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1. INTRODUCTION

This talk is a survey on some recent results concerning local regularity for weak solu-
tions to some quasilinear degenerate elliptic equations. This topic is a very classical one
in the theory of PDE and we start by recalling contributions given by many authors. Early
results go back to the outstanding papers by De Giorgi [12], Stampacchia [29], Ladyzhen-
skaia and Uraltzeva [ 18] between the end of 50’s and the beginning of 60’s. Namely, for
an elliptic equation of the following kind,

(1.1) — (aijux)x; + biuy +cu=f

they studied the regularity of weak solutions for linear, uniformly elliptic equations as-
suming the lower order céigcients,b, c, f to belong to some suitable® classes. Later,

in subsequent papers by Seriin![27], Morrey! [22] and Trudinger [30], some results were
extended to some nonlinear equations satisfying suitable growth conditions. Despite the
sharpness of their results, it appeared that the Lebesgue classes were not the right ones
in which to put the lower order terms to obtain regularity. In fact, it is quite easy to
find equations (even linear) having regularity properties without lower order terms in any
Lebesgue classes. At the beginning of 70’s Lewy and Stampacchia [19] shadieer H
continuity properties for the solution of the equation

(1.2) —Au=f
assumingf to satisfy an.! assumption. The assumption was the following

(1.3) f If(y)ldy<cR!, VR<R,
Br(xo)

1
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and somel > O related to the Euclidean dimension
After that, Aizenman and Simon, in/[1] considered the equation

(1.4) —-Au=Vu

using probabilistic tools and discovered that regularity properties obtainable through Har-
nack inequality were related to a class of potentials already used for other reasons, the
Stummel—-Kato class. Functions belonging to this class are required to satisfy the follow-
ing condition.

Definition 1.1. LetQ be a bounded domain iR". Assume that

(1.5) n(R) = sup M

xXeQ JONBR(X) |X - yln_Z
Then, we will say that the function V belongs to the Stummel-Kato clél}, S

dy— 0,as R— 0.

An important point is that Aizenman and Simon’s proof relies on the following imbed-
ding

(1.6) f Vi dx<ch(R) | |Vu?dx, Yu e C3(Br),

BR Br
and some consequence of it, that hold trué i§ in the Stummel—Kato class. The imbed-
ding (1.6) is proved by Aizenman and Simonlin [1] and later, using non probabilistic tools,
by Schechter (see [26] and |25]). At the same time, Dal Maso and Moscb in [9] developed
a pointwise analysis for solutions of equations of the form

a.7) Lu+uu=v,

wherelL is a linear second order elliptic operator assumed to be uniformly elliptic in
the domainQ andyu,v are measure satisfying conditions similar[to{1.5). Aizenman and
Simon’s result were extended to any linear uniformly elliptic operator by Chiarenza, Fabes
and Garofalo in 1986 [5]. In their paper, using a representation formula, they proved
Harnack inequality and the continuity of weak solutions for equations of the following
kind

(1.8) Lu-Vu=0,

whereL = dy,(a; dx). Subsequently, Simader [28] gave also a proof of Harnack inequal-
ity and the continuity of weak solutions based on representation formula. At the same
time, Hinz and Kalf[[17] showed the same results using subsolution estimates. Moreover,
Simader shows that, once it is known that the solutialocally bounded, the continuity

of the solution is actually equivalent to the validity of the Harnack inequality. Local regu-
larity properties of weak solutions were studied alsa in [13] using representation formulas
and, in a non linear setting, in Rakotoson and Ziemer [24] (seelal5d [32],[33],[34]).

Now we turn our attention to operators that can be degenerate elliptic./In [16] Gutierrez,
using a suitable version of the Stummel—Kato class, adapted to degenerate elliptic equa-
tions showed Harnack inequality and regularity for the weak solutior|s df (1.8) where,
is a linear elliptic operator with degeneracy A&f kind, extending to the weighted case,
the results in[[b](see alsb [B5],I31]).
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In [8], Citti,Garofalo and Lanconelli proved the validity of Harnack inequality and the
continuity of the solutions for a linear elliptic operator satisfying thi@idander condi-
tion. In [7] the Holder continuity were obtained for equations of the kind](1.8) assuming
the known term in a suitable version of the Morrey class modelled on the level sets of the
fundamental solution. Related results are also [4], [20] and [11]. In the same direction
but related to the point of view of Dirichlet forms see also [2].

