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Nonholonomic Mechanics vs. Hamiltonian Mechanics

• Energy Conservation

Hamiltonian: Yes. Nonholonomic: Yes.

• Momentum Conservation

Hamiltonian: Yes, Noether’s Theorem. Nonholonomic: No, Momentum Equation

• Measure (volume ) Preservation

Hamiltonian: Yes. Nonholonomic: No, in general

• Stability

Hamiltonian: Never asymptotic. Nonholonomic: Can be asymptotic.

• Key: Almost Poisson structure, Nonvariational



Geometry and Kinematics of the Vertical Disk.

Configuration space: Q = R
2 × S1 × S1, parameterized by coordinates q = (x, y, θ, ϕ),

denoting the position of the contact point in the xy-plane, the rotation angle of the disk, and

the orientation of the disk, respectively, as in figure 0.1.
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Figure 0.1: The geometry for the rolling disk.

The Lagrangian for the system: the kinetic energy

L(x, y, θ, φ, ẋ, ẏ, θ̇, φ̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2.

If R is the radius of the disk, the nonholonomic constraints of rolling without slipping are

ẋ = R(cosϕ)θ̇

ẏ = R(sinϕ)θ̇, .



Dynamics of the Controlled Disk. Consider the case where we have two controls, one

that can steer the disk and another that determines the roll torque.

Lagrange d’Alembert equations:

d

dt

(
∂L

∂q̇

)
= u1X1 + u2X2 + λ1W1 + λ2W2,

where
∂L

∂q̇
= (mẋ,mẏ, Iθ̇, Jϕ̇)T ,

X1 = (0, 0, 1, 0)T , X2 = (0, 0, 0, 1)T ,

and

W T
1 = (1, 0,−R cosϕ, 0), W T

2 = (0, 1,−R sinϕ, 0)T ,

together with the constraint equations.

We may now eliminate the multipliers: gives the dynamic equations

(I +mR2)θ̈ = u1

Jϕ̈ = u2 ,

plus the constraints.

The free equations , in which we set u1 = u2 = 0, are easily integrated.



• Controlled case: controls u1, u2. Call the variables θ and φ “base” or “controlled”

variables and the variables x and y “fiber” variables. The distinction is that while θ and ϕ are

controlled directly, the variables x and y are controlled indirectly via the constraints.

It is clear that the base variables are controllable in any sense we can imagine. One may ask

whether the full system is controllable. Indeed it is: by virtue of the nonholonomic nature of

the constraints.

The Kinematic Controlled Disk. In this case we imagine we have direct control over

velocities rather than forces and, accordingly, we consider the most general first order system

satisfying the constraints or lying in the “constraint distribution”.

This system is

q̇ = u1X1 + u2X2

where X1 = (cosϕ, sinϕ, 1, 0)T and X2 = (0, 0, 0, 1)T .

In fact, X1 and X2 comprise a maximal set of independent vector fields on Q satisfying the

constraints.



•Nonholonomic Equations of Motion

See e.g. Bloch, Krishnaprsad, Marsden and Murray [1996] and Zenkov, Bloch and Marsden

[1998], Bloch and Crouch [1995] and other references in these papers.

•The Lagrange-d’Alembert Principle

• Consider a system with a configuration space Q, local coordinates qi and m nonintegrable

constraints

ṡa + Aa
α(r, s)ṙ

α = 0

where q = (r, s) ∈ R
n−p × R

p, which we write as qi = (rα, sa), where 1 ≤ α ≤ n − p and

1 ≤ a ≤ p.

• Lagrangian L(qi, q̇i).

Equations of motion given by Lagrange-d’Alembert principle.

Definition 0.1 The Lagrange-d’Alembert equations of motion for the system are

those determined by

δ

∫ b

a

L(qi, q̇i) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) = δq(b) = 0 and δq(t)

satisfies the constraints for each t where a ≤ t ≤ b.

• This principle is supplemented by the condition that the curve itself satisfies the constraints.



• Note that we take the variation before imposing the constraints; that is, we do not impose

the constraints on the family of curves defining the variation.

• Equivalent to:

−δL =

(
d

dt

∂L

∂q̇i
−
∂L

∂qi

)
δqi = 0

for all variations δqi = (δrα, δsa) satisfying the constraints at each point of the underlying

curve q(t), i.e. such that δsa + Aa
αδr

α = 0.

Substituting:

(
d

dt

∂L

∂ṙα
−
∂L

∂rα

)
= Aa

α

(
d

dt

∂L

∂ṡa
−
∂L

∂sa

)

for all α = 1, . . . , n− p.

Combined with the constraint equations

ṡa = −Aa
αṙ

α

for all a = 1, . . . , p, give the complete equations of motion of the system.

Useful way of reformulating equations (0.4) is to define a constrained Lagrangian by substi-

tuting the constraints (0.5) into the Lagrangian:

Lc(r
α, sa, ṙα) := L(rα, sa, ṙα,−Aa

α(r, s)ṙ
α).



The equations of motion can be written in terms of the constrained Lagrangian in the following

way, as a direct coordinate calculation shows:

d

dt

∂Lc
∂ṙα

−
∂Lc
∂rα

+ Aa
α

∂Lc
∂sa

= −
∂L

∂ṡb
Bb
αβ ṙ

β,

where Bb
αβ is defined by

Bb
αβ =

(
∂Ab

α

∂rβ
−
∂Ab

β

∂rα
+ Aa

α

∂Ab
β

∂sa
− Aa

β

∂Ab
α

∂sa

)
.



• The Nonholonomic and the Variational Systems. Interesting to compare the

dynamic equations, which can be shown to be consistent with Newton’s second law F =

ma in the presense of reaction forces with the corresponding variational system. Long and

distinguished history going back to the review article of Korteweg [1898].

• What is the difference in the two procedures?

Answer: with the dynamic Lagrange d’Alembert equations, we impose constraints only on

the variations, whereas in the variational problem we impose the constraints on the velocity

vectors of the class of allowable curves.

Show explicitly for penny that one really gets two different sets of equations.

• Variational system is obtained by using Lagrange multipliers with the Lagrangian rather

than the equations:

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
ϕ̇2

+µ1(ẋ−Rθ̇ cosϕ) + µ2(ẋ−Rθ̇ sinϕ) ,

where now can relax the constraints and take variations over all curves.



• Variational equations with external forces therefore are

mẍ + µ̇1 = 0

mÿ + µ̇2 = 0

Iθ̈ −R
d

dt
(µ1 cosϕ + µ2 sinϕ) = u1

Jϕ̈ +R
∂d

∂ϕ
(µ1θ̇ cosϕ + µ2θ̇ sinϕ) = u2 .

Substituting we obtain

(I +mR2)θ̈ = Rϕ̇(−A sinϕ +B cosϕ) + u1

Jϕ̈ = Rθ̇(A sinϕ−B cosϕ) + u2 .

A,B, are consts.



• The Falling Rolling Disk More realistic disk allowed to fall over.
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Figure 0.2: The geometry for the rolling disk.

This is a system which exhibits stability but not asymptotic stability.

Denote mass, the radius, and the moments of inertia of the disk by m, R, A, B.

L =
m

2

[
(ξ −R(φ̇ sin θ + ψ̇))2 + η2 sin2 θ + (η cos θ +Rθ̇)2

]

+
1

2

[
A(θ̇2 + φ̇2 cos2 θ) +B(φ̇ sin θ + ψ̇)2

]
−mgR cos θ,

where ξ = ẋ cosφ + ẏ sinφ + Rψ̇ and η = −ẋ sinφ + ẏ cosφ, while the constraints are given

by

ẋ = −ψ̇R cosφ, ẏ = −ψ̇R sinφ.



Other systems:
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Figure 0.3: The Chaplygin sleigh is a rigid body moving on two sliding posts and one knife edge.
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Figure 0.4: The geometry for the roller racer.

Figure 0.5: The rattleback.



•The Chaplygin Sleigh

• Perhaps the simplest mechanical system which illustrates the possible dissipative nature of

energy preserving nonholonomic systems.

Compare the sleigh equations to the Toda lattice equations.
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Figure 0.6: The Chaplygin sleigh is a rigid body moving on two sliding posts and one knife edge.

Equations:

v̇ = aω2

ω̇ = −
ma2

I +ma2
vω

Equations have a family of relative equilibria given by (v, ω)|v = const, ω = 0.

Linearizing about any of these equilibria one finds one zero eigenvalue and one negative



eigenvalue.

In fact the solution curves are ellipses in v − ω plane with the positive v-axis attracting all

solutions.
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Figure 0.7: Chaplygin Sleigh/2d Toda phase portrait.

Normalizing, we have the equations

v̇ = ω2

ω̇ = −vω .

Scaling time by a factor of two have: Chaplygin sleigh equations are equivalent to the two-

dimensional Toda lattice equations except for the fact that there is no sign restriction on the



variable ω. Hence can be written in Lax pair form and solved by the method of factorization.



•The Toda Lattice

Interacting particles on the line.

Non-periodic finite Toda lattice as analyzed by Moser [1974]:

H(x, y) =
1

2

n∑

k=1

y2
k +

n−1∑

k−1

e(xk−xk+1) .

Hamiltonian equations:

ẋk =
∂H

∂yk
= yk

ẏk = −
∂H

∂xk
= exk−1−xk − exk−xk−1 ,

where assume ex0−x1 = exn−xn+1 = 0.

Flaschka:

ak =
1

2
e(xk−xk+1)/2 bk = −

1

2
yk .

Get:

ȧk = ak(bk+1 − bk) , k = 1, · · · , n− 1

ḃk = 2(a2
k − a2

k−1) , k = 1, · · · , n

with the boundary conditions a0 = an = 0 and where the ai > 0.



Matrix form:
d

dt
L = [B,L] = BL− LB,

If N is the matrix diag[1, 2, · · · , n] the Toda flow can be written

L̇ = [L, [L,N ]] .

Shows flow also gradient (on a level set of its integrals).

• Double bracket form of Brockett [1988] (see Bloch [1990], Bloch Brockett and Ratiu [1990,

1992]).

•The Two-dimensional Toda Lattice

In two-dimensional case matrices in the Lax pair are

L =

(
b1 a1

a1 −b1

)
B =

(
0 a1

−a1 0

)
.

Equations of motion:

ḃ1 = 2a2
1

ȧ1 = −2a1b1

For initial data b1 = 0, a1 = c, explicitly carrying out the factorization yields explicit solution

b1(t) = −c
sinh 2ct

cosh 2ct
, a1(t) =

c

cosh 2ct



Mathematical Preliminaries

Definition 0.1 An n-dimensional differentiable manifold M is a set of points together

with a finite or countably infinite set of subsets Uα ⊂M and 1-to-1 mappings φα : Uα →

R
n such that:

1.
⋃
α Uα = M .

2. For each nonempty intersection Uα∩Uβ, φi(Uα∩Uβ) is an open subset of R
n, and the

1-to-1 and onto mapping φα ◦ φ
−1
β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) is a smooth function.

3. The family {Uα, φα} is maximal with respect to conditions 1 and 2.

Tangent Vectors to Manifolds. Two curves t 7→ c1(t) and t 7→ c2(t) in an n-manifold

M are called equivalent at x ∈M if

c1(0) = c2(0) = x and (ϕ ◦ c1)
′(0) = (ϕ ◦ c2)

′(0)

in some chart ϕ, where the prime denotes the derivative with respect to the curve parameter.

It is easy to check that this definition is chart independent. A tangent vector v to a manifold

M at a point x ∈M is an equivalence class of curves at x. One proves that the set of tangent

vectors to M at x forms a vector space. It is denoted by TxM and is called the tangent space

to M at x ∈ M . Given a curve c(t), we denote by c′(s) the tangent vector at c(s) defined by

the equivalence class of t 7→ c(s + t) at t = 0.

The tangent bundle of M , denoted by TM , is the differentiable manifold whose underlying



set is the disjoint union of the tangent spaces to M at the points x ∈M ; that is,

TM =
⋃

x∈M

TxM.

Differentiable Maps. Let E and F be vector spaces (for example, R
n and R

m, respec-

tively), and let f : U ⊂ E → V ⊂ F , where U and V are open sets, be of class C r+1. We

define the tangent map (the tangent map is sometimes denoted by f∗) of f to be the map

Tf : TU = U × E → TV = V × F defined by

Tf (u, e) = (f (u), Df (u), e), (0.10)

where u ∈ U and e ∈ E. This notion from calculus may be generalized to the context of

manifolds as follows. Let f : M → N be a map of a manifold M to a manifold N . We call f

differentiable (or Ck) if in local coordinates on M and N it is expressed, or represented, by

differentiable (or Ck) functions. The derivative of a differentiable map f : M → N at a point

x ∈M is defined to be the linear map

Txf : TxM → Tf(x)N

constructed in the following way. For v ∈ TxM , choose a curve c : ]−ε, ε[ → M with

c(0) = x, and velocity vector dc/dt |t=0 = v . Then Txf · v is the velocity vector at t = 0 of the

curve f ◦ c : R → N ; that is,

Txf · v =
d

dt
f (c(t))

∣∣∣∣
t=0

.



