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Abstract. The aim of this paper is to provide a formal link between an oscillatory neural
model, whose phase is represented by a difference equation, and the Mumford and Shah functional.
A Riemannian metric is induced by the pattern of neural connections, and in this setting the difference
equation is studied. Its Euler–Lagrange operator Γ-converges as the dimension of the grid tends to 0
to the Mumford and Shah functional in the same Riemannian space. Correspondingly, the solutions
of the phase equation converge to a BV function, which is interpreted as the flow associated with
the Mumford and Shah functional. In this way we provide a biological motivation to this celebrated
functional.
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1. Introduction. An intriguing issue that has to be dealt with in the mam-
malian visual system is how the information distributed in the visual cortex gets
bound together into coherent object representations. Along the path going from the
physical object to the observer, radiations are completely independent one of the
other. The retina is constituted in its turn by a mosaic of histologically separated
elements. At the end of this chain, during which the unity of the original object is
completely lost, the object shows up again at the perceptual level as a unit. In which
way is it possible to reconstruct at the perceptual level the unity of the physical ob-
ject? This process is known as “binding” or “perceptual grouping,” and it has been
extensively studied at least from two different points of view: From one side it has
been the subject of research in the experimental psychology of Gestalt, oriented to
infer the phenomenological laws of perceptual organization [33]. On the other side,
neurophysiological studies have been focused on the determination of biological func-
tionalities underlying grouping. In this paper we prove a formal relation between two
of these models: a difference equation describing the phase of neuronal oscillators in
the visual cortex, and the celebrated Mumford and Shah functional, first introduced
as a phenomenological model. The family of discrete Euler–Lagrange functionals as-
sociated with the phase equation Γ-converges as the length of the grid tends to 0 to
the Mumford and Shah functional in a BV space related to a Riemannian metric.

1.1. A phenomenological model. Mumford and Shah in their celebrated pa-
per [36] proposed to obtain the segmentation of a given image u0 as a minimum of
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the following functional:

E(u,K) = α

∫
Rn\K

|∇u|2dx + βdHn−1(K) +

∫
Rn

|u− u0|2dx,

where K is closed, and u ∈ W 1,2(Ω \K). This functional has been deeply studied in
the weak formulation, provided by De Giorgi, Carriero, and Leaci in [20], who allow
u to be a SBV function and K its jump set:

MS(u) = α

∫
Rn

|∇u|2dx + βdHn−1(S(u)) +

∫
Rn

|u− u0|2dx.(1.1)

In the same paper [20] the existence of minima has been proved; their lower semiconti-
nuity has been proved by Ambrosio [1]. The main properties of the minima have been
established by Ambrosio and Pallara [3], Ambrosio, Fusco, and Pallara [4], Bonnet
[8], David [18], and Bonnet and David [9].

It has also been deeply studied in the problem of Γ-approximation of the func-
tional MS, with elliptic functionals. Different families of approximating functionals
have been proposed by Ambrosio and Tortorelli [5], Braides and Dal Maso [13], and
Gobbino [28], who proved a conjecture of De Giorgi. We are interested in this last
result, since it is an approximation of the MS functional with discrete functionals:

1

εn+1

∫
Ω×Ω

arctan

(
(u(x + ξ) − u(x))2

|ξ|

)
e−

|ξ|2
ε dxdξ.(1.2)

Similar approximation problems have also been studied in [10, 11, 12, 14] in order to
investigate the relation between the finite difference expression of the energy of elastic
media and its continuous counterpart.

Here we will study the difference equation satisfied by the phase of neural oscilla-
tors with a technique similar to the one introduced in [28] and prove that it naturally
leads to a nonisotropic version of the Mumford and Shah functional. A different ap-
proximation of nonisotropic functionals, analogous to [13], had already been provided
by Cortesani [17]. Properties of minima of general anisotropic functionals of MS type
have been established by Fonseca and Fusco [26], Trombetti [40], and Fusco, Mingione,
and Trombetti [27]. We also refer the reader to Baldi for a degenerate functional of
this type [6].

1.2. A neurophysiological model. From the neurological point of view there
is a large amount of experimental evidence that grouping is represented in the brain
with a temporal coding, meaning that semantically homogeneous areas in the im-
age would be encoded in the synchronization (phase locking) of oscillatory neural
responses [22]. Shuster and Wagner [38, 39] described the emergence of oscillations in
the visual cortex by modelling every cortical column by densely connected Wilson–
Cowan neurons [41]. The appropriate mean field equations for the cluster of neurons
show that every column can be interpreted as an oscillator. The visual cortex is then
modelled as a collection of oscillators coupled with long range sparse interactions,
represented by the reduced phase equation, on a grid of length 1:

∂tu(t) = ∆−ξ

(
φ
(
∆ξu

))
(x),(1.3)

where ∆ξ is the difference operator which acts as follows on each function f :

∆ξf(x) = f(x + ξ) − f(x).
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The function φ is continuous, odd, and periodic of period 2π so that φ(π) = φ(−π) =
0.

The same equation can be adapted to a grid of arbitrary length. Since the function
u represents the phases of the oscillators, we can assume that ∆ξu takes its values in
the interval [−π, π] and φ = 0 in R\[−π, π]. If p > 0, we call

φ|ξ|(z) =
1

|ξ|1−1/p
φ
(
|ξ|1/pz

)
, |ξ| �= 0,(1.4)

and a suitable rescaling of the function u is a solution of the equation

∂tu(t) =
1

|ξ|∆−ξ

(
φ|ξ|

(
∆ξu

|ξ|

))
(x).

This finite difference degenerate parabolic equation has been extensively studied in
one dimension in [34, 35]. Its ability to reach phase locking solutions and to present
phase discontinuities has been outlined.

In higher dimension Shuster and Wagner also proposed to convolve with a Gaus-
sian kernel, which expresses the probability that an oscillator is connected to another.
They obtain the equation

∂tu(t) =

∫
Rn

e−
|ξ|
ε

1

|ξ|∆−ξ

(
φ|ξ|

(
∆ξu

|ξ|

))
dξ

εn
(1.5)

with the change of variable η = ξ/ε

=

∫
Rn

1

ε|η|∆−εη

(
e−|η|φε|η|

(
∆εηu

ε|η|

))
dη.

In this study we consider (1.5) in the n-dimensional space and with space variant
anisotropic connections. Indeed, several neurophysiological studies show that the
association field between cortical columns are space variant and strongly anisotropic
[25]. Riemannian metric is directly induced by the coupling strength between cortical
columns.

A Riemannian metric is defined in R
n if at every point there is defined a matrix

gij positive defined and continuous. In this case we call the Riemannian norm |η|g =
gijηiηj and the Riemannian difference quotient

Dε
gηu(x) :=

{ (∆εηu(x))mod(2π)
ε|η|g if ε|η|g �= 0,

0 if ε|η|g = 0.

(1.6)

If g is the identity, this difference quotient reduces to the standard one, and we denote
it Dε

ηu.

The resulting equation is then

∂tu(t) =

∫
Rn

D−ε
η

(
|η|
|η|g

e−|η|gφε|η|g

(
D−ε

gη u
)
h

)
dη,(1.7)

for a continuous function h, where φε|η|g is defined in (1.4).
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1.3. Relation between the stated models. In this paper we prove a first
relation between the stated models, and we provide a biological motivation for the
Mumford and Shah functional. We prove the existence of a solution uε of the Cauchy
problem associated with (1.7), defined for all t ≥ 0, and we prove that it Γ-converges
as ε goes to 0 to the gradient flow relative to the Mumford and Shah functional in
the Riemannian space with metric gij .

