Mechanics and Control

Anthony M. Bloch
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e 3. Geometric Control

e 4. Nonholonomic Mechanics

e 5. Optimal Control and sub-Riemannian geometry.



Nonholonomic Mechanics vs. Hamiltonian Mechanics
e Energy Conservation

Hamiltonian: Yes. Nonholonomic: Yes.

e Momentum Conservation

Hamiltonian: Yes, Noether’s Theorem. Nonholonomic: No, Momentum Equation

e Measure (volume ) Preservation

Hamiltonian: Yes. Nonholonomic: No, in general

e Stability

Hamiltonian: Never asymptotic. Nonholonomic: Can be asymptotic.

e Key: Almost Poisson structure, Nonvariational



Geometry and Kinematics of the Vertical Disk.

Configuration space: @ = R* x S x S parameterized by coordinates ¢ = (x,y,6, ¢),
denoting the position of the contact point in the xy-plane, the rotation angle of the disk, and
the orientation of the disk, respectively, as in figure 0.1.
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Figure 0.1: The geometry for the rolling disk.

The Lagrangian for the system: the kinetic energy

L(.Cﬁ,y, 97 ¢7Cbaya 07¢) — im(xZ + yQ) + 5162 + 5‘]902

If R is the radius of the disk, the nonholonomic constraints of rolling without slipping are

© = R(cosy)d

y = R(sing)f,.



Dynamics of the Controlled Disk. Consider the case where we have two controls, one
that can steer the disk and another that determines the roll torque.

Lagrange d’Alembert equations:

d (0L

dt \ 9g
where 91
a_q- — (mx, mya ]67 ng)Ta
X, =1(0,0,1,0)", Xy, = (0,0,0,1)7,
and

Wl =(1,0,—Rcosg,0), W] =(0,1,—Rsin¢p,0)’,

together with the constraint equations.
We may now eliminate the multipliers: gives the dynamic equations

plus the constraints.
The free equations, in which we set u; = uy = 0, are easily integrated.



e Controlled case: controls u;, us. Call the variables 8 and ¢ “base” or “controlled”
variables and the variables z and y “fiber” variables. The distinction is that while 6 and ¢ are
controlled directly, the variables x and y are controlled indirectly via the constraints.

[t is clear that the base variables are controllable in any sense we can imagine. One may ask

whether the full system is controllable. Indeed it is: by virtue of the nonholonomic nature of
the constraints.

The Kinematic Controlled Disk. In this case we imagine we have direct control over
velocities rather than forces and, accordingly, we consider the most general first order system
satisfying the constraints or lying in the “constraint distribution”.

This system is

¢=u X1 +uX,
where X | = (cos p,sin ¢, 1,0)T and X, = (0,0,0,1)T.

In fact, X; and X comprise a maximal set of independent vector fields on @ satisfying the
constraints.



eNonholonomic Equations of Motion
See e.g. Bloch, Krishnaprsad, Marsden and Murray [1996] and Zenkov, Bloch and Marsden
11998], Bloch and Crouch [1995] and other references in these papers.

eThe Lagrange-d’Alembert Principle
e Consider a system with a configuration space (), local coordinates ¢* and m nonintegrable
constraints
"+ Al(r,s)r“ =0

where ¢ = (r,s) € R"? x R, which we write as ¢' = (r®, s*), where 1 < a < n — p and
1 <a<np.

e Lagrangian L(q',q").
Equations of motion given by Lagrange-d’Alembert principle.

Definition 0.1 The Lagrange-d’Alembert equations of motion for the system are
those determined by

b
5/ L(q',q¢")dt =0,

where we choose variations 6q(t) of the curve q(t) that satisfy dq(a) = dq(b) = 0 and dq(t)
satisfies the constraints for each t where a <t < b.

e This principle is supplemented by the condition that the curve itself satisfies the constraints.



e Note that we take the variation before imposing the constraints; that is, we do not impose
the constraints on the family of curves defining the variation.

e Equivalent to:
d oL OL :
—0L=|—=———10¢"=0
(dt aq' an> !
for all variations d¢° = (dr®, ds%) satisfying the constraints at each point of the underlying
curve ¢(t), i.e. such that §s® + A%6r® = 0.

Substituting:
i@L_(‘?L _ 4 i@L_(?L
dtore  ore) T \dtds®  Os

Combined with the constraint equations

-a a .o
st = —Alr

forala=1,...,n—p.

foralla =1,...,p, give the complete equations of motion of the system.

Useful way of reformulating equations (0.4) is to define a constrained Lagrangian by substi-
tuting the constraints (0.5) into the Lagrangian:

Lo(re, s r%) .= L(r®, s, 7%, —A%(r, s)rr").



The equations of motion can be written in terms of the constrained Lagrangian in the following
way, as a direct coordinate calculation shows:

doL. dL. ,0L. 0L »
dtore  Ore Aaas - asbB

where B? o5 18 defined by

DAL 8Ab 8Ab DAL
b _ a a "B ja a
Bos = (87“5 87‘0‘ 4 Js® A ds® |




e The Nonholonomic and the Variational Systems. Interesting to compare the
dynamic equations, which can be shown to be consistent with Newton’s second law F =
ma in the presense of reaction forces with the corresponding variational system. Long and
distinguished history going back to the review article of Korteweg [1898].

e What is the difference in the two procedures?

Answer: with the dynamic Lagrange d’Alembert equations, we impose constraints only on
the variations, whereas in the variational problem we impose the constraints on the velocity
vectors of the class of allowable curves.

Show explicitly for penny that one really gets two different sets of equations.

e Variational system is obtained by using Lagrange multipliers with the Lagrangian rather
than the equations:

1 1. 1
L _ -2 -2 —162 =02
2m(:z: +y)+2 +2g0

(& — RO cos ) + pa(i — ROsin @)

where now can relax the constraints and take variations over all curves.



e Variational equations with external forces therefore are

max + ;= 0
mij + i = 0
. d
]Q—R%(,ulcosngr,ugsingo) = u
J¢+R%(u19008¢+ugﬁsingp) = Us.

Substituting we obtain

(I +mR*)H = Rp(—Asing + Bcos ) + u
Jp = RO(Asinp — Bcosp) + us.

A.B, are consts.



e The Falling Rolling Disk More realistic disk allowed to fall over.

‘A

Figure 0.2: The geometry for the rolling disk.

This is a system which exhibits stability but not asymptotic stability.
Denote mass, the radius, and the moments of inertia of the disk by m, R, A, B.

="
2

[(5 — R(¢psin® + 1)) +n?sin® 0 + (ncos 6 + Ré)z}

+ % [A(éz + ¢? cos® 0) + B(¢sin 6 + ¢)2] —mgRcosb,

where € = & cos @ + ysin ¢ + Ry and n = —@ sin ¢ + g cos ¢, while the constraints are given
by
T = —1yRcos o, y = —1YRsin¢.



Other systems:

J

xy)

Figure 0.3: The Chaplygin sleigh is a rigid body moving on two sliding posts and one knife edge.



Figure 0.4: The geometry for the roller racer.

Figure 0.5: The rattleback.



eThe Chaplygin Sleigh

e Perhaps the simplest mechanical system which illustrates the possible dissipative nature of
energy preserving nonholonomic systems.

Compare the sleigh equations to the Toda lattice equations.

z
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Figure 0.6: The Chaplygin sleigh is a rigid body moving on two sliding posts and one knife edge.

Equations:

V= aw

w = —— 2w
I + ma?

Equations have a family of relative equilibria given by (v, w)|v = const, w = 0.
Linearizing about any of these equilibria one finds one zero eigenvalue and one negative



eigenvalue.

In fact the solution curves are ellipses in v — w plane with the positive v-axis attracting all
solutions.
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Figure 0.7: Chaplygin Sleigh/2d Toda phase portrait.

Normalizing, we have the equations
o= w?
W = —UWw.
Scaling time by a factor of two have: Chaplygin sleigh equations are equivalent to the two-
dimensional Toda lattice equations except for the fact that there is no sign restriction on the



variable w. Hence can be written in Lax pair form and solved by the method of factorization.



eThe Toda Lattice

Interacting particles on the line.
Non-periodic finite Toda lattice as analyzed by Moser [1974]:

1 n n—1
H(z,y) = 5 Z y]% n Z o T Ty
k=1 k—1

Hamiltonian equations:

. oOH
Yy,
oOH
) = ———- = exk’—l_xk — 6xk_*rk‘—1 ,
Yk O,
where assume €0~ %1 = ePn=In+l = (),
Flaschka:
1 1
— Zelm—mi)/2 T
Qg 26 k Q?Jk;
Get:

ak:ak(bk+1_bk)7 k:177n_1

by = 2(a2—a2_), k=1,---,n

with the boundary conditions ay = a,, = 0 and where the a; > 0.



Matrix form:

Ly [B,L] = BL — LB,
dt

If N is the matrix diag[1, 2, - - - , n] the Toda flow can be written
L =[L,[L,N]].

Shows flow also gradient (on a level set of its integrals).

e Double bracket form of Brockett [1988] (see Bloch [1990], Bloch Brockett and Ratiu [1990,
1992]).

eThe Two-dimensional Toda Lattice

In two-dimensional case matrices in the Lax pair are

B by a B 0
b= (a1 —bl) b= (—al 0)

61 = 20,%

dl — —2@1()1

Equations of motion:

For initial data by = 0, a1 = ¢, explicitly carrying out the factorization yields explicit solution

sinh 2c¢t c

1(t) Ccosh 2ct’ a(t) cosh 2ct




Mathematical Preliminaries

Definition 0.1 An n-dimensional differentiable manifold M is a set of points together
with a finite or countably infinite set of subsets U, C M and 1-to-1 mappings ¢, : Uy, —
R™ such that:

.U, Uy = M.

2. For each nonempty intersection U, NUgz, ¢;(U, NUgz) is an open subset of R", and the
1-to-1 and onto mapping ¢, o ¢§1 90Uy NUB) — ¢o (U, NU3) is a smooth function.

3. The family {U,, o} is maximal with respect to conditions 1 and 2.

Tangent Vectors to Manifolds. Two curves t — ¢;(t) and t — ¢o(t) in an n-manifold
M are called equivalent at x € M if

c1(0) = c2(0) =2 and (poc1)(0) = (@ ocy)(0)

in some chart ¢, where the prime denotes the derivative with respect to the curve parameter.
[t is easy to check that this definition is chart independent. A tangent vector v to a manifold
M at a point x € M is an equivalence class of curves at x. One proves that the set of tangent
vectors to M at x forms a vector space. It is denoted by T, M and is called the tangent space
to M at x € M. Given a curve ¢(t), we denote by ¢(s) the tangent vector at ¢(s) defined by
the equivalence class of t +— ¢(s +t) at t = 0.

The tangent bundle of M, denoted by T'M, is the differentiable manifold whose underlying



set is the disjoint union of the tangent spaces to M at the points x € M that is,

T™ = | | T.M.
xeM
Differentiable Maps. Let F and F' be vector spaces (for example, R"” and R™, respec-
tively), and let f : U C E — V C F, where U and V are open sets, be of class C"1. We

define the tangent map (the tangent map is sometimes denoted by fy) of f to be the map
Tf.:TU=UXx E — TV =V x F defined by

Tf(u,e) = (f(u),Df(u),e), (0.10)

where u € U and e € E. This notion from calculus may be generalized to the context of
manifolds as follows. Let f: M — N be a map of a manifold M to a manifold N. We call f
differentiable (or C*) if in local coordinates on M and N it is expressed, or represented, by
differentiable (or C*) functions. The derivative of a differentiable map f : M — N at a point
x € M is defined to be the linear map

Tof - TeM — TryN

constructed in the following way. For v € T, M, choose a curve ¢ : |—e,e] — M with
c(0) = z, and velocity vector de/dt |;—g = v. Then T, f - v is the velocity vector at t = 0 of the

curve foc:R — N; that is,

d

T.f-v= pr (c(?)) .