What we want to stress here is that a very useful tool to obtain regularity results is an
imbedding like[(1.B). After this was recognized, the imbedding (1.6) was generalized and
extended in various directions.

In 1982, Aizenman and Simon proved (1.6) and in 1983, €effiman ([15]) proved the
imbedding

(1.9) V||luPdx<c | Vu|Pdx, Yu e CJ(Bg),
BR BR

for p = 2, assuming thaV/ € L""P" — the classical Morrey space. Later, Chiarenza
and Frasca in [6] showed the flerman imbeddind (1]9) for any ¢ p < n/2 assuming

V e L""P" with a simpler proof. Subsequently, Danielli in [10], generalized the proof
and the result in [6] to the case when the gradient in the right hand side is replaced by the
energy of a system of non commuting vector fields. [In [14], imbedding (1.6) is proved
in a general setting in which the gradient is replaced by the energy of a system of non
commuting vector fields. The aim of this talk is to show how imbeddings [ike (1.6) or
(1.9) are useful to obtain regularity for weak solutions of quasilinear subelliptic PDE.

2. PRELIMINARIES AND FUNCTION SPACES

We collect the preliminary assumptions we need in the sequel, so we start with some
notations. Let us consider a systedn= (X4, ..., Xy,) of non commutative vector fields in
an open sef©2 € R" with locally Lipschitz continuous cdicientsb;,. We write

n
0 . .
(21) Xj:;bjka—Xk, bjk€L|p|oc(Q) 1:1,...,m, k= 1,....n,

n
and denote by(}‘ = - k;l &(bjk -) its formal adjoint.
For a given functionu: Q c R" — R, we set

(2.2) Xu = (XU, ..., Xpu), IXul = (Zm:(xju)z]
=1

where, as usual,
(2.3) Xju(x) = (X, Vu(x)), j=1...,m,

identifying the X;'s with the first order diterential operator that acts ane Lip(L) via

formula [2.3).
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Using definition [(2.R) it is possible to define Sobolev classes replacing the ordinary
gradient with thex—gradient. Namely, in the sequel we set

(24) W@ ={uelP(@ : XuelP@), j=1....m, 1<p<oo,
and for anyu € WiP(Q)

(2.5) Iullp = llullp + HXulp.-

The completion of the s&@}(€2) with respect to the nor.5) will be denoted\b%(ﬂ).
Using the vector fieldsXy, ..., Xn, it is possible to define a distance. A piecew®e
curvey : [0, T] — R"is calledX—sub-unit, if whenevey’(t) exists one has

(2.6) 0,67 < D K0W).6°  VEER
=1

The X—sub-unit lenght o is by definitionls(y) = T. Givenx,y € R", we denote by
®(x,y) the collection of allX—sub-unit curves connectingtoy. Then

(2.7) dix.y) =inf{ls(y) : v € O(x.y)}
defines a distance, usually called the Carnot—Caratheodory distance generated by the
systemX. We will denoteB(x,r) = {ye R" : d(x,y) < r} the metric ball centered at
x of radiusr and whenevek is not relevant we shall writ®,. We shall denote with
de(%,y) = |X - y| the usual Euclidean distancel.

The following assumptions will be used in all the sequel.

(Al) The identity map : (R",ds) — (R",d) is continuous;

(A2) (Doubling condition) For every bounded $etc R" there exist costantSp, Rp >

0 such that foxg € Q and O< r < Rp one has

|B(Xo, 2r)| < CplB(Xo, 1)l;

(A3) (Weak4L! Poincae type inequality) Give as in (A2), there exist positive con-
stantsCp anda > 1 such that for any, € Q, 0 < r < Ry andu € CY(B(Xo, ar)),
one has

sudAl{x € B(Xo, ) : [U(X) — Ul > A < Cpr IXudx,
B(xo,ar)

>0
whereug, ) denotes the integral averagfg%(0 N u(y) dy.
The numbeQ = log, Cp, will be called the homogeneous dimensiorfbf

Definition 2.1. Let Ve L (Q),r >0and1 < p< Q. We set

loc
1 p-1

) d(x.y) dzy) |
@8 am=suw | m[ | 'V@'mdz] W

QNB(x,r) QNB(x,r)

We say that a function ¥ L; (Q) belongs to the spac(eﬁlx)p(Q) if and only ifgy(r) is
finite for any r> 0.
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Definition 2.2 (Stummel-Kato class)We say that a function ¥ L. (Q) belongs to the

space(Mx),(Q) if and only if¢y (r) defined in[(2.]1) is finite for any* 0 and, in addition,
IirQ ov(r) = 0.
r—0+

We will call ¢y(r) the (Mx), — modulusof V. It is not dificult to prove thapy(r) is a
continuous function.

