implies

$$u(z) \le C_2(1+|z|^{2n}) \qquad \forall z \in \mathbb{R}^N.$$

References

- [A] K. Amano, Maximum principle for degenerate elliptic-parabolic operators, Indiana Univ. Math. J. 29 (1979), 545–557.
- [B] J.M. Bony, Principe de maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, Grenoble 19 (1969), 277–304.
- [BLU] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Uniform gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Advances Diff. Equat. 7 (2002), 1153–1192.
- [D] M. Derridj, Un problème aux limites pour une classe d'operatéurs du second ordre hypoelliptiques, Ann. Inst. Fourier (Grenoble) 21 (1971), 147–171.
- [G] D. Geller, Liouville's Theorem for homogeneous groups, Comm. in Partial Diff. Eq. 8 (1983), 1665–1677.
- [KL] A.E. Kogoj and E. Lanconelli, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math., to appear.
- [L] Luo Xuebo, Liouville's Theorem for homogeneous differential operators, Comm. in Partial Diff. Eq. 22 (1997), 1813–1848.

- [LP1] E. Lanconelli and A. Pascucci, On the fundamental solution for hypoelliptic second order partial differential equations with non-negative characteristic form, Ricerche di matematica 43 (1999), 81–106.
- [LP2] _____, Superparabolic Functions Related to Second Order Hypoelliptic Operators, Potential Analysis 11 (1999), 303–323.
- [R] L.P. Rothschild, A remark on hypoellipticity of homogeneous invariant differential operators on nilpotent Lie groups, Comm. P.D.E. 8 (1983), 1679–1682.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI BOLOGNA, PIAZZA DI PORTA SAN DONATO, 5, IT-40126 BOLOGNA, ITALY

E-mail address: kogoj@dm.unibo.it

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI BOLOGNA, PIAZZA DI PORTA SAN DONATO, 5, IT-40126 BOLOGNA, ITALY

E-mail address: lanconel@dm.unibo.it