Differential Forms

A 2-form (2 on a manifold M is, for each point x € M, a smooth skew-symmetric bilinear
mapping (x) : T, M x T, M — R. More generally, a k-form « (sometimes called a differ-
ential form of degree k) on a manifold M is a function a(z) : T, M x --- x T, M (there are
k factors)— R that assigns to each point x € M a smooth skew-symmetric k-multilinear map
on the tangent space T, M to M at x.

Without the skew-symmetry assumption, o would be referred to as a (0, k)-tensor.

Pull Back and Push Forward. Let ¢ : M — N be a C*° map from the manifold M
to the manifold N and let o be a k-form on N. Define the pull back p*a of a by ¢ to be
the k-form on M given by

(QO*Oé)x(Ul, ce :Uk) = () (TJEQO ULy, L Uk)' (011)
If ¢ is a diffeomorphism, the push forward ¢, is defined by ¢, = (¢~ 1)*.



Lie Groups

Definition 0.2 A Lie group is a smooth manifold G that is a group and for which the
group operations of multiplication, (g, h) — gh for g,h € G, and inversion, g — g1, are
smooth.

Definition 0.3 A matrixz Lie group is a set of invertible n X n matrices that is closed
under matrix multiplication and that is a submanifold of R™*",

e Tangent space at identity: Lie algebra.



Definition 0.4 A fiber fiber bundle is a space () for which the following are given: a space
B called the base space, a projection 7 : Q — B with fibers m=(b),b € B, homeomorphic
to a space F', a structure group G of homeomorphisms of F' into itself, and a covering
of B by open sets U;, satisfying

(i) the bundle is locally trivial, i.e., m='(U;) is homeomorphic to the product space U; X F
and

(ii) of h; is the map giving the homeomorphism on the fibers above the set U;, for any
€ U;NUy hj(h') is an element of the structure group G.

If the fibers of the bundle are homeomorphic to the structure group, we call the bundle a
principal bundle.

If the fibers of the bundle are homeomorphic to a vector space, we call the bundle a vector
bundle.



Consider a bundle with projection map 7 and as usual let T;,w denote its tangent map at
any point. We call the kernel of T at any point the vertical space and denote it by V.

Definition 0.5 An Ehresmann connection A is a vector-valued one-form on @) that
satisfies:

(i) A is vertical valued: A, :T,Q — V, is a linear map for each point q € Q.
(ii) A is a projection: A(v,) = v, for all v, € V.

The key property of the connection is the following: If we denote by H, or hor, the kernel of
A, and call it the horizontal space, the tangent space to () is the direct sum of the V,, and
H,; i.e., we can split the tangent space to () into horizontal and vertical parts. For example, we
can project a tangent vector onto its vertical part using the connection. Note that the vertical
space at () is tangent to the fiber over q.



Now define the fiber bundle coordinates ¢' = (r®, s%) for the base and fiber. The coordinate
representation of the projection 7 is just projection onto the factor r, and the connection A
can be represented locally by a vector-valued differential form w®:

0
A=w" 50 where w“(q) = ds + A% (r, s)dre.
s¢

We can see this as follows: Let
ZT (w + ZS .

be an element of T,(). Then w®(v,) = s* + A% and

0
0s?

This clearly demonstrates that A is a projection, since when A acts again only ds? results in

Alvy) = (8" + A%r®)—

a nonzero term, and this has coefficient unity.



Given an Ehresmann connection A, a point ¢ € @), and a vector v, € T, B tangent to the
base at a point 7 = 7(q) € B, we can define the horizontal lift of v, to be the unique vector
vf} in H, that projects to v, under T;m. It we have a vector X, € T,(), we shall also write its
horizontal part as

hor X, = X, — A(q) - X,.
In coordinates, the vertical projection is the map
(7, 5) — (0,8 + A%(r, s)r?),
while the horizontal projection is the map
(7, 8%) = (7, =A% (r, s)77).
Next, we give the basic notion of curvature.

Definition 0.6 The curvature of A is the vertical-vector-valued two-form B on () de-
fined by its action on two vector fields X and Y on @) by

B(X,Y) = —A(lhor X, hor Y]),

where the bracket on the right hand side is the Jacobi—Lie bracket of vector fields obtained
by extending the stated vectors to vector fields.

The local expression for curvature is given by

B(X,Y)" =B, X"Y", (0.12)



where the coefficients By ; are given by

b
L (o4 o,
s or?  Ore

b
oA

A0 A

* 0s@

.04,
B asa

) |

(0.13)



In the tangent bundle we can specify a linear connection by its action on vector fields, or by
a map from vector fields (X, Y) to the vector field VxY that satisfies for smooth functions f
and ¢ and a vector fields X, Y, Z:

(i) VfX+gyZ = fVxZ + gVyZ.
(i) Vx(Y+2)=VxY +VxZ.
() Vx (FY) = FVAY +(df - X)Y.

where df - X is the directional derivative of f along X, or Lie derivative.
Given a basis of vector fields % we can represent V by
J

0 9 (0.14)

For XY vector fields given locally by X = X(9/0r;), Y =Y*(9/0r;), (i) and (iii) imply

Y’ o\ 0
VxY = (XJ 5 +XkYJrkj) . (0.15)

ort’

The geodesic equations (tangent vector to curve is always horizontal or curve is parallel

transported) may be written
Vir=20. (0.16)



We can see this directly by a simple computation, again using (i) and (iii):
;0 : . 0
V z — TZV .'I;j—
7 8/(‘37"Z d/0r; a?nj

(97j7
o .0 ipk 9 0

= ) —

or; Or; Yoy,
= (# + T/ 7%) 3(?"] (by the chain rule).
Sometimes we will write 2, DY
Vir = PR 7 Vi X. (0.17)

We define DX /dt to be the covariant derivative.
By (0.15), in local coordinates

PX _vx- ( jOX +1T, X’w) J = (X' + I}, X)) — 0 (0.18)
r

dt orJ ort ort’

where 7(t) = 7/(0/0r"). For X = 7 we of course recover the geodesic equations.

In the tangent bundle we can specify a linear connection by its action on vector fields, or by
a map from vector fields (X,Y) to the vector field VxY that satisfies for smooth functions f
and g and a vector fields X, Y, Z:
(i) VfX+gyZ = fVxZ + gVyZ.

(i) Vx(Y + Z) = VxY + VxZ.



(i) Vx(fY) = fVxY +(df - X)Y
where df - X is the directional derivative of f along X, or Lie derivative.
Given a basis of vector fields % we can represent V by
J

— = QAR (0.19)

For XY vector fields given locally by X = X*(9/dr;), Y =Y*(9/0r;), (i) and (iii) imply

0Y" - 0
VxY = X/'—— + X"V, | —. 0.20
X ( orJ & ) or’ (0.20)
The geodesic equations above then may be written
Vir=20. (0.21)
We can see this directly by a simple computation, again using (i) and (iii):
;0 : o,
V. = 'V g1 —
T 8/87“Z 67“] " NVa/or" 87”]'
.0 .0 0
— gl i Ik 2
a 8TZT or; o Y Ory,
0
= (# + T77") == (by the chain rule).
or;
Sometimes we will write D Dy
, r



We define DX /dt to be the covariant derivative.
By (0.15), in local coordinates

DX OX"! . N\ O y . .0
_ ) _ | i vk _ 1 i vk
dt = VTX = (7“ —87"] + F/{ZJX T ) _ari (X + ijX T ) _afrij (OQ?))

where 7(t) = 7/(9/0r"). For X = 7 we of course recover the geodesic equations.



Definition 0.7 Let P be a manifold and let F(P) denote the set of smooth real-valued
functions on P. Consider a bracket operation denoted by

{,}: F(P)x F(P)— F(P).

The pair (P,{,}) is called a Poisson manifold if {,} satisfies:

(PB1) bilinearity {f,g} is bilinear in f and g.

(PB2) anticommutativity {f, g} = —{g, f}.

(PB3) Jacobi’s identity  {{f,g},h} + {{h, f}, 9} + {{g,h}, f} = 0.
(PB4) Leibniz’s rule {fg,h} = flg,h} +g{f, h}.

Notice that conditions (PB1)—(PB3) make (F(P),{,}) into a Lie algebra.
If (P,{,}) is a Poisson manifold, then one can show that because of (PB1) and (PB4), there
is a tensor B on P assigning to each z € P a linear map B(z) : T*P — T, P such that

1f:93(2) = (B(2) - df(2),dg(2)). (0.24)
Here (,) denotes the natural pairing between vectors and covectors. Because of (PB2), B(z)
is antisymmetric. Letting 2/, I = 1,..., M, denote coordinates on P, (0.24) becomes

IJaf dg
{f9t=B"5%57 (0.25)



Definition 0.8 Let P be a manifold and ) a 2-form on P. The pair (P,<)) is called a
symplectic manifold f ) satisfies

(S1) d2 =0 (i.e., Q is closed) and

(S2) Q is nondegenerate.

Definition 0.9 Let (P,2) be a symplectic manifold and let f € F(P). Let X be the
unique vector field on P satisfying

Q.(X¢(z),v) =df(z) v forall vel,P. (0.26)
We call Xy the Hamiltonian vector field of f. Hamilton’s equations are the dif-

ferential equations on P given by
2= X(2). (0.27)
If (P,€)) is a symplectic manifold, define the Poisson bracket operation {-,-} : F(P) x
F(P)— F(P) by
{f, 9} = QXy, Xy). (0.28)



Let G be a Lie group and g = T.G its Lie algebra with [,]: g x g — g the associated Lie
bracket.

Proposition 1 The dual space g* is a Poisson manifold with either of the two brackets

{f k}e(p) ==+ <u, [gi gzb (0.29)

Here g is identified with g** in the sense that § f /éu € g is defined by (v, 0 f/ou) =D f(u)-v
for v € g*, where D denotes the derivative. Assuming that g is finite-dimensional and choosing
coordinates (£1,..., &™) on g and corresponding dual coordinates (i1, . . . , ft,,) on g*, the Lie—
Poisson bracket (0.29) is

of Ok
K +1,C——
{f }:t( ) Haloy a,uba,uc

here C7, are the structure constants of g defined by [e,, )] = C €., where (eq, ..., ep) is

the coordinate basis of g and where for £ € g we write & = £%,, and for u € g*, u = p.e’,
1

(0.30)

where (e', ..., e™) is the dual basis.



Definition 0.10 A finite-dimensional nonlinear control system on a smooth n-
manifold M s a differential equation of the form

= f(x,u), (0.31)

where x € M, u(t) is a time-dependent map from the nonnegative reals R™ to a constraint
set O C R™, and f is taken to be C* (smooth) or C* (analytic) from M x R™ into T M
such that for each fized u, f is a vector field on M. The map u is assumed to be piecewise
smooth or piecewise analytic. Such a map u is said to be admaissible. The manifold M
15 said to be the state space or the phase space of the system.

