Generalized Microscopic Image Reconstruction Problems

Toni Böhnlein

Weizmann Institute of Science

joint work with Amotz Bar-Noy, Zvi Lotker, David Peleg, and Dror Rawitz

> 16th Meeting on Tomography and Applications May 2-4, 2022, Politecnico di Milano

Medical Imaging

Medical Imaging

• measure the density of points in a space (2D or 3D)

• cannot measure the density at each point directly

- cannot measure the density at each point directly
- non-invasive, aggregate measurements over several points

- cannot measure the density at each point directly
- non-invasive, aggregate measurements over several points
- compute the density at each point

- cannot measure the density at each point directly
- non-invasive, aggregate measurements over several points
- compute the density at each point
- for a 2D-image, the points are arranged in a matrix

• uncover the entries of a binary matrix

• uncover the entries of a binary matrix

- uncover the entries of a binary matrix
- the input are row and column sums

- uncover the entries of a binary matrix
- the input are row and column sums

• Matrices under the Microscope, [Frosini and Nivat, 2007]

- uncover the entries of a binary matrix
- the input are row and column sums

- Matrices under the Microscope, [Frosini and Nivat, 2007]
- scanning the matrix by moving a window

- uncover the entries of a binary matrix
- the input are row and column sums

- Matrices under the Microscope, [Frosini and Nivat, 2007]
- scanning the matrix by moving a window

- uncover the entries of a binary matrix
- the input are row and column sums

- Matrices under the Microscope, [Frosini and Nivat, 2007]
- scanning the matrix by moving a window

- uncover the entries of a binary matrix
- the input are row and column sums

- Matrices under the Microscope, [Frosini and Nivat, 2007]
- scanning the matrix by moving a window
- aggregate measurements over points inside the window

- uncover the entries of a binary matrix
- the input are row and column sums

- Matrices under the Microscope, [Frosini and Nivat, 2007]
- scanning the matrix by moving a window
- aggregate measurements over points inside the window
- the input are window sums

• regard the matrix as a grid graph

- regard the matrix as a grid graph
- scanning windows are centred at a vertex and capture its neighborhood

• consider a simple graph G = (V, E)

- consider a simple graph G = (V, E)
- each vertex $v \in V$ has a label $\ell_v \in \mathbb{R}$

- consider a simple graph G = (V, E)
- each vertex $v \in V$ has a label $\ell_v \in \mathbb{R}$
- probe at vertex v returns

$$\mathcal{P}_{\mathsf{v}} = \sum_{\mathsf{w} \in \mathcal{N}[\mathsf{v}]} \ell_{\mathsf{w}}$$
 (closed neighborhood)

- consider a simple graph G = (V, E)
- each vertex $v \in V$ has a label $\ell_v \in \mathbb{R}$
- probe at vertex v returns

$$\mathcal{P}_{\mathsf{v}} = \sum_{\mathsf{w} \in \mathcal{N}[\mathsf{v}]} \ell_{\mathsf{w}}$$
 (closed neighborhood)

- consider a simple graph G = (V, E)
- each vertex $v \in V$ has a label $\ell_v \in \mathbb{R}$
- probe at vertex v returns

$$\mathcal{P}_{m{v}} = \sum_{m{w} \in \mathcal{N}[m{v}]} \ell_{m{w}}$$
 (closed neighborhood)

• given graph G and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$

• given graph G and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$

• given graph G and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$

•
$$\ell_1 = \mathcal{P}_2 - \mathcal{P}_3$$

• given graph G and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$

•
$$\ell_1 = \mathcal{P}_2 - \mathcal{P}_3$$

• $\ell_2 = \mathcal{P}_1 - \ell_1$

- given graph G and probe vector $ec{\mathcal{P}}$, uncover the labels $ec{\ell}$
- $\ell_1 = \mathcal{P}_2 \mathcal{P}_3$
- $\ell_2 = \mathcal{P}_1 \ell_1$
- $\ell_3 = \mathcal{P}_3 \ell_2$

• for some graphs it is impossible to uncover $\vec{\ell}$

- for some graphs it is impossible to uncover $\vec{\ell}$
- several vectors $\vec{\ell}$ might be consistent with $\vec{\mathcal{P}}$

- for some graphs it is impossible to uncover $\vec{\ell}$
- several vectors $ec{\ell}$ might be consistent with $ec{\mathcal{P}}$
- surgical probe at vertex v returns ℓ_v

- for some graphs it is impossible to uncover $\vec{\ell}$
- several vectors $ec{\ell}$ might be consistent with $ec{\mathcal{P}}$
- surgical probe at vertex v returns ℓ_v

MINIMUM SURGICAL PROBING Given graph G and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$ using a minimum number of surgical probes.