Precisely the Euler–Lagrange functional associated with (1.7) is

Fε(u) =

∫
Rn

(∫
Rn

e−|η|gϕε|η|g

(
Dε

gηu

)
h(x)dx

)
dη,(1.8)

where ϕε|ξ| is a primitive of the function φε|ξ| defined in (1.4) and the following theorem
holds.

Theorem 1.1. Assume as before that φ is continuous, it is odd, φ > 0 in [0, π[,
and φ = 0 on [π,∞[. Let us call β the constant value assumed by the primitive ϕ of
φ on the interval [π,∞[, and assume that there exist constants α > 0 and p > 1 such
that

ϕ(z)

zp
→ α �= 0 as z → 0+.(1.9)

Then the family Fε defined in (1.8) Γ-converges in L1
loc(R

n,R/2πZ) to the Mumford
and Shah functional

MS(u,Rn) = α cnp

∫
Rn

|∇gu|pg
h(x)√
g(x)

dx + β cn1

∫
S(u)

|νg|g
h(x)√
g(x)

dHn−1(1.10)

if u ∈ SBV , MS(u,Rn) = +∞ otherwise. S(u) is the jump set of u, νg is the
normal to S(u) in the Riemannian metrics, g = det (gij), and cnp and cn1 are dimen-
sional constants, defined in (2.2). (We refer the reader to section 2, where the formal
definitions of the jump set and the metric are recalled).

Remark 1.1. The Riemannian Mumford and Shah functional is obtained for
h = g and p = 2:

MS(u,Rn) = α cn2

∫
Rn

|∇gu|2g
√
gdx + β cn1

∫
S(u)

|νg|g
√
gdHn−1.

In the limit case p = 1, the functional MS becomes the total variation functional, and
an approximation result can be obtained with a modification of the technique used here
as in [30].

The functional Fε is a generalization of a Riemannian setting of the functional
studied in [28]. The proof in this last paper is based on the slicing method and uses
in full strength the isotropy of the functional. The main idea of our proof is the
adaptation of the known technique to an anisotropic setting. Indeed, we first note
that any Riemannian metric admits a representation of the form

gijξiξj = cn2

∫
Rn

e−|η|g (〈ξ, η〉)2
|η|2g

√
gdη,(1.11)

where cn2 is a constant, depending on the dimension of the space (see Proposition
2.5). This representation allows us to write g in terms of an isotropic scalar product
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and to extend to an anisotropic situation a convergence result known in the isotropic
case.

As an application of the Γ-convergence Theorem 1.1, we prove an approximation
result for minima of the MS functional.

Theorem 1.2. Let 1 ≤ q < +∞, and let g ∈ Lq(Rn,R/2πZ). Then for every
ε > 0 there exists a solution (uε) of the minimum problem

mε = min

{
Fε(u) +

∫
Rn

|u− g|qdx : u ∈ BV (Rn,R/2πZ), |Du|(Rn) ≤ 1

ε

}
.

Moreover, for every sequence (εj) with εj → 0 the family (uεj ) has a subsequence
converging in L1

loc to a solution of the minimum problem

m0 = min

{
MS(u,Rn) +

∫
Rn

|u− g|qdx, u ∈ SBV (Rn,R/2πZ)

}
.(1.12)

Finally, mε → m0 as ε → 0.
The proof is mainly based on a compactness result for a family of functions uε such

that Fε(uε) is bounded. Indeed, since for every ε the functional Fε has a minimum,
by the compactness result, all the minima belong to the same compact subset of BV .
Once this is established, the existence of the minimum point for MS follows from a
general property of the Γ-convergence.

Then we apply the Γ-convergence result to the difference equation (1.7). For a
fixed function u0 ∈ BV (R,R/2πZ), we consider a piecewise constant approximating
family (u0ε) and for every ε > 0 the problem

{ ∂tuε(t) = −∇Fε(uε(t)), t ≥ 0,

uε(0) = u0ε.
(1.13)

We prove that the solution (uε) is defined for every t > 0 and belongs to C([0,+∞[;
Lp
loc(R

n,R/2πZ)).
It converges in BV to a function u ∈ C([0,+∞[;Lp

loc(R
n,R/2πZ)), which will then

be interpreted as the flow associated with the Mumford and Shah functional, with
initial datum u0. This function u is a natural candidate for the flow associated with
the Mumford and Shah functional. By now we can give only a characterization for u
under the additional assumption that p = 2 and out of the jump set (see Corollary
5.5 below). The problem of the behavior of the jump set is still open, even in the
Euclidean situation.

This paper is organized as follows. In section 2 we give some preliminary defini-
tions of Γ-convergence and of Riemannian manifold. In sections 3 and 4, respectively,
we prove Theorems 1.1 and 1.2. Finally, in section 5 we describe the behavior of the
flow.

2. Preliminary definitions and notations.

2.1. BV functions and Γ-convergence. In this section we recall the defini-
tions of functions of bounded variation and of Γ-convergence of functionals.

The class of BV functions is a class of functions whose distributional derivative
is a nonnegative measure. We recall here the definition and refer the reader to [24] or
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[23], where these notions are presented in full details. See also [21], where the set of
BV functions with values in R/2πZ is studied.

Definition 2.1. Let Ω ⊂ R
n be an open set. We denote M(Ω) the set of all

signed Radon measures on Ω with bounded total variation. We say that a function
u ∈ L1(Ω,R/2πZ) is a function of bounded variation, and we write u ∈ BV (Ω,R/2πZ)
if all its distributional derivatives Diu, i = 1, . . . , n, belong to M(Ω). It is well known
that the following relation is satisfied almost everywhere:

lim
ρ→0

ρ−n

∫
Bρ(x)

|u(y) − z|dy = 0

for some z ∈ R, and all points x satisfying this relation are called Lebesgue points.
The jump set S(u) is the complementary of the set of Lebesgue points of u. If u ∈
BV (Ω,R/2πZ), then the set S(u) has Hausdorff measure at most n − 1. Moreover,
for Hn−1 in almost every x ∈ S(u) it is possible to find a, b ∈ R/2πZ and a unitary
vector ν such that

lim
ρ→0

ρ−n

∫
Bν

ρ (x)

|u(y) − a|dy = 0, lim
ρ→0

ρ−n

∫
B−ν

ρ (x)

|u(y) − b|dy = 0,

where Bν
r (x) is the half sphere {y ∈ Br(x) : 〈y − x, ν〉 > 0}. The triplet (a, b, ν) is

uniquely determined up to a change of sign, and it will be denoted (u+(x), u−(x), νu(x)).
The distributional derivative Du admits the following decomposition:

Du = Dau + Dju + Dcu,

where Dau = ∇uLn is absolutely continuous with respect to the Lebesgue measure
Ln,

Dju =
(
u+(x) − u−(x)

)
νuH

n−1�S(u)

is the jump part, and Dcu is the Cantor part of Du.
A BV function u is a special function of bounded variation if Dcu = 0 and the

set of these functions is denoted SBV (Ω). A function u belongs to SBVloc(Ω,R/2πZ)
if u ∈ SBV (A,R/2πZ) for all A ⊂⊂ Ω.

Let us now recall the De Giorgi definition of Γ-convergence.
Definition 2.2. If (X, d) is a metric space, a family Fj : X → R of functionals

Γ-converges to F as j → ∞ if the following two conditions are satisfied:
(i) for every u in X and any sequence (uj) converging to u in X,

F (u) ≤ lim inf
j

Fj(uj);

(ii) for every u ∈ X there exists a sequence (uj) converging to u in X such that

F (u) ≥ lim sup
j

Fj(uj).

