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Medical Imaging

® measure the density of points in a space (2D or 3D)
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Aggregate Measurements and Reconstruction

® cannot measure the density at each point directly
® non-invasive, aggregate measurements over several points
® compute the density at each point

® for a 2D-image, the points are arranged in a matrix
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® uncover the entries of a binary matrix
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® Matrices under the Microscope, [Frosini and Nivat, 2007]
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® Matrices under the Microscope, [Frosini and Nivat, 2007]
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® Matrices under the Microscope, [Frosini and Nivat, 2007]
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Discrete Tomography

® uncover the entries of a binary matrix

® the input are row and column sums

® Matrices under the Microscope, [Frosini and Nivat, 2007]
® scanning the matrix by moving a window

® aggregate measurements over points inside the window

the input are window sums
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Graphs under the Microscope

® regard the matrix as a grid graph
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Graphs under the Microscope

® regard the matrix as a grid graph

® scanning windows are centred at a vertex and capture its
neighborhood
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Graphs under the Microscope
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e consider a simple graph G = (V, E)
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e consider a simple graph G = (V, E)
® cach vertex v € V has a label £, € R
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Graphs under the Microscope

141

\K/

2

Po =41+ ly+ {3

e consider a simple graph G = (V, E)
® cach vertex v € V has a label £, € R

® probe at vertex v returns

Po= ) lu (closed neighborhood)

weN[v]
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Graphs under the Microscope

13

/P3:f2+e3

Po =41+ ly+ {3

61\
L

Pr=41+ 4, 2

consider a simple graph G = (V, E)
each vertex v € V has a label /, € R

probe at vertex v returns

Po= ) lu (closed neighborhood)

weN|v]

given graph G and probe vector P, uncover the labels ¢
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Graphs under the Microscope

13

/P3:£2+e3

Po =41+ ly+ {3

61\
L

Pr=41+ 4, 2

® given graph G and probe vector P, uncover the labels ¢

*l1=P>2—Ps
o (h="P1— 13
® (3 ="P3— /s
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Minimum Surgical Probing
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Pr=41+ 4o Py =41+ 4>

® for some graphs it is impossible to uncover ¢
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Minimum Surgical Probing

{] ——{

Pr=41+ 4o Py =41+ 4>

® for some graphs it is impossible to uncover ¢
® several vectors ¢ might be consistent with P

® surgical probe at vertex v returns £,
MINIMUM SURGICAL PROBING

Given graph G and probe vector P, uncover the labels ¢ using a
minimum number of surgical probes.
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Talk Outline

MINIMUM SURGICAL PROBING

Solving MINIMUM SURGICAL PROBING

Spectral Graph Theory and Graph Products

Weighted MINIMUM SURGICAL PROBING

Bipartite Graphs and Trees
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Talk Outline

® MINIMUM SURGICAL PROBING
® Solving MINIMUM SURGICAL PROBING
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Solving Minimum Surgical Probing

® |et G be a simple graph on n vertices
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Solving Minimum Surgical Probing

® |et G be a simple graph on n vertices
® adjacency matrix Ag € {0,1}"*"

e Ac £ A + I, adjacency matrix with 1's on the diagonal
Ag-l =P

® system of linear equations with at least one solution
® if A has full rank, then 7 is uncovered without surgical probes

® otherwise, the system has degrees of freedom which we
remove by surgical probes

9/29



Solving Minimum Surgical Probing

® assume Ag has s > 0 degrees of freedom
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Solving Minimum Surgical Probing

® assume Ag has s > 0 degrees of freedom

® s is the rank of the nullspace (kernel) or nullity of Ag

The minimum number of surgical probes to uncover £ is equal to
the nullity, s, of Ag. Moreover, a set of s vertices whose surgical
probes uncover £ can be computed in polynomial time.

e computationally difficult if 7 is binary

® exclusive variant with open neighborhoods using Ag
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Some Examples

11111
11111
—— ~ Ag,= 11111
11111
11111

® the path on three vertices P3 requires no surgical probes
® the complete graph K, requires n — 1 surgical probes

® co-duplicate vertices have identical neighborhoods and cause
dependent rows in Ag

Let graph G have (inclusion wise) maximal sets of co-duplicate
vertices Dy, ... Dy. Solving MINIMUM SURGICAL PROBING for G
requires at least Y5, (|D;| — 1) surgical probes.
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® MINIMUM SURGICAL PROBING