Differential Forms

A 2-form Ω on a manifold M is, for each point x ∈ M , a smooth skew-symmetric bilinear

mapping Ω(x) : TxM × TxM → R. More generally, a k-form α (sometimes called a differ-

ential form of degree k) on a manifold M is a function α(x) : TxM × · · · × TxM (there are

k factors)→ R that assigns to each point x ∈M a smooth skew-symmetric k-multilinear map

on the tangent space TxM to M at x.

Without the skew-symmetry assumption, α would be referred to as a (0, k)-tensor.

Pull Back and Push Forward. Let ϕ : M → N be a C∞ map from the manifold M

to the manifold N and let α be a k-form on N . Define the pull back ϕ∗α of α by ϕ to be

the k-form on M given by

(ϕ∗α)x(v1, . . . , vk) = αϕ(x)(Txϕ · v1, . . . , Txϕ · vk). (0.11)

If ϕ is a diffeomorphism, the push forward ϕ∗ is defined by ϕ∗ = (ϕ−1)∗.



Lie Groups

Definition 0.2 A Lie group is a smooth manifold G that is a group and for which the

group operations of multiplication, (g, h) 7→ gh for g, h ∈ G, and inversion, g 7→ g−1, are

smooth.

Definition 0.3 A matrix Lie group is a set of invertible n × n matrices that is closed

under matrix multiplication and that is a submanifold of R
n×n.

• Tangent space at identity: Lie algebra.



Definition 0.4 A fiber fiber bundle is a space Q for which the following are given: a space

B called the base space, a projection π : Q→ B with fibers π−1(b), b ∈ B, homeomorphic

to a space F , a structure group G of homeomorphisms of F into itself, and a covering

of B by open sets Uj, satisfying

(i) the bundle is locally trivial, i.e., π−1(Uj) is homeomorphic to the product space Uj×F

and

(ii) if hj is the map giving the homeomorphism on the fibers above the set Uj, for any

x ∈ Uj ∩ Uk hj(h
−1
k ) is an element of the structure group G.

If the fibers of the bundle are homeomorphic to the structure group, we call the bundle a

principal bundle.

If the fibers of the bundle are homeomorphic to a vector space, we call the bundle a vector

bundle.



Consider a bundle with projection map π and as usual let Tqπ denote its tangent map at

any point. We call the kernel of Tqπ at any point the vertical space and denote it by Vq.

Definition 0.5 An Ehresmann connection A is a vector-valued one-form on Q that

satisfies:

(i) A is vertical valued: Aq : TqQ→ Vq is a linear map for each point q ∈ Q.

(ii) A is a projection: A(vq) = vq for all vq ∈ Vq.

The key property of the connection is the following: If we denote by Hq or horq the kernel of

Aq and call it the horizontal space, the tangent space to Q is the direct sum of the Vq and

Hq; i.e., we can split the tangent space to Q into horizontal and vertical parts. For example, we

can project a tangent vector onto its vertical part using the connection. Note that the vertical

space at Q is tangent to the fiber over q.



Now define the fiber bundle coordinates qi = (rα, sa) for the base and fiber. The coordinate

representation of the projection π is just projection onto the factor r, and the connection A

can be represented locally by a vector-valued differential form ωa:

A = ωa
∂

∂sa
, where ωa(q) = dsa + Aa

α(r, s)dr
α.

We can see this as follows: Let

vq =
∑

β

ṙβ
∂

∂rβ
+
∑

b

ṡb
∂

∂sb

be an element of TqQ. Then ωa(vq) = ṡa + Aa
αṙ

α and

A(vq) = (ṡa + Aa
αṙ

α)
∂

∂sa
.

This clearly demonstrates that A is a projection, since when A acts again only dsa results in

a nonzero term, and this has coefficient unity.



Given an Ehresmann connection A, a point q ∈ Q, and a vector vr ∈ TrB tangent to the

base at a point r = π(q) ∈ B, we can define the horizontal lift of vr to be the unique vector

vhr in Hq that projects to vr under Tqπ. If we have a vector Xq ∈ TqQ, we shall also write its

horizontal part as

hor Xq = Xq − A(q) ·Xq.

In coordinates, the vertical projection is the map

(ṙα, ṡa) 7→ (0, ṡa + Aa
α(r, s)ṙ

α) ,

while the horizontal projection is the map

(ṙα, ṡa) 7→ (ṙα,−Aa
α(r, s)ṙ

α).

Next, we give the basic notion of curvature.

Definition 0.6 The curvature of A is the vertical-vector-valued two-form B on Q de-

fined by its action on two vector fields X and Y on Q by

B(X, Y ) = −A([hor X, hor Y ]),

where the bracket on the right hand side is the Jacobi–Lie bracket of vector fields obtained

by extending the stated vectors to vector fields.

The local expression for curvature is given by

B(X, Y )a = Ba
αβX

αY β , (0.12)



where the coefficients Ba
αβ are given by

Bb
αβ =

(
∂Ab

α

∂rβ
−
∂Ab

β

∂rα
+ Aa

α

∂Ab
β

∂sa
− Aa

β

∂Ab
α

∂sa

)
. (0.13)



In the tangent bundle we can specify a linear connection by its action on vector fields, or by

a map from vector fields (X, Y ) to the vector field ∇XY that satisfies for smooth functions f

and g and a vector fields X, Y, Z:

(i) ∇fX+gYZ = f∇XZ + g∇YZ.

(ii) ∇X(Y + Z) = ∇XY + ∇XZ.

(iii) ∇X(fY ) = f∇XY + (df ·X)Y ,

where df ·X is the directional derivative of f along X , or Lie derivative.

Given a basis of vector fields ∂
∂rj

we can represent ∇ by

∇∂/∂ri

∂

∂rj
= Γkij

∂

∂rk
. (0.14)

For X, Y vector fields given locally by X = X i(∂/∂ri), Y = Y i(∂/∂ri), (i) and (iii) imply

∇XY =

(
Xj∂Y

i

∂rj
+XkY jΓikj

)
∂

∂ri
. (0.15)

The geodesic equations (tangent vector to curve is always horizontal or curve is parallel

transported) may be written

∇ṙṙ = 0 . (0.16)



We can see this directly by a simple computation, again using (i) and (iii):

∇ṙi(∂/∂ri)
ṙj

∂

∂rj
= ṙi∇∂/∂riṙ

j ∂

∂rj

= ṙi
∂

∂ri
ṙj

∂

∂rj
+ ṙiṙjΓkij

∂

∂rk

= (r̈j + Γjikṙ
iṙk)

∂

∂rj
(by the chain rule).

Sometimes we will write

∇ṙṙ =
D2r

dt2
,

DX

dt
= ∇ṙ(t)X. (0.17)

We define DX/dt to be the covariant derivative.

By (0.15), in local coordinates

DX

dt
= ∇ṙX =

(
ṙj
∂X i

∂rj
+ ΓikjX

kṙj
)

∂

∂ri
=
(
Ẋ i + ΓikjX

kṙj
) ∂

∂ri
, (0.18)

where ṙ(t) = ṙi(∂/∂ri). For X = ṙ we of course recover the geodesic equations.

In the tangent bundle we can specify a linear connection by its action on vector fields, or by

a map from vector fields (X, Y ) to the vector field ∇XY that satisfies for smooth functions f

and g and a vector fields X, Y, Z:

(i) ∇fX+gYZ = f∇XZ + g∇YZ.

(ii) ∇X(Y + Z) = ∇XY + ∇XZ.



(iii) ∇X(fY ) = f∇XY + (df ·X)Y ,

where df ·X is the directional derivative of f along X , or Lie derivative.

Given a basis of vector fields ∂
∂rj

we can represent ∇ by

∇∂/∂ri

∂

∂rj
= Γkij

∂

∂rk
. (0.19)

For X, Y vector fields given locally by X = X i(∂/∂ri), Y = Y i(∂/∂ri), (i) and (iii) imply

∇XY =

(
Xj∂Y

i

∂rj
+XkY jΓikj

)
∂

∂ri
. (0.20)

The geodesic equations above then may be written

∇ṙṙ = 0 . (0.21)

We can see this directly by a simple computation, again using (i) and (iii):

∇ṙi(∂/∂ri)
ṙj

∂

∂rj
= ṙi∇∂/∂riṙ

j ∂

∂rj

= ṙi
∂

∂ri
ṙj

∂

∂rj
+ ṙiṙjΓkij

∂

∂rk

= (r̈j + Γjikṙ
iṙk)

∂

∂rj
(by the chain rule).

Sometimes we will write

∇ṙṙ =
D2r

dt2
,

DX

dt
= ∇ṙ(t)X. (0.22)



We define DX/dt to be the covariant derivative.

By (0.15), in local coordinates

DX

dt
= ∇ṙX =

(
ṙj
∂X i

∂rj
+ ΓikjX

kṙj
)

∂

∂ri
=
(
Ẋ i + ΓikjX

kṙj
) ∂

∂ri
, (0.23)

where ṙ(t) = ṙi(∂/∂ri). For X = ṙ we of course recover the geodesic equations.



Definition 0.7 Let P be a manifold and let F(P ) denote the set of smooth real-valued

functions on P . Consider a bracket operation denoted by

{ , } : F(P ) ×F(P ) → F(P ).

The pair (P, { , }) is called a Poisson manifold if { , } satisfies:
(PB1) bilinearity {f, g} is bilinear in f and g.

(PB2) anticommutativity {f, g} = −{g, f}.

(PB3) Jacobi’s identity {{f, g}, h} + {{h, f}, g} + {{g, h}, f} = 0.

(PB4) Leibniz’s rule {fg, h} = f{g, h} + g{f, h}.

Notice that conditions (PB1)–(PB3) make (F(P ), { , }) into a Lie algebra.

If (P, { , }) is a Poisson manifold, then one can show that because of (PB1) and (PB4), there

is a tensor B on P assigning to each z ∈ P a linear map B(z) : T ∗
z P → TzP such that

{f, g}(z) = 〈B(z) · df (z),dg(z)〉. (0.24)

Here 〈 , 〉 denotes the natural pairing between vectors and covectors. Because of (PB2), B(z)

is antisymmetric. Letting zI , I = 1, . . . ,M , denote coordinates on P , (0.24) becomes

{f, g} = BIJ ∂f

∂zI
∂g

∂zJ
. (0.25)



Definition 0.8 Let P be a manifold and Ω a 2-form on P . The pair (P,Ω) is called a

symplectic manifold if Ω satisfies

(S1) dΩ = 0 (i.e., Ω is closed) and

(S2) Ω is nondegenerate.

Definition 0.9 Let (P,Ω) be a symplectic manifold and let f ∈ F(P ). Let Xf be the

unique vector field on P satisfying

Ωz(Xf(z), v) = df (z) · v for all v ∈ TzP. (0.26)

We call Xf the Hamiltonian vector field of f . Hamilton’s equations are the dif-

ferential equations on P given by

ż = Xf(z). (0.27)

If (P,Ω) is a symplectic manifold, define the Poisson bracket operation {·, ·} : F(P )×

F(P ) → F(P ) by

{f, g} = Ω(Xf , Xg). (0.28)



Let G be a Lie group and g = TeG its Lie algebra with [ , ] : g × g → g the associated Lie

bracket.

Proposition 1 The dual space g∗ is a Poisson manifold with either of the two brackets

{f, k}±(µ) = ±

〈
µ,

[
δf

δµ
,
δk

δµ

]〉
. (0.29)

Here g is identified with g∗∗ in the sense that δf/δµ ∈ g is defined by 〈ν, δf/δµ〉 = Df (µ) · ν

for ν ∈ g∗, where D denotes the derivative. Assuming that g is finite-dimensional and choosing

coordinates (ξ1, . . . , ξm) on g and corresponding dual coordinates (µ1, . . . , µm) on g∗, the Lie–

Poisson bracket (0.29) is

{f, k}±(µ) = ±µaC
a
bc

∂f

∂µb

∂k

∂µc
; (0.30)

here Ca
bc are the structure constants of g defined by [ea, eb] = Cc

abec, where (e1, . . . , em) is

the coordinate basis of g and where for ξ ∈ g we write ξ = ξaea, and for µ ∈ g∗, µ = µae
a,

where (e1, . . . , em) is the dual basis.



Definition 0.10 A finite-dimensional nonlinear control system on a smooth n-

manifold M is a differential equation of the form

ẋ = f (x, u), (0.31)

where x ∈M , u(t) is a time-dependent map from the nonnegative reals R
+ to a constraint

set Ω ⊂ R
m, and f is taken to be C∞ (smooth) or Cω (analytic) from M × R

m into TM

such that for each fixed u, f is a vector field on M . The map u is assumed to be piecewise

smooth or piecewise analytic. Such a map u is said to be admissible. The manifold M

is said to be the state space or the phase space of the system.

