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Medical Imaging

• measure the density of points in a space (2D or 3D)
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Aggregate Measurements and Reconstruction

• cannot measure the density at each point directly

• non-invasive, aggregate measurements over several points

• compute the density at each point

• for a 2D-image, the points are arranged in a matrix
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Discrete Tomography

• uncover the entries of a binary matrix

• the input are row and column sums

• Matrices under the Microscope, [Frosini and Nivat, 2007]

• scanning the matrix by moving a window

• aggregate measurements over points inside the window

• the input are window sums
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Graphs under the Microscope

• regard the matrix as a grid graph

• each vertex v ∈ V has a label `v ∈ R

• probe at vertex v returns

Pv = ∑
w∈N [v ]

`w (closed neighborhood)

• given graph G and probe vector ~P , uncover the labels ~̀
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Minimum Surgical Probing

`1 `2

P1 = `1 + `2 P2 = `1 + `2

• for some graphs it is impossible to uncover ~̀

• several vectors ~̀ might be consistent with ~P
• surgical probe at vertex v returns `v

Minimum Surgical Probing
Given graph G and probe vector ~P , uncover the labels ~̀ using a
minimum number of surgical probes.
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Talk Outline

• Minimum Surgical Probing

• Solving Minimum Surgical Probing

• Spectral Graph Theory and Graph Products

• Weighted Minimum Surgical Probing

• Bipartite Graphs and Trees
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Solving Minimum Surgical Probing

• let G be a simple graph on n vertices

• adjacency matrix AG ∈ {0, 1}n×n
• ĀG , AG + In adjacency matrix with 1’s on the diagonal

ĀG ·~̀ = ~P

• system of linear equations with at least one solution

• if ĀG has full rank, then ~̀ is uncovered without surgical probes

• otherwise, the system has degrees of freedom which we
remove by surgical probes
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ĀG ·~̀ = ~P

• system of linear equations with at least one solution
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• ĀG , AG + In adjacency matrix with 1’s on the diagonal
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ĀG ·~̀ = ~P

• system of linear equations with at least one solution
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Solving Minimum Surgical Probing

• assume ĀG has s > 0 degrees of freedom

• s is the rank of the nullspace (kernel) or nullity of ĀG

The minimum number of surgical probes to uncover ~̀ is equal to
the nullity, s, of ĀG . Moreover, a set of s vertices whose surgical
probes uncover ~̀ can be computed in polynomial time.

• computationally difficult if ~̀ is binary

• exclusive variant with open neighborhoods using AG
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• assume ĀG has s > 0 degrees of freedom

• s is the rank of the nullspace (kernel) or nullity of ĀG
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Some Examples

ĀKn
=
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• the path on three vertices P3 requires no surgical probes

• the complete graph Kn requires n− 1 surgical probes

• co-duplicate vertices have identical neighborhoods and cause
dependent rows in AG

Let graph G have (inclusion wise) maximal sets of co-duplicate
vertices D1, . . .Dk . Solving Minimum Surgical Probing for G
requires at least ∑k

i=1(|Di | − 1) surgical probes.
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Spectral Graph Theory

• studies matrices (and their eigenvalues) associated with graphs

• adjacency matrix AG and Laplacian matrix LG
• relate properties of G to the eigenvalues of AG or LG
• expressions for the eigenvalues of AG for some graph families

... Minimum Surgical Probing

• the nullity of M is equal to the multiplicity of eigenvalue 0

φ(0,M)

• φ(0, ĀG ) is equal to φ(−1,AG )

• inclusive and exclusive variant (φ(0,AG ))
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Probing a Path

Eigenvalues of APn are

2 cos(π · j

n+ 1
) , for j ∈ [1, n]

• if n mod 3 ≡ 2, then ~̀ is uncovered with 1 surgical probe

• otherwise, ~̀ is uncovered without surgical probes

• surgical probe at vertex i s.t. i mod 3 6≡ 0

1 2 3 4 5

P1 = `1 + `2

P2 = `1 + `2 + `3

P3 = `2 + `3 + `4

P4 = `3 + `4 + `5

P5 = `4 + `5

• linear-time algorithm to uncover ~̀ for a path graph
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Graph Products

• Cartesian product of two path graphs is a grid graph

• λ and µ are eigenvalues of AG1 and AG2 , respectively

• if G = G1 × G2, then AG has eigenvalue λ + µ

• Strong product of two path graphs is the King’s graph

• if G = G1�G2, then AG has eigenvalue (λ + 1)(µ + 1)− 1

• Non-Complete Extended p-sum (NEPS) operation
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Graph Products

• for cycle graphs we have expressions for eigenvalues

• Iab(n) = 1 if and only if n mod a ≡ b

Graph # surgical probes at most

Grid I32 (n1)I21 (n2) + I21 (n1)I32 (n2) + 2I54 (n1)I54 (n2) 4

Path I32 (n) 1

Tube
2I21 (n1)I30 (n2) + I32 (n1)I20 (n2)+
2I32 (n1)I40 (n2) + 4I54 (n1)I50 (n2)

9

Cycle 2I30 (n) 2

Torus
4I30 (n1)I40 (n2) + 4I40 (n1)I30 (n2) + 2I20 (n1)I60 (n2)

+2I60 (n1)I20 (n2) + 8I50 (n1)I50 (n2)
20

• constant number of surgical probes (engineering)
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Graph Products

