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1. I

This talk is a survey on some recent results concerning local regularity for weak solu-
tions to some quasilinear degenerate elliptic equations. This topic is a very classical one
in the theory of PDE and we start by recalling contributions given by many authors. Early
results go back to the outstanding papers by De Giorgi [12], Stampacchia [29], Ladyzhen-
skaia and Uraltzeva [18] between the end of 50’s and the beginning of 60’s. Namely, for
an elliptic equation of the following kind,

(1.1) − (ai j uxi )x j + biuxi + cu= f

they studied the regularity of weak solutions for linear, uniformly elliptic equations as-
suming the lower order coefficients,b, c, f to belong to some suitableLp classes. Later,
in subsequent papers by Serrin [27], Morrey [22] and Trudinger [30], some results were
extended to some nonlinear equations satisfying suitable growth conditions. Despite the
sharpness of their results, it appeared that the Lebesgue classes were not the right ones
in which to put the lower order terms to obtain regularity. In fact, it is quite easy to
find equations (even linear) having regularity properties without lower order terms in any
Lebesgue classes. At the beginning of 70’s Lewy and Stampacchia [19] showed Hölder
continuity properties for the solution of the equation

(1.2) − ∆u = f

assumingf to satisfy anL1 assumption. The assumption was the following

(1.3)
∫

BR(x0)
| f (y)|dy≤ cRλ , ∀R< R0

1
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and someλ > 0 related to the Euclidean dimensionn.
After that, Aizenman and Simon, in [1] considered the equation

(1.4) − ∆u = Vu

using probabilistic tools and discovered that regularity properties obtainable through Har-
nack inequality were related to a class of potentials already used for other reasons, the
Stummel–Kato class. Functions belonging to this class are required to satisfy the follow-
ing condition.

Definition 1.1. LetΩ be a bounded domain inRn. Assume that

(1.5) η(R) ≡ sup
x∈Ω

∫
Ω∩BR(x)

|V(y) |
|x− y |n−2

dy→ 0 ,as R→ 0 .

Then, we will say that the function V belongs to the Stummel–Kato class, S(Ω).

An important point is that Aizenman and Simon’s proof relies on the following imbed-
ding

(1.6)
∫

BR

|V|u2 dx≤ cη(R)
∫

BR

| ∇u |2 dx, ∀u ∈ C∞0 (BR) ,

and some consequence of it, that hold true ifV is in the Stummel–Kato class. The imbed-
ding (1.6) is proved by Aizenman and Simon in [1] and later, using non probabilistic tools,
by Schechter (see [26] and [25]). At the same time, Dal Maso and Mosco in [9] developed
a pointwise analysis for solutions of equations of the form

(1.7) Lu+ µu = ν ,

whereL is a linear second order elliptic operator assumed to be uniformly elliptic in
the domainΩ andµ,ν are measure satisfying conditions similar to (1.5). Aizenman and
Simon’s result were extended to any linear uniformly elliptic operator by Chiarenza, Fabes
and Garofalo in 1986 [5]. In their paper, using a representation formula, they proved
Harnack inequality and the continuity of weak solutions for equations of the following
kind

(1.8) Lu− Vu= 0 ,

whereL = ∂x j (ai j ∂xi ). Subsequently, Simader [28] gave also a proof of Harnack inequal-
ity and the continuity of weak solutions based on representation formula. At the same
time, Hinz and Kalf [17] showed the same results using subsolution estimates. Moreover,
Simader shows that, once it is known that the solutionu is locally bounded, the continuity
of the solution is actually equivalent to the validity of the Harnack inequality. Local regu-
larity properties of weak solutions were studied also in [13] using representation formulas
and, in a non linear setting, in Rakotoson and Ziemer [24] (see also [32],[33],[34]).

Now we turn our attention to operators that can be degenerate elliptic. In [16] Gutierrez,
using a suitable version of the Stummel–Kato class, adapted to degenerate elliptic equa-
tions showed Harnack inequality and regularity for the weak solutions of (1.8) where,L
is a linear elliptic operator with degeneracy ofA2 kind, extending to the weighted case,
the results in [5](see also [35],[31]).
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In [8], Citti,Garofalo and Lanconelli proved the validity of Harnack inequality and the
continuity of the solutions for a linear elliptic operator satisfying the Hörmander condi-
tion. In [7] the Ḧolder continuity were obtained for equations of the kind (1.8) assuming
the known term in a suitable version of the Morrey class modelled on the level sets of the
fundamental solution. Related results are also [4], [20] and [11]. In the same direction
but related to the point of view of Dirichlet forms see also [2].

What we want to stress here is that a very useful tool to obtain regularity results is an
imbedding like (1.6). After this was recognized, the imbedding (1.6) was generalized and
extended in various directions.

In 1982, Aizenman and Simon proved (1.6) and in 1983, C.Fefferman ([15]) proved the
imbedding

(1.9)
∫

BR

|V| |u|p dx≤ c
∫

BR

| ∇u |p dx, ∀u ∈ C∞0 (BR) ,

for p = 2, assuming thatV ∈ Lr,n−pr – the classical Morrey space. Later, Chiarenza
and Frasca in [6] showed the Fefferman imbedding (1.9) for any 1< p ≤ n/2 assuming
V ∈ Lr,n−pr with a simpler proof. Subsequently, Danielli in [10], generalized the proof
and the result in [6] to the case when the gradient in the right hand side is replaced by the
energy of a system of non commuting vector fields. In [14], imbedding (1.6) is proved
in a general setting in which the gradient is replaced by the energy of a system of non
commuting vector fields. The aim of this talk is to show how imbeddings like (1.6) or
(1.9) are useful to obtain regularity for weak solutions of quasilinear subelliptic PDE.