Definition 2.3. Let1 < p < Q. We say that \& (My)(¢2) belongs to the claséMx),(€)
if

1
¢Vit)p dt < +c0.

(2.9) >0 f
0

Remark 2.4. We explicitely note that:

1. When X= V the space$l\7|x)p, (Mx)p, and(Mx),, gives back the usual Stummel—
Kato classes;
2. The functionpy(r) is doubling, i.e.:

dc>1 : ¢v(2r) <coy(r), r>0.
Now we define some spaces very closely connected to Stummel classes.

Definition 2.5 (Morrey spaces)Let p € [1, +oo[ and 2 > 0. We say that Ve L’ (Q)

loc
belongs to the intrinsic Morrey space with respect to the systesr(X, . .., Xy), LQ’”(Q),
if

1
p
A

r
— - p
(2.10) Mgy = Sup IB(X,r) N Q| f VOIFdy| < oo,
0O<r<dg B(x,r)NQ

where @ = min(diam@), Rp).
It is quite easy to compare Stummel—Kato classes and Morrey spaces. Indeed,
Proposition 2.6. Letl < p<Qand0O<e<p.If Ve Li’p‘s(ﬁ) we have
(2.11) ¢v(r) < C(Co, p, &) IVl zp-r*
forany0 < r < Rp and then
(2.12) L3P (Q) € (M)

Proof. Forx e Q and O< rq < r, we set

(2.13) Ars,rz,X) ={ye Q : ry<d(xy) <ra}, Aj= A(#, % X) .
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Then, we have

1

d(x.y) dzy) .|
(2.14) f B(x, d(x. ) [{mf Vo Ez dz v dz] dy

{yeQ : d(xy)<r} 2d(zx)<r}
1

&L dxy) (s dzy) |~
JZfA B d(x y)) [ng NIEz az v dz] W

| &
= Clco. P Zf B0 ) [;;B(x, - k)|f 'V(Z)'dz] v

1

< C(Co. DIV, i (2(21 ) p)

=1 k=0

= C(Cp, p, )IIVIl '° LT

1p
X

,_

3. FEFFERMAN—POINCARE INEQUALITY

In this section we state and prove a version dif€&@nan—Poincare inequality suitable
for our purposes.

Theorem 3.1.LetQ be a bounded open s@tc R", with homogeneous dimension Q and

letl < p < Q. Suppose (Al) - (A3) hold true, andeMx)(€2). Then it exists a positive
constant ¢ independent of u such that

(3.1) f V(X[ u(X)|Pdx < cay(2r) f IXu(x)[P dx
Q Q
for any smooth function u compactly supported jn B

Proof. The main point in the proof is the use of a suitable representation formula. We use
Theorem 1 in[[211] and then,

f VOGP dx < ¢ f VOO UG ( f |Xu(y)|m dy) dx

4 d(xy)
<c [ xu) ( [[veieop s ED y))|olx) dy

Lodxy) L]
( [ |Xu(y)|pdy) { [ ( [[veanor —lB(x,d(x,y))ldX) dy] .

We also have

[
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P

L(I|V(X)I |u(x)|p—1%dx)p_l N

d(zy) & d(x,y) _
f (f VlEZ dzy ) (f VIO B0 dx y))|dx)dy‘

1

_ b d(x.y) '( dizy) )
fB'V(X)' UG fB B A0 Y)) fB'V(Z)' Bdeyy %Y o
< ¢71(2r) f VOO LGP dx.

Merging the previous inequalities we obtain the desired conclusion. O

The next corollary is an easy consequence of the previous Theorem. It can be obtained
via a standard partition of unity.

Corollary 3.2. Under the same assumptions of Theofem 3.1 we have that far ang
there exists a positive function(i) ~ W such that
Vv g,

) Pd o Pd o Pd
(3.2) f VOO LGP dx < fg XU dx+ K (o) fg U(IP dx
for all u € Wy H(Q).

