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A B S T R A C T

Large negative peak pressures commonly take place near the edges of buildings due to the presence of local corner
vortices and impingement of shear layers. As a result, Probability Density Functions (PDF) of the measured
pressure signals exhibit one or more components which contributes to the non-Gaussianity of the pressure
loading. These mixed flows can be modeled with mixture models. Whenever several processes coexist, and when
one of them is leading in the tail of the statistical distribution, it is natural to construct the extreme value model
with only this process leading in the tail and not with the mixed observed pressures. In this paper, we propose a
method that is based on the autocorrelation of the pressure coefficient to de-mix the measured signals. This in-
formation improves the de-mixing process where classical methods would struggle. Indeed, the two phenomena to
be separated and identified might be characterized by significantly different time-scales, which are not reflected
in the PDF. In this paper, the large negative pressures measured on a flat roof are analyzed and decomposed into
two elementary processes, namely, the flapping corner vortex and the turbulent flow detaching from the sharp
upstream edges. This paper finally shows that an accurate decomposition of the recorded pressures into their
underlying modes provides a more meaningful evaluation of extreme pressures.
1. Introduction and motivation

Wind pressures on buildings are characterised by non-Gaussian sto-
chastic processes. This fact has been supported for several decades by
wind tunnel and on-site measurements (Newberry et al., 1974; Holmes,
1981; Peterka, 1983; Letchford and Mehta, 1993; Gioffr�e et al., 2001;
Sadek and Simiu, 2002). With the increasing sampling frequencies and
denser pressure tap grids available today, larger extreme values can be
captured in wind tunnel studies, which keeps offering an important in-
terest to this problem (Amerio, 2017; Amerio et al., 2018; Huang et al.,
2016; Rizzo et al., 2018). In many cases, the non-Gaussianity of the
pressure field is attributable to large negative (suction) peaks in the
separated-flow regions and on leeward walls of high-rise buildings. This
non-Gaussianity makes the processing of wind tunnel data rather chal-
lenging in several aspects.

First, the statistical treatment of the peak pressure does not follow the
usual procedure that is used for Gaussian processes (Davenport, 1964a),
which would, otherwise results in significant discrepancies (Quan et al.,
2009). This explains the development of numerous models aiming at
22 May 2020; Accepted 23 June
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capturing the non-Gaussian nature of the pressure field (Chen and Huang,
2009; Ding and Chen, 2014; Huang et al., 2017; Kwon and Kareem, 2009,
2011; Liu et al., 2017; Peng et al., 2014). Similarly, standard methods to
estimate equivalent static wind loads such as the load-response correla-
tion have difficulties to accurately reconstruct the envelope of structural
responses (Blaise et al., 2017). Some equivalent static wind loads have,
however, been designed to deal with the (possibly dynamic) response of
structures to significantly non-Gaussian pressure fields (Blaise et al.,
2016).

Second, it turns out that the events that are responsible for the very
large negative peaks occupy a limited area in space (Amerio, 2017),
usually smaller than the typical distance between two pressure taps,
which stirs up interest in understanding the spatial coherence associated
with these events. These two items and their consequences are briefly
discussed next. Although the methodology presented in this paper is
illustrated for very large negative and localized peaks, it could also be
applied to mildly non-Gaussian processes with coherent structures being
correlated along a wider area. It would offer a complementary outlook on
the de-mixing possibilities offered by the independent component
2020
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analysis, see e.g. (Carassale and Brunenghi, 2012), and other source
separation methods (Comon and Jutten, 2010). In any case, it is impor-
tant to notice that a large amount of literature is available in wind en-
gineering about the second-order decomposition of a wind pressure field.
By second order, we mean the methods based on the covariance (zero-lag
autocorrelation matrix), power spectral densities and cross-power spec-
tral densities (Jolliffe, 2005). These methods are based on eigenvalue
decomposition (Best and Holmes, 1983; Holmes et al., 1997), principal
component analysis for the decomposition (Bienkiewicz et al., 1995;
Baker, 2000; Solari et al., 2007), double decomposition (Tubino and
Solari, 2005) and reconstruction (Kho et al., 2002) of the wind pressure
field. All these methods are not suitable to decompose a significantly
non-Gaussian pressure field into simpler components. Indeed, in statis-
tics, the lower the considered moment, the closer to the bulk of the
density. Hence, as soon as peak values and tail events are considered,
higher statistics are required.

Pressures measured in a wind tunnel are used in the structural design
with two major aims: (i) the determination of equivalent loads that can
be used for the design of the main (Kareem and Zhou, 2003) and more
locally important (Blaise and Deno€el, 2013; Blaise et al., 2016) elements
of the structural system and (ii) the design of cladding and other façade
elements with respect to the local extreme pressures. The former question
is not significantly affected by the non-Gaussian nature of the wind
pressures. Indeed, evoking the central limit theorem, their imperfect
correlation in space along the whole structure results in rather Gaussian
base shear and overturning moment. Similarly, for the main elements of
the bearing system, as soon as the influence line/surface affecting these
elements is large enough, they tend to exhibit rather Gaussian responses.
However, the occurrence of large localized negative peaks is decisive in
the design of façade elements, whose sizes could be similar to the extent
in space of these large suction peaks, which does not make them benefit
from the central limit theorem.

Very large negative peak pressures have been recently reported,
which triggers a certain concern in how to deal with these large negative
pressures for the design of façade elements. These are traditionally
designed in a static manner, which therefore means that they would have
to withstand (in a static way) these large negative pressures. So far,
values of pressure coefficients as large (in absolute value) as cp ¼ � 18
(Lin et al., 1995), cp ¼ �14 (Amerio, 2017) or cp ¼ �8 (Blaise et al.,
2017) have already been observed. Although they are hardly believable
to any practitioner (bearing in mind the economic consequences of using
such large pressure coefficients in a static design), the experimental value
of these large numbers is demonstrated. They are substantially larger
than typical pressure coefficients on buildings, and their treatment in the
design process of cladding elements requires a specific attention. Because
it is naturally difficult to design the cladding element on the basis of a
very large peak pressure (along the entire element), several solutions
have been imagined to define design forces in reasonable ranges. To
consider the shorter space scale of these events, and the imperfect cor-
relation in space (Deno€el and Maquoi, 2012), or so-called size effect
(Carassale, 2012; Blaise et al., 2014), is a first natural way to reduce the
total resultant of wind pressures on a cladding element. In fact, this first
option to deal with these large negative peaks dates back to the late
1970s. Because the allowable density of pressure taps was not fine
enough to capture the spatial distribution of the extreme suction events,
the pioneers in wind engineering have proposed to connect the time and
space scales of the wind pressure, through a relation of the type T ¼
4:5L=V, where L is a characteristic length; see works of Newberry
(Newberry et al., 1974), then Lawson (Lawson and. Lawson, 1980), Cook
(1986) and Holmes (1997). In these works, the assumption of frozen
turbulence (Dyrbye and Hansen, 1996) is already predominant. It con-
nects the time and space scales, which seems acceptable as long as the
wind field of the atmospheric boundary layer is concerned and is sta-
tionary (in time) and homogenous (in space). The first attempts at
modeling the time-space dependency in this way seem to be attributable
to Davenport (1964b), and indeed related to a turbulent wind field. Then,
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when analyzing the pressures on the Royex building, Newberry (New-
berry et al., 1974) founds a similar relation for the pressure field, in areas
of the building which are located close to the center of the building faces,
but not close to edges. These two observations have inspired the
following generation of researchers in using a frozen turbulence
approach to model the stochastic wind fields, which has been adopted by
modern design codes (Cook, 1986; Eurocode, 1991). Furthermore, most
of the above-mentioned references have considered a real exponentially
decreasing co-spectrum (Dyrbye and Hansen, 1996). In this work, we
further justify why it is desired not to base our work on a time-space
modeling of the wind pressure and explain why an analysis of the
pointwise data (i.e. a set of stochastic processes rather than a stochastic
field) still makes sense today. This paper is therefore limited to the
analysis of the non-Gaussian nature of the wind pressure at a single
measurement point.