Affine control system:

ẋ = f (x) +

m∑

i=1

gi(x)ui , (0.32)



Definition 0.11 The system (0.32) is said to be controllable if for any two points x0

and xf in M there exists an admissible control u(t) defined on some time interval [0, T ]

such that the system (0.32) with initial condition x0 reaches the point xf in time T .

To define accessibility we first need the notion of a reachable set. This notion will depend

on the choice of a positive time T . The reachable set from a given point at time T will be

defined to be, essentially, the set of points that may be reached by the system by traveling on

trajectories from the initial point in a time at most T . In particular, if q ∈ M is of the form

x(t) for some trajectory with initial condition x(0) = p and for some t with 0 ≤ t ≤ T , then q

will be said to be reachable from p in time T . More precisely:

Definition 0.12 Given x0 ∈ M we define R(x0, t) to be the set of all x ∈ M for which

there exists an admissible control u such that there is a trajectory of the system with

x(0) = x0, x(t) = x. The reachable set from x0 at time T is defined to be

RT (x0) =
⋃

0≤t≤T

R(x0, t) . (0.33)

Definition 0.13 The accessibility algebra C of the system is the smallest Lie algebra

of vector fields on M that contains the vector fields f and g1, . . . , gm.

Note that the accessibility algebra is just the span of all possible Lie brackets of f and the

gi.

Definition 0.14 We define the accessibility distribution C of the system to be the



distribution generated by the vector fields in C; i.e., C(x) is the span of the vector fields

X in C at x.

Definition 0.15 The system on M is said to be accessible from p ∈ M if for every

T > 0, RT (p) contains a nonempty open set.

Roughly speaking, this means that there is some point q (not necessarily even close to a

desired objective point) that is reachable from p in time no more than T and that points close

to q are also reachable from p in time no more than T .

Accessibility, while relatively easy to prove, is far from proving controllability.



Theorem 0.1 Consider the system and assume that the vector fields are C∞. If dimC(x0) =

n (i.e., the accessibility algebra spans the tangent space to M at x0), then for any T > 0,

the set RT (x0) has a nonempty interior; i.e., the system has the accessibility property

from x0.

Note that while this spanning condition is an intuitively reasonable condition, the resulting

theorem is quite weak, since it is far from implying controllability. The problem is that one

cannot move “backward” along the drift vector field f . If f is absent, this is a strong condition;

see below.

In certain special cases the accessibility rank condition does imply controllability, however.

(We assume here that all vector fields are real analytic; the nonanalytic case can present

difficulties.

Theorem 0.2 Suppose the system is analytic. If dimC(x) = n everywhere on M and

either

1. f = 0, or

2. f is divergence-free and M is compact and Riemannian,

then (0.32) is controllable.

The idea behind this result is that one cannot move “backward” along the drift directions, and

hence a spanning condition involving the drift vector field does not guarantee controllability.

A particular case of item 2 above is that in which f is Hamiltonian. This ensures a drift

“backward” eventually.



e.g. Heisenberg example Recall from Chapter 1 the Heisenberg system

ẋ = u,

ẏ = v,

ż = vx− uy,

(0.34)

which may be written as

q̇ = u1g1 + u2g2, (0.35)

Another case of interest where accessibility implies controllability is a linear system of the

form

ẋ = Ax +

m∑

i=1

biui = Ax +Bu, (0.36)

where x ∈ R
n, and A ∈ R

n × R
n and B ∈ R

n × R
m are constant matrices, bi being the

columns of B.

The Lie bracket of the drift vector field Ax with bi is readily checked to be the constant

vector field −Abi. Bracketing the latter field with Ax and so on tells us that C is spanned by

Ax, bi, Abi, . . . , A
n−1bi, i = 1, . . . ,m. Thus, the accessibility rank condition at the origin is

equivalent to the classical controllability rank condition

rank[B,AB, . . . , An−1B] = n . (0.37)

In fact, the following theorem holds.

Theorem 0.3 The system is controllable if and only if the controllability rank condition

holds.



• The Lagrange-d’Alembert-Poincaré equations. Natural symmetries in the sys-

tem:

Can rewrite the equation of motions in terms of a reduced constrained Lagrangian lc.

Theorem 0.2 The following nonholonomic Lagrange-d’Alembert-Poincaré equa-

tions hold for each 1 ≤ α ≤ σ and 1 ≤ b ≤ m:

d

dt

∂lc
∂ṙα

−
∂lc
∂rα

= −
∂Icd

∂rα
pcpd −Dc

bαI
bdpcpd

− Bc
αβpcṙ

β −DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ,

d

dt
pb = Cc

abI
adpcpd + Dc

bαpcṙ
α + Dαβbṙ

αṙβ.

Here lc(r
α, ṙα, pa) is the constrained reduced Lagrangian, i.e. the Lagrangian in the body

frame; rα, 1 ≤ α ≤ σ, are coordinates in the shape space; i.e. coordinates of system

degrees of freedom pa, 1 ≤ a ≤ m, are components of the momentum map in the body

representation.

• The key to the qualitative behavior of this system are the terms on the right hand side of

the momentum equation.

• Case of interest:the matrix Cc
abI

ad is skew. see Zenkov, Bloch and Marsden [1998] and

divides into two cases: the term quadratic in ṙ is present or not. If it vanishes, there are many

cases where one does not obtain asymptotic stability, for example the rolling penny problem.

When it is present asymptotically stable dynamics can occur as in the rattleback top.



• Key case: is the Euler-Poincaré-Suslov equations, where there are no internal or shape

degrees of freedom, i.e. no coordinates rα. Again, asymptotic behavior may occur in some of

the variables.

Whether the nonholonomic systems exhibit asymptotic behavior or not it is striking that we

have

Proposition 0.3 The nonholonomic equations in the case that lc is quadratic in p and

ṙ, are time reversible.

Proof. The equations are invariant under the discrete Z2 symmetry (t → −t, p → −p, ṙ →

−ṙ).

�

In this setting it is easy to check that energy is always preserved.



•Almost Poisson Systems

Recall:

Definition 0.4 An almost Poisson manifold is a pair (M, {, }) where M is a smooth

manifold and (i){, } defines an almost Lie algebra structure on the C∞ functions on M ,

i.e. the bracket satisfies all conditions for a Lie algebra except that the Jacobi identity is

not satisfied and (ii) {, } is a derivation in each factor.

If in addition Jacobi satisfied, Poisson manifold.

An almost Poisson structure on M will be Poisson if its Jacobiator, defined by

J(f, g, h) = {{f, g}, h} + {{g, h}, f} + {{h, f}g}

vanishes.

• One can define an almost Poisson vector field on M by

żi = πij(z)
∂H

∂zj
.

.



• “Hamiltonian” Formulation of Nonholonomic Systems

Nonholonomic systems are almost Poisson.

Start on the Lagrangian side with a configuration space Q and a Lagrangian L (possibly of

the form kinetic energy minus potential energy, i.e.,

L(q, q̇) =
1

2
〈〈q̇, q̇〉〉 − V (q),

As above, our nonholonomic constraints are given by a distribution D ⊂ TQ. We also let

D0 ⊂ T ∗Q denote the annihilator of this distribution. Using a basis ωa of the annihilator Do,

we can write the constraints as

ωa(q̇) = 0,

where a = 1, . . . , k.

Recall that the cotangent bundle T ∗Q is equipped with a canonical Poisson bracket and is

expressed in the canonical coordinates (q, p) as

{F,G}(q, p) =
∂F

∂qi
∂G

∂pi
−
∂F

∂pi

∂G

∂qi
=

(
∂F T

∂q
,
∂F T

∂p

)
J

(
∂G
∂q

∂G
∂p

)
.

Here J is the canonical Poisson tensor

J =

(
0n In
−In 0n

)
.



A constrained t phase space M = FL(D) ⊂ T ∗Q is defined so that the constraints on the

Hamiltonian side are given by p ∈ M. In local coordinates,

M =

{
(q, p) ∈ T ∗Q

∣∣∣ ωai
∂H

∂pi
= 0

}
.

Let {Xα} be a local basis for the constraint distribution D and let {ωa} be a local basis for

the annihilator D0. Let {ωa} span the complementary subspace to D such that 〈ωa, ωb〉 = δab ,

where δab is the usual Kronecker delta. Here a = 1, . . . , k and α = 1, . . . , n − k. Define a

coordinate transformation (q, p) 7→ (q, p̃α, p̃a) by

p̃α = X i
αpi, p̃a = ωiapi.

In the new (generally not canonical) coordinates (q, p̃α, p̃a), the Poisson tensor becomes

J̃(q, p̃) =

(
{qi, qj} {qi, p̃j}

{p̃i, q
j} {p̃i, p̃j}

)
.



Use (q, p̃α) as induced local coordinates for M. It is easy to show that

∂H̃

∂qj
(q, p̃α, p̃a) =

∂HM

∂qj
(q, p̃α),

∂H̃

∂p̃β
(q, p̃α, p̃a) =

∂HM

∂p̃β
(q, p̃α),

where HM is the constrained Hamiltonian on M expressed in the induced coordinates. We

can also truncate the Poisson tensor J̃ by leaving out its last k columns and last k rows and

then describe the constrained dynamics on M expressed in the induced coordinates (q i, p̃α) as

follows: (
q̇i

˙̃pα

)
= JM(q, p̃α)

(∂HM
∂qj

(q, p̃α)
∂HM
∂p̃β

(q, p̃α)

)
,

(
qi

p̃α

)
∈ M.

Here JM is the (2n − k) × (2n − k) truncated matrix of J̃ restricted to M and is expressed

in the induced coordinates.



The matrix JM defines a bracket {· , ·}M on the constraint submanifold M as follows:

{FM, GM}M(q, p̃α) :=

(
∂F T

M

∂qi
∂F T

M

∂p̃α

)
JM(qi, p̃α)

( ∂GM
∂qj

∂GM
∂p̃β

)
,

for any two smooth functions FM, GM on the constraint submanifold M. Clearly, this bracket

satisfies the first two defining properties of a Poisson bracket, namely, skew symmetry and the

Leibniz rule, and one can show that it satisfies the Jacobi identity if and only if the constraints

are holonomic. Furthermore, the constrained Hamiltonian HM is an integral of motion for the

constrained dynamics on M due to the skew symmetry of the bracket.



Following e.g. van der Schaft and Maschke [1994] and Koon and Marsden [1997] we can write

the nonholonomic equations of motion as follows:



ṡa

ṙα

˙̃pα


 =




0 0 −Aa
β

0 0 δαβ
(Ab

α)
T −δβα −pcB

c
αβ







∂HM
∂sb

∂HM
∂rβ

∂HM
∂p̃β




Jacobiator of the Poisson tensor vanishes precisely when the curvature of the nonholonomic

constraint distribution is zero or the constraints are holonomic.



• The Momentum Equation Simple constained physical systems that have symmetries

do not have associated conservation laws.

• Simplest situation: case of cyclic variables. Recall that the equations of motion have the

form
d

dt

∂Lc
∂ṙα

−
∂Lc
∂rα

+ Aa
α

∂Lc
∂sa

= −
∂L

∂ṡb
Bb
αβ ṙ

β.

If this has a cyclic variable, say r1, this would mean that all the quantities Lc, L,B
b
αβ would

be independent of r1. This is equivalent to saying that there is a translational symmetry in the

r1 direction.

Suppose also that the s variables are also cyclic. Then the above equation for the momentum

p1 = ∂Lc/∂ṙ
1 becomes

d

dt
p1 = −

∂L

∂ṡb
Bb

1β ṙ
β.

Fails to be a conservation law in general. Note that the right hand side is linear in ṙ (the first

term is linear in pr) and the equation does not depend on r1 itself.

• Special case of the momentum equation.



General Momentum Equation Assume there is a Lie group G that acts freely and

properly on the configuration space Q. The Lie algebra of G is denoted by g. A Lagrangian

system is called G-invariant if its Lagrangian L is invariant under the induced action of G on

TQ.

Recall the definition of the momentum map for an unconstrained Lagrangian system with

symmetry:

The momentum map J : TQ → g∗ is the bundle map taking TQ to the bundle (gQ)∗

whose fiber over the point q is the dual Lie algebra g∗ that is defined by

〈J(vq), ξ〉 = 〈FL(vq), ξQ〉 :=
∂L

∂q̇i
(ξQ)i,

where ξ ∈ g, vq ∈ TQ, and ξQ ∈ TQ is the generator associated with the Lie algebra element

ξ.



A nonholonomic system is called G-invariant if both the Lagrangian L and the constraint

distribution D are invariant under the induced action of G on TQ. Let Dq enote the the fiber

of the constraint distribution D at q ∈ Q.

Definition:

The nonholonomic momentum map Jnhc is defined as a collection of the components

of the ordinary momentum map J that are consistent with the constraints, i.e., the

Lie algebra elements ξ in () are now chosen from the subspace gq of Lie algebra elements in g

whose infinitesimal generators evaluated at q lie in the intersection Dq ∩ Tq(Orb(q)).