Proof. Lete > 0. Letr be a positive number that we will be choosen later. {qu‘l}

i = 1,2,...,N(r), be a finite partition of unity of2, such that supp; C B.(x), with
X € Q. We apply Theore 311 to the functioagu and we get
N(r)

| 9P ax= [ VRIKP Y a9 dx =
Q i=1

N(r)

f VIUIPaP(x) dx

N(r)

pa,'p Qa; P p
S;WV(ZF)(L IXu(X)] .(X)dX+L|X ()[Plu(xX)| dx)

< Ccov(2r) (L IXu(X)[P dx + %Llu(x)lpdx) )

Now, to obtain the result it stices to choose such that ¢y (2r) = ¢. After that we note
thatN(r) =~ r—Q and the corollary follows. |

4. SOME LEMMAS

In this section we collect some lemmas which will be useful in the sequel. We give
proofs for sake of completeness.
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Lemma4.1(seel23]) Letu :]0, +oo[ a continuous increasing function such tlh'ag,u(r) =
r—
Oand let0 < 6 < 1. The series

(4.1) > #logu(6%),
i=0
where g> 0, is convergent if and only if there exigis> 0 such that
0 1
4.2) f ,uqt(t) dt < +o0.
0

Proof. We claim that[(4.R) is actually equivalent to the convergence of the following series
+0o0
Z(Qa'l - a'i+1) 1)
j=0

wherea; = 6/ logut (u(0)6%).

Indeed
0 1 ulp) ok
fﬂ“(t)dt:f Siq 11 ds
o t o MH)wuH9)

1
Sa

+00 w1(p)6% 1 1
= f 1 iy ds
=3 Jupyeatiy () 1 ((9))
< > i)' logu™ (u(p)e”) -
j=0
1. j+1 -1 (j+1)
~Zui(p)e" log ™ (u(o)e"Y)
é +0o0
=B oy - ).
i=0
Exactly in the same way it is possible to show that
O % t +0o0
@3) [ a> Y a0
0 i=0

and the claim is proved.
+00 +00
Itis trivial to recognize that the two serigs(6a; —a;j.1), ), a; have the same behaviour.
j=0 j=0

O

Lemma 4.2.Let0 < y < 1and let h:]0, +oo[ — ]0, +oo[ be a non decreasing function
such thatltirrg h(t) = 0and

(4.4) h(t) < ch(t/2) Vt>O0,
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for some constant ¢ 1. Moreover, letw : ]0,+co[ — ]0,+co[ be a non decreasing
function. Assume that there exigts 0 such that,

(4.5) w(p) < yw(4p) + h(p) Yo <po<1.
Then there exist < pg, 0 < o < 1 and K> 0 such that
(4.6) w(p) < Kh7(p) Yo<p.

Proof. Let 6 > 0 be such thah(p) < 1 forp < p. Setp = min(g, po), we chooseR > 0
such thaR < p.

If p e E R], letting

w(p)
@) M= ar (o)’
we have
(4.8) w(p) < Mh(p) .
If p € [4—F§ ;] by ) and and the fact thb{dp) < 1, we have
(4.9) w(p) < yMh(4p) + h(p) < yMh”(4p) + h”(p)
for everyo : 0 < o < 1. Now we fixo such that
(4.10) yc¥ =a<1
wherec is the constant irf (4}4), we obtain
(4.11) w(p) < (Ma+ 1)h7(p).

. . _ R R
Iterating this procedure, jj € [W E]’ we have

i-1
(4.12) w(p) < (Mai + Z ak) h”(p) <
k=0

1
M - h(r
NES
and then we gef (4.6) taking = M + 5. O

5. APPLICATION TO QUASILINEAR SUBELLIPTIC PDE: HARNACK INEQUALITY

In this section we show how Herman—Poincare inequality is used to obtain regularity
results for a class of subelliptic quasilinear PDE. We shall follow the classical Moser
procedure. We will show that any weak solution is locally bounded and for any non
negative weak solution, a Harnack inequality hold true. In the next section we will show
how to deduce regularity from Harnack inequality.

Let Q be a bounded domain having homogeneous dimer@iand let

(5.1) AXUE)  OXRXR™ > R™, B(XUué): QxRxR" - R
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be measurable functions satisfying the following structural assumptions
IA(X, U8 <aéPt+buPt+e
(5.2) B, U, &)l < clélPt+duPt + f

fora.e.x € Q c R", Yu € R, ¥¢ € R". All the results in this section will be referred to
equations of the following kind:

m
(5.3) Z X Aj (%, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0
j=1
The first thing to make precise is what is meant to be a weak solutipn ¢f (5.3).