Affine control system:

i = f(x)+ Z gi(z)u; (0.32)



Definition 0.11 The system (0.32) is said to be controllable if for any two points x
and xy in M there exists an admissible control u(t) defined on some time interval [0, T
such that the system (0.32) with initial condition xy reaches the point xy in time T

To define accessibility we first need the notion of a reachable set. This notion will depend
on the choice of a positive time T'. The reachable set from a given point at time 1" will be
defined to be, essentially, the set of points that may be reached by the system by traveling on
trajectories from the initial point in a time at most T'. In particular, if ¢ € M 1is of the form
x(t) for some trajectory with initial condition 2(0) = p and for some ¢ with 0 < ¢ < T, then ¢
will be said to be reachable from p in time 7. More precisely:

Definition 0.12 Given xy € M we define R(xg,t) to be the set of all x € M for which
there exists an admissible control u such that there is a trajectory of the system with
x(0) = xy, x(t) = x. The reachable set from x¢ at time T is defined to be

Rr(zo) = | J Rlzo,t). (0.33)

Definition 0.13 The accessibility algebra C of the system s the smallest Lie algebra
of vector fields on M that contains the vector fields f and g1,. .., Gmn.

Note that the accessibility algebra is just the span of all possible Lie brackets of f and the
9i-
Definition 0.14 We define the accessibility distribution C' of the system to be the



distribution generated by the vector fields in C; i.e., C(x) is the span of the vector fields
X inC at x.

Definition 0.15 The system on M 1is said to be accessible from p € M if for every
T >0, Rp(p) contains a nonempty open set.

Roughly speaking, this means that there is some point ¢ (not necessarily even close to a
desired objective point) that is reachable from p in time no more than 7" and that points close
to q are also reachable from p in time no more than 7T

Accessibility, while relatively easy to prove, is far from proving controllability.



Theorem 0.1 Consider the system and assume that the vector fields are C*. If dim C'(x¢) =
n (i.e., the accessibility algebra spans the tangent space to M at xq), then for any T > 0,
the set Rp(xg) has a monempty interior; i.e., the system has the accessibility property
from x.

Note that while this spanning condition is an intuitively reasonable condition, the resulting
theorem is quite weak, since it is far from implying controllability. The problem is that one
cannot move “backward” along the drift vector field f. If f is absent, this is a strong condition;
see below.

In certain special cases the accessibility rank condition does imply controllability, however.
(We assume here that all vector fields are real analytic; the nonanalytic case can present
difficulties.

Theorem 0.2 Suppose the system is analytic. If dim C'(x) = n everywhere on M and
either

1. f=0, or
2. f 1s divergence-free and M 1s compact and Riemannian,
then (0.32) is controllable.

The idea behind this result is that one cannot move “backward” along the drift directions, and
hence a spanning condition involving the drift vector field does not guarantee controllability.
A particular case of item 2 above is that in which f is Hamiltonian. This ensures a drift
“backward” eventually.



e.g. Heisenberg example Recall from Chapter 1 the Heisenberg system
T =u,
Y=, (0.34)
Z =vTr — uy,
which may be written as
q = u1g1 + U292, (0.35)

Another case of interest where accessibility implies controllability is a linear system of the
form

= Ax+ Y bu; = Az + Bu, (0.36)
i=1
where x € R" and A € R" x R” and B € R" x R™ are constant matrices, b; being the
columns of B.

The Lie bracket of the drift vector field Ax with b; is readily checked to be the constant
vector field — Ab;. Bracketing the latter field with Ax and so on tells us that C is spanned by
Az, b, Ab;, ..., A" b, i = 1,...,m. Thus, the accessibility rank condition at the origin is
equivalent to the classical controllability rank condition

rank[B, AB, ..., A" 'B] =n. (0.37)
In fact, the following theorem holds.

Theorem 0.3 The system 1s controllable if and only if the controllability rank condition
holds.



e The Lagrange-d’Alembert-Poincaré equations. Natural symmetries in the sys-

tem:
Can rewrite the equation of motions in terms of a reduced constrained Lagrangian ...

Theorem 0.2 The following nonholonomic Lagrange-d’Alembert-Poincaré equa-
tzons hold for each 1 < a <o and1 <b<m:

dol, o, oI C
= pepa — D 1" pepy

dtore  ore Ore
— B ypet” — Dol "per’ — Koy,
d . "
P = L pepy + D per® + Do,

Here 1.(r*, 7%, p,) is the constrained reduced Lagrangian, i.e. the Lagrangian in the body
frame; r¢, 1 < o < g, are coordinates in the shape space; i.e. coordinates of system
degrees of freedom p,, 1 < a < m, are components of the momentum map in the body
representation.

e The key to the qualitative behavior of this system are the terms on the right hand side of
the momentum equation.

e Case of interest:the matrix C%I1% is skew. see Zenkov, Bloch and Marsden [1998] and
divides into two cases: the term quadratic in 7 is present or not. If it vanishes, there are many
cases where one does not obtain asymptotic stability, for example the rolling penny problem.
When it is present asymptotically stable dynamics can occur as in the rattleback top.



e Key case: is the Euler-Poincaré-Suslov equations, where there are no internal or shape
degrees of freedom, 7.e. no coordinates r®. Again, asymptotic behavior may occur in some of
the variables.

Whether the nonholonomic systems exhibit asymptotic behavior or not it is striking that we
have

Proposition 0.3 The nonholonomic equations in the case that . 1s quadratic in p and
7, are time reversible.

Proof. The equations are invariant under the discrete Zo symmetry (t — —t,p — —p, 7 —
—7).
|

In this setting it is easy to check that energy is always preserved.



e Almost Poisson Systems
Recall:

Definition 0.4 An almost Poisson manifold is a pair (M,{,}) where M is a smooth
manifold and (i){,} defines an almost Lie algebra structure on the C'*° functions on M,

i.e. the bracket satisfies all conditions for a Lie algebra except that the Jacobi identity is
not satisfied and (i) {,} is a derivation in each factor.

If in addition Jacobi satisfied, Poisson manifold.
An almost Poisson structure on M will be Poisson if its Jacobiator, defined by

J(fr9.h) = U gb by + g, 0y, f} +{1hs f1g}

vanishes.

e One can define an almost Poisson vector field on M by

OH
8,2]- .

Z = mij(2)



e “Hamiltonian” Formulation of Nonholonomic Systems

Nonholonomic systems are almost Poisson.

Start on the Lagrangian side with a configuration space ) and a Lagrangian L (possibly of
the form kinetic energy minus potential energy, i.e.,

: L,
L(g:q) = 5({¢,4)) — V(a).
As above, our nonholonomic constraints are given by a distribution D C T'Q). We also let
DY C T*Q denote the annihilator of this distribution. Using a basis w® of the annihilator D°,

we can write the constraints as

wherea =1,...,k.
Recall that the cotangent bundle T*() is equipped with a canonical Poisson bracket and is
expressed in the canonical coordinates (q, p) as

OFOG OFIG (aFT aFT> p (%) |

{F,G}(q,p) =

~0q'dp; Op;og \ dg " Op o

Here J is the canonical Poisson tensor

O, Ip
= (%)



A constrained t phase space M = FL(D) C T*Q is defined so that the constraints on the
Hamiltonian side are given by p € M. In local coordinates,

OH
M = ,p)eT” | ¢ =05.
{(q p)eTQ|uim> }
Let {X,} be a local basis for the constraint distribution D and let {w”} be a local basis for
the annihilator D°. Let {w,} span the complementary subspace to D such that (w?, w;,) = 6%,

where 0 is the usual Kronecker delta. Here a = 1,...,k and o = 1,...,n — k. Define a
coordinate transformation (q, p) — (¢, Pa, Pa) by

Po=X'Di,  Pa=wlp;

In the new (generally not canonical) coordinates (g, Pa, Pa), the Poisson tensor becomes

o) = ({000 1000,

{pi,d’} {pi,pj}



Use (q, po) as induced local coordinates for M. It is easy to show that

ﬁ(qapaaﬁa) — a j (Q715a)7
a—H(Qp ﬁ)—M—M(Qﬁ)
8~ﬁ )y IO XA (9]55 y 7))

where Hy is the constrained Hamiltonian on M expressed in the induced coordinates. We
can also truncate the Poisson tensor J by leaving out its last £ columns and last k£ rows and
then describe the constrained dynamics on M expressed in the induced coordinates (g*, o) as

follows: -
ar (45 Pa) Z‘
q - 0qJ o q
< - JM(QapOz) ~ ) <~ ) e M.
(pa) (9(;172/1<qu&) Pa

Here Jyq is the (2n — k) x (2n — k) truncated matrix of J restricted to M and is expressed
in the induced coordinates.



The matrix Jy defines a bracket {-, -}, on the constraint submanifold M as follows:

9G
N orFT orT o h
{Fm, GmIm(q, Do) = ( M M) Jm(q', Do) < o ) :

dq'  Opa T

for any two smooth functions F'yq, G o on the constraint submanifold M. Clearly, this bracket
satisfies the first two defining properties of a Poisson bracket, namely, skew symmetry and the
Leibniz rule, and one can show that it satisfies the Jacobi identity if and only if the constraints
are holonomic. Furthermore, the constrained Hamiltonian H x4 is an integral of motion for the

constrained dynamics on M due to the skew symmetry of the bracket.



Following e.g. van der Schaft and Maschke [1994] and Koon and Marsden [1997] we can write
the nonholonomic equations of motion as follows:

3

5 0 0 —AY S
= 0o 0o g o

Po (AL =67 —peBiy |\ 22m
5

S

Jacobiator of the Poisson tensor vanishes precisely when the curvature of the nonholonomic
constraint distribution is zero or the constraints are holonomic.



e The Momentum Equation Simple constained physical systems that have symmetries
do not have associated conservation laws.

e Simplest situation: case of cyclic variables. Recall that the equations of motion have the
form

dOoL. OL, e dL.  OL

dtor g g 0@

If this has a cyclic variable, say r!, this would mean that all the quantities L., L, B o Would
be independent of 7', This is equivalent to saying that there is a translational Symmetry in the

Bb'

r! direction.
Suppose also that the s variables are also cyclic. Then the above equation for the momentum
= OL./0r! becomes
ipl = 8.[/ b P
dt 0sb
Fails to be a conservation law in general. Note that the right hand side is linear in 7 (the first
term is linear in p,) and the equation does not depend on 7! itself.
e Special case of the momentum equation.



General Momentum Equation Assume there is a Lie group G that acts freely and
properly on the configuration space ). The Lie algebra of G is denoted by g. A Lagrangian
system is called G-invariant if its Lagrangian L is invariant under the induced action of G on
TQ.

Recall the definition of the momentum map for an unconstrained Lagrangian system with
symmetry:

The momentum map J : TQ — g* is the bundle map taking T'Q) to the bundle (g®)*

whose fiber over the point ¢q is the dual Lie algebra g* that is defined by
oL ;
(J(0).) = (FL(v,). &) = 5(E0)’

where £ € g, v, € T'Q, and g € T'Q) is the generator associated with the Lie algebra element
€.




A nonholonomic system is called G-invariant if both the Lagrangian L and the constraint
distribution D are invariant under the induced action of G on T'Q). Let D, enote the the fiber
of the constraint distribution D at q € Q).

Definition:

The nonholonomic momentum map J" is defined as a collection of the components
of the ordinary momentum map J that are consistent with the constraints, ie., the
Lie algebra elements & in () are now chosen from the subspace g? of Lie algebra elements in g
whose infinitesimal generators evaluated at g lie in the intersection D, N T;,(Orb(q)).