Non-Gaussian stochastic processes are usually modeled with a non-
Gaussian probability density function (PDF) and a power spectral den-
sity (PSD) (Grigoriu, 1998). This is by the way the usual information that
is considered today to generate samples of non-Gaussian processes
(Gioffre and Grigoriu, 2005; Gurley and Kareem, 1999). The
non-Gaussian nature of the process can be revealed by the PDF, as well as
the first few statistical moments. In other models, the bispectrum of the
load is also modeled (Shields et al., 2011), which plays a major role as
soon as the dynamics of the structural system cannot be neglected
(Deno€el, 2011). When very large negative peaks are of concern, the wind
pressure typically features two distinct and interacting phenomena
(Cook, 2016; Gioffre and Grigoriu, 2016). In worse cases (of large
non-Gaussianity), the pressure distribution can even become bimodal
which immediately calls for a separation of the two different phenomena
(Cook, 2016; Gioffre and Grigoriu, 2016). Existing procedures to
decompose a time series into two components are typically based on the
PDF of the measured pressure (Cook, 2016), while other blind source
separation techniques (Comon and Jutten, 2010) would typically require
several combinations of the independent processes in order to be able to
decompose them. Observing that the timescales associated with the two
mixed components are different (Rigo et al., 2018) (typically slow
background turbulence and fast shedding/flapping), in this paper, we
propose to perform the de-mixing operation with the help of the auto-
correlation of the measured pressure. This decomposition of the wind
pressure at a given location provides a clear picture of the two or more
competing sources of activity leading to the (mixed) measured pressure.

In passing, it is observed that the cubic translation model (Winter-
stein, 1987) that is widely used to model extremes of wind pressure data,
requires to meet some monotone conditions (Peng et al., 2014). The limit
corresponds to the occurrence of an inflection point in the cubic trans-
formation. This situation naturally tends to occur when the PDF of the
wind pressure is bimodal. This makes the translation model inapplicable
in these cases. To compensate for this limitation, several modifications
have already been proposed, see e.g. (Peng et al., 2014); although being
driven by a search of pragmatic procedures, they are usually not based on
physics. Alternatively, we suggest dealing with these processes failing to
satisfy the monotone condition, by first de-mixing the wind pressure
process, and then applying a cubic translation model to each component.
An example given in this paper shows that this approach significantly
extends the applicability and accuracy of the cubic translation model.

The paper is organized as follows. First, a short discussion on the
stationarity in time and space of the wind pressure field is given. Then,
the novel algorithm to de-mix pointwise pressure data, on the basis of the
PDF and the different timescales in the process, is presented. The pro-
cedure is illustrated with a set of pressure data measured on a flat roof at
45� incidence, which is known to produce corner vortices. An illustration
shows that the proposed algorithm is able to efficiently de-mix the two
components. Last but not least, two examples of added value of the
proposed de-mixing are shortly presented. The first one concerns the
applicability of the cubic translation model; the second concerns the
interpretation of the total pressure on a cladding as a sum of a slow
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(quasi-static) turbulence and a fast (impulsive) sequence of suction
peaks.

2. Homogeneity in space and stationarity in time

A large literature about the distribution in space of the wind velocity
or pressure is based on the concept of admittance (Holmes, 1997; Deno€el
and Maquoi, 2012), frozen turbulence (Dyrbye and Hansen, 1996) or
similar models relating time and space with a characteristic velocity.
With a little perspective, it appears obvious that this equivalence be-
tween time and space scales ought not be used in the areas of the
structure where the wind pressure is not stationary in time or
non-homogenous in space. The point followed in this paper is that this is
precisely in these areas that the pressures are significantly non-Gaussian.
Indeed, although the wind pressure field could be considered as statis-
tically stationary in time even in the areas of large non-Gaussianity (to be
detailed next), it is certainly not homogenous in space, in general, and
especially where significantly non-Gaussian pressure fields are observed,
e.g. in the neighborhood of the edges of a building. In these areas, the
pressure field is non homogenous in space, i.e. the statistics of the wind
pressure change from place to place. For instance, the first rank statistics
(mean, standard deviation, skewness, etc.) exhibit large gradients, which
is enough to classify the wind pressure field as non-homogenous in space.
On the opposite, the wind pressures are stationary in time, i.e. the sta-
tistics are independent of the origin of time; in other words, the first rank
statistics are independent of time. This is even better, wind pressures are
typically ergodic processes in time, which means that the statistics per-
formed through the probability space are equally estimated by time av-
erages (Papoulis, 1991) (p. 427), or, said differently, a very long time
series could be used to estimate the statistics of the stochastic process.
This simple argument explains why any attempt at modeling the
non-homogenous nature of wind pressures with a universal equivalent
time-space representation, as in the TVL approach, or with an admittance
expressed as a function of ωℓ=U (with ω the inverse of a timescale, ℓ a
length scale and U the mean wind speed), would naturally fail. This fact
has been experimentally shown by Amerio et al. (Amerio, 2017; Amerio
et al., 2018), by observing that it is impossible to determine a unique
coefficient in the TVL equation, that would be universal in predicting the
resultant pressure over a certain area located close to an edge of a
building, and in various conditions of wind exposure.

In this paper, the variability in space of the wind pressure field is not
discussed and we propose to focus on the pointwise time domain data.
We first recognize that in many wind engineering problems, the non-
Gaussianity of the pressure is associated with bimodal or multimodal
distributions. Being aware of this and having observed that the two un-
derlying components of the pressure are associated with two different
timescales, an autocorrelation-based de-mixing method is suggested to
improve the standard conditioning of de-mixing techniques.

3. The considered problems

The autocorrelation-based de-mixing algorithm described in Section
4 shall be efficient in decomposing the wind pressure at a given point into
several components which evolve on different timescales, and which
could, contrarily to existing de-mixing methods, be able to deal either
with components having very similar PDFs, either with components
whose mixing weights are significantly different. So the first considered
problem is the de-mixing of such pressure time series.

This problem being solved, the statistics of the different components
in the pointwise wind loading are known, mode by mode. This offers an
interesting outlook on many connected problems.

A first adjoint problem concerns the estimation of the extreme value
distribution of the pressure coefficient. Once the two (or more) modes are
separated, it is straightforward to consider the mode that governs the tail
distribution and only consider this mode to determine the distribution of
the peak pressure. As an example, a cubic translation model would be
3

simple to use on this mode only, while inappropriate for the mixed
process (because the monotone condition is usually not met for mixed
processes). The de-mixing offers there a broader range of application of
the simple and convenient tools that have been massively used in wind
engineering. This question is addressed by means of an example is Sec-
tion 5.

A second adjoint problem concerns the design of cladding elements.
This question is briefly touched in Section 6. Having decomposed the
pressure into two components, a fast shedding/flapping with large
negative peaks and a slow background turbulent flow, it becomes natural
to consider a dynamic analysis of the cladding element. In particular, it is
known that the structural response to a fast impulsive load is governed by
the momentum of the load and might be associated with a significant
reduction of the pressure to be considered in an equivalent static analysis.
This approach appears therefore as a natural alternative to the TVL
method and the likes, in order to process the large negative pressure
peaks into realistic static pressure coefficients.