Thus, the nonholonomic momentum is a dynamic variable. The momentum dynamics is

specified in the following theorem:

Theorem:

Assume that the Lagrangian is invariant under the group action and that ξq is a section of the

bundle gD. Then any solution of the Lagrange–d’Alembert equations for a nonholonomic system

must satisfy, in addition to the given kinematic constraints, the momentum equation

d

dt
〈Jnhc, (ξq(t))〉 =

∂L

∂q̇i

[
d

dt
(ξq(t))

]i

Q

. (0.41)

A Lie algebra element ξ is said to act horizontally if ξQ(q) ∈ Dq.

Corollary

If ξ is a horizontal symmetry, then the following conservation law holds:

d

dt
〈Jnhc, (ξ)〉 = 0. (0.42)



Symmetries Symmetries play an important role in our analysis. Suppose we are given a

nonholonomic system with Lagrangian L : TQ → R, and a (nonintegrable) constraint distri-

bution D. We can then look for a group G that acts freely and properly on the configuration

space Q. It induces an action on the tangent space TQ and so it makes sense to ask that the

Lagrangian L be invariant. Also, one can ask that the distribution be invariant in the sense

that the action by a group element g ∈ G maps the distribution Dq at the point q ∈ Q to the

distribution Dgq at the point gq. If these properties hold, we say that G is a symmetry group.

The manifold Q/G is called the shape space of the system and the configuration space has the

structure of a principal fiber bundle π : Q→ Q/G.

Geometry of Nonholonomic Systems with Symmetry

The group orbit through a point q, an (immersed) submanifold, is denoted

Orb(q) := {gq | g ∈ G}.

Let g denote the Lie algebra of the Lie group G. For an element ξ ∈ g, we denote by ξQ the

vector field on Q arising from the corresponding infinitesimal generator of the group action,

so these are also the tangent spaces to the group orbits. Define, for each q ∈ Q, the vector

subspace gq to be the set of Lie algebra elements in g whose infinitesimal generators evaluated

at q lie in both Dq and Tq(Orb(q)):

gq := {ξ ∈ g | ξQ(q) ∈ Dq ∩ Tq(Orb(q))} .

The corresponding bundle over Q whose fiber at the point q is given by gq, is denoted by gD.



Reduced dynamics. Assuming that the Lagrangian and the constraint distribution are

G-invariant, we can form the reduced velocity phase space TQ/G and the reduced constraint

space D/G. The Lagrangian L induces well defined functions, the reduced Lagrangian

l : TQ/G→ R

and the constrained reduced Lagrangian

lc : D/G→ R,

satisfying L = l ◦ πTQ and L|D = lc ◦ πD where πTQ : TQ → TQ/G and πD : D → D/G

are the projections. By general considerations, the Lagrange-d’Alembert equations induce well

defined reduced equations on D/G. That is, the vector field on the manifold D determined by

the Lagrange-d’Alembert equations (including the constraints) is G-invariant, and so defines

a reduced vector field on the quotient manifold D/G. Call these equations the Lagrange-

d’Alembert-Poincaré equations.



Let a local trivialization be chosen on the principle bundle π : Q → Q/G, with a local

representation having components denoted (r, g). Let r, an element of shape space Q/G, have

coordinates denoted rα, and let g be group variables for the fiber, G. In such a representation,

the action of G is the left action of G on the second factor. The coordinates (r, g) induce the

coordinates (r, ṙ, ξ) on TQ/G, where ξ = g−1ġ. The Lagrangian L is invariant under the left

action of G and so it depends on g and ġ only through the combination ξ = g−1ġ. Thus the

reduced Lagrangian l is given by

l(r, ṙ, ξ) = L(r, g, ṙ, ġ).

Therefore the full system of equations of motion consists of the following two groups:

1. The Lagrange-d’Alembert-Poincaré equation on D/G (see theorem 0.2).

2. The reconstruction equation

ġ = gξ.



The nonholonomic momentum in body representation. Choose a q-dependent

basis eA(q) for the Lie algebra such that the first m elements span the subspace gq in the

following way. First, one chooses, for each r, such a basis at the identity element g = Id, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

Now define the body fixed basis by

eA(r, g) = Adg eA(r).

Then the first m elements will indeed span the subspace gq since the distribution is invariant.

We denote the structure constants of the Lie algebra relative to this basis by CC
AB.

To avoid confusion, we make the following index conventions:

1. The first batch of indices range from 1 to m corresponding to the symmetry directions along

constraint space. These indices will be denoted a, b, c, . . . .

2. The second batch of indices range fromm+1 to k corresponding to the symmetry directions

not aligned with the constraints. Indices for this range will be denoted by a′, b′, c′, . . . .

3. The indices A,B,C, . . . on the Lie algebra g range from 1 to k.

4. The indices α, β, . . . on the shape variables r range from 1 to σ. Thus, σ is the dimension

of the shape space Q/G and so σ = n− k.

The summation convention for all of these indices will be understood.



Assume that the Lagrangian has the form of kinetic minus potential energy, and that the

constraints and the orbit directions span the entire tangent space to the configuration space:

Dq + Tq(Orb(q)) = TqQ.

Then it is possible to introduce a new Lie algebra variable Ω called the body angular velocity

such that:

1. Ω = Aṙ+ξ, where the Lie algebra valued form A = AA
αeA(r)drα is called the nonholonomic

connection (see Bloch et al. [1996] for details).

2. The constraints are given by Ω ∈ span{e1(r), . . . , em(r)} or Ωm+1 = · · · = Ωk = 0.

3. The reduced Lagrangian in the variables (r, ṙ,Ω) becomes

l(rα, ṙα,ΩA) =
1

2
gαβ ṙ

αṙβ +
1

2
IABΩAΩB + λa′αṙ

αΩa′ − U(r). (0.43)

Here gαβ are coefficients of the kinetic energy metric induced on the manifold Q/G, IAC are

components of the locked inertia tensor defined by

〈I(r)ξ, η〉 = 〈〈ξQ, ηQ〉〉, ξ, η ∈ g,

where 〈〈· , ·〉〉 is the kinetic energy metric. The coefficients λa′α are defined by

λa′α =
∂2l

∂ξa′∂rα
−

∂2l

∂ξa′∂ξB
AB
α .



The constrained reduced Lagrangian becomes especially simple in the variables (r, ṙ,Ω):

lc =
1

2
gαβ ṙ

αṙβ +
1

2
IabΩ

aΩb − U. (0.44)

We remark that this choice of Ω block-diagonalizes the kinetic energy metric, i.e., eliminates

the terms proportional to Ωaṙα in (0.44).



The nonholonomic momentum in body representation is defined by

pa =
∂l

∂Ωa
=

∂lc
∂Ωa

, a = 1, . . . ,m.

Notice that the nonholonomic momentum may be viewed as a collection of components of the

ordinary momentum map along the constraint directions.

The Lagrange-d’Alembert-Poincaré equations. As in Bloch et al. [1996], the

reduced equations of motion are given by the next theorem.

Theorem 0.5 The following reduced nonholonomic Lagrange-d’Alembert-Poin-

caré equations hold for each 1 ≤ α ≤ σ and 1 ≤ b ≤ m:

d

dt

∂lc
∂ṙα

−
∂lc
∂rα

= −Dc
bαI

bdpcpd −Kαβγ ṙ
β ṙγ

− (Bc
αβ − Ic′a′I

a′cBc′

αβ + DbβαI
bc)pcṙ

β, (0.45)

d

dt
pa = (Cc

ba − Cc′

baIc′a′I
a′c)Ibdpcpd + Dc

aαpcṙ
α + Daαβ ṙ

αṙβ. (0.46)

Here and below lc(r
α, ṙα,Ωa) is the constrained Lagrangian, and I bd and Ia′c′ are the inverse of

the tensors I|gq and I
−1|(gq)∗, respectively. We stress that in general I bd 6= I

bd and Ia′c′ 6= Ia′c′.



The coefficients BC
αβ, D

c
bα, Dbαβ, Kαβγ are given by the formulae

BC
αβ =

∂AC
α

∂rβ
−
∂AC

β

∂rα
− CC

BAA
A
αA

B
β + γCAβA

A
α − γCAαA

A
β ,

Dc
bα = −(Cc

Ab − Cc′

AbIc′a′I
a′c)AA

α + Cc′

abλc′αI
ac + γcbα − γc

′

bαIc′a′I
a′c, (0.47)

Dbαβ = λc′β(γ
c′

bα − Cc′

AbA
A
α ),

Kαβγ = λc′γB
c′

αβ,

and the coefficients γCbα are defined by

∂eb
∂rα

= γCbαeC.

Equations (0.45) and (0.46) generalize the equations of motion in the orthogonal body frame

(see Bloch et al. [1996]). Here we no longer assume that the body frame is orthogonal.



•Euler-Poincaré-Suslov Equations

Important special case of the reduced nonholonomic equations.

•Example: Euler-Poincaré-Suslov Problem on SO(3) In this case the problem can

be formulated as the standard Euler equations

Iω̇ = Iω × ω

where ω = (ω1, ω2, ω3) are the system angular velocities in a frame where the inertia matrix is

of the form I = diag(I1, I2, I3) and the system is subject to the constraint

a · ω = 0

where a = (a1, a2, a3).

The nonholonomic equations of motion are then given by

Iω̇ = Iω × ω + λa

subject to the constraint. Solve for λ:

λ = −
I−1a · (Iω × ω)

I−1a · a
.

If a is an eigenvector of the moment of inertia tensor flow is measure preserving.



More generally:

Invariant Measures of the Euler-Poincaré-Suslov Equations An important spe-

cial case of the reduced nonholonomic equations is the case when there is no shape space at all.

In this case the system is characterized by the Lagrangian L = 1
2IABΩAΩB and the left-invariant

constraint

〈a,Ω〉 = aAΩA = 0. (0.52)

Here a = aAe
A ∈ g∗ and Ω = ΩAeA, where eA, A = 1, . . . , k, is a basis for g and eA is its

dual basis. Multiple constraints may be imposed as well. The two classical examples of such

systems are the Chaplygin Sleigh and the Suslov problem. These problems were introduced

by Chaplygin in 1895 and Suslov in 1902, respectively.

We can consider the problem of when such systems exhibit asymptotic behavior. Following

Kozlov [1988] it is convenient to consider the unconstrained case first. In the absence of

constraints the dynamics is governed by the basic Euler-Poincaré equations

ṗB = CC
ABI

ADpCpD = CC
ABpCΩA (0.53)

where pB = IABΩB are the components of the momentum p ∈ g∗. One considers the question of

whether the (unconstrained) equations (0.53) have an absolutely continuous integral invariant

fdkΩ with summable density M. If M is a positive function of class C 1 one calls the integral

invariant an invariant measure. Kozlov [1988] shows

Theorem 0.6 The Euler-Poincaré equations have an invariant measure if and only if

the group G is unimodular.



A group is said to be unimodular if it has a bilaterally invariant measure. A criterion

for unimodularity is CC
AC = 0 (using the Einstein summation convention). Now we know

(Liouville’s theorem) that the flow of a vector differential equation ẋ = f (x) is phase volume

preserving if and only if div f = 0. In this case the divergence of the right hand side of equation

(0.53) is CC
ACI

ADpD = 0. The statement of the theorem now follows from the following theorem

of Kozlov [1998]: A flow due to a homogeneous vector field in R
n is measure-preserving if

and only if this flow preserves the standard volume in R
n.

Now, turning to the case where we have the constraint (0.52) we obtain the Euler-Poincaré-

Suslov equations

ṗB = CC
ABI

ADpCpD + λaB = CC
ABpCΩA + λaB (0.54)

together with the constraint (0.52). Here λ is the Lagrange multiplier. This defines a system on

the subspace of the dual Lie algebra defined by the constraint. Since the constraint is assumed

to be nonholonomic, this subspace is not a subalgebra. One can then formulate a condition for

the existence of an invariant measure of the Euler-Poincaré-Suslov equations.

Theorem 0.7 Equations (0.54) have an invariant measure if and only if

Kad∗
I−1aa + T = µa, µ ∈ R, (0.55)

where K = 1/〈a, I−1a〉 and T ∈ g∗ is defined by 〈T, ξ〉 = Tr(adξ).

This theorem was proved by Kozlov [1988] for compact algebras and for arbitrary algebras by

Jovanović [1998]. In coordinates, condition (0.55) becomes

KCC
ABI

ADaCaD + CC
BC = µaB.



For a compact algebra (0.55) becomes

[I−1a, a] = µa, µ ∈ R, (0.56)

where we identified g∗ with g.

The proof of theorem 0.7 reduces to the computation of the divergence of the vector field in

(0.54).

In the compact case only constraint vectors a which commute with I
−1a allow the measure to

be preserved. This means that a and I
−1amust lie in the same maximal commuting subalgebra.

In particular, if a is an eigenstate of the inertia tensor, the reduced phase volume is preserved.

When the maximal commuting subalgebra is one-dimensional this is a necessary condition.

This is the case for groups such as SO(3).