Thus, the nonholonomic momentum is a dynamic variable. The momentum dynamics is
specified in the following theorem:

Theorem:

Assume that the Lagrangian is invariant under the group action and that £ is a section of the
bundle g?. Then any solution of the Lagrange-d’Alembert equations for a nonholonomic system
must satisfy, in addition to the given kinematic constraints, the momentum equation

d oL | d '
—(Jrhe (gayy = —— | —(ga®y| 0.41
@) = 5 | e (0.41)
A Lie algebra element & is said to act horizontally if £o(q) € D,
Corollary
If ¢ is a horizontal symmetry, then the following conservation law holds:
d nnc
L e (€)= 0 (0.42)

dt



Symmetries Symmetries play an important role in our analysis. Suppose we are given a
nonholonomic system with Lagrangian L : T'Q) — R, and a (nonintegrable) constraint distri-
bution D. We can then look for a group GG that acts freely and properly on the configuration
space (). It induces an action on the tangent space T'() and so it makes sense to ask that the
Lagrangian L be tnvariant. Also, one can ask that the distribution be invariant in the sense
that the action by a group element g € G' maps the distribution D, at the point ¢ € @ to the
distribution Dy, at the point gg. If these properties hold, we say that G is a symmetry group.
The manifold Q /G is called the shape space of the system and the configuration space has the
structure of a principal fiber bundle 7 : @ — Q/G.

Geometry of Nonholonomic Systems with Symmetry

The group orbit through a point ¢, an (immersed) submanifold, is denoted

Orb(q) :={gq | g € G}.

Let g denote the Lie algebra of the Lie group G. For an element £ € g, we denote by &g the
vector field on () arising from the corresponding infinitesimal generator of the group action,
so these are also the tangent spaces to the group orbits. Define, for each ¢ € (@), the vector
subspace g? to be the set of Lie algebra elements in g whose infinitesimal generators evaluated

at ¢ lie in both D, and T,(Orb(q)):
g’ ={€eg&olq) € DyNT,(Orb(q))} -

The corresponding bundle over ) whose fiber at the point ¢ is given by g¢, is denoted by g”.



Reduced dynamics. Assuming that the Lagrangian and the constraint distribution are
G-invariant, we can form the reduced velocity phase space T'Q) /G and the reduced constraint
space D/G. The Lagrangian L induces well defined functions, the reduced Lagrangian

[ TQ/G — R
and the constrained reduced Lagrangian
l.:D/G — R,

satisfying L = [ o mpg and L|p = I, o mp where mpg : TQ — TQ/G and 7p : D — D/G
are the projections. By general considerations, the Lagrange-d’Alembert equations induce well
defined reduced equations on D/G. That is, the vector field on the manifold D determined by
the Lagrange-d’Alembert equations (including the constraints) is G-invariant, and so defines
a reduced vector field on the quotient manifold D/G. Call these equations the Lagrange-
d’Alembert-Poincaré equations.



Let a local trivialization be chosen on the principle bundle 7 : Q@ — Q/G, with a local
representation having components denoted (r, g). Let r, an element of shape space Q /G, have
coordinates denoted r“, and let g be group variables for the fiber, G. In such a representation,
the action of G is the left action of G on the second factor. The coordinates (r, g) induce the
coordinates (r,7, &) on TQ/G, where £ = g~'g. The Lagrangian L is invariant under the left
action of G and so it depends on ¢ and ¢ only through the combination & = g~'¢. Thus the
reduced Lagrangian [ is given by

l(r7 7;7 5) - L(r7 g? /';'7 g)'
Therefore the full system of equations of motion consists of the following two groups:
1. The Lagrange-d’Alembert-Poincaré equation on D/G (see theorem 0.2).

2. The reconstruction equation
g = g€



The nonholonomic momentum in body representation. Choose a g-dependent
basis e4(q) for the Lie algebra such that the first m elements span the subspace g? in the
following way. First, one chooses, for each r, such a basis at the identity element g = Id, say

e1(r),es(r), ..., emn(r), emi1(r), ..., ex(r).

Now define the body fized basis by
ealr,g) = Ad,ea(r).

Then the first m elements will indeed span the subspace g? since the distribution is invariant.
We denote the structure constants of the Lie algebra relative to this basis by CYp.
To avoid confusion, we make the following index conventions:

1. The first batch of indices range from 1 to m corresponding to the symmetry directions along
constraint space. These indices will be denoted a, b, c, .. ..

2. The second batch of indices range from m—+1 to k corresponding to the symmetry directions
not aligned with the constraints. Indices for this range will be denoted by a’,b', ¢/, . . ..

3. The indices A, B, C, ... on the Lie algebra g range from 1 to k.

4. The indices a, 3, ... on the shape variables r range from 1 to o. Thus, ¢ is the dimension
of the shape space /G and so 0 =n — k.

The summation convention for all of these indices will be understood.



Assume that the Lagrangian has the form of kinetic minus potential energy, and that the
constraints and the orbit directions span the entire tangent space to the configuration space:

D, +T,(0rb(q)) = T,Q.

Then it is possible to introduce a new Lie algebra variable €2 called the body angular velocity
such that:

1. Q = Ar+€, where the Lie algebra valued form A = Ale o(r)dr® is called the nonholonomic
connection (see Bloch et al. [1996] for details).

2. The constraints are given by € € span{e(r),...,en(r)} or Q" =... = OF = 0.

3. The reduced Lagrangian in the variables (r, 7, €2) becomes

1 1 /
1(r®, 7, Q%) = 2gagi ™’ + SLap QP + Ay *Q" = U(r). (0.43)

Here g, are coefficients of the kinetic energy metric induced on the manifold Q/G, 14¢ are
components of the locked inertia tensor defined by

{L(r)g,m = (asmal)s  &nes,
where ((-,-)) is the kinetic energy metric. The coefficients A, are defined by

0%l 0%l

Aa = -
YT Pedore T DETOED

AD.




The constrained reduced Lagrangian becomes especially simple in the variables (r, 7, Q):

1 1
lc:_a'a'ﬁ o
2g grer +2

We remark that this choice of €2 block-diagonalizes the kinetic energy metric, 7.e., eliminates

1,,Q°Q" — U. (0.44)

the terms proportional to Q% in (0.44).



The nonholonomic momentum in body representation is defined by
ol 0l
Pa= 500 = 90

Notice that the nonholonomic momentum may be viewed as a collection of components of the

a=1,....,m.

ordinary momentum map along the constraint directions.
The Lagrange-d’Alembert-Poincaré equations. As in Bloch et al. [1996], the
reduced equations of motion are given by the next theorem.

Theorem 0.5 The following reduced nonholonomic Lagrange-d’Alembert-Poin-
caré equations hold for each 1 < a <o and1 <b<m:

d ol. Ol . 3.
Gigie ~ gya =~ Phal"pepa = Kasyt
— (BSy — Lo 1B + Dysal")pei”, (0.45)
d / /
%pa - (lea - Oga[c’a’]la C>[bdpcpd =+ Dgapcfa =+ Daaﬂfo%ﬁ- (046)

Here and below [.(r®, 7%, Q%) is the constrained Lagrangian, and I° and I, are the inverse of
the tensors |4 and I[_ll(gq)*, respectively. We stress that in general I # 1" and I» # L.



The coefficients Bgﬁ, Dy, Dyag, Kupy are given by the formulae

bas
0AC  OAY
C o B C 1A 4B C 4A C 4A
Bozﬁ - ors o Ore o OBAAaAﬁ + /YAﬁAOz - /YAozAﬁa

Dj, = —(Cly = Clp Lol VAL + Cipdoal + 750 = Yialowl™, (0.47)
Dhas = AT — ClnAD);
Kapy = A B
and the coefficients ’Vz% are defined by

aeb . C
gra  16acC:

Equations (0.45) and (0.46) generalize the equations of motion in the orthogonal body frame
(see Bloch et al. [1996]). Here we no longer assume that the body frame is orthogonal.



eEuler-Poincaré-Suslov Equations

Important special case of the reduced nonholonomic equations.

eExample: Euler-Poincaré-Suslov Problem on SO(3) In this case the problem can
be formulated as the standard Euler equations

Tw=1wxw

where w = (w1, wo, w3) are the system angular velocities in a frame where the inertia matrix is
of the form I = diag([ly, I5, I3) and the system is subject to the constraint

a-w=>0
where a = (a1, as, az).

The nonholonomic equations of motion are then given by

Iw=1IwXw+ A
subject to the constraint. Solve for A:
Ia- (Tw x w)

I71'a-a
If a is an eigenvector of the moment of inertia tensor flow is measure preserving.

A= —



More generally:

Invariant Measures of the Euler-Poincaré-Suslov Equations An important spe-
cial case of the reduced nonholonomic equations is the case when there is no shape space at all.
In this case the system is characterized by the Lagrangian L = %]I 40240F and the left-invariant
constraint

(a, Q) = a Q= 0. (0.52)

Here a = ase? € g* and Q = Q4y, where ey, A = 1,... k. is a basis for g and e? is its
dual basis. Multiple constraints may be imposed as well. The two classical examples of such
systems are the Chaplygin Sleigh and the Suslov problem. These problems were introduced
by Chaplygin in 1895 and Suslov in 1902, respectively.

We can consider the problem of when such systems exhibit asymptotic behavior. Following
Kozlov [1988] it is convenient to consider the unconstrained case first. In the absence of
constraints the dynamics is governed by the basic Euler-Poincaré equations

pp = CS3I* P pepp = CSppcQ? (0.53)

where pp = 1,450Q" are the components of the momentum p € g*. One considers the question of
whether the (unconstrained) equations (0.53) have an absolutely continuous integral invariant
fd*Q) with summable density M. If M is a positive function of class C'!' one calls the integral
invariant an invariant measure. Kozlov [1988] shows

Theorem 0.6 The Euler-Poincaré equations have an invariant measure if and only if
the group G s unimodular.



A group is said to be unimodular if it has a bilaterally invariant measure. A criterion
for unimodularity is C9, = 0 (using the Einstein summation convention). Now we know
(Liouville’s theorem) that the flow of a vector differential equation @ = f(x) is phase volume
preserving if and only if div f = 0. In this case the divergence of the right hand side of equation
(0.53) is CGI*Ppp = 0. The statement of the theorem now follows from the following theorem
of Kozlov [1998]: A flow due to a homogeneous vector field in R"™ is measure-preserving if
and only if this flow preserves the standard volume in R".

Now, turning to the case where we have the constraint (0.52) we obtain the Euler-Poincaré-
Suslov equations

e = C{I*Ppepp + Aag = CYppeQ? + Aag (0.54)
together with the constraint (0.52). Here A is the Lagrange multiplier. This defines a system on
the subspace of the dual Lie algebra defined by the constraint. Since the constraint is assumed
to be nonholonomic, this subspace is not a subalgebra. One can then formulate a condition for
the existence of an invariant measure of the Euler-Poincaré-Suslov equations.

Theorem 0.7 Fquations (0.54) have an invariant measure if and only if
Kadji,a+ T = pa, i e R, (0.55)
where K = 1/(a,T"'a) and T € g* is defined by (T, &) = Tr(ady).

This theorem was proved by Kozlov [1988] for compact algebras and for arbitrary algebras by
Jovanovié¢ [1998]. In coordinates, condition (0.55) becomes

KC1 P acap + OS¢ = pagp.



For a compact algebra (0.55) becomes

T 'a,a) = pa, 1 e R, (0.56)

where we identified g* with g.

The proof of theorem 0.7 reduces to the computation of the divergence of the vector field in
(0.54).