This notion of convergence captures the behavior of minimizers in the sense of
the following theorem.

Theorem 2.3. Let us suppose that the family Fj of functionals Γ-converges to
F as j → +∞ and that there exists a compact set K such that Fj takes its minimum
on K for every j ∈ N . Then F has a minimum.

We also refer the reader to [19], where these notions are introduced and described.
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2.2. Riemannian metrics. In this subsection we recall the definition of Rie-
mannian metric and refer the reader to [32] for a detailed presentation.

Definition 2.4. A Riemannian metric on a differentiable manifold M is given
by a scalar product on each tangent space TqM , q ∈ M , which depends smoothly on
the point q.

Thus, if M has dimension n and x = (x1, . . . , xn) are local coordinates of M , then
a metric can be represented by a positive definite, symmetric matrix G(x) = (gij(x))i,j
whose coefficients depend smoothly on x. Besides, the scalar product of two tangent
vectors v, w ∈ TqM is 〈v, w〉g = gij(x)viwj , and the norm is |v|2g = gij(x)vivj . We
remark that a Riemannian metric induces a metric on the cotangent bundle T ∗M =
∪q∈MT ∗

q M defined as follows: if ζ, η ∈ T ∗
q M , then

〈ζ, η〉g = gij(x(q))ηiζj ,

where G−1 = (gij)ij is the inverse matrix of G. If a metric gij is defined on an open
set Ω in R

n and u ∈ BV (Ω,R/2πZ), the Riemannian gradient is the vector

∇gu = G−1∇u,

and its norm in the metric (gij) is

|∇gu|g = (gij∂iu∂ju)1/2.

Analogously, if νu is the normal to the set S(u), defined at the end of Definition 2.1,
the normal vector with respect to the metric g is

νg = G−1νu,(2.1)

and its norm is |νg|g = (gij(νu)i(νu)j)
1/2 (see [7]).

Finally, we prove a duality relation between the norm on the tangent space and
the cotangent.

Proposition 2.5. Let v ∈ R
n, and let us call vg = G−1v, as in the definition of

the Riemannian gradient or Riemannian normal vector. Then

(|vg|g)p = cnp

∫
Rn

e−|η|g |〈v, η〉|
p

|η|pg
√
gdη(2.2)

and

〈vg, wg〉g = cn2

∫
Rn

e−|η|g 〈v, η〉〈w, η〉
|η|2g

√
gdη(2.3)

for suitable constants cnp, depending on the dimension of the space and p.
Proof. We fix a vector w of Euclidean length 1 and note that∫

Rn

e−|ξ| |〈w, ξ〉|p
|ξ|p dξ =

1

cnp

is a constant independent of w. Denoting A = (aij)ij the square root of G, with
the change of variable ξ = ηA we have

∑
s(ξs)

2 = ηkηhgkh = |η|2g. Then the second
member of (2.2) can be computed:∫

Rn

e−|η|g |〈v, η〉|
p

|η|pg
√
gdη =

∫
Rn

e−|ξ| |〈vA−1, ξ〉|p
|ξ|p dξ
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=
1

cnp
|vA−1|p =

1

cnp
|vg|pg.

The first assertion is proved.
In order to prove the second one, we first note that

δij = cn2

∫
Rn

e−|ξ| ξiξj
|ξ|2 dξ,

where δij is the Kronecker delta. On the other hand, if we denote A−1 = (aij)ij ,

〈vg, wg〉g = ghkvhwk = ahiδija
jkvhwk = cn2

∫
Rn

e−|ξ| vha
hiξiξja

jkwk

|ξ|2 dξ

= cn2

∫
Rn

e−|ξ| 〈ξA−1, v〉〈ξA−1, w〉
|ξ|2 dξ.

Then, with the same change of variable as before, η = ξA−1, we get the thesis.

3. Γ-convergence results: Proof of Theorem 1.1. In this section we first
recover formally the expression of the Euler–Lagrange functionals Fε; then we prove
the Γ-convergence of the family Fε to the Mumford and Shah functional

MS(u,Rn) =

⎧⎪⎨
⎪⎩

α cnp
∫

Rn |∇gu|pg
h(x)√
g(x)

dx + β cn1

∫
S(u)

|νg|g h(x)√
g(x)

dHn−1 if u ∈ SBV,

+∞ otherwise.

The proof of Theorem 1.1 is based on the slicing method, a general integral-geometric
technique which allows us to represent the functional Fε(u) in terms of its one-
dimensional sections. In this way it is possible to reduce the dimension of the problem
to one and recover the Γ-limit result through the study of the one-dimensional prob-
lem. The method we use is a combination of the techniques in [28] and [10], where
similar convergence results are provided.

3.1. An approximating family of discrete functionals. Let us first formally
write the expression of the Euler–Lagrange functional for (1.7), giving the definition
of the space where the problem will be studied.

The equation is defined in terms of a metric (gij)ij such that gij are continuous
functions on Rn and that there are two positive constants λ and Λ such that

λ|η|2 ≤ gij(x)ηiηj ≤ Λ|η|2 ∀x, η ∈ R
n.(3.1)

Let us call h : R
n → R a continuous function such that

λ ≤ h(x) ≤ Λ ∀x ∈ R
n.

Let us recall here the assumptions required in Theorem 1.1. The function φ :
R → R is continuous, it is odd, φ > 0 in [0, π[, and φ = 0 on [π,+∞[. If ϕ : R → R is
a primitive function of φ null in 0, ϕ is obviously of class C1([0,+∞[) and constantly
assumes a value β in [π,+∞[. Moreover, we require that (1.9) holds. A primitive ϕε

of the rescaled function φε defined in (1.4) is ϕε(t) = 1
εϕ(ε1/pt).
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We consider the following functional:

Fε : Lp → R Fε(u) =

∫
Rn

∫
Rn

e−|η|gϕε|η|g
(
Dε

gηu(x)
)
h(x)dx dη,(3.2)

where Dε
gηu is defined in (1.6).

Remark 3.1. Fε(u) < +∞ for every u ∈ Lp. Indeed, by the assumption (1.9) on
ϕ there exists δ > 0 such that

ϕ(z) ≤ c1z
p ∀z ∈ [0, δ](3.3)

for a suitable constant c1. Here and in what follows we will denote ci any constant
depending only on the data of the problem. On the other hand, since φ is nonnegative,
ϕ is increasing and takes its maximum at π. It then follows that

ϕ(z) ≤ β ≤ c1z
p ∀z ≥ δ.(3.4)

Analogous inequalities hold for ϕε, with the same constant, so that

Fε(u) ≤ cε

∫
Rn

∫
Rn

e−|η|g
∣∣Dε

gηu(x)
∣∣pdx dη ≤ cεp

∫
Rn

∫
Rn

e−|η|g
∣∣u(x)

∣∣pdx dη,
and this is finite if u ∈ Lp(Rn,R/2πZ). In particular, due to (3.3) and (3.4) we also
have the following: there exist positive constants c1, c2 such that

c1 min{αzp, β} ≤ ϕ(z) ≤ c2 min{αzp, β}.(3.5)

In order to recognize that Fε is the Euler–Lagrange functional of the discrete
phase equation, we will work in the following set of piecewise constant functions:

PCp
ε = {u ∈ Lp(Rn,R/2πZ) : u is constant on the cube εz + [0, ε]n ∀z ∈ Z

n}.
Proposition 3.1. Let ε > 0. Then we have the following:
(i) for every u ∈ PCp

ε the gradient of Fε in u is given by

(∇Fε(u))(x) = −
∫

Rn

D−ε
η

(
he−|η|g |η|

|η|g
φε|η|g

(
Dε

gηu
))

(x)dη,

where we simply denote Dε
η the difference quotient when the metric g is the Euclidean

metric;
(ii) ∇Fε is a Lipschitz continuous function on PCp

ε .
Proof. In order to prove (i) we calculate the Gâteaux derivative along a direction

v ∈ PC
p

p−1
ε :

lim
δ→0

Fε(u + δv) − Fε(u)

δ

= lim
δ→0

1

δ

∫
Rn

∫
Rn

h(x) e−|η|g
(
ϕε|η|g

(
Dε

gηu(x) + δDε
gηv(x)

)
− ϕε|η|g

(
Dε

gηu(x)
))

dx dη

=

∫
Rn

∫
Rn

he−|η|gφε|η|g
(
Dε

gηu
) |η|
|η|g

Dε
ηv dx dη

formally integrating by parts the difference quotient

= −
∫

Rn

∫
Rn

D−ε
η

(
h(x)e−|η|g |η|

|η|g
φε|η|g

(
Dε

gηu
))

(x)v(x) dx dη.