We thus have the following result which reflects a symmetry requirement on the constraints:

Theorem 0.8 A compact Euler-Poincaré-Suslov system is measure preserving (i.e. does

not exhibit asymptotic dynamics) if the constraint vectors a are eigenvectors of the inertia

tensor, or if the constrained system is Z2 symmetric about each of its principal axes. If

the maximal commuting subalgebra is one-dimensional this condition is necessary.



Invariant Measures of Systems with Internal Degrees of Freedom In this

section we extend the result of Kozlov [1988] and Jovanović [1998] to nonholonomic systems

with nontrivial shape space. One can think of these systems as the Euler-Poincaré-Suslov

systems with internal degrees of freedom. Recall that the constraints are of the form Ωm+1 =

· · · = Ωk = 0. To simplify the exposition, we consider below systems with a single constraint.

The results are valid for systems with multiple constraints as well.

Consider a nonholonomic system with the reduced Lagrangian l(r, ṙ,Ω) and a constraint

〈a(r),Ω〉 = 0. The subspace of the Lie algebra defined by the constraint at the configuration q

is denoted here by gq. The orientation of this subspace in g depends on the shape configuration

of the system, r. The dimension of gq however stays the same. As discussed in section , we

choose a special moving frame in which gq is spanned by the vectors e1(r), . . . , ek−1(r). The

equation of the constraint in this basis becomes Ωk = 0. Recall that the horizontal part of the

kinetic energy metric is gαβ(r).

Theorem 0.9 The system associated with the reduced Lagrangian l(r, ṙ,Ω) and the con-

straint 〈a(r),Ω〉 = 0 has an integral invariant with a C1 density M(r) if and only if

(i)

(
Ca
ba − Ck

ba

I
ka

Ikk

)
− gαδDbαδ = 0,

(ii) the form
[
Db
bβ − gαδλkδB

k
αβ

]
drβ is exact.



Systems with One-Dimensional Shape Space. Assume that condition (i) of theorem

0.9 is satisfied. In this case the equation for the density of the invariant measure becomes

d(lnM) = d(ln g) + Db
bdr. (0.57)

The solution of this equation is globally defined if the shape space is either noncompact (and

thus diffeomorphic to R), or compact and the average of the function Db
b equals zero.

Systems with Conserved Momentum. If the nonholonomic momentum is a constant

of motion, then condition (i) of theorem 0.9 is trivially satisfied. Moreover, condition (ii) now

asks that the form

gαδλkδB
k
αβr

β (0.58)

is exact. The system thus preserves the measure with the density

M = det g exp

(
−

∫
gαδλkδB

k
αβr

β

)
.



Examples

The Routh Problem. This mechanical system consists of a uniform sphere rolling without

slipping on the inner surface of a vertically oriented surface of revolution. He described the

family of stationary periodic motions and obtained a necessary condition for stability of these

motions. Routh noticed as well that integration of the equations of motion may be reduced

to integration of a system of two linear differential equations with variable coefficients and

considered a few cases when the equations of motion can be solved by quadratures. Modern

references that treat this system are Hermans [1995] and Zenkov [1995].

This problem is SO(2)×SO(2)-invariant, where the first copy of SO(2) represents rotations

about the axis of the surface of revolution while the second copy of SO(2) represents rotations

of the sphere about its radius through the contact point of the surface and the sphere.



Let r be the latitude of this contact point, a be the radius of the sphere, c(r) + a be the

reciprocal of the curvature of the meridian of the surface, and b(r) be the distance from the

axis of the surface to the sphere’s center. The shape metric is c2(r)ṙ2/2 while the momentum

equations are

ṗ1 =
c(r) sin r

b(r)
p1ṙ −

2

7
p2ṙ, ṗ2 =

(
1 −

c(r) cos r

b(r)

)
p1ṙ.

The shape space is one-dimensional, the symmetry group SO(2) × SO(2) is commutative,

and there are no terms proportional to ṙ2 in the momentum equations. The trace term in (0.57)

equals c(r) sin r/b(r), and thus the density of the invariant measure for the Routh problem is

M = c2(r)e
∫ c(r) sin r

b(r)
dr
. (0.59)

The group action in this problem is singular: the intersection points of the surface of revolu-

tion and its axis have nontrivial isotropy subgroups. The shape coordinate r equals ±π/2 at

these points. As a result,

lim
r→−π/2

M(r) = lim
r→π/2

M(r) = ∞.



The Falling Disk. Consider a homogeneous disk rolling without sliding on a horizontal

plane. This mechanical system is SO(2) × SE(2)-invariant; the group SO(2) represents the

symmetry of the disk while the group SE(2) represents the Euclidean symmetry of the overall

system.

Classical references for the rolling disk are Vierkandt [1892], Korteweg [1899], and Appel

[1900]. In particular, Vierkandt showed that on the reduced space D/SE(2)—the constrained

velocity phase space modulo the action of the Euclidean group SE(2)—most orbits of the

system are periodic.

The shape of the system is specified by a single coordinate—the tilt of the disk denoted here

by r. The momentum equations are

ṗ1 = mR2

(
−

sin r

A cos r
p1 +

(
cos r

mR2 +B
+

sin2 r

A cos r

)
p2

)
ṙ,

ṗ2 = mR2

(
−

1

A cos r
p1 +

sin r

A cos r
p2

)
ṙ.

Hence, the trace terms Db
b in (0.57) vanish, and the density of the invariant measure equals the

component of the shape metric g(r). The latter equals the moment of inertia of the disk with

respect to the line through the rim of the disk and parallel to its diameter. Since the density

of the measure is determined up to a constant factor, we conclude that the dynamics preserves

the reduced phase space volume.



The 3D Chaplygin Sleigh with an Oscillating Mass. The three-dimensional Chap-

lygin sleigh is a free rigid body subject to the nonholonomic constraint v3 = 0, where v3 is the

third component of the (linear) velocity relative to the body frame. The Lagrangian of this

system is
1

2
M
[
(v1)2 + (v2)2 + (v3)2

]
+

1

2

[
I1(Ω

1)2 + I2(Ω
2)2 + I3(Ω

3)2
]
.

In this formula M is the mass of the body, Ij are the eigenvalues of its inertia tensor, and

(Ω1,Ω2,Ω3) and (v1, v2, v3) are the angular and linear velocities relative to the body frame.

The dynamics of this system is discussed in Neimark and Fufaev [1972].

We couple this system with an oscillator moving along the third coordinate axis of the body

frame. The mass of this oscillator is m and the displacement from the origin is r. To keep

the notation uniform with the general theory, we write the components of the linear velocity

relative to the body frame as (Ω4,Ω5,Ω6). The vector (Ω1,Ω2,Ω3,Ω4,Ω5,Ω6) should be viewed

as an element of the Lie algebra se(3). The Lagrangian of this new system is

L =
1

2

[
I1(Ω

1)2 + I2(Ω
2)2 + I3(Ω

3)2
]

+
M

2

[
(Ω4)2 + (Ω5)2 + (Ω6)2

]

+
m

2

[
(Ω4 + Ω2r)2 + (Ω5 − Ω1r)2 + (Ω6 + ṙ)2

]
− U(r). (0.60)

The configuration space is R×SE(3), and the system is invariant under the left action of SE(3)

on the second factor. We have not specified the potential energy as its choice does not affect

the existence of the invariant measure. The shape space is just the first factor of R × SE(3)

and is one dimensional, and thus the above theory is applicable. To show the existence of the



invariant measure, we note the following:

1. The constrained Lagrangian does not contain terms that simultaneously depend on ṙ and

pa. The constraint is Ω6 = 0. Therefore, all the coefficients of the nonholonomic connection

as well as its curvature form vanish. This implies that the terms Daαβ and Kαβγ vanish too.

The differential form from condition (ii) of theorem 0.9 is therefore trivial.

2. The moving frame is r-independent. Therefore all of the coefficients γBAα are trivial. Con-

dition (i) of theorem 0.9 is satisfied since the group SE(3) is unimodular and e6 is the

eigenvector of the inertia tensor.

3. The shape metric is r-independent.

The system’s dynamics preserves the volume in the reduced phase space.

This can be verified by a straightforward computation of the divergence of the vector field

that defines the equations of motion:

r̈ = −
∂Ua
∂r

,

ṗ1 = −Ω2p3 + Ω3p2 −mΩ5ṙ,

ṗ2 = −Ω3p1 + Ω1p3 +mΩ4ṙ,

ṗ3 = −Ω1p2 + Ω2p1 − Ω4p5 + Ω5p4,

ṗ4 = Ω3p5 −mΩ2ṙ,

ṗ5 = −Ω3p4 +mΩ1ṙ.



Chaplygin Sphere. This system consists of a sphere rolling without slipping on a hor-

izontal plane. The center of mass of this sphere is at the geometric center, but the principal

moments of inertia are distinct. Chaplygin [1903] proved integrability of this problem. Modern

references for the Chaplygin sphere include Kozlov [1985] and Schneider [2002].

One may view this system as a nonholonomic version of the Euler top. The configuration

space is diffeomorphic to SO(3) × R
2. We choose the Euler angles (θ, φ, ψ) and the Cartesian

coordinates (x, y) as the configuration parameters of the Chaplygin sphere. The Lagrangian

and constraints written in these coordinates become

L =
I1
2

(θ̇ cosψ + φ̇ sinψ sin θ)2 +
I2
2

(−θ̇ sinψ + φ̇ cosψ sin θ)2

+
I3
2

(ψ̇ + φ̇ cos θ)2 +
M

2
(ẋ2 + ẏ2)

and

ẋ− θ̇ sinφ + ψ̇ cosφ sin θ = 0, ẏ + θ̇ cosφ + ψ̇ sinφ sin θ = 0,

respectively.

This system is SE(2) invariant. The action by the group element (α, a, b) on the configuration

space is given by

(θ, ψ, φ, x, y) 7→ (θ, ψ, φ + α, x cosα− y sinα + a, x sinα + y cosα + b).

The shape space for the Chaplygin sphere is diffeomorphic to the two-dimensional sphere. The

nonholonomic momentum map has just one component and is moreover preserved. Straight-

forward computations show that the form (0.58) is exact. The conditions for measure existence



are therefore satisfied. The density of the invariant measure is computed in overdetermined

coordinates in Chaplygin [1903] (see also Kozlov [1985]).

The invariant manifolds of the Chaplygin sphere are two-dimensional tori. The phase flow

on these tori is measure preserving and thus there are angle variables (x, y) on each torus in

which the flow equations become

ẋ =
λ

M(x, y)
, ẏ =

µ

M(x, y)
.

See Kolmogorov [1953] and Kozlov [1985] for details. In general, these equations cannot be

rewritten as

ẋ = λ, ẏ = µ.

The flow however becomes quasi-periodic after a time substitution dt = M(x, y)dτ (see Kozlov

[1985] for details). This example thus shows that the flow on the nonholonomic invariant tori

can be more complicated than a Hamiltonian flow.

It follows that adding a symmetry preserving potential to the Lagrangian of the Chaplygin

sphere leaves the new system measure preserving with the same measure density. This was

pointed out by Kozlov for a specific potential (see Kozlov [1985] for details).

•The General Suslov Rigid Body Problem We discuss this problem just briefly here.

For more details see Federov and Koslov [1995]. A different non-asymptotic form is analyzed

in Zenkov and Bloch [1999].

The equations of motion are those of an n-dimensional rigid body with skew-symmetric

angular velocity matrix Ω with entries Ωij and symmetric moment of inertia matrix I = Iij.



One then introduces the constraints Ωij = 0, i, j ≥ 2.

(I11 + I22) Ω̇12 = I12
(
Ω2

13 + Ω2
14 + · · · + Ω2

1n

)

− (I13Ω13 + I14Ω14 + · · · + I1nΩ1n) Ω12

(I11 + I33) Ω̇13 = I13
(
Ω2

12 + Ω2
14 + · · · + Ω2

1n

)

− (I12Ω12 + I14Ω14 + · · · + I1nΩ1n) Ω13

· · · · · · · · · · · ·

(I11 + Inn) Ω̇1n = I1n
(
Ω2

12 + Ω2
13 + · · · + Ω2

1n−1

)

− (I12Ω12 + I13Ω13 + · · · + I1n−1Ω1n−1) Ω1n .

This system has the energy integral

H =
1

2

(
(I11 + I22)Ω

2
12 + (I11 + I33)Ω

2
13 + · · · + (I11 + Inn)Ω

2
nn

)
.

.

Defining the momenta M1j = (I11 + Ijj)Ω1j by the Legendre transform, we can write the

system as one of almost Poisson form Ṁ = J(M)∇H(M).

This system exhibits asymptotic behavior as indicated by the fact that the function

F = (I11 + I22)I12Ω12 + (I11 + I33)I13Ω13 + · · · + (I11 + Inn)I1nΩ1n



satisfies

Ḟ =

n∑

i<j

(I1iΩ1j − I1jΩ1)
2

along the flow and is positive everywhere except at points of the line {Ω12 = I12µ, · · · ,Ω1n =

I1nµ}, µ ∈ R.