2. P  F 

We collect the preliminary assumptions we need in the sequel, so we start with some
notations. Let us consider a systemX = (X1, . . . ,Xm) of non commutative vector fields in
an open setΩ ⊆ Rn with locally Lipschitz continuous coefficientsbj k. We write

(2.1) Xj =

n∑
k=1

bj k
∂

∂xk
, bj k ∈ Liploc(Ω) j = 1, . . . ,m, k = 1, . . . ,n,

and denote byX∗j = −
n∑

k=1

∂
∂xk

(bj k · ) its formal adjoint.

For a given functionu : Ω ⊂ Rn→ R, we set

(2.2) Xu = (X1u, . . . ,Xmu) , |Xu| =

 m∑
j=1

(Xju)2


1
2

where, as usual,

(2.3) Xju(x) = 〈Xj ,∇u(x)〉 , j = 1, . . . ,m,

identifying theXj ’s with the first order differential operator that acts onu ∈ Lip(Ω) via
formula (2.3).
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Using definition (2.2) it is possible to define Sobolev classes replacing the ordinary
gradient with theX–gradient. Namely, in the sequel we set

(2.4) W1,p
X (Ω) =

{
u ∈ Lp(Ω) : Xju ∈ Lp(Ω), j = 1, . . . ,m

}
, 1 ≤ p < ∞ ,

and for anyu ∈W1,p
X (Ω)

(2.5) ‖u‖1,p ≡ ‖u‖p + ‖ |Xu| ‖p .

The completion of the setC1
0(Ω) with respect to the norm (2.5) will be denoted byW1,p

X,0(Ω).
Using the vector fields,X1, . . . ,Xm, it is possible to define a distance. A piecewiseC1

curveγ : [0,T] → Rn is calledX–sub-unit, if wheneverγ′(t) exists one has

(2.6) 〈γ′(t), ξ〉2 ≤
m∑
j=1

〈Xj(γ(t)), ξ〉
2 ∀ξ ∈ Rn.

The X–sub-unit lenght ofγ is by definitionlS(γ) = T. Given x, y ∈ Rn, we denote by
Φ(x, y) the collection of allX–sub-unit curves connectingx to y. Then

(2.7) d(x, y) = inf {lS(γ) : γ ∈ Φ(x, y)}

defines a distance, usually called the Carnot–Caratheodory distance generated by the
systemX. We will denoteB(x, r) = {y ∈ Rn : d(x, y) < r} the metric ball centered at
x of radiusr and wheneverx is not relevant we shall writeBr . We shall denote with
de(x, y) = |x− y | the usual Euclidean distance inRn.

The following assumptions will be used in all the sequel.
(A1) The identity mapi : (Rn,de)→ (Rn,d) is continuous;
(A2) (Doubling condition) For every bounded setΩ ⊂ Rn there exist costantsCD, RD >

0 such that forx0 ∈ Ω and 0< r < RD one has

|B(x0,2r)| ≤ CD|B(x0, r)|;

(A3) (Weak-L1 Poincar̀e type inequality) GivenΩ as in (A2), there exist positive con-
stantsCP andα ≥ 1 such that for anyx0 ∈ Ω, 0 < r < RD andu ∈ C1(B(x0, αr)),
one has

sup
λ>0

[λ|{x ∈ B(x0, r) : |u(x) − uB(x0,r)| > λ}|] ≤ CPR
∫

B(x0,αr)
|Xu|dx,

whereuB(x0,r) denotes the integral average
>

B(x0,r)
u(y) dy.

The numberQ = log2 CD, will be called the homogeneous dimension ofΩ.

Definition 2.1. Let V ∈ L1
loc(Ω), r > 0 and1 < p < Q. We set

(2.8) φV(r) ≡ sup
x∈Ω


∫

Ω∩B(x,r)

d(x, y)
|B(x,d(x, y))|


∫

Ω∩B(x,r)

|V(z)|
d(z, y)

|B(z,d(z, y))|
dz


1

p−1

dy


p−1

.

We say that a function V∈ L1
loc(Ω) belongs to the space(M̃X)p(Ω) if and only ifφV(r) is

finite for any r> 0.
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Definition 2.2 (Stummel-Kato class). We say that a function V∈ L1
loc(Ω) belongs to the

space(MX)p(Ω) if and only ifφV(r) defined in (2.1) is finite for any r> 0 and, in addition,
lim
r→0+
φV(r) = 0.

We will call φV(r) the (MX)p −modulusof V. It is not difficult to prove thatφV(r) is a
continuous function.

Definition 2.3. Let 1 < p < Q. We say that V∈ (MX)p(Ω) belongs to the class(MX)′p(Ω)
if

(2.9) ∃δ > 0 :
∫ δ

0

φV(t)
1
p

t
dt < +∞ .

Remark 2.4. We explicitely note that:

1. When X= ∇ the spaces(M̃X)p, (MX)p, and(MX)′p gives back the usual Stummel–
Kato classes;

2. The functionφV(r) is doubling, i.e.:

∃c > 1 : φV(2r) ≤ cφV(r) , r > 0 .

Now we define some spaces very closely connected to Stummel classes.