Finally, ∇Fε is Lipschitz continuous because it is compositions of Lipschitz continuous
functions.
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3.2. The one-dimensional case. Let us start with studying the simplest op-
erator of the form (1.8) in R:∫

R

f(x)ϕε|η|g
(
Dε

gηu(x)
)
dx,(3.6)

where η ∈ R, f : R → R, is a continuous function such that

λ ≤ f(x) ≤ Λ ∀x ∈ R,

with λ, Λ positive constants. A metric in R is simply defined by a continuous function
b such that for every η,

|η|g(x) = b(x)|η|.

Moreover, by simplicity in dimension 1 we will always assume that η = 1 so that the
functional on an interval I reduces to

F̂ε,1,f,b(u, I) =

∫
I

f(x)ϕεb(x)

(Dεu(x)

b(x)

)
dx,(3.7)

where Dε = Dε
1 is the difference quotient with respect to the Euclidean metric.

We will give sufficient conditions for the Γ-convergence of the functional F̂ε,1,f,b(·, I)
to the Mumford and Shah functional

MSf,b(u, I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α
∫
I
f(x)

(
|u′(x)|
b(x)

)p

dx + β
∫
I∩S(u)

f(x)
b(x) dH

0(x)

if ∈ SBV (I),

+∞ otherwise,

(3.8)

where α is defined in (1.9) and β = ϕ(π).
We recall the following regularity result, which is proved, for example, in Theorem

2.6 in [10].
Theorem 3.2. The functional MSf,b(u, I) is lower semicontinuous in L1

loc(I).
In order to prove the Γ-convergence result in L1

loc(R,R/2πZ), we need an approx-
imation lemma for sequences converging in L1

loc(R,R/2πZ); see [10].
Lemma 3.3. Let uε → u in L1

loc(R,R/2πZ). We call T ε
yv(x) a function whose

values on the interval [y+ε(k, k+1)], k ∈ Z, are between uε(y+kε) and uε(y+(k+1)ε).
Then, for almost every y ∈ (0, ε) and all choices of functions T ε

yv(x), the family T ε
yv(x)

converges to u in L1
loc(R).

Lemma 3.4. Let us first assume that there are two positive constants α̃ and β̃
such that

ϕ(z) = min
{
α̃zp, β̃

}
.(3.9)

Then for every u ∈ L1
loc(R,R/2πZ), for every sequence uj → u in L1

loc(R,R/2πZ)
there exists a sequence εj → 0 such that

lim inf
j→+∞

F̂εj ,1,f,b(uj ,R) ≥ MSf,b(u,R).

Proof. By simplicity of notation in the proof we will always denote MS(u, I)
instead of MSf,b(u, I), F̂ε(u, I) instead of F̂ε,1,f,b(u, I), and Dε instead of Dε

1.
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We will call s ∈ R such that ϕ is constant in [s,+∞[.
First we assume that I is a bounded open interval of R. Let uj → u in L1(I,R/2πZ)

and show that

lim inf
j

F̂εj (uj , I) ≥ MS(u, I).

Let δ > 0 be fixed. Arguing as in Braides [10, p. 82], we can assume that there exists
a subsequence, always denoted εj , and a sequence (yj), with yj ∈ (0, εj) satisfying the
thesis of Lemma 3.3 such that

F̂εj (u, I) + δ ≥ εj
∑
k∈Jj

f(kεj + yj)ϕεjb

(Dεju(kεj + yj)

b(kεj + yj)

)
,

where we have denoted

Jj = {k ∈ Z :]εjk + yj , εj(k + 1) + yj [⊂ I}.

This is a particular version of the mean value theorem for integrals, where we have
only one inequality, since we are not free to choose yj in an arbitrary way but only
almost everywhere.

Since Jj is finite, we can write

Jj = {kj1, . . . , k
j
Nj

}

and denote

J1
j =

{
k ∈ Jj :

|(uj((k + 1)εj + yj) − uj(kεj + yj))mod 2π|
εjb(kεj + yj)

≤ sε
−1/p
j

}
, J2

j = Jj\J1
j .

Then we define vj = T
εj
y uj as follows:

⎧⎪⎪⎨
⎪⎪⎩

(
t−yj
εj

− k

)
uj(εj(k + 1) + yj) +

(
(k + 1) − t−yj

εj

)
uj(kεj + yj), t ∈ yj + εj ]k, k + 1[, k ∈ J1

j ,

uj(kεj + yj), t ∈ yj + εj ]k, k + 1[, k ∈ J2
j ,

uj(k
1
0εj + yj) if t ≤ yj + kj1εj ,

uj((k
k
Nj

+ 1)εj + yj) if t ≥ yj + (kjNj
+ 1)εj .

The choice of yj is made, according to Lemma 3.3, in such a way that vj → u in
L1(I).

With this notation the estimate of F̂ε becomes

F̂εj (u, I) + δ ≥ εj
∑
k∈Jj

f(kεj + yj)ϕεjb

(Dεju(kεj + yj)

b(kεj + yj)

)

= α̃
∑
k∈J1

j

εjf(kεj + yj)
∣∣∣Dεju(kεj + yj)

b(kεj + yj)

∣∣∣p + β̃
∑
k∈J2

j

f(kεj + yj)

b(kεj + yj)

= α̃

∫
I

f(x)

∣∣∣∣v′j(x)

b(x)

∣∣∣∣
p

dx + β̃
∑

x∈S(vj)∩I

f(x)

b(x)
.
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The sequence vj converges to u by its choice. On the other hand, the operator MS
is lower semicontinuous so that

lim inf
j→+∞

F̂εj (uj , I) ≥ MS(u, I) − δ.

The arbitrariness of δ > 0 gives the thesis in the case where I is a bounded open
interval. The result is still valid for R approximating from the interior by bounded
and open interval I.

In order to deal with the general case, we recall the following theorem about
supremum of family of positive measures, which can be found in [10].

Proposition 3.5. Let Ω be an open set and A(Ω) be the family of its open
subsets. Let µ1 : A(Ω) → [0,+∞[ be an open set function, superadditive on open sets
with disjoint compact closures. Let µ be a positive measure, let ψi be positive Borel
functions such that µ1(A) ≥

∫
A
ψidµ for all A ∈ A(Ω), and let ψ(x) = supψi(x).

Then µ1(A) ≥
∫
A
ψdµ for all A ∈ A(Ω).