4. The autocorrelation-based de-mixing algorithm

4.1. The mixture process model

This motivates the need to develop a procedure to decompose the
measured wind pressure field into elementary processes. De-mixing
random variables and stochastic processes is a mathematical problem
that finds applications in many fields of sciences (Comon and Jutten,
2010). In wind engineering, separation techniques have already been
used to analyze wind speed especially in the field of wind energy pro-
duction (Kollu and Pakkurthi, 2012; Yu et al., 2013), but also for the
determination of design wind speeds (Cook, 2016). For instance, Cook
(2016) proposes the Skew Gaussian Exponential Mixture Model to model
the wind pressure data as a mixture of variables following one or several
skew-Gaussian distribution(s) and one or several skew hyperbolic secant
distribution(s). This model is exploited here with the major difference
that we specifically consider random processes instead of variables,
stressing out that the mixing process is a random process itself and not a
random variable. In the considered model, the value of the pressure co-
efficient is expressed as

cpðtÞ¼w1ðtÞcp;1ðtÞ þ w2ðtÞcp;2ðtÞ (1)

where we have limited the model to two components, which is justified
by the fact that we would like to model two physical processes in the
wind flow; following Cook’s approach, they are modeled as two skew-
Gaussian components. The mixing processes w1ðtÞ and w2ðtÞ, such that
w1ðtÞþ w2ðtÞ ¼ 1, are weighting factors between the two underlying
components cp;1ðtÞ and cp;2ðtÞ. The stochastic process cpðtÞ is called
mixture process model since w1ðtÞ and w2ðtÞ are equal to either 0 or 1 at
each time. This choice of model can therefore be seen as a very specific
case of a weighted combination (where w1ðtÞ and w2ðtÞ would belong to
½0;1�). In a mixture process, the pressure coefficient cp is drawn from one
of the two distributions of cp;1 or cp;2 at each time. Whether a realization
is drawn from one or the other distribution is also correlated in time,
since w1ðtÞ and w2ðtÞ have some finite memory. This makes this model
substantially different from existing mixture models for variables which
have no memory. In fact, the memory of the mixing processes is rather
long since many consecutive samples need to be taken out of a distri-
bution, either cp;1 either cp;2, in order to not alter the continuity of the
process (Fig. 1). It makes it also different from the more general weighted
combination of the two underlying processes cp;1ðtÞ and cp;2ðtÞ, for which
w1ðtÞ and w2ðtÞ belong to the full interval ½0; 1�. Again, following Cook’s
approach and the new recent trends in wind engineering, the mixture
model is chosen because it offers simple closed form expressions, as seen
next, whereas the general weighted combination model would turn into
more accurate but cumbersome equations.

Assuming that the mixing processes w1ðtÞ and w2ðtÞ and the two



Fig. 1. Example of mixture of two processes to form a pressure coefficient. The pressure is idealized as being drawn from a stochastic process associated with mode 1
for a certain duration, that a little later, as being drawn from a stochastic process associated with mode 2.
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underlying processes cp;1ðtÞ and cp;2ðtÞ are statistically independent, it is
possible to prove (see Appendix A) that the PDF of the pressure coeffi-
cient is given by

pcp ðxÞ ¼ w1pcp;1 ðx; π1Þ þ w2pcp;2 ðx;π2Þ (2)

where w1 and w2 are the average values of w1ðtÞ and w2ðtÞ, i.e. the
average mixing ratios and where pcp;i ðx; πiÞ with i 2 f1;2g are the (sta-
tionary) skew-Gaussian PDF of the underlying processes cp;1ðtÞ and
cp;2ðtÞ. They are given by

pcp;i ðx; πiÞ¼ 2
si
φ

�
x� mi

si

�
Φ
�
αi
x� mi

si

�
(3)

where φ and Φ are the standard Gaussian PDF and cumulative density
function (CDF), mi a position parameter, si a scale parameter and αi a
skewness parameter (Azzalini and Valle, 1996). To simplify notations,
these three parameters are gathered in πi ¼ fmi; si; αig for each of the two
underlying processes. They are related to the mean μi and variances σ2i of
cp;iðtÞ, for i 2 1;2, by

μi ¼ mi þ si αi

ffiffiffi
2

pffiffiffi
π

p ð1þ αiÞ1=4
; σ2i ¼ s2i

�
1� 2α2

i

πð1þ α2
i Þ
�

(4)

The average of the mixed pressure coefficient is given by μx ¼ w1μ1 þ
w2μ2, while its variance is given by σ2

cp ¼ w1σ2
1 þ w2σ2

2 þ w1w2ðμ1 � μ2Þ2.
Notice that when jμ1 � μ2j ≪ fσ21;σ22g, the variance of the mixture process
is just a weighted combination of the variances in the two components,
exactly as it is the case for the average value.

Furthermore, under the assumptions that (i) the characteristic time-
scale of the mixture process is longer than the characteristic timescales in
the two underlying processes cp;1ðtÞ and cp;2ðtÞ and (ii) jμ1 � μ2j ≪ fσ21;
σ22g, the autocorrelation function of cpðtÞ may be approximated by (see
Appendix A)

Rcp ðΔtÞ ¼ w1Rcp;1 ðΔtÞ þ w2Rcp;2 ðΔtÞ (5)

where Rcp;1 ðΔtÞ and Rcp;2 ðΔtÞ represent the autocorrelation functions of
cp;1ðtÞ and cp;2ðtÞ.

4.2. Classical de-mixing approach

A classical de-mixing approach, such as that presented in (Cook,
2016) consists in adjusting the model parameters w1, π1 and π2 in order
to minimize the residuals between the PDF of the mixture model (2) and
a non-parametric estimate ~pcp of the PDF of the experimental data. Notice
that w2 is omitted in the procedure since w2 ¼ 1� w1. Formally, col-
lecting the 7 parameters of the model in π ¼ fw1;π1; π2g, the statistical
properties of the two underlying components are obtained by solving the
following unconstrained minimization problem
4

bπ ¼ argmin
π

�
pcp ðx; πÞ � ~pcp

�2
(6)
Many optimization packages are available in shared libraries; the
implementation of such a minimization procedure is therefore not dis-
cussed. For the selected method to work efficiently, it is necessary that
the minimization problem be well-posed. Specifically, the well-posedness
of the problem depends on the gradients of the objective function FðπÞ ¼
ðpcp ðx;πÞ � ~pcp Þ2 with respect to the unknown parameters π. Intuitively,
the problem is well conditioned when the two components are well
separated and create a bimodal distribution. On the contrary, for mixed
components having close average (position) parameters, and similar
standard deviations, the de-mixing is more difficult. In the limit case of a
mixture of two identical underlying distributions, it is observed that
∂w1FðπÞ ¼ 0 since, in this case, pcp;1 ¼ pcp;2 and w1 ¼ 1� w2. This means
that w1 has no influence on the objective function and cannot be deter-
mined. It is, however, important to separate the two existing processes
since they might exhibit different dynamics and hence different extreme
value statistics. Anyways, in all other cases of close average values,
compared to the spread of the distributions of the underlying processes,
classical methods based on the PDF (first-rank information only) tend to
lack efficiency.
4.3. Proposed de-mixing approach

The difficulty to separate two mixed random processes with similar
statistical properties might be avoided if they have significantly different
dynamics/timescales. And this is the case in many wind engineering
problems! Close to edges of buildings, two phenomena are involved in
the pressure, a mixture between a slow background turbulence cp;1 and a
fast shedding cp;2, which is visible for instance in the autocorrelation
function of the mixed process, which is the only quantity that is
measured, see Fig. 2 (bottom). In a similar fashion, corner vortices,
horseshoe vortices and Von Karman vortices (Gharib et al., 1998; Hunt
et al., 2000) detaching around bluff bodies in a turbulent flow are usually
associated with shorter timescales, i.e. fast dynamics.