Definition 2.5 (Morrey spaces). Let p ∈ [1,+∞[ and λ > 0. We say that V∈ Lp
loc(Ω)

belongs to the intrinsic Morrey space with respect to the system X= (X1, . . . ,Xm), Lp,λ
X (Ω),

if

(2.10) ‖V‖Lp,λ
X (Ω) = sup

x∈Ω
0<r<d0

 rλ

|B(x, r) ∩Ω|

∫
B(x,r)∩Ω

|V(y)|p dy


1
p

< +∞,

where d0 = min(diam(Ω),RD).

It is quite easy to compare Stummel–Kato classes and Morrey spaces. Indeed,

Proposition 2.6. Let1 < p < Q and0 < ε < p. If V ∈ L1,p−ε
X (Ω) we have

(2.11) φV(r) ≤ C (CD, p, ε) ‖V‖L1,p−ε
X

rε

for any0 < r < RD and then

(2.12) L1,p−ε
X (Ω) ⊆ (MX)′p(Ω).

Proof. For x ∈ Ω and 0< r1 < r2 we set

(2.13) A(r1, r2, x) = {y ∈ Ω : r1 ≤ d(x, y) < r2} , Aj = A
( r
2j+1
,

r
2j
, x

)
.
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Then, we have

(2.14)
∫

{y∈Ω : d(x,y)<r}

d(x, y)
|B(x,d(x, y))|


∫

{z∈Ω : d(z,x)<r}

|V(z)|
d(z, y)

|B(z,d(z, y))|
dz


1

p−1

dy

=

+∞∑
j=1

∫
A j

d(x, y)
|B(x,d(x, y))|

 j∑
k=0

∫
A j

|V(z)|
d(z, y)

|B(z,d(z, y))|
dz


1

p−1

dy

≤ C(CD, p)
+∞∑
j=1

∫
B r

2 j

r
2 j

|B(x, r
2 j )|

 j∑
k=0

r
2 j−k

|B(x, r
2 j−k )|

∫
B r

2 j−k

|V(z)|dz


1

p−1

dy

≤ C(CD, p)‖V‖
1

p−1

L1,p−ε
X

+∞∑
j=1

r
2j

 j∑
k=0

( r
2j−k

)ε−p+1


1
p−1

= C(CD, p, ε)‖V‖
1

p−1

L1,p−ε
X

r
ε

p−1 .

�

3. F–P 

In this section we state and prove a version of Fefferman–Poincare inequality suitable
for our purposes.

Theorem 3.1.LetΩ be a bounded open setΩ ⊂ Rn, with homogeneous dimension Q and
let 1 < p < Q. Suppose (A1) - (A3) hold true, and V∈ (MX)p(Ω). Then it exists a positive
constant c independent of u such that

(3.1)
∫
Ω

|V(x)| |u(x)|p dx≤ cφV(2r)
∫
Ω

|Xu(x)|p dx

for any smooth function u compactly supported in Br .

Proof. The main point in the proof is the use of a suitable representation formula. We use
Theorem 1 in [21] and then,∫

B
|V(x)| |u(x)|p dx≤ c

∫
B
|V(x)| |u(x)|p−1

(∫
B
|Xu(y)|

d(x, y)
|B(x,d(x, y))|

dy

)
dx

≤ c
∫

B
|Xu(y)|

(∫
B
|V(x)| |u(x)|p−1 d(x, y)

|B(x,d(x, y))|
dx

)
dy

≤ c

(∫
B
|Xu(y)|p dy

) 1
p

·

∫
B

(∫
B
|V(x)| |u(x)|p−1 d(x, y)

|B(x,d(x, y))|
dx

) p
p−1

dy


p−1

p

.

We also have
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∫
B

(∫
B
|V(x)| |u(x)|p−1 d(x, y)

|B(x,d(x, y))|
dx

) p
p−1

dy

≤

∫
B

(∫
B
|V(z)|

d(z, y)
|B(z,d(z, y))|

dz

) 1
p−1

·

(∫
B
|V(x)| |u(x)|p

d(x, y)
|B(x,d(x, y))|

dx

)
dy=

=

∫
B
|V(x)| |u(x)|p

∫
B

d(x, y)
|B(x,d(x, y))|

·

(∫
B
|V(z)|

d(z, y)
|B(z,d(z, y))|

dz

) 1
p−1

dy dx

≤ φ
1

p−1 (2r)
∫

B
|V(x)| |u(x)|p dx.

Merging the previous inequalities we obtain the desired conclusion. �

The next corollary is an easy consequence of the previous Theorem. It can be obtained
via a standard partition of unity.

Corollary 3.2. Under the same assumptions of Theorem 3.1 we have that for anyσ > 0
there exists a positive function K(σ) ∼ σ

[φ−1
V (σ)]Q+p such that

(3.2)
∫
Ω

|V(x)| |u(x)|p dx≤ σ
∫
Ω

|Xu(x)|p dx+ K(σ)
∫
Ω

|u(x)|p dx,

for all u ∈W1,p
X,0(Ω).

Proof. Let ε > 0. Let r be a positive number that we will be choosen later. Let
{
α

p
i

}
,

i = 1,2, . . . ,N(r), be a finite partition of unity ofΩ, such that suppαi ⊆ Br(xi), with
xi ∈ Ω. We apply Theorem 3.1 to the functionsα j u and we get∫

Ω

|V(x)||u(x)|p dx=
∫
Ω

|V(x)||u(x)|p
N(r)∑
i=1

α
p
i (x) dx=

=

N(r)∑
i=1

∫
Ω

|V(x)||u(x)|pαp
i (x) dx

≤

N(r)∑
i=1

cφV(2r)

(∫
Ω

|Xu(x)|pαp
i (x) dx+

∫
Ω

|Xαi(x)|p|u(x)|p dx

)
≤ cφV(2r)

(∫
Ω

|Xu(x)|p dx+
N(r)
r p

∫
Ω

|u(x)|p dx

)
.