Theorem 3.6. Let φ and ϕ satisfy the assumptions stated in Theorem 1.1. Then
for every u ∈ L1

loc(R,R/2πZ), for every sequence uj → u in L1
loc(R,R/2πZ) there

exists a sequence εj → 0 such that

lim inf
j→+∞

F̂εj ,1,f,b(uj ,R) ≥ MSf,b(u,R).

Proof. Let ai and bi be sequences of positive real numbers such that supi ai = α,
supi bi = β, and

ϕi(z) = min

{
aiz

pbi

}
≤ ϕ(z) ∀ t ≥ 0(3.10)

by Remark 3.1. Note that we do not require any monotonicity property on ai and bi
so that their existence is ensured. From Lemma 3.4 we have

lim inf
j→+∞

F̂εj ,1,f,b(uj ,R) ≥ ai

∫
I

f(x)

(
|u′(x)|
b(x)

)p

dx + bi

∫
I∩S(u)

f(x)

b(x)
dH0(x)

for every i. In order to apply Proposition 3.5 we set

µ = L1 +
∑

x∈S(u)

δx,

where L1 is the Lebesgue measure and δx is the Dirac measure. We also set

ψi(x) =

⎧⎪⎨
⎪⎩

aif(x)
(

|u′(x)|
b(x)

)p

on I\S(u),

bi
f(x)
b(x) on S(u)

so that

ψ(x) = supψi(x) =

⎧⎪⎨
⎪⎩

αf(x)
(

|u′(x)|
b(x)

)p

on I\S(u),

β f(x)
b(x) on S(u).
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By Proposition 3.5 we deduce

lim inf
j→+∞

F̂εj ,1,f,b(uj ,R) ≥ α

∫
I

f(x)

(
|u′(x)|
b(x)

)p

dx + β

∫
I∩S(u)

f(x)

b(x)
dH0(x).

This is the thesis.
The opposite inequality is simpler. We start with a simple remark.
Remark 3.2. Let I be a real interval, not necessarily bounded, and let u ∈

BV (R,R/2πZ) such that MSf,b(u, I) < +∞. Then there exists a constant c1 inde-
pendent of ε such that for every

A ⊂ {x ∈ I : [x, x + ε] ∩ S(u) �= ∅},(3.11)

∫
A

|Dεu(x)|pdx ≤ c1

∫
Ãε

|u′(x)|pdx,(3.12)

where Ãε = ∪x∈A[x, x + ε].
Indeed,

∫
A

|Dεu(x)|pdx =

∫
A

∣∣∣∣∣
∫ 1

0

u′(x + εs)ds

∣∣∣∣∣
p

dx ≤ c1

∫
A

∫ 1

0

|u′(x + εs)|pdsdx

(with the change of variable y = x + εs)

≤ c1

∫ 1

0

∫
Ãε

|u′(x)|pdxds = c1

∫
Ãε

|u′(x)|pdx.

Theorem 3.7. Let φ and ϕ satisfy the assumptions stated in Theorem 1.1. Then
for every u ∈ L1

loc(R,R/2πZ),

lim sup
ε→0+

F̂ε,1,f,b(u,R) ≤ MSf,b(u,R).

Proof. Let us fix δ > 0. We can obviously assume that MSf,b(u,R) < +∞, which
implies that u has only a finite number of jumps. Then there exists M > 0 such that
u has no jumps in I\[−M,M ]. Since u′ ∈ Lp, by the previous remark we can also
assume that M is chosen in such a way that for every ε,∫

I\[−M,M ]

(|Dεu|p + |u′|p)dx ≤ δ.(3.13)

From the previous remark it also follows that there exists σ > 0 independent of ε
such that, for every ε, for every A satisfying (3.11), A ⊂ [−M,M ] and with Lebesgue
measure |A| < σ, the following estimate holds:∫

A

(|Dεu|p + |u′|p)dx ≤ δ.(3.14)

In particular, if we call

Ikε = {x ∈ [−M,M ] : [x, x + ε] ∩ S(u) �= ∅, |Dεu(x)| > k},
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then, always for the previous remark,

|Ikε| ≤
1

kp

∫
Ikε

|Dεu|pdx ≤ 1

kp

∫
I\S(u)

|u′(x)|pdx → 0

as k → +∞, uniformly in ε. Then by (3.14) we can fix k > 0 such that for every ε,∫
Ikε

|Dεu|pdx ≤ δ.(3.15)

Let us denote {x1, . . . , xs} the set of jumps of u, and let us call

J = {x ∈ [−M,M ] : [x, x + ε] ∩ S(u) = Ω, |Dεu(x)| ≤ k}, IS =
⋃
j

[xj − ε, xj ].

By (3.15) and (3.13) and the fact that ϕε(z) ≤ c2z
p for every z ∈ R, with c2 indepen-

dent of ε, the discrete functional can be estimated as

F̂ε,1,f,b(u, I) = 2c2δ +
∑
j

∫ xj

xj−ε

f(x)ϕεb

(Dεu(x)

b(x)

)
dx(3.16)

+

∫
J

f(x)ϕεb

(Dεu(x)

b(x)

)
dx.

Each of the integrals in the first sum can be estimated using the definition of ϕε and
the fact that maxϕ = β:∫ xj

xj−ε

f(x)ϕεb

(Dεu(x)

b(x)

)
dx ≤ β

ε

∫ xj

xj−ε

f(x)

b(x)
dx → β

f(xj)

b(xj)
(3.17)

as ε tends to 0.
In the last integral of (3.16) we use the fact that Dεu(x) takes values in the

compact set [−k, k] and punctually tends to u′, while ϕεb(x)(z) → α |z|p
bp(x) uniformly if

(x, z) belong to a compact set. Hence

ϕεb

(Dεu(x)

b(x)

)
→ α

|u′(x)|p
bp(x)

almost everywhere. Using again the fact that Dεu(x) is bounded by k we can apply
Lebesgue’s dominate convergence theorem on the bounded set [−M,M ]\S(u) and
obtain ∫

J

f(x)ϕεb

(Dεu(x)

b(x)

)
dx → α

∫
[−M,M ]\S(u)

|u′(x)|p
bp(x)

dx.(3.18)

Putting together (3.16), (3.17), and (3.18) we obtain

lim sup
ε→0+

F̂ε,1,f,b(u,R) ≤ 2c2δ + MSf,b(u,R),

and this implies the thesis, since δ is arbitrary.
Finally, from Lemma 3.4, Theorem 3.6, and (3.5) we have the following corollary.



1408 GIOVANNA CITTI, MARIA MANFREDINI, ALESSANDRO SARTI

Corollary 3.8. Let φ and ϕ satisfy the assumptions stated in Theorem 1.1.
Then

Γ − lim
ε→0

F̂ε,1,f,b(u,R) = MSf,b(u,R) in L1
loc(R,R/2πZ),

limε→0F̂ε,1,f,b(u,R) = MSf,b(u,R) for every u ∈ SBV (R,R/2πZ),

and

F̂ε,1,f,b(u,R) ≤ C MSf,b(u,R) for every u ∈ L1(R,R/2πZ),

with C a positive constant.

3.3. The n-dimensional case. In this section we will deduce the general n-
dimensional case from the one-dimensional result, using the slicing method already
used in the nonperiodic, isotropic case by Braides [10].

This procedure is formally similar to a standard reduction in the integral so that
we fix η ∈ R

n\{0} and denote 〈η〉⊥ = {z ∈ R
n : 〈η, z〉 = 0} the orthogonal space to η

with respect to the Euclidean metrics. For every y ∈ 〈η〉⊥ consider the function uηy

defined by

uηy(t) = u
(
y + t

η

|η|

)
, t ∈ R.