In the compact case only constraint vectors @ which commute with I™!a allow the measure to
be preserved. This means that a and I7'a must lie in the same maximal commuting subalgebra.
In particular, if a is an eigenstate of the inertia tensor, the reduced phase volume is preserved.
When the maximal commuting subalgebra is one-dimensional this is a necessary condition.
This is the case for groups such as SO(3).

We thus have the following result which reflects a symmetry requirement on the constraints:

Theorem 0.8 A compact Euler-Poincaré-Suslov system is measure preserving (i.e. does
not exhibit asymptotic dynamics) if the constraint vectors a are eigenvectors of the inertia
tensor, or if the constrained system is Zo symmetric about each of its principal axes. If
the mazrimal commuting subalgebra is one-dimensional this condition is necessary.



Invariant Measures of Systems with Internal Degrees of Freedom In this
section we extend the result of Kozlov [1988] and Jovanovi¢ [1998] to nonholonomic systems
with nontrivial shape space. One can think of these systems as the Euler-Poincaré-Suslov
systems with internal degrees of freedom. Recall that the constraints are of the form Q™+ =
... = QF = 0. To simplify the exposition, we consider below systems with a single constraint.
The results are valid for systems with multiple constraints as well.

Consider a nonholonomic system with the reduced Lagrangian [(r,7,§2) and a constraint
(a(r),§2) = 0. The subspace of the Lie algebra defined by the constraint at the configuration ¢
is denoted here by g?. The orientation of this subspace in g depends on the shape configuration
of the system, r. The dimension of g¢ however stays the same. As discussed in section , we
choose a special moving frame in which g? is spanned by the vectors ey (r), ..., ex_1(r). The
equation of the constraint in this basis becomes Q¥ = 0. Recall that the horizontal part of the
kinetic energy metric is gog(r).

Theorem 0.9 The system associated with the reduced Lagrangian [(r,7,€)) and the con-
straint {a(r),Q) = 0 has an integral invariant with a C density M(r) if and only if
Hka

(Z) (Cl()la T Cl?am) _ gaépboﬁ — 07

(ii) the form [Dgﬁ — gO‘(S)\k(ngﬁ] dr” is exact.



Systems with One-Dimensional Shape Space. Assume that condition (i) of theorem
0.9 is satisfied. In this case the equation for the density of the invariant measure becomes

d(ln M) = d(In g) + Didr. (0.57)

The solution of this equation is globally defined if the shape space is either noncompact (and
thus diffeomorphic to R), or compact and the average of the function Dg equals zero.
Systems with Conserved Momentum. If the nonholonomic momentum is a constant
of motion, then condition (i) of theorem 0.9 is trivially satisfied. Moreover, condition (ii) now
asks that the form
go‘(s)\k(gBZﬁrﬁ (0.58)

is exact. The system thus preserves the measure with the density

M = det gexp (— /go‘é)\kgl?ﬁﬁrﬂ) :



Examples

The Routh Problem. This mechanical system consists of a uniform sphere rolling without
slipping on the inner surface of a vertically oriented surface of revolution. He described the
family of stationary periodic motions and obtained a necessary condition for stability of these
motions. Routh noticed as well that integration of the equations of motion may be reduced
to integration of a system of two linear differential equations with variable coefficients and
considered a few cases when the equations of motion can be solved by quadratures. Modern
references that treat this system are Hermans [1995] and Zenkov [1995].

This problem is SO(2) x SO(2)-invariant, where the first copy of SO(2) represents rotations
about the axis of the surface of revolution while the second copy of SO(2) represents rotations
of the sphere about its radius through the contact point of the surface and the sphere.



Let 7 be the latitude of this contact point, a be the radius of the sphere, ¢(r) + a be the
reciprocal of the curvature of the meridian of the surface, and b(r) be the distance from the
axis of the surface to the sphere’s center. The shape metric is ¢?(r)7?/2 while the momentum
equations are

7

The shape space is one-dimensional, the symmetry group SO(2) x SO(2) is commutative,

e(r)sinr 2 p2(1_c(r)ﬂ>

P1 = Wpﬂ“ 2 b(r)

and there are no terms proportional to 72 in the momentum equations. The trace term in (0.57)
equals ¢(r) sinr/b(r), and thus the density of the invariant measure for the Routh problem is

c(r)sinr d

M = E(r)e! " (0.59)

The group action in this problem is singular: the intersection points of the surface of revolu-
tion and its axis have nontrivial isotropy subgroups. The shape coordinate r equals +7/2 at
these points. As a result,

lim M(r)= lim M(r) = oo.

r——m/2 r—m/2



The Falling Disk. Consider a homogeneous disk rolling without sliding on a horizontal
plane. This mechanical system is SO(2) x SFE(2)-invariant; the group SO(2) represents the
symmetry of the disk while the group SE(2) represents the Euclidean symmetry of the overall
system.

Classical references for the rolling disk are Vierkandt [1892], Korteweg [1899], and Appel
[1900]. In particular, Vierkandt showed that on the reduced space D/S E(2)—the constrained
velocity phase space modulo the action of the Euclidean group SFE(2)—most orbits of the
system are periodic.

The shape of the system is specified by a single coordinate—the tilt of the disk denoted here
by r. The momentum equations are

_ 2 sin 7 n COST N sin? 7 _
= 1m — T?
b Acost ! mR2+ B Acosr ) P

, 1 sinr ,
P2 = mR’ (— p1+ pg) T.

Acosr Acosr

Hence, the trace terms DY in (0.57) vanish, and the density of the invariant measure equals the
component of the shape metric g(r). The latter equals the moment of inertia of the disk with
respect to the line through the rim of the disk and parallel to its diameter. Since the density
of the measure is determined up to a constant factor, we conclude that the dynamics preserves
the reduced phase space volume.



The 3D Chaplygin Sleigh with an Oscillating Mass. The three-dimensional Chap-
lygin sleigh is a free rigid body subject to the nonholonomic constraint v? = 0, where v? is the
third component of the (linear) velocity relative to the body frame. The Lagrangian of this

system 1s
1

SM [0+ 07 + (0] + 5 [L(Q) + B + (@]

In this formula M is the mass of the body, I; are the eigenvalues of its inertia tensor, and
(1, 02,03) and (v!,v? v?) are the angular and linear velocities relative to the body frame.
The dynamics of this system is discussed in Neimark and Fufaev [1972].

We couple this system with an oscillator moving along the third coordinate axis of the body
frame. The mass of this oscillator is m and the displacement from the origin is . To keep
the notation uniform with the general theory, we write the components of the linear velocity

relative to the body frame as (Q*, Q°, Q). The vector (QF, 22, Q3, Q1 Q% Q%) should be viewed
as an element of the Lie algebra se(3). The Lagrangian of this new system is

I — % [[1(91)2 + 12(92)2 + [3<QS)2} + % [(94)2 + (95)2 + (96)2]
+ % (0 + 022+ (0 — Q)2 + (0 +7)2] = U(r). (0.60)

The configuration space is R x SFE(3), and the system is invariant under the left action of SFE(3)
on the second factor. We have not specified the potential energy as its choice does not affect
the existence of the invariant measure. The shape space is just the first factor of R x SE(3)
and is one dimensional, and thus the above theory is applicable. To show the existence of the



invariant measure, we note the following:

1. The constrained Lagrangian does not contain terms that simultaneously depend on r and
p.. The constraint is Q% = 0. Therefore, all the coefficients of the nonholonomic connection
as well as its curvature form vanish. This implies that the terms Dgq5 and IC g, vanish too.
The differential form from condition (ii) of theorem 0.9 is therefore trivial.

2. The moving frame is r-independent. Therefore all of the coefficients % are trivial. Con-
dition (i) of theorem 0.9 is satisfied since the group SE(3) is unimodular and eg is the
eigenvector of the inertia tensor.

3. The shape metric is r-independent.

The system’s dynamics preserves the volume in the reduced phase space.
This can be verified by a straightforward computation of the divergence of the vector field
that defines the equations of motion:
oU,
o
p1 = —ps + Qpy — mQr,
po = —py + Qlps + mQr,
P = —Qpy + Vp1 — U'ps + Py,
p1 = Q’ps — mQ°r,

r =

Py = —py + mQr.



Chaplygin Sphere. This system consists of a sphere rolling without slipping on a hor-
izontal plane. The center of mass of this sphere is at the geometric center, but the principal
moments of inertia are distinct. Chaplygin [1903] proved integrability of this problem. Modern
references for the Chaplygin sphere include Kozlov [1985] and Schneider [2002].

One may view this system as a nonholonomic version of the Euler top. The configuration
space is diffeomorphic to SO(3) x R%. We choose the Euler angles (0, ¢, ) and the Cartesian
coordinates (x,y) as the configuration parameters of the Chaplygin sphere. The Lagrangian
and constraints written in these coordinates become

I . . I, . .
L= 51(«900810 + psinpsin §)* + g(—ﬁsinw + ¢ cos 1 sin 6)?

A M
+ g(lb + ¢ cos 9)2 + 7(562 - 92)

and
& — 0sin ¢ + 1) cos psin f = 0, i+ 0 cos ¢+ sin psin @ = 0,
respectively.

This system is SFE/(2) invariant. The action by the group element («, a, b) on the configuration
space is given by

(0,9, ¢, 2,y) — (0,0, 0+ a,rcosa —ysina + a, rsina + ycosa + b).

The shape space for the Chaplygin sphere is diffeomorphic to the two-dimensional sphere. The
nonholonomic momentum map has just one component and is moreover preserved. Straight-
forward computations show that the form (0.58) is exact. The conditions for measure existence



are therefore satisfied. The density of the invariant measure is computed in overdetermined
coordinates in Chaplygin [1903] (see also Kozlov [1985]).

The invariant manifolds of the Chaplygin sphere are two-dimensional tori. The phase flow
on these tori is measure preserving and thus there are angle variables (x,y) on each torus in
which the flow equations become

A Y

T My YT M)
See Kolmogorov [1953] and Kozlov [1985] for details. In general, these equations cannot be
rewritten as

T = A, Y = [

The flow however becomes quasi-periodic after a time substitution dt = M(x, y)dr (see Kozlov
[1985] for details). This example thus shows that the flow on the nonholonomic invariant tori
can be more complicated than a Hamiltonian flow.

It follows that adding a symmetry preserving potential to the Lagrangian of the Chaplygin
sphere leaves the new system measure preserving with the same measure density. This was
pointed out by Kozlov for a specific potential (see Kozlov [1985] for details).

eThe General Suslov Rigid Body Problem We discuss this problem just briefly here.
For more details see Federov and Koslov [1995]. A different non-asymptotic form is analyzed
in Zenkov and Bloch [1999].

The equations of motion are those of an n-dimensional rigid body with skew-symmetric
angular velocity matrix {2 with entries €);; and symmetric moment of inertia matrix I = I;;.



One then introduces the constraints €);; = 0,4, > 2.

(I + I2) 1o = L2 (Qfy + Q + -+ Q1)
— (L1303 + T4 + - - - 4 TS ) o
(I + Is3) 3 = Lz (s + Qy+ -+ Q7))
— (L1282 + T1aSg + -+ -+ TS ) Qi3
(It + L) Sy = Ly (Q%z + Qs+ Q%n—l)
— (L1299 + L1383 + - - - + T1p—1Q210-1) Q1 -

This system has the energy integral

H = (([11 + [22)@%2 + ([11 + ]33)9%3 + - F ([11 + Inn)QEm) .