Talk Outline

• Minimum Surgical Probing

- MINIMUM SURGICAL PROBING
- Solving Minimum Surgical Probing

- Minimum Surgical Probing
- Solving Minimum Surgical Probing
- Spectral Graph Theory and Graph Products

- MINIMUM SURGICAL PROBING
- Solving Minimum Surgical Probing
- Spectral Graph Theory and Graph Products
- Weighted MINIMUM SURGICAL PROBING

Talk Outline

- Minimum Surgical Probing
- Solving Minimum Surgical Probing
- Spectral Graph Theory and Graph Products
- Weighted MINIMUM SURGICAL PROBING
- Bipartite Graphs and Trees
Talk Outline

- Minimum Surgical Probing
- Solving MINIMUM SURGICAL PROBING
- Spectral Graph Theory and Graph Products
- Weighted MINIMUM SURGICAL PROBING
- Bipartite Graphs and Trees

• let G be a simple graph on n vertices

- let G be a simple graph on n vertices
- adjacency matrix $A_G \in \{0,1\}^{n \times n}$

- let G be a simple graph on n vertices
- adjacency matrix $A_G \in \{0,1\}^{n \times n}$
- $\bar{A}_G \triangleq A_G + I_n$ adjacency matrix with 1's on the diagonal

- let G be a simple graph on n vertices
- adjacency matrix $A_G \in \{0,1\}^{n \times n}$
- $\bar{A}_G \triangleq A_G + I_n$ adjacency matrix with 1's on the diagonal

$$\bar{A}_G \cdot \vec{\ell} = \vec{\mathcal{P}}$$

- let G be a simple graph on n vertices
- adjacency matrix $A_G \in \{0, 1\}^{n \times n}$
- $\bar{A}_G \triangleq A_G + I_n$ adjacency matrix with 1's on the diagonal

$$\bar{A}_{G} \cdot \vec{\ell} = \vec{\mathcal{P}}$$

• system of linear equations with at least one solution

- let G be a simple graph on n vertices
- adjacency matrix $A_G \in \{0,1\}^{n \times n}$
- $\bar{A}_G \triangleq A_G + I_n$ adjacency matrix with 1's on the diagonal

$$\bar{A}_{G}\cdot\vec{\ell} = \vec{\mathcal{P}}$$

- system of linear equations with at least one solution
- if \bar{A}_G has full rank, then $\vec{\ell}$ is uncovered without surgical probes

- let G be a simple graph on n vertices
- adjacency matrix $A_G \in \{0, 1\}^{n \times n}$
- $\bar{A}_G \triangleq A_G + I_n$ adjacency matrix with 1's on the diagonal

$$\bar{A}_G \cdot \vec{\ell} = \vec{\mathcal{P}}$$

- system of linear equations with at least one solution
- if \bar{A}_G has full rank, then $\vec{\ell}$ is uncovered without surgical probes
- otherwise, the system has degrees of freedom which we remove by surgical probes

• assume \bar{A}_G has s > 0 degrees of freedom

- assume \bar{A}_G has s > 0 degrees of freedom
- s is the rank of the nullspace (kernel) or nullity of \bar{A}_G

- assume \bar{A}_G has s > 0 degrees of freedom
- s is the rank of the nullspace (kernel) or nullity of \bar{A}_G

The minimum number of surgical probes to uncover $\vec{\ell}$ is equal to the nullity, *s*, of \bar{A}_G . Moreover, a set of *s* vertices whose surgical probes uncover $\vec{\ell}$ can be computed in polynomial time.

- assume \bar{A}_G has s > 0 degrees of freedom
- s is the rank of the nullspace (kernel) or nullity of \bar{A}_G

The minimum number of surgical probes to uncover $\vec{\ell}$ is equal to the nullity, *s*, of \bar{A}_G . Moreover, a set of *s* vertices whose surgical probes uncover $\vec{\ell}$ can be computed in polynomial time.