With these notations the operator Fε defined in (3.2) becomes

Fε(u,R
n) =

∫
Rn

∫
Rn

h(x)e−|η|gϕε|η|g

(
Dε

gηu(x)
)
dxdη(3.19)

=

∫
Rn

∫
〈η〉⊥

F̂ε,η,f,b(uηy,R)dydη,

where

f(t) =
(
he−|η|g |η|

|η|g

)
ηy

(t), b(t) =
|η|g(y + t η

|η| )

|η| ,(3.20)

and

F̂ε,η,f,b(uηy(t),R) =

∫
R

f(t)ϕεη

(Dε
|η|uηy(t)

b(t)

)
dt.

In this way the functional Fε is represented in terms of one-dimensional sections.
Also the functional MS, defined in (1.10), can be represented in terms of its

sections, and the function u belongs to BV if and only if its sections uηy belong to
BV (R).

Theorem 3.9. (i) Let u ∈ SBV (Rn,R/2πZ). Then for all η ∈ R
n we have

uηy ∈ SBV (R,R/2πZ) for almost everywhere y ∈ 〈η〉⊥ and, moreover,

u′
ηy(t) =

〈
∇u

(
y + t

η

|η|

)
,
η

|η|

〉
for a. e. t ∈ R,
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S(uηy) =

{
t ∈ R : y+t

η

|η| ∈ S(u)

}
, u+

ηy(t) = u+
(
y+t

η

|η|

)
, u−

ηy(t) = u−
(
y+t

η

|η|

)
,

where u+ and u− are defined at the end of Definition 2.1.
(ii) Let u ∈ L1

loc(R
n,R/2πZ), and let MSf,b be the operator defined in (3.8). If∫

〈η〉⊥
MSf,b(uηy,R)dy < +∞

for every η ∈ B, B a basis of vector space R
n, then u ∈ SBV (Rn,R/2πZ).

We refer to Ambrosio [1] for the proof.
Applying the previous result we get the expression of our Mumford and Shah

functional.
Theorem 3.10. For every function u ∈ L1

loc(R
n,R/2πZ) we have that

∫
Rn

(∫
〈η〉⊥

MSf,b(uηy,R)dy

)
dη = MS(u,Rn).

Proof. We can assume that u ∈ SBV (Rn). In this case by Theorem 3.9 we have
that ∫

〈η〉⊥
MSf,b(uηy,R)dy

= α

∫
〈η〉⊥

∫
R

f(t)
( |u′

ηy(t)|
b(t)

)p

dtdy + β

∫
〈η〉⊥

∫
S(uηy)

f(t)

b(t)
dH0(t)dy

by Theorem 3.9 and by definition (3.20)

= α

∫
Rn

h(x)e−|η|g
∣∣∣〈∇u(x),

η

|η|g

〉∣∣∣pdx + β

∫
S(u)

h(x)e−|η|g
∣∣∣∣〈ν, η

|η|g

〉∣∣∣∣ dHn−1(x),

where the equality follows from [10] for the second integral. Integrating in η the
preceding equality we get ∫

Rn

∫
〈η〉⊥

MSf,b(uηy,R)dydη

= α

∫
Rn

h(x)

(∫
Rn

e−|η|g
∣∣∣〈∇u(x),

η

|η|g

〉∣∣∣pdη
)
dx

+β

∫
S(u)

h(x)

(∫
Rn

e−|η|g
∣∣∣∣〈ν, η

|η|g

〉∣∣∣∣ dη
)
dHn−1(x)

(by Proposition 2.5)

= αcnp

∫
Rn

h(x)√
g(x)

|∇gu(x)|pgdx + β cn1

∫
S(u)

h(x)√
g(x)

|νg|gdHn−1(x).
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Proof of Theorem 1.1. We sketch the proof which follows from the convergence
Corollary 3.8 and the representation of the limit functional provided in Theorem 3.10.
Let u, uj ∈ L1

loc(R
n,R/2πZ), uj → u in L1

loc(R
n,R/2πZ), let εj → 0, and let us prove

that

lim inf
j→+∞

Fεj (uj) ≥ MS(u,Rn).

Indeed, by (3.19) and the Fatou lemma

lim inf
j→+∞

Fεj (uj) ≥
∫

Rn

∫
〈η〉⊥

lim inf
j→+∞

F̂εj ,η,f,b((uj)ηy,R)dydη

(by Corollary 3.8)

≥
∫

Rn

∫
〈η〉⊥

MSf,b((uj)ηy,R)dydη = MS(u,Rn)

by Theorem 3.10. Finally, the dominated convergence asserted in Corollary 3.8 ensures
that MS(u) = limεFε(u) for every u, and this proves the second requirement in the
definition of Γ-convergence.

4. Existence of a minimum for the Mumford and Shah functional. We
will give here an approximation result of the minimization problem for the Riemannian
Mumford and Shah functional. It is based on the existence of the minimum for every
Fε, on the Γ-convergence property, and on a suitable compactness result.

4.1. An embedding theorem. In this section we will prove an embedding
theorem which extends the classical compactness result in the space BV . Indeed,
due to the particular expression of the functional Fε, we will deal with family (uε) of
functions such that the quantity

N(uε) =

∫
Ω

|uε|dx +

∫
Rn

e−|η|g
∫

Ω

|Dε
ηuε(x)|dx dη(4.1)

is bounded if Ω is bounded.
Theorem 4.1. Let (uε) be a family of functions in L1

loc(R
n,R/2πZ) such that for

every bounded set Ω, N(uε) is bounded. Then there exists a sequence εj convergent to
0 and a function u in BVloc such that uεj converges to u in L1

loc(R
n,R/2πZ).

Proof. Let us choose a nonnegative radially symmetric cut off function η of class
C∞

0 (Rn), supported in the unitary sphere, and with integral 1. For every ε > 0 we set

uε
ε(x) =

∫
Rn

η(ξ)uε(x + εξ)dξ.

Then we have for Ω bounded∫
Ω

|uε
ε(x)|dx ≤

∫
Ω

(∫
Rn

η(ξ)uε(x + εξ)dξ

)
dx < c1,

since η is bounded in L∞ and (uε) in L1
loc. By definition the gradient of (uε

ε) is

∇uε
ε(x) =

1

ε

∫
Rn

∇η(ξ)uε(x + εξ)dξ
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since η is radially symmetric

=

∫
Rn

∇η(ξ)
(uε(x + εξ) − uε(x)

ε

)
dξ.

Then for any bounded Ω∫
Ω

|∇uε
ε(x)|dx ≤

∫
|ξ|≤1

∫
Ω

|Dε
ξuε(x)|dxdξ < c2

by the assumption on Nε. By the standard compactness theorem in BVloc it follows
that (uε

ε) has a subsequence (u
εj
εj ) converging in L1

loc to a BVloc function u. On the
other side,

(uεj − uεj
εj )(x) =

∫
Rn

η(ξ)
(
uεj (x + εjξ) − uεj (x)

)
dξ ≤ εj

∫
|ξ|≤1

∣∣∣Dεj
ξ uεj (x)

∣∣∣dξ.
Integrating over Ω we get∫

Ω

|uεj − uεj
εj |(x)dx ≤ εj

∫
|ξ|≤1

∫
Ω

∣∣∣Dεj
ξ uεj (x)

∣∣∣dxdξ ≤ c3εj .

It immediately follows that uεj has the same limit as u
εj
εj in L1

loc.