Now, to obtain the result it suffices to chooser such thatcφV(2r) = ε. After that we note
thatN(r) ' r−Q and the corollary follows. �

4. S 

In this section we collect some lemmas which will be useful in the sequel. We give
proofs for sake of completeness.
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Lemma 4.1(see [23]). Letµ : ]0,+∞[ a continuous increasing function such thatlim
r→0
µ(r) =

0 and let0 < θ < 1. The series

(4.1)
+∞∑
i=0

θi logµ−1
(
θqi

)
,

where q> 0, is convergent if and only if there existsρ > 0 such that

(4.2)
∫ ρ

0

µ
1
q (t)
t

dt < +∞.

Proof. We claim that (4.2) is actually equivalent to the convergence of the following series

+∞∑
j=0

(θai − ai+1) ,

whereaj = θ
j logµ−1

(
µ(ρ)θq j

)
.

Indeed ∫ ρ

0

µ
1
q (t)
t

dt =
∫ µ(ρ)

0

s
1
q

µ−1(s)
1

µ′(µ−1(s))
ds

=

+∞∑
j=0

∫ µ(ρ)θq j

µ(ρ)θq( j+1)

s
1
q

µ−1(s)
1

µ′(µ−1(s))
ds

<

+∞∑
j=0

{
µ

1
q (ρ)θ j logµ−1

(
µ(ρ)θq j

)
−

−
1
θ
µ

1
q (ρ)θ j+1 logµ−1

(
µ(ρ)θq( j+1)

)}
=
µ

1
q (ρ)
θ

+∞∑
i=0

(θaj − aj+1) .

Exactly in the same way it is possible to show that

(4.3)
∫ ρ

0

µ
1
q (t)
t

dt >
+∞∑
i=0

(θai − ai+1)

and the claim is proved.

It is trivial to recognize that the two series
+∞∑
j=0

(θaj−aj+1),
+∞∑
j=0

aj have the same behaviour.

�

Lemma 4.2. Let 0 < γ < 1 and let h: ]0,+∞[ → ]0,+∞[ be a non decreasing function
such thatlim

t→0
h(t) = 0 and

(4.4) h(t) ≤ c h(t/2) ∀t > 0 ,
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for some constant c> 1 . Moreover, letω : ]0,+∞[ → ]0,+∞[ be a non decreasing
function. Assume that there existsρ̄ > 0 such that,

(4.5) ω(ρ) ≤ γω(4ρ) + h(ρ) ∀ρ < ρ0 < 1 .

Then there exist̄ρ ≤ ρ0, 0 < σ ≤ 1 and K> 0 such that

(4.6) ω(ρ) ≤ Khσ(ρ) ∀ρ < ρ̄ .

Proof. Let ρ̃ > 0 be such thath(ρ) < 1 for ρ < ρ̃. Setρ = min(ρ̃, ρ0), we chooseR > 0
such thatR< ρ.

If ρ ∈
[R
4
,R

]
, letting

(4.7) M = sup
[R/4,R]

ω(ρ)
h(ρ)
,

we have

(4.8) ω(ρ) ≤ Mh(ρ) .

If ρ ∈
[ R
42
,
R
4

]
, by (4.5) and and the fact thath(4ρ) < 1, we have

(4.9) ω(ρ) ≤ γMh(4ρ) + h(ρ) ≤ γMhσ(4ρ) + hσ(ρ)

for everyσ : 0 < σ ≤ 1. Now we fixσ such that

(4.10) γ c2σ = a < 1

wherec is the constant in (4.4), we obtain

(4.11) ω(ρ) ≤ (Ma+ 1)hσ(ρ) .

Iterating this procedure, ifρ ∈
[ R
4i+1
,

R
4i

]
, we have

(4.12) ω(ρ) ≤

Mai +

i−1∑
k=0

ak

 hσ(ρ) ≤

[
M +

1
1− a

]
hσ(ρ) ,

and then we get (4.6) takingK = M + 1
1−a. �

5. A    PDE: H 

In this section we show how Fefferman–Poincare inequality is used to obtain regularity
results for a class of subelliptic quasilinear PDE. We shall follow the classical Moser
procedure. We will show that any weak solution is locally bounded and for any non
negative weak solution, a Harnack inequality hold true. In the next section we will show
how to deduce regularity from Harnack inequality.

LetΩ be a bounded domain having homogeneous dimensionQ and let

(5.1) A(x,u, ξ) : Ω × R × Rm→ Rm , B(x,u, ξ) : Ω × R × Rm→ R
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be measurable functions satisfying the following structural assumptions

(5.2)


|A(x,u, ξ)| ≤ a|ξ|p−1 + b|u|p−1 + e

|B(x,u, ξ)| ≤ c|ξ|p−1 + d|u|p−1 + f

ξ · A(x,u, ξ) ≥ |ξ|p − d|u|p − g

for a.e. x ∈ Ω ⊂ Rn, ∀u ∈ R, ∀ξ ∈ Rn. All the results in this section will be referred to
equations of the following kind:

(5.3)
m∑
j=1

X∗j Aj(x,u(x),Xu(x)) + B(x,u(x),Xu(x)) = 0 .

The first thing to make precise is what is meant to be a weak solution of (5.3).