DN | —

Defining the momenta M;; = (I1; + 1;;)$; by the Legendre transform, we can write the
system as one of almost Poisson form M = J(M)VH(M).
This system exhibits asymptotic behavior as indicated by the fact that the function

F = (111 + Ipo) 1190 + (11 + I33) 138213 + - - - + (111 + Lnn) 110 S0



satisfies .
F = Z([UQU — ]UQl)Q
i<j
along the flow and is positive everywhere except at points of the line {219 = Iop, -+ , Q1 =

[1n:u}7 S R.
Thus motion occurs on the energy ellipsoid (a generalization of the Toda/Chaplygin ellipse)
and asymptotes to a point on the line intersecting the ellipsoid.



e The Lyapunov-Malkin Theorem

Can be used to show asymptotic stability in a large class of nonholonomic systems, for
example the roller racer and rattleback top. See Zenkov, Bloch and Marsden [1998] and Bloch.
Baillieul, Crouch and Marsden [2002] for further details.

Take:

T =Ax + X(x,y),
y=Y(xy)

Theorem 0.10 Consider this system of equations. If X (0,y) =0, Y (0,y) =0, and all
the eigenvalues of the matriz A have negative real parts, then the system has n local
integrals in the neighborhood of x =0, y = 0.

Theorem 0.11 (Lyapunov-Malkin) Consider the above system of differential equa-
tions where x € R™, y € R", A is an m X m-matriz, and X(x,y), Y(x,y) represent
nonlinear terms. If all eigenvalues of the matrix A have negative real parts, and X (x,y),
Y (x,y) vanish when x = 0, then the solution x = 0, y = ¢ of the system is stable with
respect to x, y, and asymptotically stable with respect to x. If a solution x(t), y(t) is close
enough to the solution x =0, y = ¢, then

lim x(t) = 0, tlim y(t) = c.

t—00
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Figure 0.8: Phase Portrait for Lyapunov Malkin example.




As can be seen from the phase portrait and simulation below, exhibits asymptotic stability
for small values of z and y.

[-x+xy,xy],initial data [-1,2]
2 T

151 Ny

0.5 1

15 L L L L L

Figure 0.9: Flow for Lyapunov-Malkin example.



The Constrained Routhian. This function is defined by analogy with the usual Routhian
by
R(Ta7 Tza? pa) - lC(Taa 7'00[7 [abpb) o Iabpapba

and in terms of it, the reduced equations of motion become

d R OR . .
o oo~ DPhal "pepa — Bigper”
— D" per? — Ko7,
d

20 = Coyl “ppa + D0t + Deapyr™ .

we define the function £ by
1
E = igozﬁfao%ﬁ + U(Taapa)v

which represents the reduced constrained energy in the coordinates v, 7%, p,, where U(r%, p,)
is the amended potential defined by

1
U(r®,pa) = 51 papy + V (1),

and V' (r®) is the potential energy of the system.
Can show: that the reduced constrained energy is conserved along the flow.



Stability of Nonholonomic Systems

Skew Symmetry Assumption.

We assume that the tensor CS, 1 o is skew-symmetric in ¢, d. Under this assumption, the
terms quadratic in p in the momentum equation vanish, and the equations of motion become

d OR OR . .
o~ e = ~ il pepa — B gper”
— ’D@ab[bcpcf“ﬁ — Kagyrﬁfﬁ,

d .
P = Dy pcr + Daﬁb"“o"'“ﬂ

Convenient to consider 3 cases:

Pure Transport Case Terms quadratic in r are not present in the momentum equation,
so it is in the form of a transport equation—i.e., the momentum equation is an equation of
parallel transport and the equation itself defines the relevant connection.

Under certain integrability conditions transport equation defines invariant surfaces, which
allow us to use a type of energy-momentum method for stability analysis in a similar fashion to
the manner in which the holonomic case uses the level surfaces defined by the momentum map.
Key difference: here additional invariant surfaces do not arise from conservation of momentum.
One gets stable, but not asymptotically stable, relative equilibria. Examples include: rolling
disk, a body of revolution rolling on a horizontal plane.

Integrable Transport Case Terms quadratic in 7 are present in the momentum equation
and thus it is not a pure transport equation. However, in this case, we assume that the



transport part is integrable. In this case relative equilibria may be asymptotically stable. Can
find a generalization of the energy-momentum method which gives conditions for asymptotic
stability. An example is the roller racer.

Nonintegrable Transport Case Again, terms quadratic in 7 are present in the mo-
mentum equation and thus it is not a pure transport equation. However, the transport part is
not integrable. Able to demonstrate asymptotic stability using the Lyapunov-Malkin Theorem
and to relate it to an energy-momentum type analysis under certain eigenvalue hypotheses.
Example: is the rattleback top. Another example is a nonhomogeneous sphere with a center of
mass lying off the planes spanned by the principal axis body frame.



e The Pure Transport Case. Here we assume that

H1 D,gp are skew-symmetric in «, 5. Under this assumption, the momentum equation can be
written as the vanishing of the connection one form defined by dpy, — Dj p.dr®.

H2 The curvature of the preceding connection form is zero.

A nontrivial example of this case is that of Routh’s problem of a sphere rolling in a surface
of revolution. See Zenkov [1995].

Under the above two assumptions, the distribution defined by the momentum equation is
integrable, and so we get invariant surfaces, which makes further reduction possible. Under the
assumptions H1 and H2 made so far, the equations of motion become

d aR aR - C .3 .
Eaf,;a - Sy = —'Dba[bdpcpd - B ﬁch — Icaﬁy’l“ﬂ?“fy,
d
pr Dbapc’r

A relative equilibriumis a point (r, 7, p) = (10, 0, pg) which is a fixed point for the dynamics
determined by these equations. Under assumption H1 the point (r¢, po) is seen to be a critical
point of the amended potential.

Because of our zero curvature assumption H2, the solutions of the momentum equation lie

on surfaces of the form p, = P,(r%, ky), a,b = 1,...,m, where k; are constants labeling these
surfaces.
Using the functions p, = P,(r® k) we introduce the reduced amended potential

Ur(r®) = U(r®, P,(r®, ky)). We think of the function Ui (r®) as being the restriction of the



function U to the invariant manifold

Qr = {(Taapa) ‘ Pa = Pa(rav kb)}
Theorem 0.4 Let assumptions H1 and H2 hold and let (ro,py), where py = P(rg, k"),

be a relative equilibrium. If the reduced amended potential Uyo(r) has a nondegenerate
minimum at ro, then this equilibrium is Lyapunov stable.

Theorem 0.5 (Nonholonomic energy-momentum) Under assumptions H1 and H2,
the point q. = (r§,pd) is a relative equilibrium if and only if there is a € € g% such that
qe 15 a critical point of the augmented energy E: : D/G — R (i.e., E¢ is a function of
(r,7,p)), defined by

Be=E - (p— P(r,k),€).
This equilibrium is stable if 6°E; restricted to T, Qy is positive definite (here § denotes
differentiation with respect to all variables except & ).

e Example. Falling disc.
Momentum equations:

dp; 5 sin 0 1 sin” 0 :
— =mRcosf | — 0
at e ( Aco 0™ T \np? + B " Acosza) ?) Y

dps ) 1 sin .
— = 0(— 0.
dt it cos ( Aco2 0 T Acos? 9p2>

The right hand sides of these eqns do not have terms quadratic in the shape variable 6. The
distribution, defined by by the equations is integrable and defines two integrals of the form




p1 = Pi(0, k1, ko), po = Pa(0, k1, ko). Tt is known that these integrals may be written down
explicitly in terms of the hypergeometric function. (Goes back to Appel [1900], Chaplgin [1897]
Korteweg [1899).



Matching and Controlled Lagrangians

Lagrangian Matching. Consider a mechanical system specified by the Lagrangian L =
K — V. The kinetic energy K is given by the Riemannian metric g;; on the configuration
manifold ). The potential energy V' (¢q) has a critical point at ¢p. Assuming that the equilibrium
qo is unstable, we would like to find the feedback control inputs that stabilize this equilibrium.
This problem becomes interesting and nontrivial if the system is underactuated, 1.e., the
number of the control inputs is smaller than dim ().

Denote the unactuated and actuated variables by x = (z!,...,2™) and y = (y!,...,y"),

respectively. The controlled dynamics is governed by the equations

@oL oL doL oL
ditor  or  diog oy

where u = (ug, ..., u,) represents the control inputs.
According to the method of controlled Lagrangians, one introduces a new function L=K-V
and considers the system
dOL 9L dOL 9L
dtor — dx’  dtdy Iy’
One then requires that the vector fields defined by the two sets of equations are identical. This
determines the feedback control inputs w. If in addition K + V has a minimum (maximum) at

(90, 0), the equilibrium gq of the closed loop system is neutrally stable.



Nonholonomic Reduced Equations. Assume also: The curvature of the nonholo-
nomic connection zero, the controls affect some of the shape variables,t he momentum equa-
tion is in the form of a parallel transport equation.

The Routhian of the system equals
1

R(r,7,p) = 5%5(7“)7’““” — U(r,p),

where the first term represents the shape metric and the second term, called the amended

potential, is defined by
1
Ulr,p) = §]ab(r)papb + V(r).
The reduced equations of a system satisfying the assumptions 1-3 become

d OR

LIN _.R,

dt gfa’

d OR

%a’f“@// - VO//R + Uy,
p(l — DZapbra

In the above, r and r®" are the unactuated and actuated shape variables, respectively, and
u,» are the control inputs. The operators V,, are defined by

o ., 0
Va = % Daapbapa.

The equilibria of these equations represent the steady state motions of the original system.




2

Require also as a part of the controller design, that the actuated variables »® are cyclic.
Elimination of the Momentum Variables. Since the momentum equation is in the
form of a parallel transport equation, it defines a distribution

dp, = Dga/pcdra/.

We assume in this paper that the curvature of this distribution vanishes (hence the name flat
in the title of the paper). This defines the global invariant manifolds @

/

Pa =Pa(r® @),  c = const. (0.70)



Stabilization of the Unicycle with Rotor Dynamical model of a homogeneous disk
on a horizontal plane with a rotor. The rotor is free to rotate in the plane orthogonal to the
disk. The rod connecting the centers of the disk and rotor keeps the direction of the radius of
the disk through the contact point with the plane (i.e., the appropriate controller has already
been implemented).

The configuration space for this system is Q = St x St x S x SE(2), which we parameterize
with coordinates (6, x, ¥, ¢, x,y).

(z,9)

Figure 0.10: Unicycle with rotor.



The reduced Lagrangian for the unicycle with rotor is
1. . .
Le = 5(ab” +200% + BX°
+ 111(0)¢” + 2L12¢) + 122¢2> — V(0),
The slow vertical steady state motions of this system are represented by the relative equilibria

0207 X:()a plZOa p2:p8

Momentum Reduction and Stabilization. The momentum equations define an inte-
grable distribution. The dynamics on the invariant manifolds (). is governed by the equations
doc, oL, doL,

dt 99 00’ dt Oy

where 1
L. = 5(ad” +260% + 5X°) — U(6),
and

U(6) = 51" OVPul6,c), Puf6, ) + V(6)

is the amended potential for the unicycle with rotor restricted to the invariant manifolds.
Observe that the components of the shape metric for the unicycle with rotor are constants. We



thus construct the controlled Lagrangians of the form

i %me’? L 9280(x + kb) + B + k6)?)