Definition 5.1. A function ue WP (Q) is said to be a weak solution .3)§mif

X,loc
(5.4) ZfQAj(x,u(x),Xu(x))Xj o(X) dx+ fQB(x,u(x),Xu(x)) e(X)dx=0,

for everyp € Wy 5(Q).

We explicitely note that definitior] (5.1) can be meaningful according to suitable as-
sumptions made on the déieients in the structure assumptiops 5.2) by using Theorem
8.3

Our first result is the following local boundedness result.

Theorem 5.2(Local Boundedness)Suppose (A1)-(A3) hold true. L&t be a bounded
domain having local homogeneous dimension Q alao\/uf<| [(Q),withl<p<Q,bea
weak solution of (5]3). Let us assume that the structure condifiors (5.2) hold true with

(5.5) aeR, b”Pt ¢ d, Pt g, e (MY),(Q).

Then, there exists a positive constant c, independent of u, such that, for anB(&o, r)
for which Bxp, 4r) c Q and r < Rp, we have

(5.6) lullL~g,) < C{(JCB |u|'°dx)p + h(r)}

where

(5.7) h(r) = [qﬁeppl @r) + ¢g(2r)]p +[er@n] .

Proof. The first thing to do is to simplify the structure assumptigns| (5.2). Setting
(5.8) v=|ul+h(r),

from (5.2) we easily get
IA(X, U, &) < alélPt + by Pt
(5.9) IB(X, u, &) < clélP™ + dafolP*
EAX U, &) > [€]P — dyfol
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where,
(5.10) b=b+h'Pe |, d;=d+h*Pf+ hPg.

b
Now, the function;™ andd; belong to the classMx);,(Bsr) and moreover,
6 2,0) < CP)| 62,600 + 776 _2,0)| < C(P) |, 2,(0) +1]
by e bp

0,(0) < C(P) [ #a() + NP (o) + W™Ph(p)] < C(P) [da(p) +2] . O< p < 2r.

This means that, under our assumptigns|(5.5), the reduced structure assurpiptions (5.9) are
of the same kind of the general structure assumptjons (5.2). We now build a test function
to be used in the definition of weak soluti¢n (5.4). Fix 1 andl > h and let

pd if h<ov<l
6-41) F) = {qlq—l(u —+19 i 1<
and
(5.12) G(u) = signu(FE)[F'@)]"™" - ") ue]—oo,+oo[ ,

whereg such thatpg= p+ 8 - 1.
Finally we declare which test function we are going to us¢ in (5.4). We shall take

(5.13) @(X) = n°(X) G(u),

wheren(x) is a smooth function such that € n < 1, identically 1 inB,, compactly
supported irB,,.

Now we follow the classical pattern in [27] and substitute our test funct{ahin the
definition (5.4). Using the structure conditions (5.9), we obtain

f P XwlPdx<ap | I(Xp)wlp(Xw)Ptdx+gPtp | by (Xnp)wlnpw|P* dx
BZr

Bor Bor

. f cnwlin(Xw)P dx+ (L + PP [ duful®dx
BZr

Bor

wherew = w(x) = F(v).
With the aid of the elementary inequality

1 1
abPl < =gl PaP 4+ (1 - —)8bp, Ye >0
p p
we can greatly simplify the previous one to get

(5.14) fnp|Xw|deSC(p,a)qp_1{f |w(Xn)|de+f V|nw|pdx},
Bar Bor Bor

where we put

P

(5.15) V=b"+cP+d.
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The functionV belongs to the clas$/x),(Bs) and we can estimate its Stummel modulus.
Namely we have,

0v6) < CO 62,0+ 650) + 000

<C(P) {9, 2, () + ¢ (o) + 4ule) +3} . O<p<2r.