• computationally difficult if $\vec{\ell}$ is binary

- assume \bar{A}_G has s > 0 degrees of freedom
- s is the rank of the nullspace (kernel) or nullity of \bar{A}_G

The minimum number of surgical probes to uncover $\vec{\ell}$ is equal to the nullity, *s*, of \bar{A}_G . Moreover, a set of *s* vertices whose surgical probes uncover $\vec{\ell}$ can be computed in polynomial time.

- computationally difficult if $\vec{\ell}$ is binary
- exclusive variant with open neighborhoods using A_G

• the path on three vertices P_3 requires no surgical probes

- the path on three vertices P_3 requires no surgical probes
- the complete graph K_n requires n-1 surgical probes

- the path on three vertices P_3 requires no surgical probes
- the complete graph K_n requires n-1 surgical probes
- co-duplicate vertices have identical neighborhoods and cause dependent rows in A_G

- the path on three vertices P₃ requires no surgical probes
- the complete graph K_n requires n-1 surgical probes
- co-duplicate vertices have identical neighborhoods and cause dependent rows in A_G

Let graph G have (inclusion wise) maximal sets of co-duplicate vertices $D_1, \ldots D_k$. Solving MINIMUM SURGICAL PROBING for G requires at least $\sum_{i=1}^k (|D_i| - 1)$ surgical probes.

Talk Outline

- Minimum Surgical Probing
- Solving MINIMUM SURGICAL PROBING
- Spectral Graph Theory and Graph Products
- Weighted MINIMUM SURGICAL PROBING
- Bipartite Graphs and Trees

• studies matrices (and their eigenvalues) associated with graphs

- studies matrices (and their eigenvalues) associated with graphs
- adjacency matrix A_G and Laplacian matrix L_G

- studies matrices (and their eigenvalues) associated with graphs
- adjacency matrix A_G and Laplacian matrix L_G
- relate properties of G to the eigenvalues of A_G or L_G

- studies matrices (and their eigenvalues) associated with graphs
- adjacency matrix A_G and Laplacian matrix L_G
- relate properties of G to the eigenvalues of A_G or L_G
- expressions for the eigenvalues of A_G for some graph families

- studies matrices (and their eigenvalues) associated with graphs
- adjacency matrix A_G and Laplacian matrix L_G
- relate properties of G to the eigenvalues of A_G or L_G
- expressions for the eigenvalues of A_G for some graph families

... MINIMUM SURGICAL PROBING

- studies matrices (and their eigenvalues) associated with graphs
- adjacency matrix A_G and Laplacian matrix L_G
- relate properties of G to the eigenvalues of A_G or L_G
- expressions for the eigenvalues of A_G for some graph families
- ... MINIMUM SURGICAL PROBING
 - the nullity of *M* is equal to the multiplicity of eigenvalue 0

φ(0, *M*)

- studies matrices (and their eigenvalues) associated with graphs
- adjacency matrix A_G and Laplacian matrix L_G
- relate properties of G to the eigenvalues of A_G or L_G
- expressions for the eigenvalues of A_G for some graph families
- ... MINIMUM SURGICAL PROBING
 - the nullity of *M* is equal to the multiplicity of eigenvalue 0

 $\phi(0, M)$

•
$$\phi(0, ar{A}_G)$$
 is equal to $\phi(-1, A_G)$

- studies matrices (and their eigenvalues) associated with graphs
- adjacency matrix A_G and Laplacian matrix L_G
- relate properties of G to the eigenvalues of A_G or L_G
- expressions for the eigenvalues of A_G for some graph families
- ... MINIMUM SURGICAL PROBING
 - the nullity of *M* is equal to the multiplicity of eigenvalue 0

 $\phi(0,M)$

- $\phi(0, \bar{A}_G)$ is equal to $\phi(-1, A_G)$
- inclusive and exclusive variant $(\phi(0, A_G))$