Solving MINIMUM SURGICAL PROBING

Spectral Graph Theory and Graph Products
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Spectral Graph Theory

® studies matrices (and their eigenvalues) associated with graphs
® adjacency matrix Ag and Laplacian matrix Lg
® relate properties of G to the eigenvalues of Ag or L¢g

® expressions for the eigenvalues of Ag for some graph families

... MINIMUM SURGICAL PROBING
® the nullity of M is equal to the multiplicity of eigenvalue 0

$(0, M)

® ¢(0,A¢) is equal to ¢(—1, Ag)
® inclusive and exclusive variant (¢(0, Ag))
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Probing a Path

Eigenvalues of Ap, are

2 cos(7t - )=-1

n+1

® if nmod 3 = 2, then 7 is uncovered with 1 surgical probe

® otherwise, ¢ is uncovered without surgical probes
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Probing a Path

Eigenvalues of Ap, are

J
2 . =-1
cos(1T n—{—l)

® if nmod 3 = 2, then 7 is uncovered with 1 surgical probe
® otherwise, ¢ is uncovered without surgical probes

® surgical probe at vertex i s.t. i mod 3 #Z 0

Pr=b+ 1 P3 =ty + {3+ Ps =Ly + s

1 2 3 4 5

Po=101+ o+ 13 Ps =Lz + s+ L5
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Probing a Path

Eigenvalues of Ap, are

J
2 . =-1
cos(1T n—{—l)

® if nmod 3 = 2, then 7 is uncovered with 1 surgical probe
® otherwise, ¢ is uncovered without surgical probes

® surgical probe at vertex i s.t. i mod 3 #Z 0

Pr=b+ 1 P3 =ty + {3+ Ps =Ly + s

1 2 3 4 5

Po=l1+ 0+ 103 Ps=03+ 04+ 5

® |inear-time algorithm to uncover 0 for a path graph
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Graph Products

® (Cartesian product of two path graphs is a grid graph

® A and j are eigenvalues of Ag, and Ag,, respectively
if G = Gy X Gy, then Ag has eigenvalue A +

Strong product of two path graphs is the King's graph
if G = G1 X Gy, then Ag has eigenvalue (A +1)(p+1) —1

® NON-COMPLETE EXTENDED p-suM (NEPS) operation
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Graph Products
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Graph Products

® for cycle graphs we have expressions for eigenvalues

® 77(n) =1ifand only if nmoda=b

Graph H

# surgical probes

‘ at most

Grid
Path

Z3(m)Z3 (n2) + I3 (m)Z3 (n2) + 223 (m)Z3 (n2)
Z3(n)

Tube

Cycle

273 (m)Z3(n2) + I3 (m) I3 (n2)+
213 (m) g (n2) + 422 (m)Z§ (n2)

275 (n)

Torus

413 (m)ZLg (n2) + 4Zg (m) I3 (n2) + 225 (m)Z§ (n2)
+2Z8(n)Z§ (n2) + 83 (m) L3 (n2)

20
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Graph Products

® for cycle graphs we have expressions for eigenvalues

® 77(n) =1ifand only if nmoda=b

Graph H # surgical probes ‘ at most

Grid IS(HI)IIQ(I)Q) +112(n1)I23(n2) +2IE(”1)IE(H2) 4

Path Z3(n) 1

Tube 273 (m)Z5 (n2) + I3 (m) T3 (m) + 9
273 (m)I3 (n2) + 473 (m) I3 (n2)

Cycle 2Z3(n) 2

Torus || 4B (m)Zg(m2) + 4Z5(m)Z3 (o) + 215 (m)Zg (n2) 20
+228(m)Z§ (n2) + 83 () L5 (n2)

® constant number of surgical probes
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® for cycle graphs we have expressions for eigenvalues

® 77(n) =1ifand only if nmoda=b

Graph H # surgical probes ‘ at most

Grid IS(HI)IIQ(I)Q) +112(n1)I23(n2) +2IE(”1)IE(H2) 4

Path Z3(n) 1

Tube 273 (m)Z5 (n2) + I3 (m) T3 (m) + 9
273 (m)I3 (n2) + 473 (m) I3 (n2)

Cycle 2Z3(n) 2

Torus || 4B (m)Zg(m2) + 4Z5(m)Z3 (o) + 215 (m)Zg (n2) 20
+228(m)Z§ (n2) + 83 () L5 (n2)

® constant number of surgical probes (engineering)
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Graph Products

Graph H 7 surgical probes at most
King's graph || Z3(m)ny + Z3(n2)m — Z3(m)Z3(na) | np+ny—1
Rook graph 0 0

Hypercube I#(d) ((d:i)/2> ((di)/z)
Sudoku graph Q(n?) O(n?)
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Graph
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King's graph || Z3(m)ny + Z3(n2)m — Z3(m)Z3(na) | np+ny—1
Rook graph 0 0
d d
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Sudoku graph Q(n?) O(n?)