Definition 5.1. A function u∈W1,p
X,loc(Ω) is said to be a weak solution of (5.3) inΩ if

(5.4)
m∑
j=1

∫
Ω

Aj(x,u(x),Xu(x))Xj ϕ(x) dx+
∫
Ω

B(x,u(x),Xu(x)) ϕ(x) dx= 0 ,

for everyϕ ∈W1,p
X,0(Ω).

We explicitely note that definition (5.1) can be meaningful according to suitable as-
sumptions made on the coefficients in the structure assumptions (5.2) by using Theorem
3.1.

Our first result is the following local boundedness result.

Theorem 5.2(Local Boundedness). Suppose (A1)-(A3) hold true. LetΩ be a bounded
domain having local homogeneous dimension Q and u∈ W1,p

X,loc(Ω), with 1 < p < Q, be a
weak solution of (5.3). Let us assume that the structure conditions (5.2) hold true with

(5.5) a ∈ R , bp/p−1 , cp , d , ep/p−1 , f ,g , ∈ (MX)′p(Ω) .

Then, there exists a positive constant c, independent of u, such that, for any Br = B(x0, r)
for which B(x0,4r) ⊂ Ω and r< RD, we have

(5.6) ‖u‖L∞(Br ) ≤ C


(?

B2r

|u|p dx

) 1
p

+ h(r)


where

(5.7) h(r) =
[
φ

e
p

p−1
(2r) + φg(2r)

] 1
p

+
[
φ f (2r)

] 1
p−1
.

Proof. The first thing to do is to simplify the structure assumptions (5.2). Setting

(5.8) 3 = |u| + h(r) ,

from (5.2) we easily get

(5.9)


|A(x,u, ξ)| ≤ a|ξ|p−1 + b1|3|

p−1

|B(x,u, ξ)| ≤ c|ξ|p−1 + d1|3|
p−1

ξ ·A(x,u, ξ) ≥ |ξ|p − d1|3|
p
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where,

(5.10) b1 = b+ h1−pe , d1 = d + h1−p f + h−pg .

Now, the functionsb
p

p−1

1 andd1 belong to the class (MX)′p(B4r) and moreover,

φ
b

p
p−1
1

(ρ) ≤ C(p)
[
φ

b
p

p−1
(ρ) + h−pφ

e
p

p−1
(ρ)

]
≤ C(p)

[
φ

b
p

p−1
(ρ) + 1

]
φd1(ρ) ≤ C(p)

[
φd(ρ) + h1−pφ f (ρ) + h−pφg(ρ)

]
≤ C(p)

[
φd(ρ) + 2

]
, 0 < ρ < 2r .

This means that, under our assumptions (5.5), the reduced structure assumptions (5.9) are
of the same kind of the general structure assumptions (5.2). We now build a test function
to be used in the definition of weak solution (5.4). Fixq ≥ 1 andl > h and let

(5.11) F(3) =

3q if h ≤ 3 ≤ l

qlq−1(3 − l) + lq if l ≤ 3

and

(5.12) G(u) = signu
(
F(3)[F′(3)]p−1 − qp−1hβ

)
u ∈ ]−∞,+∞[ ,

whereβ such thatpq= p+ β − 1.
Finally we declare which test function we are going to use in (5.4). We shall take

(5.13) ϕ(x) = ηp(x) G(u),

whereη(x) is a smooth function such that 0≤ η ≤ 1, identically 1 inBr , compactly
supported inB2r .

Now we follow the classical pattern in [27] and substitute our test functionϕ(x) in the
definition (5.4). Using the structure conditions (5.9), we obtain∫

B2r

ηp|X4|p dx≤ ap
∫

B2r

|(Xη)4||η(X4)|p−1 dx+ qp−1p
∫

B2r

b1|(Xη)4||η4|
p−1 dx

+

∫
B2r

c|η4||η(X4)|p−1 dx+ (1+ p)qp−1

∫
B2r

d1|η4|
p dx

where4 = 4(x) = F(3).
With the aid of the elementary inequality

abp−1 ≤
1
p
ε1−pap +

(
1−

1
p

)
εbp, ∀ε > 0

we can greatly simplify the previous one to get

(5.14)
∫

B2r

ηp|X4|p dx≤ C(p,a)qp−1

{∫
B2r

|4(Xη)|p dx+
∫

B2r

V|η4|p dx

}
,

where we put

(5.15) V = b
p

p−1

1 + cp + d1 .



FEFFERMAN–POINCARE INEQUALITY AND REGULARITY ... 12

The functionV belongs to the class (MX)′p(B4r) and we can estimate its Stummel modulus.
Namely we have,

φV(ρ) ≤ C(p)

{
φ

b
p

p−1
1

(ρ) + φcp(ρ) + φd1(ρ)

}
≤ C(p)

{
φ

b
p

p−1
(ρ) + φcp(ρ) + φd(ρ) + 3

}
, 0 < ρ < 2r .

Now we use the Fefferman–Poincare inequality, or to be precise, a consequence of it. We
are going to use corollary 3.2 in order to move to the left hand side one of the integrals
appearing in the right hand side. We obtain,∫

B2r

ηp|X4|p dx≤ Cqp−1

{
(1+ σ)

∫
B2r

|4(Xη)|p dx+

+σ

∫
B2r

ηp|X4|p dx+ K(σ)
∫

B2r

ηp
4

p dx

}
∀σ > 0 ,

where

(5.16) K(σ) ∼
σ[

φ−1
V (σ)

]Q+p
,

andC is a positive constant independent of the function4.