Eigenvalues of A_{Pn}

Eigenvalues of A_{P_n} are

$$2\cos(\pi\cdotrac{j}{n+1})$$
 , for $j\in[1,n]$

Eigenvalues of A_{P_n} are

$$2\cos(\pi \cdot \frac{j}{n+1}) = -1$$

Eigenvalues of A_{P_n} are

$$2\cos(\pi \cdot \frac{j}{n+1}) = -1$$

• if $n \mod 3 \equiv 2$, then $\vec{\ell}$ is uncovered with 1 surgical probe

Eigenvalues of A_{P_n} are

$$2\cos(\pi \cdot \frac{j}{n+1}) = -1$$

- if $n \mod 3 \equiv 2$, then $\vec{\ell}$ is uncovered with 1 surgical probe
- otherwise, $\vec{\ell}$ is uncovered without surgical probes

Eigenvalues of A_{P_n} are

$$2\cos(\pi \cdot \frac{j}{n+1}) = -1$$

- if $n \mod 3 \equiv 2$, then $\vec{\ell}$ is uncovered with 1 surgical probe
- otherwise, $\vec{\ell}$ is uncovered without surgical probes
- surgical probe at vertex *i* s.t. *i* mod $3 \neq 0$

Eigenvalues of A_{P_n} are

$$2\cos(\pi \cdot \frac{j}{n+1}) = -1$$

- if $n \mod 3 \equiv 2$, then $\vec{\ell}$ is uncovered with 1 surgical probe
- otherwise, $\vec{\ell}$ is uncovered without surgical probes
- surgical probe at vertex *i* s.t. *i* mod $3 \neq 0$

• linear-time algorithm to uncover $\vec{\ell}$ for a path graph

• Cartesian product of two path graphs is a grid graph

• λ and μ are eigenvalues of A_{G_1} and A_{G_2} , respectively

- λ and μ are eigenvalues of A_{G_1} and A_{G_2} , respectively
- if $G = G_1 \times G_2$, then A_G has eigenvalue $\lambda + \mu$

- λ and μ are eigenvalues of A_{G_1} and A_{G_2} , respectively
- if $G = G_1 \times G_2$, then A_G has eigenvalue $\lambda + \mu$
- Strong product of two path graphs is the King's graph

- λ and μ are eigenvalues of A_{G_1} and A_{G_2} , respectively
- if $G = G_1 \times G_2$, then A_G has eigenvalue $\lambda + \mu$
- Strong product of two path graphs is the King's graph
- if $G = G_1 \boxtimes G_2$, then A_G has eigenvalue $(\lambda + 1)(\mu + 1) 1$

- λ and μ are eigenvalues of A_{G_1} and A_{G_2} , respectively
- if $G = G_1 \times G_2$, then A_G has eigenvalue $\lambda + \mu$
- Strong product of two path graphs is the King's graph
- if $G = G_1 \boxtimes G_2$, then A_G has eigenvalue $(\lambda + 1)(\mu + 1) 1$

- λ and μ are eigenvalues of A_{G_1} and A_{G_2} , respectively
- if $G = G_1 \times G_2$, then A_G has eigenvalue $\lambda + \mu$
- Strong product of two path graphs is the King's graph
- if $G = G_1 \boxtimes G_2$, then A_G has eigenvalue $(\lambda + 1)(\mu + 1) 1$
- NON-COMPLETE EXTENDED *p*-SUM (NEPS) operation

• for cycle graphs we have expressions for eigenvalues

- for cycle graphs we have expressions for eigenvalues
- $\mathcal{I}_b^a(n) = 1$ if and only if $n \mod a \equiv b$

Graph	# surgical probes	at most
Grid	$\mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{1}^{2}(n_{2}) + \mathcal{I}_{1}^{2}(n_{1})\mathcal{I}_{2}^{3}(n_{2}) + 2\mathcal{I}_{4}^{5}(n_{1})\mathcal{I}_{4}^{5}(n_{2})$	4
Path	$\mathcal{I}_2^3(n)$	1
Tube	$\begin{array}{c} 2\mathcal{I}_{1}^{2}(n_{1})\mathcal{I}_{0}^{3}(n_{2})+\mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{0}^{2}(n_{2})+\\ 2\mathcal{I}_{2}^{2}(n_{1})\mathcal{I}_{0}^{4}(n_{2})+4\mathcal{I}_{4}^{5}(n_{1})\mathcal{I}_{0}^{5}(n_{2})\end{array}$	9
Cycle	$2{\cal I}_0^3(n)$	2
Torus	$ \begin{array}{ } 4\mathcal{I}_0^3(n_1)\mathcal{I}_0^4(n_2) + 4\mathcal{I}_0^4(n_1)\mathcal{I}_0^3(n_2) + 2\mathcal{I}_0^2(n_1)\mathcal{I}_0^5(n_2) \\ + 2\mathcal{I}_0^6(n_1)\mathcal{I}_0^2(n_2) + 8\mathcal{I}_0^5(n_1)\mathcal{I}_0^5(n_2) \end{array} $	20