Thus motion occurs on the energy ellipsoid (a generalization of the Toda/Chaplygin ellipse)

and asymptotes to a point on the line intersecting the ellipsoid.



• The Lyapunov-Malkin Theorem

Can be used to show asymptotic stability in a large class of nonholonomic systems, for

example the roller racer and rattleback top. See Zenkov, Bloch and Marsden [1998] and Bloch.

Baillieul, Crouch and Marsden [2002] for further details.

Take:

ẋ = Ax +X(x, y),

ẏ = Y (x, y).

Theorem 0.10 Consider this system of equations. If X(0, y) = 0, Y (0, y) = 0, and all

the eigenvalues of the matrix A have negative real parts, then the system has n local

integrals in the neighborhood of x = 0, y = 0.

Theorem 0.11 (Lyapunov-Malkin) Consider the above system of differential equa-

tions where x ∈ R
m, y ∈ R

n, A is an m × m-matrix, and X(x, y), Y (x, y) represent

nonlinear terms. If all eigenvalues of the matrix A have negative real parts, and X(x, y),

Y (x, y) vanish when x = 0, then the solution x = 0, y = c of the system is stable with

respect to x, y, and asymptotically stable with respect to x. If a solution x(t), y(t) is close

enough to the solution x = 0, y = c, then

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = c.



•Example

ẋ = − x + xy

ẏ =xy
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Figure 0.8: Phase Portrait for Lyapunov Malkin example.



As can be seen from the phase portrait and simulation below, exhibits asymptotic stability

for small values of x and y.
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Figure 0.9: Flow for Lyapunov-Malkin example.



The Constrained Routhian. This function is defined by analogy with the usual Routhian

by

R(rα, ṙα, pa) = lc(r
α, ṙα, Iabpb) − Iabpapb,

and in terms of it, the reduced equations of motion become

d

dt

∂R

∂ṙα
−
∂R

∂rα
= −Dc

bαI
bdpcpd − Bc

αβpcṙ
β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ,

d

dt
pb = Cc

abI
adpcpd + Dc

bαpcṙ
α + Dαβbṙ

αṙβ.

we define the function E by

E =
1

2
gαβ ṙ

αṙβ + U(rα, pa),

which represents the reduced constrained energy in the coordinates rα, ṙα, pa, where U(rα, pa)

is the amended potential defined by

U(rα, pa) =
1

2
Iabpapb + V (rα),

and V (rα) is the potential energy of the system.

Can show: that the reduced constrained energy is conserved along the flow.



Stability of Nonholonomic Systems

Skew Symmetry Assumption.

We assume that the tensor Cc
abI

ad is skew-symmetric in c, d. Under this assumption, the

terms quadratic in p in the momentum equation vanish, and the equations of motion become

d

dt

∂R

∂ṙα
−
∂R

∂rα
= −Dc

bαI
bdpcpd − Bc

αβpcṙ
β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ,

d

dt
pb = Dc

bαpcṙ
α + Dαβbṙ

αṙβ.

Convenient to consider 3 cases:

Pure Transport Case Terms quadratic in ṙ are not present in the momentum equation,

so it is in the form of a transport equation—i.e., the momentum equation is an equation of

parallel transport and the equation itself defines the relevant connection.

Under certain integrability conditions transport equation defines invariant surfaces, which

allow us to use a type of energy-momentum method for stability analysis in a similar fashion to

the manner in which the holonomic case uses the level surfaces defined by the momentum map.

Key difference: here additional invariant surfaces do not arise from conservation of momentum.

One gets stable, but not asymptotically stable, relative equilibria. Examples include: rolling

disk, a body of revolution rolling on a horizontal plane.

Integrable Transport Case Terms quadratic in ṙ are present in the momentum equation

and thus it is not a pure transport equation. However, in this case, we assume that the



transport part is integrable. In this case relative equilibria may be asymptotically stable. Can

find a generalization of the energy-momentum method which gives conditions for asymptotic

stability. An example is the roller racer.

Nonintegrable Transport Case Again, terms quadratic in ṙ are present in the mo-

mentum equation and thus it is not a pure transport equation. However, the transport part is

not integrable. Able to demonstrate asymptotic stability using the Lyapunov-Malkin Theorem

and to relate it to an energy-momentum type analysis under certain eigenvalue hypotheses.

Example: is the rattleback top. Another example is a nonhomogeneous sphere with a center of

mass lying off the planes spanned by the principal axis body frame.



• The Pure Transport Case. Here we assume that

H1 Dαβb are skew-symmetric in α, β. Under this assumption, the momentum equation can be

written as the vanishing of the connection one form defined by dpb −Dc
bαpcdr

α.

H2 The curvature of the preceding connection form is zero.

A nontrivial example of this case is that of Routh’s problem of a sphere rolling in a surface

of revolution. See Zenkov [1995].

Under the above two assumptions, the distribution defined by the momentum equation is

integrable, and so we get invariant surfaces, which makes further reduction possible. Under the

assumptions H1 and H2 made so far, the equations of motion become

d

dt

∂R

∂ṙα
−
∂R

∂rα
= −Dc

bαI
bdpcpd − Bc

αβpcṙ
β −Kαβγ ṙ

β ṙγ,

d

dt
pb = Dc

bαpcṙ
α.

A relative equilibrium is a point (r, ṙ, p) = (r0, 0, p0) which is a fixed point for the dynamics

determined by these equations. Under assumption H1 the point (r0, p0) is seen to be a critical

point of the amended potential.

Because of our zero curvature assumption H2, the solutions of the momentum equation lie

on surfaces of the form pa = Pa(r
α, kb), a, b = 1, . . . ,m, where kb are constants labeling these

surfaces.

Using the functions pa = Pa(r
α, kb) we introduce the reduced amended potential

Uk(r
α) = U(rα, Pa(r

α, kb)). We think of the function Uk(r
α) as being the restriction of the



function U to the invariant manifold

Qk = {(rα, pa) | pa = Pa(r
α, kb)}.

Theorem 0.4 Let assumptions H1 and H2 hold and let (r0, p0), where p0 = P (r0, k
0),

be a relative equilibrium. If the reduced amended potential Uk0(r) has a nondegenerate

minimum at r0, then this equilibrium is Lyapunov stable.

Theorem 0.5 (Nonholonomic energy-momentum) Under assumptions H1 and H2,

the point qe = (rα0 , p
0
a) is a relative equilibrium if and only if there is a ξ ∈ gqe such that

qe is a critical point of the augmented energy Eξ : D/G→ R (i.e., Eξ is a function of

(r, ṙ, p)), defined by

Eξ = E − 〈p− P (r, k), ξ〉.

This equilibrium is stable if δ2Eξ restricted to TqeQk is positive definite (here δ denotes

differentiation with respect to all variables except ξ).

• Example. Falling disc.

Momentum equations:

dp1

dt
= mR2 cos θ

(
−

sin θ

A cos2 θ
p1 +

(
1

mR2 +B
+

sin2 θ

A cos2 θ

)
p2

)
θ̇,

dp2

dt
= mR2 cos θ

(
−

1

A cos2 θ
p1 +

sin θ

A cos2 θ
p2

)
θ̇.

The right hand sides of these eqns do not have terms quadratic in the shape variable θ. The

distribution, defined by by the equations is integrable and defines two integrals of the form



p1 = P1(θ, k1, k2), p2 = P2(θ, k1, k2). It is known that these integrals may be written down

explicitly in terms of the hypergeometric function. (Goes back to Appel [1900], Chaplgin [1897]

Korteweg [1899].



Matching and Controlled Lagrangians

Lagrangian Matching. Consider a mechanical system specified by the Lagrangian L =

K − V . The kinetic energy K is given by the Riemannian metric gij on the configuration

manifoldQ. The potential energy V (q) has a critical point at q0. Assuming that the equilibrium

q0 is unstable, we would like to find the feedback control inputs that stabilize this equilibrium.

This problem becomes interesting and nontrivial if the system is underactuated, i.e., the

number of the control inputs is smaller than dimQ.

Denote the unactuated and actuated variables by x = (x1, . . . , xm) and y = (y1, . . . , yn),

respectively. The controlled dynamics is governed by the equations

d

dt

∂L

∂ẋ
=
∂L

∂x
,

d

dt

∂L

∂ẏ
=
∂L

∂y
+ u,

where u = (u1, . . . , un) represents the control inputs.

According to the method of controlled Lagrangians, one introduces a new function L̃ = K̃−Ṽ

and considers the system
d

dt

∂L̃

∂ẋ
=
∂L̃

∂x
,

d

dt

∂L̃

∂ẏ
=
∂L̃

∂y
.

One then requires that the vector fields defined by the two sets of equations are identical. This

determines the feedback control inputs u. If in addition K̃ + Ṽ has a minimum (maximum) at

(q0, 0), the equilibrium q0 of the closed loop system is neutrally stable.



Nonholonomic Reduced Equations. Assume also: The curvature of the nonholo-

nomic connection zero, the controls affect some of the shape variables,t he momentum equa-

tion is in the form of a parallel transport equation.

The Routhian of the system equals

R(r, ṙ, p) =
1

2
gαβ(r)ṙ

αṙβ − U(r, p),

where the first term represents the shape metric and the second term, called the amended

potential, is defined by

U(r, p) =
1

2
Iab(r)papb + V (r).

The reduced equations of a system satisfying the assumptions 1–3 become

d

dt

∂R

∂ṙα′
= ∇α′R,

d

dt

∂R

∂ṙα′′
= ∇α′′R + uα′′,

ṗa = Db
aαpbṙ

α.

In the above, rα
′
and rα

′′
are the unactuated and actuated shape variables, respectively, and

uα′′ are the control inputs. The operators ∇α are defined by

∇α =
∂

∂rα
+ Db

aαpb
∂

∂pa
.

The equilibria of these equations represent the steady state motions of the original system.



Require also as a part of the controller design, that the actuated variables rα
′′

are cyclic.

Elimination of the Momentum Variables. Since the momentum equation is in the

form of a parallel transport equation, it defines a distribution

dpa = Dc
aα′pcdr

α′.

We assume in this paper that the curvature of this distribution vanishes (hence the name flat

in the title of the paper). This defines the global invariant manifolds Qc:

pa = Pa(r
α′, cb), cb = const. (0.70)



Stabilization of the Unicycle with Rotor Dynamical model of a homogeneous disk

on a horizontal plane with a rotor. The rotor is free to rotate in the plane orthogonal to the

disk. The rod connecting the centers of the disk and rotor keeps the direction of the radius of

the disk through the contact point with the plane (i.e., the appropriate controller has already

been implemented).

The configuration space for this system is Q = S1×S1×S1×SE(2), which we parameterize

with coordinates (θ, χ, ψ, φ, x, y).
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Figure 0.10: Unicycle with rotor.



The reduced Lagrangian for the unicycle with rotor is

Lc =
1

2

(
αθ̇2 + 2βθ̇χ̇ + βχ̇2

+ I11(θ)φ̇
2 + 2I12φ̇ψ̇ + I22ψ̇

2
)
− V (θ),

The slow vertical steady state motions of this system are represented by the relative equilibria

θ = 0, χ̇ = 0, p1 = 0, p2 = p0
2.

Momentum Reduction and Stabilization. The momentum equations define an inte-

grable distribution. The dynamics on the invariant manifolds Qc is governed by the equations

d

dt

∂Lc

∂θ̇
=
∂Lc

∂θ
,

d

dt

∂Lc

∂χ̇
= uc,

where

Lc =
1

2
(αθ̇2 + 2βθ̇χ̇ + βχ̇2) − Uc(θ),

and

Uc(θ) =
1

2
Iab(θ)Pa(θ, c),Pb(θ, c) + V (θ)

is the amended potential for the unicycle with rotor restricted to the invariant manifolds.

Observe that the components of the shape metric for the unicycle with rotor are constants. We



thus construct the controlled Lagrangians of the form

L̃c =
1

2
(αθ̇2 + 2βθ̇(χ̇ + kθ̇) + β(χ̇ + kθ̇)2)

+
σ

2
(kθ̇)2 − Uc(θ),

The steady state motions under consideration become stable if one chooses

k >
α− β

β2
.



• Nonoholonomic Control Systems on Riemannian Manifolds

First, consider the holonomic or unconstrained case:

Let (Q, 〈, 〉) be an n-dimensional Riemannian manifold, with metric g( , )

= 〈 , 〉. Denote the norm of a tangent vector X at the point p by ‖Xp‖ = 〈Xp, Xp〉
1
2 .

The geodesic flow on Q is then given by

D2q

dt2
= 0, (0.72)

where Dq
dt denotes the covariant derivative. This flow minimizes the integral

∫ 1

0

∥∥∥Dqdt
∥∥∥

2

dt along

parametrized paths.

We define a controlled holonomic system to be a system of the form

D2q

dt2
=

N∑

i=1

uiXi, (0.73)

where {Xi} is an arbitrary set of control vector fields, the ui are functions of time, and N ≤ n.