To get our goal we fixσ =
1

2Cqp−1
and then,∫

B2r

ηp|X4|p dx≤ C

{
qp−1

∫
B2r

|Xη|p4p dx+ qp−1K

(
1

2Cqp−1

) ∫
B2r

ηp
4

p dx

}
.

Use of the Sobolev inequality yields
(5.17)(∫

B2r

|η4|p∗ dx

) p
p∗

≤ C
r p

|Br |
p
Q

{
qp−1

∫
B2r

|Xη|p4p dx+ qp−1K

(
1

2Cqp−1

) ∫
B2r

ηp
4

p dx

}
,

wherep∗ = pQ
Q−p andC is a positive constant independent of4. Now, letη(x) be identically

1 in Br1 = B(x0, r1), 0 ≤ η(x) ≤ 1 in Br2 r1 and r2 satisfy r ≤ r1 < r2 ≤ 2r and

|Xη| ≤
C

r2 − r1
. Using the properties of the functionη in (5.17) we have

(5.18)

∫
Br1

4
p∗ dx

 p
p∗

≤ C
r p

|Br |
p
Q

1
(r2 − r1)p

qp−1K

(
1

2Cqp−1

) ∫
Br2

4
p dx,

that is

(5.19)

∫
Br1

4
pχ dx

 1
χ

≤ C
r p

|Br |
p
Q

1
(r2 − r1)p

1[
φ−1

V

(
1

Cqp−1

)]Q+p

∫
Br2

4
p dx,

whereχ = p∗
p =

Q
Q−p.
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Letting nowl → +∞ we get4→ 3q and then

∫
Br1

3
pqχ dx

 1
pqχ

≤ C
1
pq

r
1
q

|Br |
1

qQ

1

(r2 − r1)
1
q


1

φ−1
V

(
1

Cqp−1

)


Q+p
pq ∫

Br2

3
pq dx

 1
pq

.

If we setγ = pq, we have

‖3‖Lχγ(Br1) ≤ C
1
γ

r
p
γ

|Br |
p
γQ

(
1

r2 − r1

) p
γ


1(

φ−1
V

(
1

C
(
γ
p

)p−1

))Q+p


1
γ

‖3‖Lγ(Br2).

Now we want to iterate this last inequality. Set

γi = pχi , r i = r +
r
2i
, i = 1,2, . . . ,

We have

‖3‖Lγi+1(Bri+1) ≤ C
1

pχi

 2i+1

|Br |
1
Q

 1
χi

 1(
φ−1

V

(
1

Cχ(p−1)i

))Q+p


1

pχi

‖3‖Lγi (Bri )
.

Now the inequality is ready to be iterated. We obtain

‖3‖L∞(Br ) ≤ C|Br |
− 1

p

+∞∏
j=0

 1(
φ−1

V

(
1

Cχ(p−1) j

))Q+p


1

pχ j

‖3‖Lp(B2r ) .

We stress that

+∞∏
j=0

 1(
φ−1

V

(
1

Cχ(p−1) j

))Q+p


1

pχ j

< +∞

if and only if the series
+∞∑
j=0

1
χ j

log φ−1
V

(
1
χ(p−1) j

)
is convergent. The conclusion thus follows by lemma (4.1). �

Theorem 5.3(Harnack inequality). Suppose (A1)-(A3) hold true. LetΩ be a bounded
domain having local homogeneous dimension Q and u∈ W1,p

X,loc(Ω), with 1 < p < Q, be a
nonnegative weak solution of (5.3). Let us assume that the structure conditions (5.2) hold
true with

(5.20) a ∈ R , bp/p−1 , cp , d , ep/p−1 , f ,g , ∈ (MX)′p(Ω) .
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Then, there exists a positive constant c, independent of u, such that, for any Br = B(x0, r)
for which B(x0,4r) ⊂ Ω and r< RD, we have

(5.21) max
Br

u ≤ c
{
min

Br

u+ h(r)
}

where

(5.22) h(r) =
[
φ

e
p

p−1
(2r) + φg(2r)

] 1
p

+
[
φ f (2r)

] 1
p−1
.

Proof. We start as in theorem 5.2, setting3 = |u| + h, with h defined by (5.22). From this
it follows that conditions (5.9) are verified. Now letη be a non negative smooth function
compactly supported inB3r . Taking as test function in (5.4)

(5.23) ϕ(x) = ηp(x)3β(x), β ∈ R ,

we have ∫
B3r

|X3|pηpvβ−1 dx≤ C1(p,a)(1+ |β|−1)p

{∫
B3r

|Xη|p3p+β−1 dx+(5.24)

+

∫
B3r

Vηp
3

p+β−1 dx

}
,

whereV = b
p

p−1

1 + cp + d1. Setting

(5.25) 4(x) =

3q(x) where pq= p+ β − 1 if β , 1− p

log3(x) if β = 1− p

by (5.24) we have

(5.26)
∫

B3r

ηp|X4|p dx≤ C1|q|
p(1+ |β|−1)p

{∫
B3r

|Xη|p4p dx+
∫

B3r

Vηp
4

p dx

}
, β , 1−p

while

(5.27)
∫

B3r

ηp|X4|p dx≤ C1

{∫
B3r

|Xη|p dx+
∫

B3r

Vηp dx

}
if β = 1− p .

We start considering (5.27). By theorem 3.1, we have∫
B3r

Vηp dx≤ C2φV(1)
∫

B3r

|Xη|p dx

and then, from (5.27), we have∫
B3r

ηp|X4|p dx≤ C3(p,a, φV,diamΩ)
∫

B3r

|Xη|p dx.