Now we use the R&erman—Poincare inequality, or to be precise, a consequence of it. We
are going to use corollafy 3.2 in order to move to the left hand side one of the integrals
appearing in the right hand side. We obtain,

f 7P XwlP dx < qu_l{(1+o')f |lw(Xn)|P dx+
BZr

Bor

+0'f P Xw|P dx + K(o) r]pwpdx} Yo >0,
BZr

Bor

where
(5.16) K(o) ~ %,
|434()]
andC is a positive constant independent of the function
To get our goal we fixr = 2Cqpi and then,

1
-1 -1

Use of the Sobolev inequality yields
(5.17)
rP

P
> 1
| wlp*dx) <C { p-1 IXn|PwP dx + p‘lK( )f pwpdx},
( Bor n |BI’|% q Bor n q 2qu_1 Bor 77

wherep* = 5—3) andC is a positive constant independenuofNow, letn(x) be identically
1in B, = B(x,r1), 0 < n(X) < 1in By, ry andr, satisfyr < r; < rp, < 2r and

IXn| <

Using the properties of the functignin (5.17) we have

o — rl'

Y

3 rP 1 1
5.18 whdx] <C—s——— p‘lK( )f wP dx,
(518) (jl;,l ) IB,[& (2 — rl)pq 2CoPt) Js,
that is

1

X rP 1 1
5.19 wPdx| <C f wPdx
(5-19) (]E;l ) B (—r)P[ (1 \|*"Js,
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Letting nowl — +oc0 we getw — 09 and then

Q+p
]
1

1 1 1
U qu’fdx)pqxscvlq v 1 1 U qudx)pq.
B By (ry — Fy)d 1 ) B,

If we sety = pg, we have

<=

1 r 1 Y 1
”U”LXV(Brl) <Cv 5 ( ) ||U||L7(Br2)~

|Br|ﬁ rh—1r1 (_1( L ))Q+p
W

Now we want to iterate this last inequality. Set

Y =px', =r+ =, i=12...,
We have
1

~1(_1
v oo

Now the inequality is ready to be iterated. We obtain

L (21 )F
”U”Lml(B,”l) < Cw ( 1)
B |2

e
ol g, )-
))Qw} |

1
+00

_1
ol < B | ]

-0 [(W (%))

ey
ap| ey -

We stress that

1

johmw))@”’

+00 1 I i 1
Z; 09 v\ i

j=0
is convergent. The conclusion thus follows by lemnal(4.1). ]

if and only if the series

Theorem 5.3(Harnack inequality) Suppose (Al)-(A3) hold true. L&t be a bounded
domain having local homogeneous dimension Q aﬁd/\liﬁc(ﬂ), withl < p< Q, be a
nonnegative weak solution ¢f (b.3). Let us assume that the structure conditigns (5.2) hold
true with

(5.20) acR, bPPt ¢, d, P, g, € (MY)H(Q).
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Then, there exists a positive constant c, independent of u, such that, fof anB(&o, )
for which Bxg, 4r) c Q and r < Rp, we have

(5.21) max < C{rréinu ; h(r)}
where
(5.22) h(r) = [(ﬁepgl @) + ¢>g(2r)]’° + [or(2n]™

Proof. We start as in theorem 5.2, setting |u| + h, with h defined by[(5.22). From this
it follows that conditions[(5]9) are verified. Now lgte a non negative smooth function
compactly supported iBs. Taking as test function if (5.4)

(5.23) ¢() = PPN, BER,

we have

(5.24) IXvlPpPVtdx < Ci(p,a)(1+ |,3|—1)P{ IXn7|PoPL d
BSr B3r

+f Vnpvp+ﬁ_1dx} ,
BSr
b

whereV = by + cP + d;. Setting

{vq(x) where pgq=p+B8-1 if B#1l-p
w(X) =

(5-29) loge(x) if B=1-p

by (5.24) we have

(5.26) nP| Xw|P dx < C4|gP(1+ Wl_l)p{ |Xn7|PwP dx + f Vnpwpdx} B#+1-p
Bgr B3I’

Bar
while
(5.27) f 7P XwlP dx < Cl{ |Xn|pdx+f Vnpdx} ifg=1-p.
Bar Bsr Bar

We start considering (5.27). By theorém|3.1, we have

f ViPdx< Copu(L) [ 1XniPdx
B3r

Bar

and then, from[(5.27), we have

f PPIXulP dx < Ca(p, & dv, diam) [ 1XyP dx.
BSr

Bar
Let By, an arbitrary open ball contained By,. Choosingn(x) so thatp(x) = 1 in B,

0<n<1inBy\Byand|Xy| < h we get

1
. B, |?
IXullLee,) < C4(p,a,¢v,d|amg)%_
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Therefore, by Poincérinequality and John—Nirenberg lemma (see [3]) we he( =
loguv(X) € BMOy. Then there exist two positive constaqgandCs depending on the
same arguments @f,, such that

(5.28) (JC epowdx)p° (JC e—POde)p° <Cs.
Bor Bor

Set

(5.29) o(p, h) = ( jv[P dx)é

Bh

for any real numbep # 0; by (5.28), recalling thab = logv we have

(5.30) ®(Po, 2r) < Cs|By | % (—po, 2r).