(Note that here we do not consider systems evolving under the influence of a potential, but

the analysis is easily extended to include a potential.) Such systems are sometimes now called

affine connection control systems.



We now consider the formulation of controlled nonholonomic systems in this Riemannian

setting.

Classical nonholonomic systems are obtained from Lagrange–d’Alembert’s principle, as dis-

cussed before.

The equations are
D2q

dt2
=

m∑

k=1

λiWi, (0.74)

subject to

ωk

(
Dq

dt

)
=

〈
Wk,

Dq

dt

〉
= 0, 1 ≤ k ≤ m,

where ωk(X) = 〈Wk, X〉 and the λi are Lagrange multipliers. The constraints are given by the

1-forms ωk, 1 ≤ k ≤ m, which define a (smooth) distribution H on Q.

We now define a controlled nonholonomic mechanical system to be a system of the

form
D2q

dt2
=

m∑

i=1

λiWi +

N∑

i=1

uiXi (0.75)

subject to 〈
Wk,

Dq

dt

〉
= 0 1 ≤ k ≤ m, (0.76)

where the ui(t) are controls and the Xi are arbitrary smooth (control) vector fields.



• Variational Nonholonomic Problems

Variational nonholonomic problems, on the other hand, are equivalent to the classical La-

grange problem of minimizing a functional over a class of curves with fixed extreme points and

satisfying a given set of equalities.

More precisely, we have the following : Let Q be a smooth manifold and TQ its tangent

bundle with coordinates (qi, q̇i). Let L : TQ → R be a given smooth Lagrangian and let

Φ : TQ→ R
n−m be a given smooth function.

Definition 0.16 The Lagrange problem is given by

minq(·)

∫ T

0

L(q, q̇)dt (0.77)

subject to the fixed endpoint conditions q(0) = 0, q(T ) = qT , and subject to the constraints

Φ(q, q̇) = 0.



The falling cat problem is an abstraction of the problem of how a falling cat should optimally

(in some sense) move its body parts so that it achieves a 180◦ reorientation during its fall.

In this case we begin with a Riemannian manifold Q (the configuration space of the problem)

with a free and proper isometric action of a Lie group G on Q (the group SO(3) for the falling

cat). Let A denote the mechanical connection; that is, it is the principal connection whose

horizontal space is the metric orthogonal to the group orbits. The quotient space Q/G = X ,

the shape space, inherits a Riemannian metric from that on Q. Given a curve c(t) in Q, we

shall denote the corresponding curve in the shape space X by r(t).

The problem under consideration is as follows:

Falling Cat problem: Fixing two points q1, q2 ∈ Q, among all curves q(t) ∈ Q, 0 ≤

t ≤ 1, such that q(0) = q0, q(1) = q1, and q̇(t) ∈ horq(t) (horizontal with respect to the

mechanical connection A), find the curve or curves q(t) such that the energy of the shape

space curve, namely,
1

2

∫ 1

0

‖ṙ‖2dt,

is minimized.



Local Solution. We can proceed to solve the Lagrange problem locally by forming the

modified Lagrangian

Λ(q, q̇, λ) = L(q, q̇) + λ · Φ(q, q̇), (0.78)

with λ ∈ R
n−m. The Euler–Lagrange equations then take the form

d

dt

∂

∂q̇
Λ(q, q̇, λ) −

∂

∂q
Λ(q, q̇, λ) = 0, (0.79)

Φ(q, q̇) = 0. (0.80)

The case we are particularly interested in is the case of of classical (linear in the velocity)

nonholonomic constraints:

ωi(q, q̇) =

n∑

k=1

aik(q)q̇
k = 0, i = 1, . . . , n−m. (0.81)

In the case that these constraints are integrable (equivalent to functions of q only) and

L is physical, i.e., it is a holonomic mechanical system, this system will represent physical

dynamics. In the nonholonomic case, these equations will not be physical; one needs the

Lagrange–d’Alembert principle, as we have seen in Chapters 1, 3, and 5. The following theorem

gives the differential equations for the Lagrange problem.

Theorem 0.6 A solution of the Lagrange problem Definition 0.77 with constraints of the



form (0.81) satisfies the following equations:

d

dt

∂

∂q̇i
L−

∂

∂qi
L +

n−m∑

j=1

(
d

dt
λj

)
aji +

n−m∑

j=1

λj

(
ȧji −

n∑

k=1

∂ajk
∂qi

q̇k

)
= 0 (0.82)

with the constraints
n∑

k=1

aikq̇
k = 0. (0.83)

Contrast these equations of motion with the nonholonomic equations of motion with Lagrange

multipliers obtained in Chapters 1 and 5 from the Lagrange–d’Alembert principle:

d

dt

∂

∂q̇i
L−

∂

∂qi
L =

n−m∑

j=1

λjaji . (0.84)

Observe that if we (formally) set λj = 0 and λ̇j = λj in the variational nonholonomic

equations, we recover the nonholonomic equations of motion. It is precisely the omission of the

λ̇j term that destroys the variational nature of the nonholonomic equations.



A General Formulation of Optimal Control Problems. We state a typical optimal

control problem,

min
u(·)

∫ T

0

g(x, u)dt, (0.85)

subject to the following conditions:

(i) a differential equation constraint ẋ = f (x, u), and a state space constraint x ∈ M , and a

constraint on the controls u ∈ Ω ⊂ R
k;

(ii) the endpoint conditions: x(0) = x0 and x(T ) = xT ,

where f and g ≥ 0 are smooth, Ω is a closed subset of R
k, and M is a smooth manifold of

dimension n that is the state space of the system. The integrand g is sometimes referred to as

the cost function.



The Pontryagin Maximum Principle

To state necessary conditions dictated by the Pontryagin maximum principle, we introduce

a parametrized Hamiltonian function on T ∗M :

Ĥ(x, p, u) = 〈p, f (x, u)〉 − p0g(x, u), (0.86)

where p0 ≥ 0 is a fixed positive constant, and p ∈ T ∗M . Note that p0 is the multiplier of the

cost function and that Ĥ is linear in p.

We denote by t 7→ u∗(t) a curve that satisfies the following relationship along a trajectory

t 7→ (x(t), p(t)) in T ∗M :

H(x(t), p(t), u∗(t)) = max
u∈Ω

Ĥ(x(t), p(t), u). (0.87)

Then if u∗ is defined by equation (0.87), we can define H∗ by

H∗(x(t), p(t), t) = max
u∈Ω

Ĥ(x(t), p(t), u). (0.88)

The time-varying Hamiltonian function H∗ defines a time-varying Hamiltonian vector field

XH∗ on T ∗M with respect to the canonical symplectic structure on T ∗M .

One statement of Pontryagin’s maximum principle gives necessary conditions for extremals

of the problem (0.85) as follows: An extremal trajectory t 7→ x(t) of the problem (0.85)

is the projection onto M of a trajectory of the flow of the vector field XH∗ that satisfies the

boundary condition (0.85) (ii), and for which t 7→ (p(t), p0) is not identically zero on [0, T ].



The extremal is called normal when p0 6= 0 (in which case we may set p0 = 1 by normalizing

the Hamiltonian function). When p0 = 0 we call the extremal abnormal, corresponding to

the case where the extremal is determined by constraints alone.

If the extremal control function u∗ is not determined by the system (0.87) along the extremal

trajectory, then the extremal is said to be singular, in which case further (higher-order)

necessary conditions are needed to determine u∗.

Consider here nonsingular case.

We also suppose that the data are sufficiently regular that u∗ is determined uniquely from

the condition

0 ≡
∂Ĥ

∂u
(x(t), p(t), u∗(t)), t ∈ [0, T ]. (0.89)

(Since u∗ maximizes the function Ĥ , its partial derivative in u evaluated at u∗ must vanish.)

It follows from the implicit function theorem that there exists a function k such that u∗(t) =

k(x(t), p(t)). We then set

H(x, p)
∆
= Ĥ(x, p, k(x, p)). (0.90)

Thus along an extremal,

H(x(t), p(t)) = H∗(x(t), p(t), t). (0.91)



We briefly motivate our statement of the Pontryagin maximum principle in the presence of

regularity conditions alluded to above: In particular, we assume that Ω = R
m and that u∗(t)

is uniquely determined by the condition (0.89). Treating the optimal control problem (0.85) as

a variational problem with constraints, we augment the cost function and constraints (in the

form of the constraining state differential equation) by multipliers p0 ∈ R
+ and p ∈ T ∗

M . We

obtain necessary conditions in the form

δ

∫ T

0

(p (f (x, u) − ẋ) − p0g(x, u)) dt = 0, (0.92)

where the variations are taken over pairs (x, u) satisfying the constraints ẋ = f (x, u) and the

boundary conditions x(0) = x0, x(T ) = xT .

We may restate the condition (0.92) as

δ

∫ T

0

(
Ĥ(x, p, u) − pẋ

)
dt = 0. (0.93)

Under the assumed regularity we may eliminate the variation with respect to u, and from

(0.91) the necessary condition becomes

δ

∫ T

0

(
Ĥ(x, p) − pẋ

)
dt = 0. (0.94)

This is, of course, just Hamilton’s principle for the Hamiltonian H , which yields necessary

conditions in terms of the usual Hamiltonian equations. Now from (0.89) and (0.91) the Hamil-

tonian equations for H may be replaced by the Hamiltonian equations for H ∗, resulting in the



statement of the maximum principle above. Note that whereas Ĥ and H∗ are affine in p, H is

in general not affine in p.

The main point of the Pontryagin maximum principle is that the result stated above is true

under far less severe regularity conditions and in particular where Ω is a proper subset of R
n.



Kinematic Sub-Riemannian Optimal Control Problems

We consider control systems of the form

ẋ =

m∑

i=1

Xiui, x ∈M, u ∈ Ω ⊂ R
m, (0.95)

where Ω contains an open subset that contains the origin, M is a smooth manifold of dimension

n, and each of the vector fields in the collection F := {X1, . . . , Xk} is complete.

We assume that the system satisfies the accessibility rank condition and is thus controllable,

since there is no drift term. Then we can pose the optimal control problem

min
u(·)

∫ T

0

1

2

m∑

i=1

u2
i (t)dt (0.96)

subject to the dynamics (0.95) and the endpoint conditions x(0) = x0 and x(T ) = xT .

To view this as a constrained variational problem we make some additional regularity as-

sumptions. These are not necessary, but even when they hold, they produce a very rich class

of problems.

Assumption.

(i) The system defined by (0.95) satisfies the accessibility rank condition.

(ii) The dimension of DF is constant on M and equal to k. (Thus the vector fields X1, . . . , Xk

are everywhere independent.)



(iii) There exist exactly n− k = m one-forms on M ω1, . . . , ωm such that the codistribution

D⊥
F (x) = {ω̄ ∈ T ∗

xM ; ω̄DF (x) = 0}

is spanned by ω1, . . . , ωm everywhere. (This condition implies that M is parallelizable.)

Since DF has constant dimension on M , we may define a norm on each subspace DF (x); if

X ∈ DF (x) and X =
∑k

i=1 αiXi(x), then we define

|X| :=

k∑

i=1

α2
i .

This norm defines an inner product on DF (x), denoted by 〈·, ·〉x, which can be extended to a

metric onM . The optimal control problem (0.96) is now equivalent to the following constrained

variational problem when the assumptions (i), (ii), (iii) hold:

min
x(·)

1

2

∫ T

0

〈ẋ, ẋ〉xdt (0.97)

subject to the condition that x(·) is a piecewise C1 curve inM such that x(0) = x0, x(T ) = xT ,

and ωi(x)(ẋ) = 0, 1 ≤ i ≤ m. This problem is often referred to as the sub-Riemannian

geodesic problem, to distinguish it from the Riemannian geodesic problem, in which the

constraints are absent.



The singular nature of the sub-Riemannian geodesic problem is manifested in many ways, such

as the existence of distinct abnormal extremals and the singular nature of the sub-Riemannian

geodesic ball, as first investigated by Brockett. If we define a metric on M by setting

d(x0, xT ) = min
x(·)

∫ T

0

|ẋ|dt, ẋ ∈ DF (x), x(0) = x0, x(T ) = xT ,

BF
ε (x0) = {x̄ ∈M ; d(x̄, x0) ≤ ε},

then the sub-Riemannian geodesic ball SFε (x0) is simply the boundary of BF
ε (x0).



Formulation on Riemannian Manifolds

Let M be a Riemannian manifold of dimension n with metric denoted by 〈·, ·〉. The cor-

responding Riemannian connection and covariant derivative will be denoted by ∇ and D/∂t,

respectively. Now assume thatM is such that there exist smooth vector fieldsX 1(q), . . . , Xn(q)

satisfying 〈X i(q), Xj(q)〉 = δij, an orthonormal frame for TqM for all q ∈M .

We now define the kinematic control system on M by

dq

dt
=

m∑

i=1

uiX
i(q), m < n. (0.98)

The optimal control problem is defined by

min
u

∫ T

0

1

2

m∑

i=1

u2
i (t)dt; q(0) = q0, q(T ) = qT , (0.99)

subject to (0.98).