Fig. 2 shows for instance a typical autocorrelation function of the
pressure coefficient measured on the root of a building (details of the
wind tunnel setup are coming in section 4.4). The breakpoint in the
autocorrelation function reveals the transition from the fast shedding of
the corner vortices and the slow turbulent component. With this in mind,
it is suggested to split the autocorrelation of the pressure coefficient into
two elementary contributions. Assuming that the mixing process is slow
and that the two elementary processes have close average values (pre-
cisely where classical models are at stake), the autocorrelation is simply
given by Equation (5). With this in mind, it is proposed to approximate
the autocorrelation of the measured pressure coefficients ~Rcp ðΔtÞ with a
weighted combination of two exponentially decreasing functions,

Rcp ðΔtÞ ¼ w1σ
2
1e

�Δt=T⋆
x;1 þ w2σ

2
2e

�Δt=T⋆
x;2 (7)



Fig. 2. Autocorrelation-aided de-mixing methodology.
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where T⋆
x;1 and T⋆

x;2 are the characteristic timescales of the two underlying
components. The adjustment of the mixture process model (including the
timescales information coming from the autocorrelation) is then per-
formed in two steps. First, solve

bψ ¼ argmin
ψ

�
w1σ2

1e
�Δt=T⋆

x;1 þ w2σ22e
�Δt=T⋆

x;2 � ~Rcp ðΔtÞ
�2

(8)

where ψ ¼
n
w1σ21;w2σ22;T

⋆
x;1;T

⋆
x;2

o
collects the four parameters of the

second-rank problem. The two timescales T⋆
x;1 and T⋆

x;2 are important to
understand the physics of the flow around the considered body but are
not used in the following statistical treatment. On the contrary, the two
weighted variances w1σ21 and w2σ22 are used to constrain the first-rank
optimization problem, which now reads

bπ ¼ argmin
π;wiσ2i known

 
pcp ðx; πÞ � ~pcp

!2

: (9)

One way to transform this constrained into unconstrained optimiza-
tion problem is to write the objective function FðπÞ as a function of 5
parameters only, for instance by expressing σi, i 2 f1;2g, and hence s2i via
(4), as a function of the known values of wiσ2i , bψ 1 and bψ 2, while keeping
w1 in the list of parameters to adjust. In this approach, the final list of
unknown parameters is limited to m1, m2, α1, α2 and w1.

Fig. 2 summarizes the autocorrelation-aided de-mixing methodology
into two modes. The PDF and autocorrelation function of the time series
can be computed and used to split the statistics into two elementary
components. Although the sketch illustrates a time series with two
obvious components, the proposed method is also applicable to more
pathological cases.
4.4. Illustration of the de-mixing algorithm

4.4.1. Wind tunnel setup and flow analysis
The setup made by Blaise et al. (2017) consists of a square plan-form
Fig. 3. (a) Model inside the WT, (b) location of pressu
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low-rise building (sides of 45 m and a height of 25 m), uniformly
instrumented by 121 pressure taps in a quarter of its roof (see Fig. 3(b)),
sampled at fs ¼ 500 Hz. The model is placed at an incidence of 45� in the
atmospheric boundary layer test section of the wind tunnel (WT) of the
University of Li�ege (Fig. 3(a)). This direction is fixed to obtain symmetry
in the complex nature of the corner vortices developed at the edges
(Kawai and Nishimura, 1996).

The atmospheric boundary layer test section creates a turbulent wind
of category III according to the Eurocode (Liu et al., 2017), with z0 ¼ 0:3
m and zmin ¼ 0:5 m. The mean velocity (Equation (10)) and turbulence
intensity (Equation (11)) profiles are presented in Fig. 4(a–b).

U∞ðzÞ¼ 0:19
� z0
0:05

�0:07
ln
�
z
z0

�
Uref (10)

IuðzÞ¼ 1

ln
�

z
z0

� (11)

Pressure taps are linked to the scanner using pneumatic connection
(vinyl tubes) of internal diameter of 1.32 mm and length 600 mm. The
static pressure is well measured but unsteady components have to be
dynamically corrected, thanks to the theoretical formulation of Bergh
and Tijdeman (1967) and the experimental apparatus of Rigo (2017).
Fig. 4(c) presents the transfer function, in amplitude and phase, neces-
sary to correct measurements, until the sampling frequency of 500 Hz.
This calibration has to be carefully performed as the tube has a direct
effect on the pressure amplitude and thus the peak values.

The geometric scaling is λL ¼ 1=100. The Reynolds condition would
require a velocity scaling of λU ¼ λ�1

L ¼ 100, which would impose WT
speed of about 1000 m/s, impossible. The Reynolds dependency is more
critical for smooth and mainly circular shapes such as cylinder or sphere.
When the flow is completely separated and turbulent, the Strouhal
scaling is preferred. Because of WT performances, the velocity scaling is
chosen as λU ¼ 1=3:5. The Strouhal condition imposes λT ¼ λL=λU ¼ 1=
28:6 (time). Every measurement is converted in full scale. A total of 13 h
of measurement has been taken in the WT, corresponding to 371.8 h full
re taps on the model (wind direction fixed at 45�).



Fig. 4. (a) Mean velocity U∞ðzÞ, (b) turbulence intensity IuðzÞ profiles of the atmospheric boundary layer: measurements and comparison with suburban category III
terrain, from (Blaise et al., 2016; Eurocode, 1991) and (c) Transfer function of the pressure tubes, in amplitude and phase of corrected pressure as a function of the
frequency (Bergh and Tijdeman, 1967; Rigo, 2017).
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scale. This long information allows to compute precise PDF tail, neces-
sary to study the extreme values. In the following, statistics are presented
in a non-dimensional way: position ðξ; ηÞ ¼ ðx =L; y =LÞ and pressure co-
efficient cp ¼ p�p∞

1
2 ρU

2
∞
, with the windspeed U∞ taken at the height of the

building (z ¼ 25 m in full scale). The Reynolds number of the WT model
is 6:8� 105.