E
|Bar [P0

We consider now the cade (5/26). By corollary] 3.2 we obtain

p
5.31) | |XwlPpPdx<cC {(|q|p ; 1)(1 ; %) IXnlPwP dx
Bar Bar
Q+p
+ 1 - f nPwP dx; .
st(ae(i+2)7)| e

18l

By Sobolev inequality we have

p

e p p
(5.32) ( |nw|p*dx)p <c— {(|q|p+2)(1+ i) IXnlPwP dx
Bar 1B, |2 Bl Jgs

Q+p
1

+ - fnpwpdx ,
ot (e 2)7)| e

wherep* = (g—_Qp = py andC is a positive constant independentuof
Letr,; andr, be real numbers such thak r; < r, < 2r. Let the functiong be chosen

We have

so thaty(x) = 1in B, 0< (x) < 1in By, n(x) = 0 outsideBy,, [Xr| < ==

= ro-rp°
P
(f p*d)p*<crp L (qr+2)
w X <LCL——m——
B IB,j6 (r2—r1)P

1

Q+p

(“%) ¢>V1(|q|p(11+i)p) fB e

B 2
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Puttingy = pq= p+ 8 - 1 and recalling thab(x) = v9(X), we have
(5.33)

Q+p
1 1 Y

1 ro\d 1 1\@ 1 1
D(xy,r1) < CV( 1] (I9iP+2) (1 + —) - D(y,r2),
' |0 g v (|q|—p (1 + ﬁ) p) (r2—ra) i

1
p

for positivey # p-1, and
1 Qtp

df o ) 1 1 7
(5.34) Oy, 1) 2Cr | —= | (d°+2) | —7—
Bl'lQ ¢V (|q| P) (rz — rl)
for negativey. These are the inequalities which we wish to iterate. In order|that|(5.33) be
applicable at each stage, we choose an initial vajpg po in such a way that the point
p = 1 lies midway between two consecutive iterateppénd fori = 0,1,..., we let

D(y, r2),

1
P

P, r
(5.35) P =x'Po ri:r+§-
Thus we also obtain
x—-1
(5.36) 18] > 1oy

Iterating [5.3B8) and using lemma %.1 to prove the convergence of the iteration procedure,
we have

(5.37) (0. 1) < C(p. 2, dv. diamQ)| B ® d(po, 2r)..
Now if yi = x'po andr; = r + %, the iteration of[(5.34) yields
(5.38) D(—c0,r) = C(p, @, ¢y, diamQ)|B; P O(—po, 2r) .

Therefore, collecting together all the previous inequalities and noting that fra@deks
inequality

1 _1
(5.39) @(pg, 2r) < D(po, 2r)|Br|% ™,
we obtain
(5.40) D(c0,1) < CO(—00,r)

whereC = C(p, a, ¢y, diamQ), that is

(5.41) maxi < C {rréin u+ h} .

r

O

Remark 5.4. We wish to note that the proof of Theorem 5.3 works also with weak subso-
lutions of [5.8) and the proof of Theorém|5.3 provides a weak Harnack inequality for non
negative weak supersolutions.
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6. APPLICATION TO QUASILINEAR SUBELLIPTIC PDE: ReGuLARITY

This section is devoted to obtain regularity result directly from Harnack inequalities
proved in the previous section. By a standard argument Harnack’s inequality implies that
weak solutions off (5]3) are continuous with respect to the Carnot Caratheodory metric
d(x,y). In fact we have

Theorem 6.1. Suppose (A1)-(A3) hold true. L& be a bounded domain having local
homogeneous dimension Q and l\Nl’IpC(Q), 1< p< Q, be aweak solution .3). Let

O
us assume that structure conditions (5.2) hold true with

(6.1) acR, bPPt cP d, P f g, e (My)L(Q).
Then u is continuous if.