- for cycle graphs we have expressions for eigenvalues
- $\mathcal{I}_b^a(n) = 1$ if and only if $n \mod a \equiv b$

Graph	# surgical probes	at most
Grid	$\mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{1}^{2}(n_{2}) + \mathcal{I}_{1}^{2}(n_{1})\mathcal{I}_{2}^{3}(n_{2}) + 2\mathcal{I}_{4}^{5}(n_{1})\mathcal{I}_{4}^{5}(n_{2})$	4
Path	$\mathcal{I}_2^3(n)$	1
Tube	$\frac{2\mathcal{I}_{1}^{2}(n_{1})\mathcal{I}_{0}^{3}(n_{2}) + \mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{0}^{2}(n_{2}) +}{2\mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{0}^{4}(n_{2}) + 4\mathcal{I}_{4}^{5}(n_{1})\mathcal{I}_{0}^{5}(n_{2})}$	9
Cycle	$2\mathcal{I}_0^3(n)$	2
Torus	$\begin{array}{ } 4\mathcal{I}_{0}^{3}(n_{1})\mathcal{I}_{0}^{4}(n_{2})+4\mathcal{I}_{0}^{4}(n_{1})\mathcal{I}_{0}^{3}(n_{2})+2\mathcal{I}_{0}^{2}(n_{1})\mathcal{I}_{0}^{5}(n_{2})\\ +2\mathcal{I}_{0}^{6}(n_{1})\mathcal{I}_{0}^{2}(n_{2})+8\mathcal{I}_{0}^{5}(n_{1})\mathcal{I}_{0}^{5}(n_{2})\end{array}$	20

constant number of surgical probes

- for cycle graphs we have expressions for eigenvalues
- $\mathcal{I}_b^a(n) = 1$ if and only if $n \mod a \equiv b$

Graph	# surgical probes	at most
Grid	$\mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{1}^{2}(n_{2}) + \mathcal{I}_{1}^{2}(n_{1})\mathcal{I}_{2}^{3}(n_{2}) + 2\mathcal{I}_{4}^{5}(n_{1})\mathcal{I}_{4}^{5}(n_{2})$	4
Path	$\mathcal{I}_2^3(n)$	1
Tube	$\begin{array}{c} 2\mathcal{I}_{1}^{2}(n_{1})\mathcal{I}_{0}^{3}(n_{2})+\mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{0}^{2}(n_{2})+\\ 2\mathcal{I}_{2}^{2}(n_{1})\mathcal{I}_{0}^{4}(n_{2})+4\mathcal{I}_{4}^{5}(n_{1})\mathcal{I}_{0}^{5}(n_{2})\end{array}$	9
Cycle	$2{\cal I}_0^3(n)$	2
Torus	$\begin{array}{ } 4\mathcal{I}_{0}^{3}(n_{1})\mathcal{I}_{0}^{4}(n_{2})+4\mathcal{I}_{0}^{4}(n_{1})\mathcal{I}_{0}^{3}(n_{2})+2\mathcal{I}_{0}^{2}(n_{1})\mathcal{I}_{0}^{5}(n_{2})\\ +2\mathcal{I}_{0}^{6}(n_{1})\mathcal{I}_{0}^{2}(n_{2})+8\mathcal{I}_{0}^{5}(n_{1})\mathcal{I}_{0}^{5}(n_{2})\end{array}$	20

• constant number of surgical probes (engineering)

Graph	# surgical probes	at most
King's graph	$\mathcal{I}_{2}^{3}(n_{1})n_{2} + \mathcal{I}_{2}^{3}(n_{2})n_{1} - \mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{2}^{3}(n_{2})$	$n_1 + n_2 - 1$
Rook graph	0	0
Hypercube	$\mathcal{I}_1^2(d)(\overset{d}{_{(d-1)/2}})$	$\binom{d}{(d-1)/2}$
Sudoku graph	$\Theta(n^2)$	$\Theta(n^2)$