The flow around this low-rise building is characterized by corner
vortices, that roll in a cone shape. The pressure is mainly negative
because of the separated nature of the flow (μðcpÞ in Fig. 5(a)) and is the
most negative where it starts to separate, just after the edges, on the
corner. The two cones on both corners have a main axis, recognizable by
the ridge lines of the standard deviation of the pressure coefficient σðcpÞ,
in Fig. 5(b). The non-Gaussianity happens in the corner vortices bound-
aries, where γ3ðcpÞ and γeðcpÞ are the highest. For a Gaussian process, γ3 ¼
0 and γ4 ¼ 3. The excess γe ¼ γ4 � 3 ¼ 0. On Fig. 5, a lower right triangle
appears systematically, with low statistics values. This region is mainly
Gaussian, with a low dispersion and mean pressure value. Physically, the
flow in this region is the case of a simple turbulent flow on a flat plate.
This region is not studied here, since it has smaller extreme values and
represents less interest compared to the complex flow in corner vortices.
Fig. 5. Map of (a) mean, (b) standard deviation, (c) skewness, (d) kurtosis (exce

6

As suggested by Kawai (Kawai and Nishimura, 1996), there is one
main vortex at the corner, but a secondary small one develops just next to
the edge, below the main vortex. Pressure taps in this setup were not
close enough to the edge to capture this secondary vortex well. Never-
theless, in Fig. 5(c), γ3ðcpÞ increases just next to the edge, at ðξ;ηÞ ¼ ð0:05;
0:4Þ, suggesting the presence of another vortex. Banks (Banks et al.,
2000) also suggested that the magnitude of the suction peak is inversely
proportional to the size of the vortex and is the highest close to the edge.
Moreover, increasing turbulence is moving the mean vortex core position
closer to the leading edge. By looking at skewness and kurtosis values,
each pressure distribution in the corner vortices has a negative skewness
(negative extreme pressure events) and a positive excess kurtosis (called
softening process, the PDF has a flatter shape compared to a Gaussian
process). Fig. 5(e) shows pressure coefficient signals at taps 4 (near the
roof edge), 28 (inside the corner vortex) and 50 (roof center). Tap 4
shows very negative pressure (up to cp ¼ � 8) with an asymmetry in the
signal (negative γ3). Tap 28 shows lower negative peak pressure but with
a higher occurrence, leading to a higher asymmetry and more negative
γ3. These two taps are highly non-Gaussian and interesting to analyze
deeper, compared to tap 50 with a low Gaussian (symmetric) variation
ss) of all pressure taps and (e) example of time signals at taps 4, 28 and 50.



Fig. 6. Map of PDF of all taps on the roof (b) and focus on taps 1, 3, 6 and 9 (a).
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around its mean μðcpÞ ¼ � 0:5.
Fig. 6(b) gives a quick qualitative view of the PDF of pressure co-

efficients at all 121 pressure tap locations. Each PDF is represented in log
scale. The same scaling is used for all of them in order have a comparative
view of the dispersion and asymmetry of PDFs. Those in the zones
affected by corner vortices are highly non-Gaussian and two modes (two
bumps) are clearly identifiable. Fig. 6(a) shows the variation of the
relative importance of the two bumps when moving along the edge of the
roof (taps 1, 3, 6 and 9). This motivates the discussion of the next
paragraph.

4.4.2. Classical de-mixing
Fig. 7(a) shows the result of the decomposition in modes of the PDF at

pressure tap 4. The two skew-Gaussian modes are easy to identify since
two bumps in the PDF are clearly distinguishable. In this case, the clas-
sical de-mixing is accurate and does not require any consideration of the
timescales in the two modes (or their autocorrelation) in order to de-mix
them. Fig. 7(b) shows the same result but for pressure tap 8, for which the
decomposition into two modes is less obvious. In that case, the classical
de-mixing approach, based on the PDF only, is indeed able to find a
possible decomposition; in fact the objective function is very flat in the
neighborhood of the optimum, which indicates the large sensitivity of the
method to small changes in the data.

4.4.3. Proposed de-mixing
Fig. 8(a) shows the PDF at tap 11. Modes are almost superimposed

and very difficult to identify with the classical de-mixing approach (same
as pressure tap 8 discussed above). On the opposite, the autocorrelation,
Fig. 7. PDF decomposition in mode 1, 2, t

7

shown in Fig. 8(b) has two obvious timescales. This indicates that,
although the two elementary contributions we are seeking to de-mix
have very similar distributions (1st rank properties), they are associ-
ated with different timescales (2nd rank properties). Following the pro-
posed decomposition, the autocorrelation is split into two components.
The intercepts of the two components are used to determine the weighted
variances in each mode, which are, in turn, exploited to constrain the
optimization problem and the pressure coefficient at tap 11 can be
robustly decomposed into two modes.

4.4.4. Required duration of the time series
The results presented so far have been obtained from very long time

series, covering in total 370 h full scale of data (Blaise et al., 2017). This
explains why the PDFs of the pressure coefficients can be obtained so
accurately over 6 orders of magnitude for the PDF (as seen thanks to the
log-scale representation of the PDFs). This also allowed to decompose the
measured signals into two main modes and one tail mode, this latter one
being characterized by a very low weighting.

In practical applications, it is seldom possible to measure so long. It is
therefore important to assess whether so long series are required for the
de-mixing to be manageable. Fig. 9 shows the results of the de-mixing
operation obtained for a time series of 10 h extracted from the com-
plete set (a) and obtained with the whole data set (b). Identified mode
parameters are represented in the Table on the right. These results show
that a much shorter time series, with a duration that is similar to current
practice in wind tunnels, provides virtually similar results. The main
difference is the difficulty to identify the tail mode with the shorter time
series. Indeed, the shorter duration does not allow to estimate the PDF of
ail (log scale): (a) tap 4 and (b) tap 8.



Fig. 8. Tap 11: (a) PDF decomposition into 2 skew-Gaussian modes and one tail mode (log scale) and (b) autocorrelation decomposition into the two modes 1 and 2.

Fig. 9. Tap 4: influence of duration measurement (full scale) in the de-mixing algorithm (a) 10 h, (b) 370 h of measurement and (c) comparison of statistics of
each mode.
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the data below 10�4 while the complete data set provides a PDF estimate
down to 10�6. A secondary difference concerns the skewness of the first
mode γ3;1 which is relatively different, but close to zero, which indicates
a nearly Gaussian mode.

5. Application 1: extreme values of pressure coefficients falling
outside the monotone region

5.1. Cubic translation and peak factor estimation

A usual way to estimate peak factors from pressure measurement uses
cubic translation of a Gaussian process u to a non-Gaussian (softening)
process x and the Hermite moment-based model (Winterstein, 1987). A
softening process is characterized by a wider tail in the distribution
compared to a Gaussian one (i.e. with γe ¼ γ4 � 3 > 0). Most of the
wind pressure coefficients measured on buildings and roofs are softening
processes. The mean peak factor of a cubic translation of a Gaussian
process is computed by Kareem et al. (Kareem and Zhao, 1994),

μgHer ¼ κ

��
βþ γ

β

�
þ h3

�
β2 þ 2γ� 1þ 1:98

β2

	
þ h4

�
β3 þ 3βðγ� 1Þ

þ 3
β

�
π2

6
� γþ γ2

�
þ 5:44

β3

	
 (12)

where h3; h4; κ are coefficients of moment-based Hermite model (Kwon
and Kareem, 2011), γ ’ 0:5772 is Euler’ s constant and
8

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðν0TÞ

p
; ν0 ¼ m2

m0
;

ffiffiffiffiffiffir

mi ¼
Z þ∞

�∞
niSxðωÞdω; h3 ¼ γ3

4þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:5γ4

p

h4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:5γ4

p � 1
18

; κ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h23 þ 6h24

q

(13)

where ν0 is the mean zero up-crossing rate, T is the duration, mi is the ith

spectral moment of x, SxðωÞ is the power spectral density of x. The val-
idity range of the Hermite model is limited to the so-called monotonic
region, i.e. corresponding to a monotone transformation of xðuÞ,
requiring dx=du > 0. Practically, this condition corresponds to (Kwon
and Kareem, 2011; Winterstein and Mackenzie, 2011)

γe � ð1:25γ3Þ2: (14)

Pressure coefficients falling outside the monotone region are not
strictly eligible to apply the cubic translation method. This is unfortunate
since this method is simple and offers a straightforward estimation of the
statistics of peak factors of non-Gaussian processes. Several solutions
have been proposed to deal with the pressure coefficients falling outside
the monotone region. Choi (Choi and Sweetman, 2010) proposes to
overcome this limit by taking a softening-hardening-softening trans-
formation in order to keep an increasing (monotone) transformation xðuÞ
and cross the decreasing part of the softening process. This technique
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requires making a hybrid model depending on the value of x and deform
the nature of the process. Peng (Peng et al., 2014) has studied another
solution which consists in mapping vertically, horizontally or differently
the points falling outside the domain, and apply peak factor formulae
(12) with adjusted skewness and kurtosis.