Proof. LetQ’ cc Q. By theorenj 5.2 we have

(6.2) lu(x)| < L

wherelL is a positive constant depending onp, a, ¢e%(1), #1(1), ¢g(1) andQY’. Let B,
be a metric ball contained ®’. Then the functions

(6.3) M(r) = maxu , m(r) = rréinu

are then well defined B, andu = M(r) — u, is a non negative weak solution B of
equation

m
(6.4) D X;Ai(x T, XT) + Bx, U, XU) = 0.
=1

We note thai\(x, T, ) andB(x, T, &) are defined by
A(x,T,€) = —A(X, M — U, =€)
B(x,U,&) = B(x, M - T, -¢),
and satisfy
A(x,T,8)| < aléPt+buPt+e
(6.5) IB(x, T, &)l < cléPt+duPt+ T
EA(X,T,€) 2 [P - ditiP - g
whereb(x), d(x), &x), f(X) andg(x) are measurable functions belonging k), defined
by
b(X) = 2Pb(x)
d(x) = 2°Pd(x)
(6.6) &) = 2°b(X)LPL + e(x)
T = 2°d(LPL + (%)
g(x) = 2Pd(X)LP !+ g(X).
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Sincet is a nonnegative weak solution, we can apply thedrein 5.3 to get
(6.7) maxti(x) < C (rginU(x) + ﬁ)
5 3

where
1

6.8) C=C(p.ag, 21 d5(1).0a(D) A =0 = |02, () + 95| + [0 ()] .

Note thath is a positive non decreasing function witholﬁ(r) = 0, such that
r—

E(%)z KR(r) . O0<K<1.

We have

(6.9) M(r) — m(i) <C [M(r) -M (5) ; ﬁ(r)] .
3/ 3

In the same way, setting
(6.10) U=u-m()
we obtain
6.11 M (1 f) = maxti < C|minG +h| = c|m(L) = m(r) + A(r
(. ) (é)_rn()_ B% us= B% u+ B [ (:._3))_ ()+()]

Adding the previous inequalities we have

r ry C-1 2C (T
(6.12) M(é)_m(é)s cr MO -mnl+ =7k h(Z)‘
Set, forp > 0
B ~C-1 _ 2C
(6.13) w(p) = M) —mlp).y = = h(r) = = K*N(r).
then
r r r
(6.14) w(z) < w(é) < yol(r) + h(Z) .
From lemma4] it follows
r T

(6.15) w(z)g Kh (4)
which is the continuity of the solution. ]

Our next result concerngtder continuity of weak solutions. It is clear that, if we want
to improve the result we have to restrict our assumptions. So we will assume that the
codficients in the structure will belong to some Morrey classes. Namely we are going to
prove the following
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Theorem 6.2. Suppose (Al)-(A3), hold true. L&t be a bounded domain with local
homogeneous dimension Q. Let l\N)l(’p(Q), 1< p<Q,beaweak solution .3). Let
us assume structure conditions (5.2) where

(6.16) acR, bPPt P d, Pt f,g, e L37(Q).

Then the weak solution u is locally hdlder continuouginvith respect to the Carnot—
Caratheodory metric, namely for aify cc Q there exist & 0 anda > 0 depending on
the Morrey modulus of the cfiieients of equatior] (5]3) such that

(6.17) u(x) —u(y)| < cd(x,y)* VYxyeQ'.

Proof. We note that our assumptiorjs (6.16) are more restrictive fhan (6.1) and then, the
result of our previous theorem hold true. To improve our previous result, itfisisumt to
observe that thanks to our lemina]2.6 thieinction appearing in the continuity result is
now a power of the distana¥x, y) and then the modulus of continuity of the solution has

an algebraic decay. This ensurédder continuity. O

Remark 6.3. We want to compare the assumptions in the pafiedand [11]. In [10]
the author assumed the following

a = constant

b, ee LI (@), << p%l,
ce L;‘gq(l_g)(Q), p<Qg< 1—?5

d, f,geLfQ), 1<q<X.

In [11] the authors assumed the following

(6.18)

a = constant
Q.
b, ec L7(Q)

(6.19) I
ce LEP(Q)

d f,gely®Q), 1<I<%.

Using Holder inequality it is easy to prove that our assumptions are more general than
those contained both if10] and in[11].

Remark 6.4. We also point out that our results extend the sharp elliptic case to the non-
commutative setting.
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