+ S (k6 = UL(0),
The steady state motions under consideration become stable if one chooses
a—pf
B

k >




e Nonoholonomic Control Systems on Riemannian Manifolds
First, consider the holonomic or unconstrained case:

Let (Q,(,)) be an n-dimensional Riemannian manifold, with metric ¢g( , )
= ( , ). Denote the norm of a tangent vector X at the point p by || X,|| = (X p,Xp>%.
The geodesic flow on () is then given by

D?%q
— =10 0.72
&) 072

Dq
dt

Where ! denotes the covariant derivative. This flow minimizes the integral fo dt along

parametrlzed paths.
We define a controlled holonomic system to be a system of the form

dt2 Zu i (0.73)

where { X} is an arbitrary set of control vector fields, the u; are functions of time, and N < n.
(Note that here we do not consider systems evolving under the influence of a potential, but
the analysis is easily extended to include a potential.) Such systems are sometimes now called
affine connection control systems.



We now consider the formulation of controlled nonholonomic systems in this Riemannian
setting.

Classical nonholonomic systems are obtained from Lagrange—d’Alembert’s principle, as dis-
cussed before.

The equations are

D?q =
k=1

subject to

Dq Dq
Wk(dt) <Wk, dt> 0, 1 <k<m,

where wi(X) = (Wy, X) and the \; are Lagrange multipliers. The constraints are given by the
I-forms wy, 1 < k < m, which define a (smooth) distribution H on Q.
We now define a controlled nonholonomic mechanical system to be a system of the

dt2 Em: AW+ Z w X (0.75)

form

subject to

D
<Wk, dtq>=o 1 <k<m, (0.76)

where the u;(t) are controls and the X; are arbitrary smooth (control) vector fields.



e Variational Nonholonomic Problems

Variational nonholonomic problems, on the other hand, are equivalent to the classical La-
grange problem of minimizing a functional over a class of curves with fixed extreme points and
satisfying a given set of equalities.

More precisely, we have the following : Let ) be a smooth manifold and T'Q) its tangent
bundle with coordinates (¢',¢"). Let L : TQ — R be a given smooth Lagrangian and let
® :T'Q) — R"™ be a given smooth function.

Definition 0.16 The Lagrange problem s given by

T
minq(.)/o L(q,q)dt (0.77)
subject to the fixed endpoint conditions q(0) =0, q(T) = qr, and subject to the constraints
®(q,q) = 0.



The falling cat problem is an abstraction of the problem of how a falling cat should optimally
(in some sense) move its body parts so that it achieves a 180° reorientation during its fall.

In this case we begin with a Riemannian manifold ) (the configuration space of the problem)
with a free and proper isometric action of a Lie group G on @ (the group SO(3) for the falling
cat). Let A denote the mechanical connection; that is; it is the principal connection whose
horizontal space is the metric orthogonal to the group orbits. The quotient space Q/G = X,
the shape space, inherits a Riemannian metric from that on Q). Given a curve ¢(t) in @, we
shall denote the corresponding curve in the shape space X by r(t).

The problem under consideration is as follows:

Falling Cat problem: Fizing two points q1, @2 € @, among all curves q(t) € Q, 0 <
t <1, such that q(0) = qo,q(1) = q1, and ¢(t) € horyy (horizontal with respect to the
mechanical connection A), find the curve or curves q(t) such that the energy of the shape

space curve, namely,
1 1
TGRS
0

18 mainimaized.



Local Solution. We can proceed to solve the Lagrange problem locally by forming the
modified Lagrangian

Mg, 4, A) = L(g,q) + A~ ®(q, d), (0.78)
with A € R"™™. The Euler-Lagrange equations then take the form
d 0 0
——NA(q,q,\) — =—A(q,¢,\) =0 0.79
119 (4,4, A) 9 (4,4, A) =0, (0.79)
®(g, ¢) = 0. (0.80)

The case we are particularly interested in is the case of of classical (linear in the velocity)
nonholonomic constraints:

n
wilg,q) =Y awlg)i" =0, i=1,....n—m (0.81)

k=1
In the case that these constraints are integrable (equivalent to functions of ¢ only) and
L is physical, i.e., it is a holonomic mechanical system, this system will represent physical
dynamics. In the nonholonomic case, these equations will not be physical; one needs the
Lagrange—d’Alembert principle, as we have seen in Chapters 1, 3, and 5. The following theorem

gives the differential equations for the Lagrange problem.

Theorem 0.6 A solution of the Lagrange problem Definition 0.77 with constraints of the



form (0.81) satisfies the following equations:

d o 0 = /d -— . — dajj, .
—— L — —L —\; » A i — J = 82
dt 0g; dg; " Z (dt ]) it ; ’ (a] dg; Qk> ! (O )

J=1

with the constraints .
Z aiqu — 0. (0.83)
k=1

Contrast these equations of motion with the nonholonomic equations of motion with Lagrange
multipliers obtained in Chapters 1 and 5 from the Lagrange-d’Alembert principle:

COr 915 Nay. (0.84)

Observe that if we (formally) set A\; = 0 and A; = ), in the variational nonholonomic
equations, we recover the nonholonomic equations of motion. It is precisely the omission of the
Aj term that destroys the variational nature of the nonholonomic equations.



A General Formulation of Optimal Control Problems. We state a typical optimal
control problem,

T

min/ g(x,u)dt, (0.85)

u(-) Jo

subject to the following conditions:

(i) a differential equation constraint # = f(z,u), and a state space constraint € M, and a
constraint on the controls u € ) C R¥;

(ii) the endpoint conditions: z(0) = xg and z(T') = a7,

where f and ¢ > 0 are smooth, € is a closed subset of R*, and M is a smooth manifold of
dimension n that is the state space of the system. The integrand ¢ is sometimes referred to as
the cost function.



The Pontryagin Maximum Principle
To state necessary conditions dictated by the Pontryagin maximum principle, we introduce
a parametrized Hamiltonian function on 7™ M:

H(az,p,u) - <p7f($7u)> —p()g(ﬂi',U), (086)
where py > 0 is a fixed positive constant, and p € T*M. Note that pg is the multiplier of the
cost function and that H is linear in p.

We denote by t — u*(t) a curve that satisfies the following relationship along a trajectory
t— (x(t),p(t)) in T*M:

H (x(t), p(t), u”(t) = max H (x(t), p(t), u). (0.87)
Then if u* is defined by equation (0.87), we can define H* by
H*(x(t), p(t),t) = max H (a(t), p(t), u). (0.88)
ue

The time-varying Hamiltonian function H* defines a time-varying Hamiltonian vector field
X+ on T*M with respect to the canonical symplectic structure on 7M.

One statement of Pontryagin’s maximum principle gives necessary conditions for extremals
of the problem (0.85) as follows: An extremal trajectory ¢ — x(t) of the problem (0.85)
is the projection onto M of a trajectory of the flow of the vector field X g+ that satisfies the
boundary condition (0.85) (ii), and for which ¢ — (p(t), po) is not identically zero on [0, T].



The extremal is called normal when py # 0 (in which case we may set pg = 1 by normalizing
the Hamiltonian function). When py = 0 we call the extremal abnormal, corresponding to
the case where the extremal is determined by constraints alone.

If the extremal control function u* is not determined by the system (0.87) along the extremal
trajectory, then the extremal is said to be singular, in which case further (higher-order)
necessary conditions are needed to determine u*.

Consider here nonsingular case.

We also suppose that the data are sufficiently regular that «* is determined uniquely from
the condition

_ %—Z(w(t), (0w (1)), t€0,T] (0.80)

(Since u* maximizes the function H | its partial derivative in u evaluated at u* must vanish.)
It follows from the implicit function theorem that there exists a function k such that u*(t) =
k(x(t),p(t)). We then set
A A
H(z,p) = H(z, p, k(z,p)). (0.90)

Thus along an extremal,
H(x(t), p(t)) = H(x(t), p(t), ). (0.91)



We briefly motivate our statement of the Pontryagin maximum principle in the presence of
regularity conditions alluded to above: In particular, we assume that {2 = R and that u*(¢)
is uniquely determined by the condition (0.89). Treating the optimal control problem (0.85) as
a variational problem with constraints, we augment the cost function and constraints (in the
form of the constraining state differential equation) by multipliers pg € R™ and p € T};. We
obtain necessary conditions in the form

5 / (0 (f(z,u) — &) — pogla,w)) dt = 0, (0.92)

where the variations are taken over pairs (x,u) satisfying the constraints & = f(x,u) and the
boundary conditions x(0) = g, z(T) = x7.
We may restate the condition (0.92) as

5/OT (ﬁ(m,p, u) — p:t) dt = 0. (0.93)

Under the assumed regularity we may eliminate the variation with respect to u, and from
(0.91) the necessary condition becomes

5/0T (ﬁ(x,p) _ p:t) dt = 0. (0.94)

This is, of course, just Hamilton’s principle for the Hamiltonian H, which yields necessary
conditions in terms of the usual Hamiltonian equations. Now from (0.89) and (0.91) the Hamil-
tonian equations for A may be replaced by the Hamiltonian equations for H*, resulting in the



statement of the maximum principle above. Note that whereas H and H* are affine in p, H is
in general not affine in p.

The main point of the Pontryagin maximum principle is that the result stated above is true
under far less severe regularity conditions and in particular where € is a proper subset of R".



Kinematic Sub-Riemannian Optimal Control Problems
We consider control systems of the form

m
i=Y Xuw, z€M, ueQCR" (0.95)
i=1
where ) contains an open subset that contains the origin, M is a smooth manifold of dimension
n, and each of the vector fields in the collection F':= { X1, ..., X} is complete.
We assume that the system satisfies the accessibility rank condition and is thus controllable,
since there is no drift term. Then we can pose the optimal control problem

T m
. 1 9
min —» wui(t)dt 0.96
uin | PG (0.96)

subject to the dynamics (0.95) and the endpoint conditions x(0) = x and z(T') = x7.

To view this as a constrained variational problem we make some additional regularity as-
sumptions. These are not necessary, but even when they hold, they produce a very rich class
of problems.

Assumption.

(i) The system defined by (0.95) satisfies the accessibility rank condition.

(ii) The dimension of Dp is constant on M and equal to k. (Thus the vector fields X1, ..., Xj
are everywhere independent.)



(iii) There exist exactly n — k = m one-forms on M wy, ..., wy, such that the codistribution
Di(z)={w e T'M; wDp(x)=0}
is spanned by wy, ..., wy, everywhere. (This condition implies that M is parallelizable.)

Since Dp has constant dimension on M, we may define a norm on each subspace Dp(z); if
X € Dp(z) and X = 28 ; X;(x), then we define

k
X =) o
=1

This norm defines an inner product on Dg(z), denoted by (-, -),, which can be extended to a
metric on M. The optimal control problem (0.96) is now equivalent to the following constrained
variational problem when the assumptions (i), (ii), (iii) hold:

1 T
min / (i, )yt (0.97)
=) 2 Jo

subject to the condition that z(+) is a piecewise C'! curve in M such that z(0) = zg, 2(T) = z7,
and w;(x)(x) = 0, 1 < i < m. This problem is often referred to as the sub-Riemannian
geodesic problem, to distinguish it from the Riemannian geodesic problem, in which the
constraints are absent.



The singular nature of the sub-Riemannian geodesic problem is manifested in many ways, such
as the existence of distinct abnormal extremals and the singular nature of the sub-Riemannian
geodesic ball, as first investigated by Brockett. If we define a metric on M by setting

T
d(xg, x7) = mi) / |z|dt, & € Dp(z),x(0) = 29, 2(T) = x7,
0

Bf(zg) = {z € M;d(z,x) < €},

€

then the sub-Riemannian geodesic ball Sf'(x) is simply the boundary of B (zg).