® Rook graph, Cartesian product of two complete graphs
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Graph Products
Graph H 7 surgical probes at most
King's graph || Z3(m)ny + Z3(n2)m — Z3(m)Z3(na) | np+ny—1
Rook graph 0 0
Hypercube Ilz(d)((dj)m) ((d71>/2)
Sudoku graph Q(n?) O(n?)
® Rook graph, Cartesian product of two complete graphs
® Hypercube, d times Cartesian product of P,
® Sudoku graph, NEPS of four complete graphs
® similar results for exclusive variant
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Talk Outline

MINIMUM SURGICAL PROBING

Solving MINIMUM SURGICAL PROBING

Spectral Graph Theory and Graph Products

Weighted MINIMUM SURGICAL PROBING
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Weighted Probing

[=—=

G |

® measure the temperature of a surface
® cover the surface with a grid and measure each point

® centre point has a higher contribution than neighbors
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Weighted Minimum Surgical Probing

b
wq
\672/7)3:W3’£3+£2

Pr=wi-l1+ 4 e

Po=wy-lo+ {1+ 03

consider a simple graph G = (V, E)

each vertex v € V has a label £, € R and a weight w, € R

probe at vertex v returns

Po=w -4, + Z 4y

ueN(v)

given graph G, weights w and probes P, uncover the labels ¢
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Weighted Minimum Surgical Probing
® surgical probe at vertex v uncovers £,

WEIGHTED MINIMUM SURGICAL PROBING
Given graph G, weight vector w, and probe vector P, uncover the
labels £ using a minimum number of surgical probes.

® Ac £ Ag + diag(w) adjacency matrix with w on the diagonal

® find the unique solution of the system
Ae T = P
® number of surgical probes is equal to the nullity of Ag
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Weights and the Number of Surgical Probes

==
=8

® applications allow control over the weights
e for very large weights Ag has full rank

® analyse the boundaries of this behaviour

Boundary weight vector wg
® W at least one surgical probe is required

® ws + € (or wg — €) no surgical probes are required
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Boundary Weights and the Laplacian Matrix

® 5(G) is the vector of vertex degrees of graph G
® the Laplacian matrix of graph G is

Le = —Ag +diag(5(G))

* we use L. = Ag — diag(6(G))
® the nullity of Lg and L is equal to the number of connected
components of graph G
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Boundary Weights and the Laplacian Matrix

® 5(G) is the vector of vertex degrees of graph G
® the Laplacian matrix of graph G is

Le = —Ag +diag(5(G))

* we use L. = Ag — diag(6(G))
® the nullity of Lg and L is equal to the number of connected
components of graph G

Let G be a connected graph. If w = —&(G), then uncovering ¢
requires one surgical probe.
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Boundary Weights and the Signeless Laplacian Matrix

® the Signless Laplacian of G:

LE = Ag + diag(8(G))

Let G be a connected bipartite graph.
o ifw= X(G) then uncovering 7 requires one surgical probe

e if w = 5(G) +e, then uncovering ¢ requires no surgical probes

Positive boundary weight
® bipartite graphs: 6(G)
® non-bipartite graphs: 6(G) — i where j is the smallest
eigenvalue of G
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® for a connected, bipartite graph, 7 can be uncovered with
| 2] — 1 surgical probes

® there exist n-vertex trees, for odd n, that require HJ -1
surgical probes

1100 ---0
I 3 1100 --- 1
gF ! 0011 --- 0
2. A 001 1 - 1
\\/

o
=
o
=
—
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Probing Bipartite Graphs and Trees

® for a connected, bipartite graph, 7 can be uncovered with

| 2] — 1 surgical probes

® there exist n-vertex trees, for odd n, that require ng -1
surgical probes

1100 ---0
1 3 1100 --- 1
(R 1 0011 ---0
2 _4 0011 -1
\\/

o
[y
o
=
[y

® stars and perfect k-ary trees require no surgical probes
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Thanks!
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