Graph	# surgical probes	at most
King's graph	$\mathcal{I}_{2}^{3}(n_{1})n_{2} + \mathcal{I}_{2}^{3}(n_{2})n_{1} - \mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{2}^{3}(n_{2})$	$n_1 + n_2 - 1$
Rook graph	0	0
Hypercube	$\mathcal{I}_1^2(d)(\overset{d}{_{(d-1)/2}})$	$\binom{d}{(d-1)/2}$
Sudoku graph	$\Theta(n^2)$	$\Theta(n^2)$

• Rook graph, Cartesian product of two complete graphs

Graph	# surgical probes	at most
King's graph	$\mathcal{I}_{2}^{3}(n_{1})n_{2} + \mathcal{I}_{2}^{3}(n_{2})n_{1} - \mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{2}^{3}(n_{2})$	$n_1 + n_2 - 1$
Rook graph	0	0
Hypercube	$\mathcal{I}_1^2(d)(\overset{d}{_{(d-1)/2}})$	$\binom{d}{(d-1)/2}$
Sudoku graph	$\Theta(n^2)$	$\Theta(n^2)$

- Rook graph, Cartesian product of two complete graphs
- Hypercube, *d* times Cartesian product of *P*₂

Graph	# surgical probes	at most
King's graph	$\mathcal{I}_{2}^{3}(n_{1})n_{2} + \mathcal{I}_{2}^{3}(n_{2})n_{1} - \mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{2}^{3}(n_{2})$	$n_1 + n_2 - 1$
Rook graph	0	0
Hypercube	$\mathcal{I}_1^2(d)(\overset{d}{_{(d-1)/2}})$	$\binom{d}{(d-1)/2}$
Sudoku graph	$\Theta(n^2)$	$\Theta(n^2)$

- Rook graph, Cartesian product of two complete graphs
- Hypercube, *d* times Cartesian product of *P*₂
- Sudoku graph, NEPS of four complete graphs

Graph	# surgical probes	at most
King's graph	$\mathcal{I}_{2}^{3}(n_{1})n_{2} + \mathcal{I}_{2}^{3}(n_{2})n_{1} - \mathcal{I}_{2}^{3}(n_{1})\mathcal{I}_{2}^{3}(n_{2})$	$n_1 + n_2 - 1$
Rook graph	0	0
Hypercube	$\mathcal{I}_1^2(d)(\overset{d}{_{(d-1)/2}})$	$\binom{d}{(d-1)/2}$
Sudoku graph	$\Theta(n^2)$	$\Theta(n^2)$

- Rook graph, Cartesian product of two complete graphs
- Hypercube, *d* times Cartesian product of *P*₂
- Sudoku graph, NEPS of four complete graphs
- similar results for exclusive variant

Talk Outline

- Minimum Surgical Probing
- Solving Minimum Surgical Probing
- Spectral Graph Theory and Graph Products
- Weighted MINIMUM SURGICAL PROBING
- Bipartite Graphs and Trees

• measure the temperature of a surface

- measure the temperature of a surface
- cover the surface with a grid and measure each point

- measure the temperature of a surface
- cover the surface with a grid and measure each point
- centre point has a higher contribution than neighbors

• consider a simple graph G = (V, E)

- consider a simple graph G = (V, E)
- each vertex $v \in V$ has a label $\ell_v \in \mathbb{R}$ and a weight $w_v \in \mathbb{R}$

- consider a simple graph G = (V, E)
- each vertex $v \in V$ has a label $\ell_v \in \mathbb{R}$ and a weight $w_v \in \mathbb{R}$
- probe at vertex v returns

$$\mathcal{P}_{\mathbf{v}} = \mathbf{w}_{\mathbf{v}} \cdot \ell_{\mathbf{v}} + \sum_{u \in \mathbf{N}(\mathbf{v})} \ell_{u}$$

- consider a simple graph G = (V, E)
- each vertex $v \in V$ has a label $\ell_v \in \mathbb{R}$ and a weight $w_v \in \mathbb{R}$
- probe at vertex v returns

$$\mathcal{P}_{\mathbf{v}} = \mathbf{w}_{\mathbf{v}} \cdot \ell_{\mathbf{v}} + \sum_{u \in \mathbf{N}(\mathbf{v})} \ell_{u}$$

• given graph G, weights \vec{w} and probes $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$

• surgical probe at vertex v uncovers ℓ_v

• surgical probe at vertex v uncovers ℓ_v

WEIGHTED MINIMUM SURGICAL PROBING Given graph G, weight vector \vec{w} , and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$ using a minimum number of surgical probes.

