Quantum Probability Team

Workshops and Seminars

(for other seminars related to Quantum Information in the "Città Studi" area see also Open Systems & Quantum Information Seminars)



15 - 10 - 2018, Workshop The 39th International Conference on Quantum Probability and Infinite Dimensional Analysis





12 - 09 - 2018, Workshop International conference "Quantum information, statistics, probability" with a special session dedicated to A. S. Holevo's 75-th birthday





02 - 09 - 2018, Workshop Quantum Transport Equations and Applications





06 - 06 - 2018, Workshop Three Days in Quantum Mechanics





29 - 11 - 2018 ore 14:30 - Aula Seminari III piano


Damiano Poletti (Politecnico di Milano): Characterization of Attraction Domains for Generic Quantum Semigroups


In my talk I will present the topics covered during my theses work, concerning problems linked to decoherence and asymptotic evolution of Quantum Markov Semigroups. More precisely I will introduce the subclass of Generic Quantum Semigroups and show existing results characterizing their decoherence-free subalgebra and their invariant states. Eventually I will show the results we obtained regarding attraction domains of invariant states, a topic closely related to the asymptotic behaviour of any state undergoing system evolution.  


08 - 11 - 2018 ore 11:30 - Aula Consiglio VII piano


Matteo Gianella (Politecnico di Milano): Esperimenti di decision-making, probabilità classica e quantistica




12 - 10 - 2018 ore 14:00 - Aula Seminari III piano


Louis H. Y. Chen (National University of Singapore): On the error bound in the normal approximation for Jack measures


The one?parameter family of Jack_? measures on partitions of n is an important discrete analog of Dyson’s ? ensembles of random matrix theory.  Except for ? = ½, 1, 2, which have group theoretic interpretations, the Jack_ ? measure is difficult to analyze. In the case ? = 1, the Jack measure agrees with the Plancherel measure on the irreducible representations of the  symmetric group S_n, parametrized by the partitions of n.  The normal approximation for the  character ratio evaluated at the transposition (12) under the Plancherel measure has been well  studied, notably by Fulman (2005, 2006) and Shao and Su (2006).  A generalization of the  character ratio under the Jack_ ? measure has also been studied by Fulman (2004, 2006) and  Fulman and Goldstein (2011).  In this talk, we present results on both uniform and non?uniform  error bounds on the normal approximation for the Jack_ ? measure for ? > 0.   Our results  improve those in the literature and come very close to solving a conjecture of Fulman (2004).   Our proofs use Stein’s method and zero?bias coupling. This talk is based on joint work with Le  Van Thanh.   


13 - 02 - 2018 ore 14:30 - Aula Seminari III piano


Caterina Foti (Università degli Studi di Firenze): Macroscopic quantum systems & Measuring apparatuses


The emergence of classicality is the mechanism that makes us to observe a classical reality despite the fundamental laws of physics being quantum. Apart from the neverending diatribe between different interpretations of Quantum Mechanics, what can be considered more or less accepted is that we experience a classical reality due to the continuos interaction between each microscopic component of any physical system and its environment, that can be regarded as the measuring apparatus and must be macroscopic since it contains us as observers. Among the various approaches proposed over the years by different authors to deal with the "quantum-to-classical" crossover, a useful tool is provided by the general method introduced by L. G. Yaffe in 1982 for finding the classical limits as large-N limits of arbitrary quantum theories with N dynamical variables. Such method isolates the minimal structure that any quantum theory should possess in order to have a classical limit. By using Yaffe's results in the framework of open quantum systems dynamics, one can show that whenever quantum environments have a sensible large-N limit, they evolve as if they were the same measuring apparatus in the classical limit.