Let Bh an arbitrary open ball contained inB2r . Choosingη(x) so thatη(x) = 1 in Bh,

0 ≤ η ≤ 1 in B3r \ Bh and|Xη| ≤
3
h

, we get

‖X4‖Lp(Bh) ≤ C4(p,a, φV,diamΩ)
|Bh|

1
p

h
.
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Therefore, by Poincaré inequality and John–Nirenberg lemma (see [3]) we have4(x) =
log3(x) ∈ BMOX. Then there exist two positive constantsp0 andC5 depending on the
same arguments ofC4, such that

(5.28)

(?
B2r

ep04 dx

) 1
p0

(?
B2r

e−p04 dx

) 1
p0

≤ C5 .

Set

(5.29) Φ(p,h) =

(∫
Bh

|3|p dx

) 1
p

for any real numberp , 0; by (5.28), recalling that4 = log3 we have

(5.30)
1

|B2r |
1
p0

Φ(p0,2r) ≤ C5|B2r |
1
p0Φ(−p0,2r).

We consider now the case (5.26). By corollary 3.2 we obtain

(5.31)
∫

B3r

|X4|pηp dx≤ C

{
(|q|p + 1)

(
1+

1
|β|

)p ∫
B3r

|Xη|p4p dx

+

 1

φ−1
V

(
|q|−p

(
1+ 1

|β|

)−p
)


Q+p ∫
B3r

ηp
4

p dx

 .
By Sobolev inequality we have

(5.32)

(∫
B3r

|η4|p∗ dx

) p
p∗

≤ C
r p

|Br |
p
Q

{
(|q|p + 2)

(
1+

1
|β|

)p ∫
B3r

|Xη|p4p dx

+

 1

φ−1
V

(
|q|−p

(
1+ 1

|β|

)−p
)


Q+p ∫
B3r

ηp
4

p dx

 ,
wherep∗ = pQ

Q−p = pχ andC is a positive constant independent of4.
Let r1 andr2 be real numbers such thatr ≤ r1 < r2 ≤ 2r. Let the functionη be chosen

so thatη(x) = 1 in Br1, 0 ≤ η(x) ≤ 1 in Br2, η(x) = 0 outsideBr2, |Xη| ≤
C

r2−r1
. We have∫

Br1

4
p∗ dx

 p
p∗

≤ C
r p

|Br |
p
Q

1
(r2 − r1)p

(|q|p + 2)

(
1+

1
|β|

)p

 1

φ−1
V

(
|q|−p

(
1+ 1

|β|

)−p
)


Q+p ∫
Br2

4
p dx.
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Puttingγ = pq= p+ β − 1 and recalling that4(x) = 3q(x), we have
(5.33)

Φ(χγ, r1) ≤ C
1
γ

 r

|Br |
1
Q

 1
q

(|q|p+2)
1
γ

(
1+

1
|β|

) 1
q

 1

φ−1
V

(
|q|−p

(
1+ 1

|β|

)−p
)


Q+p
γ

1

(r2 − r1)
1
p

Φ(γ, r2) ,

for positiveγ , p− 1, and

(5.34) Φ(χγ, r1) ≥ C
1
γ

 r

|Br |
1
Q

 1
q

(|q|p + 2)
1
γ

[
1

φ−1
V (|q|−p)

]Q+p
γ 1

(r2 − r1)
1
p

Φ(γ, r2) ,

for negativeγ. These are the inequalities which we wish to iterate. In order that (5.33) be
applicable at each stage, we choose an initial valuep′0 ≤ p0 in such a way that the point
p = 1 lies midway between two consecutive iterates ofp′0 and fori = 0,1, . . . , we let

(5.35) pi = χ
i p′0 r i = r +

r
2i
.

Thus we also obtain

(5.36) |β| ≥
χ − 1
1+ χ

.

Iterating (5.33) and using lemma 4.1 to prove the convergence of the iteration procedure,
we have

(5.37) Φ(∞, r) ≤ C(p,a, φV,diamΩ)|Br |
−1
p0Φ(p0,2r) .

Now if γi = χ
i p0 andr i = r + r

2i , the iteration of (5.34) yields

(5.38) Φ(−∞, r) ≥ C(p,a, φV,diamΩ)|Br |
1
p0Φ(−p0,2r) .

Therefore, collecting together all the previous inequalities and noting that from Hölder’s
inequality

(5.39) Φ(p′0,2r) ≤ Φ(p0,2r)|Br |
1
p′0
− 1

p0 ,

we obtain

(5.40) Φ(∞, r) ≤ CΦ(−∞, r)

whereC ≡ C(p,a, φV,diamΩ), that is

(5.41) max
Br

u ≤ C
{
min

Br

u+ h
}
.

�

Remark 5.4. We wish to note that the proof of Theorem 5.3 works also with weak subso-
lutions of (5.3) and the proof of Theorem 5.3 provides a weak Harnack inequality for non
negative weak supersolutions.
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6. A    PDE: R

This section is devoted to obtain regularity result directly from Harnack inequalities
proved in the previous section. By a standard argument Harnack’s inequality implies that
weak solutions of (5.3) are continuous with respect to the Carnot Caratheodory metric
d(x, y). In fact we have

Theorem 6.1. Suppose (A1)-(A3) hold true. LetΩ be a bounded domain having local
homogeneous dimension Q and u∈W1,p

X,loc(Ω), 1 < p < Q, be a weak solution of (5.3). Let
us assume that structure conditions (5.2) hold true with

(6.1) a ∈ R , bp/p−1 , cp , d , ep/p−1 , f ,g , ∈ (MX)′p(Ω) .