Formulation on Riemannian Manifolds

Let M be a Riemannian manifold of dimension n with metric denoted by (-, ). The cor-
responding Riemannian connection and covariant derivative will be denoted by V and D /0,
respectively. Now assume that M is such that there exist smooth vector fields X(q), ..., X"(q)
satisfying (X'(q), X7 (q)) = d;;, an orthonormal frame for T, M for all ¢ € M.

We now define the kinematic control system on M by

dq  ~~
d—z = g w; X'(q), m<n,. (0.98)
i=1

The optimal control problem is defined by

T m
, 1

mm/ §Zuf(t)dt; q(0) =qo, q(T)=qr, (0.99)
voJ0 2

subject to (0.98).
This may be posed as a variational problem on M as follows: Define the constraints

dgq r dg
2 < 1
wk(dt) <X’dt> 0, m<k<n, (0.100)
and let .

Zi= Y M(t)XF, (0.101)

k=m-+1



where the )\, are Lagrange multipliers. By the orthonormality of the X the optimal control
problem then becomes

(1 /dg d d
min, J(q) = minq/O (5 <d—z, d_jf]> + <Zt, d_z>) dt, (0.102)

dq
Zy,— ) = 0. 0.103
(25) 0103



We now briefly derive necessary conditions for the regular extremals of this variational prob-
lem.

Firstly, we have to define the variations we are going to use: The tangent space to the space
Q) of C* curves satisfying the boundary conditions of (0.99) is denoted by T,€2. It is the space
of C* vector fields ¢t — W; along q(t) satisfying Wy = 0 = Wyz. The curve t — % in T'M is
continuous. Exponentiating a vector field in 77{2 we obtain a one-parameter variation of ¢:

a:[0,T] X (—e,e) = M, (0.104)
ay(t) = alt,u) = expyp (uWy), (0.105)

where exp is the exponential mapping (integral curve) on M. Note that

a,(0) = q(0) = qo, (T)=q(T)=qr, lt)=qt),

Oay(t
o) _y g<i<T
ou
The necessary conditions for regular extremals are obtained from
d
—J u)|u=0 — O, 0.106
(o) (0.106)

where

T(cw) = /OT (% <8§;“, ag;“> + <Zt(ozu), %» dt . (0.107)



Now

— (V2 Vi, Wi) + (Wi, Z4], ‘/t>) dt, (0.108)

where



Necessary Conditions on a Compact Semisimple Lie Group.
Now let M = G, G a compact semisimple Lie group, with Lie algebra g, and let {(-,-)) =

—%/{(-, -), where & is the Killing form on g.

Let J be a positive definite linear mapping J : g — g satisfying
(JX,Y)) = (X, JY)), (0.109)
((JX,X)) >0 (=0 ifand only if X =0). (0.110)

Now we can define a right-invariant metric on G as follows: It XY € g and R, is right
translation on G by g € G, then

X; = Xr(g> = Rg*X and Y; = Yr(g) = Rg*Y
are corresponding right-invariant vector fields. Now
(X"(9),Y"(9)) = (X, JY)) (0.111)
defines a right-invariant metric on GG. Corresponding to the right-invariant metric (-,-) there
is a unique Riemannian connection V , and V defines a bilinear form on g:
1
(X,Y) = VxV = {[X, Y]+ JUX, JY)+J7Y Y, JX]}, X,Y eg. (0.112)
The expression for V on right-invariant vector fields on G is
(VarY")(g) = (VaY), 0.113

We now show how to reduce the variational problem to one in the Lie algebra: Choose an
orthonormal basis e; on g, ((e;, Je;)) = d;j, and extend it to a right-invariant orthonormal

frame on T,G, X'(g9) = Rpe; = X" (g).



Find the necessary conditions on g are
Vi+ J YW, JZ)+ Z+ J Vi, IV =0 (0.114)

with the constraint p
() =Wz =0, (0.115)



The Case of Symmetric Space Structure

Suppose now that G/K is a Riemannian symmetric space, GG as above, K a closed
subgroup of G with Lie algebra €. Then g = p ® ¢ with [p,p] C & [p, € C p, [£,¢] C ¢
and ({€,p)) = 0. We now want to consider the necessary conditions (0.114) in this case. We
shall see that they simplify in an intriguing fashion, giving us a singular case of the so-called
generalized rigid body equations.

The generalized rigid body equations are a natural generalization of the classical 3-dimensional
rigid body equations. We recall that the left-invariant generalized rigid body equations on
SO(n) may be written as

Q = QL

M = [M, ), (0.116)

where () € SO(n) denotes the configuration space variable (the attitude of the body), {2 =
Q7 1Q € so(n) is the body angular velocity, and

M = J(Q) =AQ+ QA € so(n)

is the body angular momentum. Here J : so(n) — so(n) is the symmetric (with respect to
the inner product defined by the Killing form), positive definite, and hence invertible operator

defined by
J(£2) = AQ + QA,

where A is a diagonal matrix satistying A; +A; > 0 for all ¢ # j. For n = 3 the elements of A;
are related to the standard diagonal moment of inertia tensor I by I1 = Ao+ A3z, I = A3+ Aq,



I3 = Al —I— AQ. .
Since V; + J Vi, JZy] € p and Z; + JYV;, JV;] € € the necessary conditions (0.114)
become

Vi=J7JZ, Vi),

Zy = J[JVi, VA, (0.117)
or, if we define P, = JV, and Q; = J Z,,

P, =[Qw, J P,

Qi =[P, J ' P]. (0.118)

We will now show that equations (0.118) are Hamiltonian with respect to the Lie—Poisson
structure on g.
Recall that for F, H functions on g, their (—) Lie-Poisson bracket is given by

{F,H}X)=—-(X,[VF(X),VH(X)])), X €g, (0.119)

where dF'(X) - Y = ((VF(X),Y)). |
For H (X)) a given Hamiltonian, we thus have the Lie-Poisson equations F'(X) = {F, H}(X).
Letting F(X) = ((4, X)), A € g, we obtain

<<A>X>> - _<<X> [A7 VH(X)]>> = <<A7 [X7 VH(X)]>> (0'120)

and hence

X = [X, VH(X)]. (0.121)



For H(M) = $((M,J'M)), M € g, and J as in the previous subsection, we obtain the
generalized rigid body equations
M =[M,J *M]. (0.122)
Now for X = P+ Q € p@ &, let H(X) = H(P) = 5((P,J'P)), P € p. Then VH(X) =
J~IP € p, and equations (0.121) become

Qi+ P) =[Qi+ P, J 'R, (0.123)
or
P = [Q:, 'R,
Qi =[P, J'Py, (0.124)

which are precisely equations (0.118).
Thus equations (0.118) are Lie-Poisson with respect to the “singular” Hamiltonian H (P).
Summarizing then, we have the following result:

Theorem 0.7 The optimal trajectories for the singular optimal control problem (0.98),
(0.99) on a Riemannian symmetric space are given by equations (0.118). These equations
are Lie—Poisson with respect to a singular rigid body Hamiltonian on g.

We see, therefore, that we can obtain the singular optimal trajectories by letting J |¢—
oo in the full rigid body Hamiltonian H(X) = $((X, J'X)), thus obtaining the singular
Hamiltonian

H(P) - %((P, JP)).



This observation also enables us to obtain the singular rigid body equations directly by a
limiting process from the full rigid body equations. The key is the correct choice of angular
velocity and momentum variables corresponding to the Lie algebra decomposition g =p & €.

In the notation of equation (0.118) we write an arbitrary element of g as M = JV + Q,
JV € p, Q € . Then the generalized rigid body equations (0.122) become

JVi = [Q, Vi + [J V3, T 1@y,

Q= Qi J'Q] + [IV;, Vi (0.125)
Letting J |¢— oo we obtain
JVi = [Qr Vi,
Q= [JV,, V. (0.126)

We note that this is a mixture between the Lagrangian and Hamiltonian pictures. While the
variables in € are momenta (and should really be viewed as lying in €*), the variables in p are
velocities.

The necessary conditions above may also be derived directly from the maximum principle
developed for Lie groups, yielding an invariant maximum principle. The Hamiltonian in the
maximum principle of the system (0.118) is precisely %(Pt, J~1P,). This is just the sum of the
Hamiltonians corresponding to each of the vector fields X;.

Write M e gas M = JZ + P, Z € £, P € p, which we can do, since J : p — p and



J 1 — & Then the Hamiltonian (in the maximum principle) becomes
HM)={(M,J*M)={(JZ+P,J(JZ+ P))
= (JZ,Z) +(P,J'P). (0.127)

Letting J |¢— oo we see that the cost becomes infinite unless Z = 0, i.e., unless the constraints
are satisfied.



Example We consider a simple but nontrivial example: the symmetric space SO(3)/ SO(2).
In this case g = £ @ p becomes s0(3) = s0(2) ® R? relative to a given choice of z-axis used to
embed SO(2) into SO(3). We may thus represent matrices in so(3) as

0 —W3 W9
w3 0 —W1 (0128>
—Wo W1 0

with the lower 2 x 2 block in s0(2).

This example illustrates the importance of writing the optimal equations in the natural
variables M = JV 4 @ in order to understand the limiting process in equations (0.125) and
(0.126).

We write here
0 —ngg JQWQ

M = Jgtdg 0 —ma . (0129)
—J2w2 my 0

Here @ € s0(2) has “momentum” variable m;. Then the equations

(JVi+ Q) =[JVi+ @, V] (0.130)



become, for g = s0(3),

my = (Jo — J3)wows,
Jows = —myws,

Jaws = myws.
The full rigid body equations in these variables are
(JVit Qi) = [JVi+ Qn, Vi + T Q4.
which for g = s0(3) are

my = (Jo — J3)wows,

J:
Jowsy = (73 — 1) W3my,
1

J
ngg = (1 — —2> miws,

which clearly approaches to (0.131) as J; — oo.
Note that if we write the rigid body equations in the usual form,

(0.131)

(0.132)

(0.133)

(0.134)



we obtain, for g = s0(3),

Jiwr = (Jo — J3)waws,

Jowy = (J3 — Jy)wiws,

ngg = (J1 — Jg)w2w1. (0135)
In this formulation, where we do not distinguish between p and €, the limiting process described
above is not obvious. The same is true for the rigid body in the momentum representation.

We remark that this set of equations, despite its singular nature, is still integrable, for we
still have two conserved quantities, the Hamiltonian H(w) = Jow3 4+ Jsw3(= 3(P, J~'P)) and
the Casimir
C(w) = mi + Jsws + Jjws.

(Recall that a Casimir function for a Poisson structure is a function that commutes with every

other function under the Poisson bracket. )
It is interesting to consider the case J = I. Equations (0.118) then become

Q= 0. (0.136)

Hence ); = () is constant.
Similarly, considering (0.117), we obtain

Vi — [Zta ‘/;5]7 Zt — Z7 <0137)
Z a constant. This is, of course, solvable: V; = Ad,_z Vj and w;(t) = ({(e;, Ad,z: Vp)).



Consider again the case SO(3)/SO(2). Since V; € R? and Z; € 50(2), we may set

000
Z=100 —o|, (0.138)
0 ¢ 0
where ¢ is fixed. Then
L0 0
e?' =10 cospt —singt | . (0.139)

0 sin@t cos ot

Hence the optimal evolution of V; (or equivalently the optimal controls) is given by rotation.