The decomposition of the pressure coefficient into two components is
useful to provide an alternative solution to this problem. This is indeed
clear when noticing that the mixing of two (nearly) Gaussian distribu-
tions can eventually fall outside the monotone region. Since one is only
interested in the statistics of a tail distribution (either left or right), the
extreme values can be determined with the sole process of interest. Laid
differently, it turns out that the de-mixing operation tends to provide two
(or more) less non-Gaussian processes than the original signal. It is
therefore suggested to de-mix the recorded pressure coefficient, keep the
component of interest (largest succion peaks in this case) and, if the
monotone condition is met, apply the cubic translation model on this
component only. This suggestion is similar to what is proposed by Ding
and Chen (2014).

5.2. Extreme values estimation using the proposed de-mixing

Fig. 10 shows a cross-plot ðγ3; γeÞ of the 121 pressure coefficients
measured on the roof. Light-gray symbols are used to indicate the pres-
sure coefficients falling inside the monotone region, given by (14), while
darker symbols correspond to pressure coefficients falling outside the
monotone region. These pressure coefficients are also identified by black
patches on the left. It is straightforward to link the location of major
corner vortices to the pressure coefficients failing to meet the monotone
condition.

It is also very interesting to notice that, after the de-mixing operation,
the two decomposed modes have skewness and kurtosis falling inside the
monotone region. These are represented in Fig. 10(b–c), where only the
pressure coefficients which were not initially satisfying the monotone
condition are shown. In fact, the monotone criterion is fulfilled for all
taps after de-mixing: (i) Mode 1 represents the background turbulence
and is almost Gaussian (low γ3 and γe), see Fig. 10(b) while (ii) Mode 2
associated with corner vortices and larger succion peaks is more non-
Gaussian but still inside the monotone region, see Fig. 10(c).

Since the time series are long enough (370 h of full-scale data), it is
possible to obtain accurate estimates of the peak factor by means of a
conditional sampling technique, i.e. by dividing the time series into 10-
min windows, retaining the minimum peak pressure on each window,
then average these values. This operation is performed for all 121 pres-
sure coefficients in order to obtain a reference peak factor μg .

The cubic translation method can be used with either the original
method (including therefore the two modes), either with the second
mode only. Pressure coefficients falling inside the monotone condition,
represented with light-gray symbols, are not affected by the demixing.
On this opposite, the extremes of pressure coefficients corresponding to
the significantly non-Gaussian pressure, in the region affected by corner
vortices, are poorly estimated with the cubic translation model applied
on the full-time series (since it mixes two modes), see dark dots. How-
ever, when the cubic translation model is applied to the second mode,
after de-mixing has been performed, we observe that the peak factors are
much better estimated. This is illustrated in Fig. 10(d), where the points
that are located the closest to the diagonal are the best estimated.

Although it goes beyond the scope of this paper, this concept could be
extended to the determination of equivalent static wind loads with the
help of the bi-cubic translation model (Blaise et al., 2016).

6. Application 2: dynamic response of a cladding

In structural design, façade elements are typically designed in a static
manner and with the peak pressure acting on a given reference area.
When the peak pressure is highly negative, application of this standard
method might result in a very conservative design, since the peak
9

pressure shall not be uniformly applied on the whole surface. A current
trend to reduce the resulting loading to reasonable values is to evoke the
limited extent in space of the peak event, shorter than the characteristic
dimensions of the element. To do so requires very high spatial resolution
and is difficult to realize in a wind tunnel in other circumstances than
academic research (Amerio, 2017). Another track is followed here;
indeed the above discussion about the mixing of several components,
each one having its own timescale, might also provide another insight on
this issue related to the design of façade elements. Instead of considering
the spatial variation of the pressure field (which is anyways not ho-
mogenous in areas of interest), the short duration of the extreme events is
invoked and we recommend to take advantage of the fact that a very
large negative peak occurring during a very short period of time might
less affect the structural response (depending on its modal features).
Today, the design of large façade elements, extending sometimes to more
than a dozen meters in span, results in natural frequencies reaching
sometimes the lower bounds (typically 5 Hz) prescribed in design codes.
If the duration of the large suction peaks is much shorter than the natural
period of the structural element, it can be seen as an impulsive loading. In
this case, the response and therefore the severity of such an impulsive
load scales with its momentum (dashed part of the time signal in Fig. 11)
and not the magnitude of the force itself. This fact is well known from
shock response spectra in structural dynamics (Clough and Penzien,
2003).

In order to further illustrate the concept, the shock response spectra of
the pressure coefficients measured in the area affected by the corner
vortices have been computed. They are simply obtained as the dynamic
response of a mass-spring (undamped) system to the considered pressure
coefficient applied in a homogenous way on a small-size façade element,
using therefore the same pressure across the whole element. The
response spectrum is sketched in Fig. 11(a) (right) by reporting the ratio
between the maximum dynamic response over the maximum static
response, as a function of the natural frequency f of the cladding element
(obtained by varying its stiffness). They are represented for the pressure
coefficients measured at taps 6, 9 and 11. They are represented as a
function of the dimensionless frequency f τ2 where τ2 � T⋆

x;2 corresponds
to the timescale associated with the fast dynamics, i.e. a major result of
the autocorrelation-based de-mixing method. When the PDF is bimodal,
the shock response spectrum also presents an envelope with two modes:
the slow turbulent background (large characteristic time, low frequency)
and the fast shedding (short characteristic time, high frequency). Once
the multiple timescale nature of the loading process is accepted, it is also
possible to derive simple analytical solutions for the response. In
particular, depending on the ratio of the natural period and the charac-
teristic timescales identified in the loading process, it is possible that the
slow turbulent process generates a background/resonant response, as is
typical in buffeting analysis, while the fast shedding process generates an
impulsive response that is governed by the momentum of the peaks in the
signal. It is therefore recommended to separate the two components,
treat the first one as a usual buffeting load and treat the second one by
means of the statistics of the momentum corresponding to the peak
pressures. One way to determine the statistics of the momentum is based
on the segmentation of the signal based on a wavelet transform, in order
to isolate peak events (Amerio, 2017) and determine the associated
momentum. The full derivation of such approximate solutions goes
beyond the scope of this paper. The most important point is that the
extreme dynamic load (the fast loading component), provided it is
identified as fast enough compared to the natural period of the cladding
element, can be seen as an impulsive load. In this case, it is expected that
a quasi-static design results in an over-safe design, as indicated in
Fig. 11(b) for short characteristic durations τ2 of the fast loading
component.

This approach could prove useful for small-size façade elements,
which could not benefit from the imperfect correlation of pressure in
space. For large elements, the coherence in space related to the fast mode



Fig. 10. De-mixing methodology results: skewness-kurtosis monotone region (a) before de-mixing ( taps inside the limit, � outside and corresponding location on the
roof (left)), (b) after de-mixing in mode 1 and (c) in mode 2 (� taps corrected from � taps of (a)), (d) peak factor estimation (improvement of � to � thanks to
de-mixing).