Then u is continuous inΩ.

Proof. LetΩ′ ⊂⊂ Ω. By theorem 5.2 we have

(6.2) |u(x)| ≤ L

whereL is a positive constant depending onn, p, a, φ
e

p
p−1

(1), φ f (1), φg(1) andΩ′. Let Br

be a metric ball contained inΩ′. Then the functions

(6.3) M(r) = max
Br

u , m(r) = min
Br

u

are then well defined inBr andu = M(r) − u, is a non negative weak solution inBr of
equation

(6.4)
m∑
j=1

X∗j Ãj(x,u,Xu) + B̃(x,u,Xu) = 0 .

We note thatÃ(x,u, ξ) andB̃(x,u, ξ) are defined by

Ã(x,u, ξ) = −A(x,M − ū,−ξ̄)

B̃(x,u, ξ) = B(x,M − u,−ξ),

and satisfy

(6.5)


|Ã(x,u, ξ)| ≤ a|ξ|p−1 + b|u|p−1 + e

|B̃(x,u, ξ)| ≤ c|ξ|p−1 + d|u|p−1 + f

ξÃ(x,u, ξ) ≥ |ξ|p − d|u|p − g

whereb(x), d(x), e(x), f (x) andg(x) are measurable functions belonging to (MX)′p defined
by

(6.6)



b(x) = 2pb(x)

d(x) = 2pd(x)

e(x) = 2pb(x)Lp−1 + e(x)

f (x) = 2pd(x)Lp−1 + f (x)

g(x) = 2pd(x)Lp−1 + g(x) .
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Sinceu is a nonnegative weak solution, we can apply theorem 5.3 to get

(6.7) max
B r

3

u(x) ≤ C

min
B r

3

u(x) + h


where

(6.8) C ≡ C
(
p,a, φ

b
p

p−1
(1), φcp(1), φd(1)

)
,h ≡ h(r) =

[
φ

e
p

p−1
(r) + φg(r)

] 1
p

+
[
φ f (r)

] 1
p−1
.

Note thath is a positive non decreasing function with lim
r→0

h(r) = 0, such that

h
( r
2

)
≥ Kh(r) , 0 < K < 1.

We have

(6.9) M(r) −m
( r
3

)
≤ C

[
M(r) − M

( r
3

)
+ h(r)

]
.

In the same way, setting

(6.10) u = u−m(r)

we obtain

(6.11) M
( r
3

)
−m(r) = max

B r
3

u ≤ C

min
B r

3

u+ h

 = C
[
m

( r
3

)
−m(r) + h(r)

]
.

Adding the previous inequalities we have

(6.12) M
( r
3

)
−m

( r
3

)
≤

C − 1
C + 1

[M(r) −m(r)] +
2C

C + 1
K2h

( r
4

)
.

Set, forρ > 0

(6.13) ω(ρ) = M(ρ) −m(ρ), γ =
C − 1
C + 1

h(r) =
2C

C + 1
K2h(r),

then

(6.14) ω
( r
4

)
≤ ω

( r
3

)
≤ γω(r) + h

( r
4

)
.

From lemma 4.2 it follows

(6.15) ω
( r
4

)
≤ Khσ

( r
4

)
which is the continuity of the solutionu. �

Our next result concerns hölder continuity of weak solutions. It is clear that, if we want
to improve the result we have to restrict our assumptions. So we will assume that the
coefficients in the structure will belong to some Morrey classes. Namely we are going to
prove the following
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Theorem 6.2. Suppose (A1)-(A3), hold true. LetΩ be a bounded domain with local
homogeneous dimension Q. Let u∈ W1,p

X (Ω), 1 < p < Q, be a weak solution of (5.3). Let
us assume structure conditions (5.2) where

(6.16) a ∈ R , bp/p−1 , cp , d , ep/p−1 , f ,g , ∈ L1,p−ε
X (Ω) .

Then the weak solution u is locally hölder continuous inΩ with respect to the Carnot–
Caratheodory metric, namely for anyΩ′ ⊂⊂ Ω there exist c> 0 andα > 0 depending on
the Morrey modulus of the coefficients of equation (5.3) such that

(6.17) |u(x) − u(y)| ≤ c d(x, y)α ∀x, y ∈ Ω′ .

Proof. We note that our assumptions (6.16) are more restrictive than (6.1) and then, the
result of our previous theorem hold true. To improve our previous result, it is sufficient to
observe that thanks to our lemma 2.6 theh function appearing in the continuity result is
now a power of the distanced(x, y) and then the modulus of continuity of the solution has
an algebraic decay. This ensures hölder continuity. �

Remark 6.3. We want to compare the assumptions in the papers[10] and [11]. In [10]
the author assumed the following

(6.18)


a = constant,

b, e ∈ Lq,q(p−1)
X (Ω), p

p−1 < q < Q
p−1,

c ∈ Lq,q(1−ε)
X (Ω), p < q < Q

1−ε ,

d, f , g ∈ Lq,q(p−ε)
X (Ω), 1 < q < Q

p−ε .

In [11] the authors assumed the following

(6.19)


a = constant

b, e ∈ L
Q

p−1

loc (Ω)

c ∈ Lp,p−ε
X (Ω)

d, f , g ∈ Ll,l(p−ε)
X (Ω), 1 < l < Q

p−ε .

Using Hölder inequality it is easy to prove that our assumptions are more general than
those contained both in[10] and in[11].

Remark 6.4. We also point out that our results extend the sharp elliptic case to the non-
commutative setting.
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