4.2. A compactness result. Let us now prove a compactness result for a family
(uε) of functions such that Fε(uε) is bounded. Since the argument of the function ϕε

in the expression of Fε is the difference quotient and the functions we are interested
in have a different behavior when the argument is small or big, we will also denote

the following: Dε,+
gξ uε(x) = Dε

gξuε(x) if |Dε
gξuε(x)| > π(ε|ξ|)− 1

p and Dε,+
gξ uε(x) = 0

otherwise, and we will call

I+
εξ = {x ∈ R

n|Dε,+
gξ uε(x) �= 0}.(4.2)

This notation will be useful when studying the limit for ε → 0, since the term
Dε,−

gξ uε(x) will recover the gradient of u, while Dε,+
gξ uε(x) will describe the jump

set of the function.
Theorem 4.2. Let (uε) be a family of functions in L1

loc(R
n,R/2πZ) such that

Fε(uε) is bounded; then Nε(uε) is bounded.
Proof. Let us call c1 a constant such that

ϕε(z) ≥ c1z
p(4.3)

for all z such that ε1/pz ≤ π. Note that c1 is independent of ε. Let us now fix an
open set Ω ⊂⊂ R

n and estimate separately the integral on I+
εξ and the complement

set. Since uε takes values in [−π, π], we have∫
Rn

e−|ξ|g
∫
I+
εξ
∩Ω

|Dε
gξuε(x)|dxdξ ≤ c2

∫
Rn

e−|ξ|g
∫
I+
εξ
∩Ω

1

ε|ξ|g
dxdξ(4.4)

(since ϕ takes constantly the value β in [π,+∞])

≤ c2
β

∫
Rn

e−|ξ|g
∫
I+
εξ
∩Ω

ϕε|ξ|
(
Dε

gξuε

)
dxdξ ≤ c3Fε(uε).
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By condition (4.3) and the assumption (3.1) on (gij)ij ,∫
Rn

∫
Rn\I+

εξ

e−|ξ|∣∣Dε
gξuε(x)

∣∣p dxdξ ≤ c4

∫
Rn

∫
Rn\I+

εξ

e−|ξ|gϕε|ξ|
(
Dε

gξuε(x))dxdξ

≤ c4Fε(uε).

Consequently,∫
Rn

e−|ξ|g
∫

Ω

|Dε
gξuε(x)|dxdξ =

∫
Rn

e−|ξ|g

(∫
Ω\I+

εξ

+

∫
Ω∩I+

εξ

)
|Dε

gξu(x)|dxdξ

by (4.4) and Hölder inequality

≤ c3Fε(uε) +

∫
Rn

e−|ξ|g

(∫
Ω\I+

εξ

|Dε
gξuε(x)|pdx + c5|Ω|

)
dξ

≤ (c3 + 1)Fε(uε) + c6|Ω|

for suitable constants ci. Here | · | indicate the Lebesgue measure in R
n.

Then lemma is proved.

4.3. Approximation of the minima for the Riemannian Mumford and
Shah functional. Let us first modify the functional Fε in such a way that its mini-
mum is a BV function.

Lemma 4.3. Let g ∈ Lq(Rn,R/2πZ) and for every ε > 0 let us denote

Gε(u) =

{
Fε(u) +

∫
Rn |u− g|qdx if u ∈ BV (Rn,R/2πZ), |Du|(Rn) ≤ 1

ε ,
+∞ otherwise.

(4.5)

Then the family Gε(u) Γ-converges as ε → 0 in L1
loc(R

n,R/2πZ) to the functional

G0(u) = MS(u,Rn) +

∫
Rn

|u− g|qdx.

Proof. The lim inf-inequality follows from the Γ-convergence of (Fε). The lim sup
follows from the pointwise convergence of (Fε) if u ∈ SBV and by a truncation
argument for all u.

Proof of Theorem 1.2. Since the functional Gε is lower semicontinuous in
L1
loc(R

n) and the set

{u ∈ BV (Rn,R/2πZ) : |Du|(Rn) ≤ 1/ε}

is compact in L1
loc(R

n), the existence of minimizers for Gε follows from the direct
method of the calculus of variations.

We then prove that all the minimizers belong to the same compact set K. Let
(uε) be a family of minimizers. Since

Gε(uε) ≤ Gε(0) ≤ |g|qLq(Rn),

we can apply Theorems 4.1 and 4.2 and deduce that the family (uε) is relatively
compact in L1

loc and has a limit in BV .
Finally, by the general property of Γ-convergence stated in Theorem 2.3, any limit

point of (uε) is a minimizer for the problem (1.12) and mε → m0 as ε → 0.
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5. The evolution problem. In this chapter we fix a function u0 ∈ BV , ap-
proximate it by a piecewise constant function, and for every ε study the solution (uε)
of problem (1.13) in section 1. Then we establish the properties of the limit of this
family as ε → 0.

We now define the space

X = {u ∈ SBVloc(R
n,R/2πZ) : MS(u,Rn) < +∞}.

Let u0 ∈ X be an initial datum for the parabolic problem. Since the functional Fε

is defined on piecewise constant functions, we consider an approximation of u0 in the
space PCp

ε (Rn,R/2πZ) defined in section 2.
Proposition 5.1. If u0 ∈ X, there exists a family (u0ε) ∈ PCp

ε (Rn,R/2πZ)
such that

u0ε → u0 in Lp
loc(R

n,R/2πZ),

lim
ε→0

Fε(u0ε) = MS(u0,R
n),

and

sup
ε>0

{Fε(u0ε)} < +∞

(see [29, p. 167] for the proof).
Then we consider the evolution problem in (1.13). By the standard Cauchy–

Lipschitz existence result (cf. [31]), we have the following theorem.
Theorem 5.2. For every ε > 0 the initial value problem (1.13) has a unique

solution uε ∈ C1([0,+∞[, PCp
ε ) which depends continuously on the initial datum.

Let us now study the limit of the family (uε).
Lemma 5.3. Let Ω be a compact set in R

n, and let (uε) be the family of solu-
tions of the initial value problem found in Theorem 5.2. There exists a sequence (εk)
convergent to 0 such that (uεk) is relatively compact in C([0,+∞[;Lp

loc(R
n,R/2πZ))

and has a limit u ∈ C([0,+∞[;Lp
loc(R

n,R/2πZ)) such that u(t) ∈ BV (Ω) for every
t ∈ [0,+∞[.

Proof. We first note that the function t → Fε(uε(t)) is nonincreasing. Indeed,

d

dt
Fε(uε(t)) = 〈∇Fε(uε(t)), u

′
ε(t)〉L2(Rn)(5.1)

= −||u′
ε(t)||L2(Rn) = −||∇Fε(uε(t))||L2(Rn).

This implies that

Fε(uε(t)) ≤ Fε(u0ε) ≤ sup
ε>0

Fε(u0ε) < +∞

by the choice of the family (u0ε) in Proposition 5.1. By Theorems 4.1 and 4.2, this
implies that the family (uε(t)) is relatively compact in L1

loc(R
n), and for every t the

limit u(t) belongs to BV .
We have to prove the continuity of this limit. Since the functions (uε) take values

in [−π, π], the compactness in L1
loc implies compactness in Lp

loc for every p. Moreover,

||uε(t1) − uε(t2)||L2(Rn) ≤
∫ t2

t1

||u′
ε(t)||L2(Rn)dt ≤

(∫ t2

t1

||u′
ε(t)||2L2(Rn)dt

) 1
2

|t1 − t2|
1
2
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≤ (Fε(u0ε(t)))
1
2 |t1 − t2|

1
2 ≤ c |t1 − t2|

1
2

for any ε > 0. Letting ε go to 0, we obtain the continuity of u.
Remark 5.1. Let us note that if

φ(z)

z
→ 2α as t → 0,(5.2)

then condition (1.9) is satisfied with p = 2, and all the previous results hold true.
Moreover, if φ is of class C2, there exists a constant c such that

|φε|ξ|(z) − αz| ≤ c
√
ε(ϕε|ξ|(z) + |ξ|2) when |z| ≤ π(ε|ξ|)− 1

2 .(5.3)

Let us prove the following theorem, where we will assume p = 2.
Theorem 5.4. Assume as before that φ is continuous, it is odd, φ > 0 in [0, π[,

φ = 0 on [π,+∞[, and assume that assumptions (5.2) and (5.3) are satisfied. If uε is
the solution of problem (1.13) and u its limit, then

∂tuε → 2α cn2 div

(
gij
√
g
∂ju

)
weakly in L2

loc([0,+∞[×R
n,R).