This may be posed as a variational problem on M as follows: Define the constraints

ωk

(
dq

dt

)
=

〈
Xk,

dq

dt

〉
= 0, m < k ≤ n, (0.100)

and let

Zt =

n∑

k=m+1

λk(t)X
k, (0.101)



where the λk are Lagrange multipliers. By the orthonormality of the X i the optimal control

problem then becomes

minq J(q) = minq

∫ T

0

(
1

2

〈
dq

dt
,
dq

dt

〉
+

〈
Zt,

dq

dt

〉)
dt, (0.102)

〈
Zt,

dq

dt

〉
= 0. (0.103)



We now briefly derive necessary conditions for the regular extremals of this variational prob-

lem.

Firstly, we have to define the variations we are going to use: The tangent space to the space

Ω of C2 curves satisfying the boundary conditions of (0.99) is denoted by TqΩ. It is the space

of C1 vector fields t→ Wt along q(t) satisfying W0 = 0 = WT . The curve t→ DWt
∂t in TM is

continuous. Exponentiating a vector field in TqΩ we obtain a one-parameter variation of q:

α : [0, T ] × (−ε, ε) →M, (0.104)

αu(t) = α(t, u) = expq(t)(uWt), (0.105)

where exp is the exponential mapping (integral curve) on M . Note that

αu(0) = q(0) = q0, αu(T ) = q(T ) = qT , α0(t) = q(t),

∂α0(t)

∂u
= Wt, 0 ≤ t ≤ T.

The necessary conditions for regular extremals are obtained from

d

du
J(αu)|u=0 = 0, (0.106)

where

J(αu) =

∫ T

0

(
1

2

〈
∂αu
∂t

,
∂αu
∂t

〉
+

〈
Zt(αu),

∂αu
∂t

〉)
dt . (0.107)



Now

DJ(αu)

du

∣∣∣∣
u=0

=

∫ T

0

(〈
dq

dt
,
DWt

∂t

〉
+

〈
∇Wt

Zt,
dq

dt

〉
+

〈
Zt,

D

∂t
Wt

〉)
dt

=

∫ T

0

(
−

〈
D

dt
Vt,Wt

〉
−

〈
D

∂t
Zt,Wt

〉

− 〈∇Zt
Vt,Wt〉 + 〈[Wt, Zt], Vt〉

)
dt, (0.108)

where

Vt =
dq

dt
=

m∑

i=1

vi(t)X
i(q).



Necessary Conditions on a Compact Semisimple Lie Group.

Now let M = G, G a compact semisimple Lie group, with Lie algebra g, and let 〈〈·, ·〉〉 =

−1
2κ(·, ·), where κ is the Killing form on g.

Let J be a positive definite linear mapping J : g → g satisfying

〈〈JX, Y 〉〉 = 〈〈X, JY 〉〉, (0.109)

〈〈JX,X〉〉 ≥ 0 (= 0 if and only if X = 0). (0.110)

Now we can define a right-invariant metric on G as follows: If X, Y ∈ g and Rg is right

translation on G by g ∈ G, then

Xr
g = Xr(g) = Rg∗X and Y r

g = Y r(g) = Rg∗Y

are corresponding right-invariant vector fields. Now

〈Xr(g), Y r(g)〉 = 〈〈X, JY 〉〉 (0.111)

defines a right-invariant metric on G. Corresponding to the right-invariant metric 〈·, ·〉 there

is a unique Riemannian connection ∇ , and ∇ defines a bilinear form on g:

(X, Y ) → ∇XY =
1

2
{[X, Y ] + J−1[X, JY ] + J−1[Y, JX ]}, X, Y ∈ g. (0.112)

The expression for ∇ on right-invariant vector fields on G is

(∇XrY r)(g) = (∇XY )rg. (0.113)

We now show how to reduce the variational problem to one in the Lie algebra: Choose an

orthonormal basis ei on g, 〈〈ei, Jej〉〉 = δij, and extend it to a right-invariant orthonormal

frame on TgG, X i(g) = Rg∗ei ≡ X ir(g).



Find the necessary conditions on g are

V̇t + J−1[Vt, JZt] + Żt + J−1[Vt, JVt] = 0 (0.114)

with the constraint 〈
dg

dt
, Zt

〉
= 〈〈Vt, JZt〉〉 = 0 . (0.115)



The Case of Symmetric Space Structure

Suppose now that G/K is a Riemannian symmetric space, G as above, K a closed

subgroup of G with Lie algebra k. Then g = p ⊕ k with [p, p] ⊂ k, [p, k] ⊂ p, [k, k] ⊂ k,

and 〈〈k, p〉〉 = 0. We now want to consider the necessary conditions (0.114) in this case. We

shall see that they simplify in an intriguing fashion, giving us a singular case of the so-called

generalized rigid body equations.

The generalized rigid body equations are a natural generalization of the classical 3-dimensional

rigid body equations. We recall that the left-invariant generalized rigid body equations on

SO(n) may be written as

Q̇ = QΩ,

Ṁ = [M,Ω], (0.116)

where Q ∈ SO(n) denotes the configuration space variable (the attitude of the body), Ω =

Q−1Q̇ ∈ so(n) is the body angular velocity, and

M := J(Ω) = ΛΩ + ΩΛ ∈ so(n)

is the body angular momentum. Here J : so(n) → so(n) is the symmetric (with respect to

the inner product defined by the Killing form), positive definite, and hence invertible operator

defined by

J(Ω) = ΛΩ + ΩΛ,

where Λ is a diagonal matrix satisfying Λi + Λj > 0 for all i 6= j. For n = 3 the elements of Λi

are related to the standard diagonal moment of inertia tensor I by I1 = Λ2 + Λ3, I2 = Λ3 + Λ1,



I3 = Λ1 + Λ2.

Since V̇t + J−1[Vt, JZt] ∈ p and Żt + J−1[Vt, JVt] ∈ k, the necessary conditions (0.114)

become

V̇t = J−1[JZt, Vt],

Żt = J−1[JVt, Vt], (0.117)

or, if we define Pt = JVt and Qt = JZt,

Ṗt = [Qt, J
−1Pt],

Q̇t = [Pt, J
−1Pt]. (0.118)

We will now show that equations (0.118) are Hamiltonian with respect to the Lie–Poisson

structure on g.

Recall that for F , H functions on g, their (−) Lie–Poisson bracket is given by

{F,H}(X) = −〈〈X, [∇F (X),∇H(X)]〉〉, X ∈ g, (0.119)

where dF (X) · Y = 〈〈∇F (X), Y 〉〉.

ForH(X) a given Hamiltonian, we thus have the Lie–Poisson equations Ḟ (X) = {F,H}(X).

Letting F (X) = 〈〈A,X〉〉, A ∈ g, we obtain

〈〈A, Ẋ〉〉 = −〈〈X, [A,∇H(X)]〉〉 = 〈〈A, [X,∇H(X)]〉〉 (0.120)

and hence

Ẋ = [X,∇H(X)]. (0.121)



For H(M) = 1
2〈〈M,J−1M〉〉, M ∈ g, and J as in the previous subsection, we obtain the

generalized rigid body equations

Ṁ = [M,J−1M ] . (0.122)

Now for X = P + Q ∈ p ⊕ k, let H(X) = H(P ) = 1
2〈〈P, J

−1P 〉〉, P ∈ p. Then ∇H(X) =

J−1P ∈ p, and equations (0.121) become

(Qt + Pt)
· = [Qt + Pt, J

−1Pt], (0.123)

or

Ṗt = [Qt, J
−1Pt],

Q̇t = [Pt, J
−1Pt], (0.124)

which are precisely equations (0.118).

Thus equations (0.118) are Lie–Poisson with respect to the “singular” Hamiltonian H(P ).

Summarizing then, we have the following result:

Theorem 0.7 The optimal trajectories for the singular optimal control problem (0.98),

(0.99) on a Riemannian symmetric space are given by equations (0.118). These equations

are Lie–Poisson with respect to a singular rigid body Hamiltonian on g.

We see, therefore, that we can obtain the singular optimal trajectories by letting J |k→

∞ in the full rigid body Hamiltonian H(X) = 1
2〈〈X, J

−1X〉〉, thus obtaining the singular

Hamiltonian

H(P ) =
1

2
〈〈P, J−1P 〉〉.



This observation also enables us to obtain the singular rigid body equations directly by a

limiting process from the full rigid body equations. The key is the correct choice of angular

velocity and momentum variables corresponding to the Lie algebra decomposition g = p ⊕ k.

In the notation of equation (0.118) we write an arbitrary element of g as M = JV + Q,

JV ∈ p, Q ∈ k. Then the generalized rigid body equations (0.122) become

JV̇t = [Qt, Vt] + [JVt, J
−1Qt],

Q̇t = [Qt, J
−1Qt] + [JVt, Vt] . (0.125)

Letting J |k→ ∞ we obtain

JV̇t = [Qt, Vt],

Q̇t = [JVt, Vt]. (0.126)

We note that this is a mixture between the Lagrangian and Hamiltonian pictures. While the

variables in k are momenta (and should really be viewed as lying in k∗), the variables in p are

velocities.

The necessary conditions above may also be derived directly from the maximum principle

developed for Lie groups, yielding an invariant maximum principle. The Hamiltonian in the

maximum principle of the system (0.118) is precisely 1
2〈Pt, J

−1Pt〉. This is just the sum of the

Hamiltonians corresponding to each of the vector fields Xi.

Write M ∈ g as M = JZ + P , Z ∈ k, P ∈ p, which we can do, since J : p → p and



J : k → k. Then the Hamiltonian (in the maximum principle) becomes

H(M) = 〈M,J−1M〉 = 〈JZ + P, J−1(JZ + P )〉

= 〈JZ, Z〉 + 〈P, J−1P 〉. (0.127)

Letting J |k→ ∞ we see that the cost becomes infinite unless Z = 0, i.e., unless the constraints

are satisfied.



Example We consider a simple but nontrivial example: the symmetric space SO(3)/ SO(2).

In this case g = k ⊕ p becomes so(3) = so(2) ⊕ R
2 relative to a given choice of z-axis used to

embed SO(2) into SO(3). We may thus represent matrices in so(3) as



0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 (0.128)

with the lower 2 × 2 block in so(2).

This example illustrates the importance of writing the optimal equations in the natural

variables M = JV + Q in order to understand the limiting process in equations (0.125) and

(0.126).

We write here

M =




0 −J3ω3 J2ω2

J3ω3 0 −m1

−J2ω2 m1 0


 . (0.129)

Here Qt ∈ so(2) has “momentum” variable m1. Then the equations

(JVt +Qt)
· = [JVt +Qt, Vt] (0.130)



become, for g = so(3),

ṁ1 = (J2 − J3)ω2ω3,

J2ω̇2 = −m1ω3,

J3ω̇3 = m1ω2. (0.131)

The full rigid body equations in these variables are

(JVt +Qt)
· = [JVt +Qt, Vt + J−1Qt], (0.132)

which for g = so(3) are

ṁ1 = (J2 − J3)ω2ω3,

J2ω
·
2 =

(
J3

J1
− 1

)
ω3m1,

J3ω̇3 =

(
1 −

J2

J1

)
m1ω2, (0.133)

which clearly approaches to (0.131) as J1 → ∞.

Note that if we write the rigid body equations in the usual form,

J(Vt + Zt)
· = [J(Vt + Zt), Vt + Zt] , (0.134)



we obtain, for g = so(3),

J1ω̇1 = (J2 − J3)ω2ω3,

J2ω̇2 = (J3 − J1)ω1ω3,

J3ω̇3 = (J1 − J2)ω2ω1. (0.135)

In this formulation, where we do not distinguish between p and k, the limiting process described

above is not obvious. The same is true for the rigid body in the momentum representation.

We remark that this set of equations, despite its singular nature, is still integrable, for we

still have two conserved quantities, the Hamiltonian H(ω) = J2ω
2
2 + J3ω

2
3(=

1
2〈P, J

−1P 〉) and

the Casimir

C(ω) = m2
1 + J2

2ω
2
2 + J2

3ω
2
2.

(Recall that a Casimir function for a Poisson structure is a function that commutes with every

other function under the Poisson bracket. )

It is interesting to consider the case J = I . Equations (0.118) then become

Ṗt = [Qt, Pt],

Q̇t = 0. (0.136)

Hence Qt = Q is constant.

Similarly, considering (0.117), we obtain

V̇t = [Zt, Vt], Zt = Z, (0.137)

Z a constant. This is, of course, solvable: Vt = AdeZt V0 and ui(t) = 〈〈ei,AdeZt V0〉〉.



Consider again the case SO(3)/SO(2). Since Vt ∈ R
2 and Zt ∈ so(2), we may set

Z =




0 0 0

0 0 −φ

0 φ 0


 , (0.138)

where φ is fixed. Then

eZt =




1 0 0

0 cosφt − sinφt

0 sinφt cosφt


 . (0.139)

Hence the optimal evolution of Vt (or equivalently the optimal controls) is given by rotation.