Fig. 11. (a) Dynamic response of a cladding and shock response function model, (b) application to taps 6, 9 and 11.
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is crucial and the consideration of a reduced pressure, invoking the
shorter timescale of the loading than the natural period, is not sufficient.
In that case, a time-space analysis seems to be welcome. This question is
unfortunately still not resolve today (Amerio, 2017) and is also deemed
to go beyond the scope of this paper.

7. Discussion and conclusions

It is important to be able to distinguish the two (or more, if any)
different components in the measured pressure since they correspond to
different physics. To do so, a de-mixing method based on the autocor-
relation of pressure coefficients has been proposed. Contrary to the
similar methods based on a PDF only, this method is able to take
advantage of the different timescales corresponding to the mixed com-
ponents in the recorded pressure coefficients to provide a more robust de-
mixing, especially in case where the classical de-mixing based on only a
PDF struggles.

Because the method is applied to random processes, and not random
variables (such a yearly extremewind velocities), a specific derivation for
the mixing has been developed, see Appendix. In particular, the dynamics
of the mixing process wðtÞ plays an important role.

The method has been successfully applied to the pressure coefficients
measured on a flat root with a wind incidence that privileges corner
vortices. The proposed algorithm has been used to identify two skew-
Gaussian modes, and in some cases, an additional tail mode. Although
the pressure coefficients have been analyzed separately, the results of the
10
de-mixing show a very consistent distribution in space. This indicates
that the mixing between the two physical phenomena smoothly evolves
in space. This makes the flow field, in areas of interest, non-stationary in
space, i.e. non-homogenous.

Finally, we have discussed two possible opportunities to apply the de-
mixing algorithm. These applications are just briefly touched since they
are based on the general idea to de-mix the measured signals into two (or
more) components and are not specific to the use of the autocorrelation
to assist the de-mixing. They concern, on the one hand, the use of the
cubic translation model to estimate peak factors. By applying the existing
peak factor for mildly non-Gaussian processes, it is seen that (i) the
monotone condition is more easily met by the de-mixed components than
the mixed-times series, (ii) the extreme values predicted by the model,
when applied to a single component only, correlate much better with
non-parametric statistical estimators. On the other hand, by bringing into
the analysis the different timescales of the underlying phenomena, it is
suggested that the design of façade elements is based on the super-
position of a slow turbulent process and a fast impulsive mode corre-
sponding to the fast and large succion peaks. Application to real cases
require the determination of a shock response spectrum, as shown in
Fig. 11.
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8. Appendix A: equations details

The mixture process model

xðtÞ¼w1ðtÞ x1ðtÞ þ w2ðtÞ x2ðtÞ (15)

is used to model the mixture between two pressure coefficients. Symbol x is used to denote a pressure coefficient, while symbol p is used to denote a PDF.

8.1. The mixing processes

Themixing processesw1ðtÞ andw2ðtÞ are discrete random processes. They take values in the set f0;1g and are such thatw1ðtÞþw2ðtÞ ¼ 1, 8t > 0. At
first rank, they are completely characterized by the probability functions PW1 ði; tÞ and PW2 ði; tÞ where the argument i 2 f0;1g, so that, for instance,
PW1 ð1; tÞ represents the probability that w1ðtÞ is equal to 1 at time t. We also assume that the mixing processes are stationary, i.e. the probability
functions PW1 ði; tÞ and PW2 ði; tÞ do not explicitly depend on time. Because they take values in the set f0; 1g, the average values of the mixing processes are
simply given by

wi ¼
X
i2f0;1g

i PWi ðiÞ ¼ PWi ð1Þ (16)

At second rank, they are completely characterized by the second rank probability functions PW1 ði;t; i’;t’Þ, PW2 ði; t; i’; t’Þ and PW1W2 ði; t; i’; t’Þwhere the
arguments fi; i’g 2 f0; 1g. The processes are also assumed to be stationary in the wide sense (Papoulis, 1991), so that PW1 , PW2 and PW1W2 are explicitly
functions of jt � t’j and not t and t’ separately. Accordingly, they can be written PW1 ði; i’; t � t’Þ, PW2 ði; i’; t�t’Þ and PW1W2 ði; i’; t�t’Þ . The meaning of
PW1 ði; i’; t�t’Þ is the probability that w1ðt0Þ ¼ i. and w1ðt0 þt�t’Þ ¼ i’ for any t0. Same interpretations hold for PW2 and for the cross probability function
PW1W2 . They are three functions of two arguments, but because w1ðtÞþ w2ðtÞ ¼ 1, meaning that w2 ¼ 0 when w1 ¼ 1 and vice versa, they are related to
each other through

PW1 ð1; 1;ΔtÞ ¼ PW2 ð0; 0;ΔtÞ ¼ PW1W2 ð1; 0;ΔtÞ ¼ E½w1ðt0Þw1ðt0 þ ΔtÞ � ¼ w2
1 þ RwðΔtÞ

PW1 ð1; 0;ΔtÞ ¼ PW2 ð0; 1;ΔtÞ ¼ PW1W2 ð1; 1;ΔtÞ ¼ E½w1ðt0Þð1� w1ðt0 þ ΔtÞ Þ � ¼ w1w2 � RwðΔtÞ
PW1 ð0; 1;ΔtÞ ¼ PW2 ð1; 0;ΔtÞ ¼ PW1W2 ð0; 0;ΔtÞ ¼ E½ð1� w1ðt0Þ Þw1ðt0 þ ΔtÞ � ¼ w1w2 � RwðΔtÞ
PW1 ð0; 0;ΔtÞ ¼ PW2 ð1; 1;ΔtÞ ¼ PW1W2 ð0; 1;ΔtÞ ¼ E½ð1� w1ðt0Þ Þð1� w1ðt0 þ ΔtÞ Þ � ¼ w2

2 þ RwðΔtÞ

(17)

where RwðΔtÞ ¼
P

i2f0;1g

P
i2f0;1g

ði� w1Þði’� w1ÞPW1 ði; i’;ΔtÞ the autocorrelation function of w1ðtÞ. Notice that for a given realization of w1ðtÞ is could be

estimated by assuming that w1ðtÞ is ergodic, i.e. Rw1 ðΔtÞ ¼ E½ðw1ðt0Þ � w1 Þðw1ðt0 þ ΔtÞ � w1 Þ �. This assumption is, however, not required for the
following developments. The following results will be expressed as a function of the mean square correlation functions defined by

Q1ðΔtÞ ¼ w2
1 þ RwðΔtÞ ; Q12ðΔtÞ ¼ w1w2 � RwðΔtÞ ; Q2ðΔtÞ ¼ w2

2 þ RwðΔtÞ
Because Rwð0Þ ¼ σ2w1

¼ σ2w2
¼ w1w2 and limΔt→þ∞RwðΔtÞ ¼ 0, the following limiting behaviors are observed

Qið0Þ ¼ w2
i þ σ2wi

¼ wi; Q12ð0Þ ¼ w1w2 � σ2w1
¼ 0

lim
Δt→þ∞

QiðΔtÞ ¼ w2
i ; lim

Δt→þ∞
Q12ðΔtÞ ¼ w1w2

(18)

Similar developments can be derived for higher ranks. They are not provided here since the proposed de-mixing method is limited to second order.