Proof. Let us fix a bounded set Ω. By assumption we have∫ T

0

∫
Rn

∫
Ω∩I+

εη

φε|η|g
(
Dε

gηuε(x)
)
dxdηdt = 0,

where I+
εη is defined in (4.2). If U ⊂⊂ R

n is bounded, by (5.3)

∫ T

0

∫
U

∫
Ω\I+

εη

∣∣∣φε|η|g
(
Dε

gηuε(x)
)
− αDε

gηuε(x)
∣∣∣dxdηdt ≤ √

ε(Fε(uε) + c1) → 0

as ε → 0.
This means that

φε|η|g
(
Dε

gηuε(x)
)
− αDε

gηuε(x) → 0 in L1
loc([0, T ] × R

n × Ω) as ε → 0.(5.4)

On the other side, by Lemma 3.6 in [29]

Dε
ηuε(x) →

〈
∇u,

η

|η|

〉
weakly ∗ in L1

loc([0, T ] × R
n × Ω)

so that

φε|η|g
(
Dε

gηuε(x)
)
→

〈
∇u,

η

|η|

〉
weakly ∗ in L1

loc([0, T ] × R
n × Ω).(5.5)

Now let Φ ∈ C∞
0 (]0,+∞[×R

n). Since uε is a solution of the evolution equation, we
have ∫ ∞

0

∫
Rn

uε
∂Φ

∂t
dxdt

=

∫ +∞

0

∫
Rn

(∫
Rn

h e−|η|gφε|η|g
(
Dε

gηuε(x)
)
Dε

gηΦ(x, t)dη

)
dxdt
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by (5.5) and the uniform convergence of Dε
gηΦ to 〈∇Φ, η

|η|g 〉 as ε → 0

→ α

∫ +∞

0

∫
Rn

∫
Rn

h e−|η|g
〈
∇u,

η

|η|g

〉〈
∇Φ,

η

|η|g

〉
dηdxdt

by Proposition 2.5

= α cn2

∫ +∞

0

∫
Rn

ghk(x)
√
g

∂hu∂kΦdxdt.

On the other side, ∂tuε is bounded in L2
loc([0,+∞[×R

n,R), and the thesis is
proved.

Corollary 5.5. Under the assumptions of Theorem 5.4 the function u belongs to
C([0,+∞[;L2

loc(R
n,R/2πZ)) and satisfies the following: u(0) = u0, MS(u(t),Rn) ≤

MS(u0,R
n), for every t ≥ 0. Moreover, the function u = u(x, t) is a distributional

solution in ]0,+∞[×R
n of the equation

∂u

∂t
= 2α cn2D

(
gij
√
g
∇u

)
,

where D is the distributional x-derivative, out of the jump set of u.
Proof. It is a consequence of the results we have proved on the function u in the

previous theorems.

6. A numerical example. We consider here a simple numerical example show-
ing how the phase equation (1.5) is able to segment an object by reaching phase locking
in semantically homogeneous areas of an image and by decoupling phases between ob-
ject and background. We will consider the figure completion of the well-known square
of Kanizsa (Figure 6.1). In this example we consider an image (x1, x2) → I(x1, x2)
as a real positive function defined in a rectangular domain Ω ⊂ R

2. Following [37],
we suppose that the image induces a local change of the connectivity e in proximity
of its discontinuities in such a way that hypercolumns appear decoupled across the
boundaries of a figure. We choose a simple edge indicator as the connectivity function,
namely

s(x1, x2) =
1

1 + (|∇Gσ(x1, x2) � I(x1, x2)|/c)2
,(6.1)

where

Gσ(x1, x2) =
exp(−(|(x1, x2)|/σ)2)

σ
√
π

,(6.2)

and � denotes the convolution. The denominator is the gradient magnitude of a
smoothed version of the initial image. Thus, the value of s is closer to 1 in flat areas
(|∇I| → 0) and closer to 0 in areas with large changes in image intensity, i.e., the
local edge features. The minimal size of the details that are detected is related to
the size of the kernel, which acts like a scale parameter. By viewing s as a potential
function, we note that its minima denote the position of edges, as depicted in Figure
6.1.

The edge indicator s also induces a metric gδij , where g = 1
s2 and δij is the

Kronecker function. Since this metric is conformal, we get

|η|g = g|η|, Dε
gηu =

1
√
g
Dε

ηu,



1416 GIOVANNA CITTI, MARIA MANFREDINI, ALESSANDRO SARTI

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 6.1. The Kanizsa square (left) with the connectivity map g (right).

and, in order to study a curvature equation, we will choose

h = g.

The phase equation (1.7) becomes

∂tu(t) = −
∫

Rn

D−ε
η

(
e−

√
g|η|φε|η|g

(
Dε

gηu
)√

g

)
dη

(using the definition of difference quotient)

= −
∫

Rn

(
e−

√
g|η|

(ε|η|)3/2φ
(u(x) − u(x− εη)√

ε|η|g

)
− e

√
g|η|

(ε|η|)3/2φ
(u(x + εη) − u(x)√

ε|η|g

))
dη

since φ is odd

= 2

∫
Rn

e−
√
g|η|

(ε|η|)3/2φ
(u(x + εη) − u(x)√

ε|η|g

)
dη.

We note that the exponential kernel e−
√
g|η| can be substituted by a compactly

supported kernel χ = χ(
√
g|η|). The new equation and the corresponding functional

Fε satisfy the same convergence results as before. We will assume that χ is the
indicatrix function of the square [−1, 1]2 so that in the numerical simulations the
integral will be approximated with the sum on the vectors

η = (i, j), i, j ∈ {0, 1,−1}.

According to the introduction, the function φ will be the sin function, extended
with zero, outside of the interval [−π, π]. To perform numerical simulations the phase
equation has been approximated by forward differences in time:

un+1
l,m = un

l,m+2∆t
∑

(i,j)∈{0,−1,1}

1

ε3/2(i2 + j2)3/4
sin

( un(l + i,m + j) − un(l,m)√
ε(i2 + j2)1/2g(l + i/2,m + j/2)

)
,

where ε = 0.03 is the space increment and ∆t = 0.01 is the time discretization. As
in [37], the initial condition is given by a function u0 = D that is proportional to
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Fig. 6.2. Evolution of the phase equation towards the phase locking solution segmenting the
Kanizsa square.

the distance from a point internal to the object. We impose Neumann boundary
conditions.

During the flow, the surface evolves towards the piecewise constant solution by
continuation and closing of the boundary fragments and the filling in of the homo-
geneous regions (Figure 6.2). In regions of the image where edge information exists,
the level sets of the surface get attracted to the edges and accumulate. Consequently,
the spatial gradient increases, and the surface begins to develop a discontinuity. In
the regions of the image corresponding to subjective contours (i.e., contours that are
perceived without any existing discontinuity in the image) discontinuities of u are
propagated from existing edge fragments (Figure 6.2).
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