Graph # surgical probes at most

King’s graph I32 (n1)n2 + I32 (n2)n1 − I32 (n1)I32 (n2) n1 + n2 − 1

Rook graph 0 0

Hypercube I21 (d)(
d

(d−1)/2) ( d
(d−1)/2)

Sudoku graph Θ(n2) Θ(n2)

• Rook graph, Cartesian product of two complete graphs

• Hypercube, d times Cartesian product of P2

• Sudoku graph, NEPS of four complete graphs

• similar results for exclusive variant
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Talk Outline

• Minimum Surgical Probing

• Solving Minimum Surgical Probing

• Spectral Graph Theory and Graph Products

• Weighted Minimum Surgical Probing

• Bipartite Graphs and Trees

18 / 29



Weighted Probing

• measure the temperature of a surface

• cover the surface with a grid and measure each point

• centre point has a higher contribution than neighbors
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Weighted Minimum Surgical Probing

• consider a simple graph G = (V ,E )

• each vertex v ∈ V has a label `v ∈ R and a weight wv ∈ R

• probe at vertex v returns

Pv = wv · `v + ∑
u∈N(v )

`u

• given graph G , weights ~w and probes ~P , uncover the labels ~̀
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P2 = w2 · `2 + `1 + `3

• consider a simple graph G = (V ,E )

• each vertex v ∈ V has a label `v ∈ R and a weight wv ∈ R

• probe at vertex v returns

Pv = wv · `v + ∑
u∈N(v )

`u

• given graph G , weights ~w and probes ~P , uncover the labels ~̀

20 / 29



Weighted Minimum Surgical Probing

`2
w2

`1
w1

`3
w3

P1 = w1 · `1 + `2

P3 = w3 · `3 + `2

P2 = w2 · `2 + `1 + `3

• consider a simple graph G = (V ,E )
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Weighted Minimum Surgical Probing

• surgical probe at vertex v uncovers `v

Weighted Minimum Surgical Probing
Given graph G , weight vector ~w , and probe vector ~P , uncover the
labels ~̀ using a minimum number of surgical probes.

• ĀG , AG + diag(~w) adjacency matrix with ~w on the diagonal

• find the unique solution of the system

ĀG ·~̀ = ~P

• number of surgical probes is equal to the nullity of ĀG
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21 / 29



Weighted Minimum Surgical Probing

• surgical probe at vertex v uncovers `v

Weighted Minimum Surgical Probing
Given graph G , weight vector ~w , and probe vector ~P , uncover the
labels ~̀ using a minimum number of surgical probes.

• ĀG , AG + diag(~w) adjacency matrix with ~w on the diagonal

• find the unique solution of the system
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Weights and the Number of Surgical Probes

• applications allow control over the weights

• for very large weights ĀG has full rank

• analyse the boundaries of this behaviour

Boundary weight vector w̄G

• w̄G at least one surgical probe is required

• w̄G + ε (or w̄G − ε) no surgical probes are required
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Boundary Weights and the Laplacian Matrix

• ~δ(G ) is the vector of vertex degrees of graph G

• the Laplacian matrix of graph G is

LG = −AG + diag(~δ(G ))

• we use L−G = AG − diag(~δ(G ))

• the nullity of LG and L−G is equal to the number of connected
components of graph G

Let G be a connected graph. If ~w = −~δ(G ), then uncovering ~̀

requires one surgical probe.
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Boundary Weights and the Laplacian Matrix

Connected graph G , vector ε ∈ Rn

• ε i ≥ 0, for every i ∈ [1, n]

• there exists i ∈ [1, n] such that ε i > 0

Then, matrix L−G − diag(ε) has full rank, i.e., uncovering ~̀ requires
no surgical probes.

• −~δ(G ) is the negative boundary weight

• symmetric M is positive definite if xTMx > 0 for any x 6= 0

• LG is positive semi-definite

• L−G − diag(ε) is negative definite

• negative definite matrices have full rank
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Boundary Weights and the Signeless Laplacian Matrix

• the Signless Laplacian of G :

L+G = AG + diag(~δ(G ))

Let G be a connected bipartite graph.

• if ~w = ~δ(G ), then uncovering ~̀ requires one surgical probe

• if ~w = ~δ(G ) + ε, then uncovering ~̀ requires no surgical probes

Positive boundary weight

• bipartite graphs: ~δ(G )

• non-bipartite graphs: ~δ(G )− µ where µ is the smallest
eigenvalue of G
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Talk Outline

• Minimum Surgical Probing

• Solving Minimum Surgical Probing

• Spectral Graph Theory and Graph Products

• Weighted Minimum Surgical Probing

• Bipartite Graphs and Trees
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Probing Bipartite Graphs and Trees

• for a connected, bipartite graph, ~̀ can be uncovered with⌊
n
2

⌋
− 1 surgical probes

• there exist n-vertex trees, for odd n, that require
⌊
n
2

⌋
− 1

surgical probes

n

2

1

4

3
· · ·



1 1 0 0 · · · 0
1 1 0 0 · · · 1
0 0 1 1 · · · 0
0 0 1 1 · · · 1
...
0 1 0 1 · · · 1


• stars and perfect k-ary trees require no surgical probes
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Open Questions

• probes with a distance d on a grid

• surgical probes with costs

• restrictions on the labels `v

Thanks!
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