8.2. The two underlying processes

The two underlying processes x1ðtÞ and x2ðtÞ are continuous stationary random processes. At first rank, they are completely characterized by their
PDF pX1 ðx;π1Þ and pX2 ðx; π2Þ where the explicit dependence on the model parameters π1 and π2 is clear. Notice they do not depend on time because of
stationarity. The meaning of pX1 ðx;π1Þdx is the probability that x1ðtÞ 2 ½x; xþdx� for any time t. Same interpretation holds for pX2 ðx;π2Þdx. The two
processes x1ðtÞ and x2ðtÞ are also assumed to be independent, which translates into the factorization of their joint PDF. The average and standard
deviation of these two random processes are noted μ1, μ2 and σ1, σ2. They are related to the PDF by means of the following definitions

μi ¼
Z þ∞

�∞
x pXi ðx; πiÞdx ; σ2i ¼

Z þ∞

�∞
ðx� μiÞ2 pXi ðx; πiÞdx: (19)

At second rank, they are completely characterized by their second rank PDFs, pX1 ðx; x’;Δt;π1Þ and pX2 ðx;x’;Δt; π2Þ. We notice that

pX1X2 ðx; x’;Δt;π1;π2Þ¼ pX1 ðx;π1ÞpX2 ðx’; π2Þ (20)
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since pX1X2 ðx; x’;Δt;π1;π2Þdxdx’ represents the probability that x1ðt0Þ 2 ½x; xþdx� and x2ðt0 þ ΔtÞ 2 ½x’;x’ þ dx’�, which are two independent events.
8.3. The mixture process xðtÞ

Under the assumptions stated above, the first rank PDF of the mixture process reads

pXðxÞ¼PW1 ð1Þ pX1
�
x;π1jw1 ¼ 1ÞþPW2 ð1ÞpX2 ðx; π2jw1 ¼ 1

�
: (21)

It does not explicitly depend on time, since wiðtÞ and xiðtÞ, i 2 f1;2g are both stationary. Because of the independence of the underlying and mixture
processes, and since PWi ð1Þ ¼ wi, see (16),

pXðxÞ ¼ w1 pX1 ðx;π1Þ þ w2pX2 ðx; π2Þ (22)

The simplicity of this equation is at the root of the argumentation in favor of mixture processes. Indeed, if w1ðtÞ and w2ðtÞwere not selected in the set
f0; 1g but well in the interval ½0; 1�, the PDF of XðtÞ would have been expressed by means of a convolution. Although still manageable at first rank, this
would quickly turn into cumbersome equations at higher ranks.

With a bit of calculus (and on account that w1 þ w2 ¼ 1), it is straightforward to obtain

μx ¼
Zþ∞

�∞

x pXðxÞdx ¼ w1μ1 þ w2μ2 (23)

σ2
x ¼

Zþ∞

�∞

ðx� μxÞðx� μxÞ2 pXðxÞdx ¼ w1σ
2
1 þ w2σ

2
2 þ w1w2ðμ1 � μ2Þ2: (24)

In a similar fashion, the second rank PDF of the mixture process is given by

pXðx; x’;ΔtÞ¼PW1 ð1; 1;ΔtÞ pX1 ðx; x’;Δt;π1ÞþPW1 ð1; 0;ΔtÞ pX1X2 ðx; x’;Δt;π1;π2Þ
þPW1 ð0; 1;ΔtÞ pX1X2 ðx’; x;Δt; π1; π2ÞþPW1 ð0; 0;ΔtÞ pX2 ðx; x’;Δt; π2Þ: (25)

It depends on one time shift Δt only because the mixing and underlying processes are stationary in the wide sense. The autocorrelation function of
xðtÞ, defined by

RxðΔtÞ¼
ZZ þ∞

�∞
ðx� μxÞðx’� μxÞpXðx; x’;ΔtÞdxdx’¼

ZZ þ∞

�∞
x x’pXðx; x’;ΔtÞdxdx’� μ2x ; (26)

can be developed by substituting (25) and by considering the relations (17). After some simplifications, we obtain

RxðΔtÞ¼Q1ðΔtÞ
�
μ21 þRx1 ðΔtÞ

�þQ2ðΔtÞ
�
μ22 þRx2 ðΔtÞ

�þ 2Q12ðΔtÞμ1μ2 � μ2x (27)

where the autocorrelation functions of the independent components are given by

Rxi ðΔtÞ¼
ZZ þ∞

�∞
ðx� μiÞðx’� μiÞpXi ðx; x’;Δt;πiÞdxdx’ (28)

for i 2 f1; 2g. Finally equation (27) can be rearranged as

RxðΔtÞ¼Q1ðΔtÞRx1 ðΔtÞþQ2ðΔtÞRx2 ðΔtÞ þ ðμ1 � μ2Þ2RwðΔtÞ: (29)

It is possible to check that the value at the origin is given by

Rxð0Þ ¼ w1σ21 þ w2σ22 þ w1w2ðμ1 � μ2Þ2 (30)

on account of the limiting behaviors given in (18), which is well consistent with the expression (24) given for the variance of xðtÞ.
Equation (29) shows that the timescales in xðtÞ result from an intricate mix of the timescales in the mixing processes w1ðtÞ and w2ðtÞ, through Q1 and

Q2, as well as the timescales in x1ðtÞ and x2ðtÞ. There are two particular cases of this general expression, which are of practical relevance.
When the characteristic correlation time T⋆

w in w1ðtÞ and w2ðtÞ is much shorter than the correlation time T⋆
x in x1ðtÞ and x2ðtÞ, the mixing processes

are fast (in the limiting case there correspond to delta-correlated noise and the random process boils down to the known mixture model for random
variables, where the specific arrangement in time in the process does not matter anymore). In that case, for T⋆

w ≪ Δt, we notice that QiðΔtÞ → w2
i , see

(18) and for Δt ≪ T⋆
x , we notice that Rxi ðΔtÞ → σ2i , so that the autocorrelation function of xðtÞ admits to following two asymptotic cases

RT⋆
w≪T⋆

x
x ðΔtÞ 	

(
w2

1Rx1 ðΔtÞ þ w2
2Rx2 ðΔtÞ for T⋆

w ≪ T⋆
x 	 Δt

Q1ðΔtÞσ2
1 þ Q2ðΔtÞσ22 þ ðμ1 � μ2Þ2RwðΔtÞ for Δt 	 T⋆

w ≪ T⋆
x

: (31)

We notice that the value at the origin in RT⋆
w≪T⋆

x
x ðΔtÞ, extrapolated from the case T⋆

w ≪ ΔteT⋆
x (which is in principle not authorized), is equal to w2

1σ
2
1 þ

w2
2σ

2
2 and is different from σ2x . This is a noticeable difference between the mixture process and the mixture (random variable) model.
12
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On the opposite, when the characteristic correlation time T⋆
w in w1ðtÞ and w2ðtÞ is much longer than the correlation time T⋆

x in x1ðtÞ and x2ðtÞ, the
mixing process is a slow process meaning that many samples are taken in one random variable before switching to the other. In this case, for Δt ≪ T⋆

w ,
we notice that QiðΔtÞ → wi and RwðΔtÞ → w1w2, see (18) and the autocorrelation function of xðtÞ reads

RT⋆
x ≪T⋆

w
x ðΔtÞ 	 w1Rx1 ðΔtÞ þ w2Rx2 ðΔtÞ þ w1w2ðμ1 � μ2Þ2 (32)

for ΔteT⋆
x ≪ T⋆

w . The other limiting case, related to T⋆
x ≪ T⋆

weΔt, is not exploitable since Rx1 , Rx2 and Rw asymptotically tend to zero as T⋆
x ≪ Δt.
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