• surgical probe at vertex v uncovers ℓ_v

WEIGHTED MINIMUM SURGICAL PROBING Given graph G, weight vector \vec{w} , and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$ using a minimum number of surgical probes.

•
$$\bar{A}_G \triangleq A_G + \operatorname{diag}(\vec{w})$$
 adjacency matrix with \vec{w} on the diagonal

• surgical probe at vertex v uncovers ℓ_v

WEIGHTED MINIMUM SURGICAL PROBING Given graph G, weight vector \vec{w} , and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$ using a minimum number of surgical probes.

- $\bar{A}_G \triangleq A_G + \operatorname{diag}(\vec{w})$ adjacency matrix with \vec{w} on the diagonal
- find the unique solution of the system

$$\bar{A}_{G}\cdot\vec{\ell} = \vec{\mathcal{P}}$$

• surgical probe at vertex v uncovers ℓ_v

WEIGHTED MINIMUM SURGICAL PROBING Given graph G, weight vector \vec{w} , and probe vector $\vec{\mathcal{P}}$, uncover the labels $\vec{\ell}$ using a minimum number of surgical probes.

- $\bar{A}_G \triangleq A_G + \operatorname{diag}(\vec{w})$ adjacency matrix with \vec{w} on the diagonal
- find the unique solution of the system

$$\bar{A}_G \cdot \vec{\ell} = \vec{\mathcal{P}}$$

• number of surgical probes is equal to the nullity of \bar{A}_G

• applications allow control over the weights

- applications allow control over the weights
- for very large weights \bar{A}_G has full rank

- applications allow control over the weights
- for very large weights \bar{A}_G has full rank
- analyse the boundaries of this behaviour
Weights and the Number of Surgical Probes

- applications allow control over the weights
- for very large weights \bar{A}_G has full rank
- analyse the boundaries of this behaviour

Boundary weight vector \bar{w}_G

Weights and the Number of Surgical Probes

- applications allow control over the weights
- for very large weights \bar{A}_G has full rank
- analyse the boundaries of this behaviour

Boundary weight vector \bar{w}_G

• \bar{w}_G at least one surgical probe is required

Weights and the Number of Surgical Probes

- applications allow control over the weights
- for very large weights \bar{A}_G has full rank
- analyse the boundaries of this behaviour

Boundary weight vector \bar{w}_G

- \bar{w}_G at least one surgical probe is required
- $\bar{w}_G + \epsilon$ (or $\bar{w}_G \epsilon$) no surgical probes are required

• $\vec{\delta}(G)$ is the vector of vertex degrees of graph G

- $\vec{\delta}(G)$ is the vector of vertex degrees of graph G
- the Laplacian matrix of graph G is

$$L_G = -A_G + \operatorname{diag}(\vec{\delta}(G))$$

- $\vec{\delta}(G)$ is the vector of vertex degrees of graph G
- the Laplacian matrix of graph G is

$$L_G = -A_G + \operatorname{diag}(\vec{\delta}(G))$$

• we use
$$L_G^- = A_G - \operatorname{diag}(\vec{\delta}(G))$$

- $\vec{\delta}(G)$ is the vector of vertex degrees of graph G
- the Laplacian matrix of graph G is

$$L_{G} = -A_{G} + \operatorname{diag}(\vec{\delta}(G))$$

• we use
$$L_G^- = A_G - \operatorname{diag}(\vec{\delta}(G))$$

 the nullity of L_G and L_G⁻ is equal to the number of connected components of graph G

- $\vec{\delta}(G)$ is the vector of vertex degrees of graph G
- the Laplacian matrix of graph G is

$$L_{G} = -A_{G} + \operatorname{diag}(\vec{\delta}(G))$$

• we use
$$L_G^- = A_G - \operatorname{diag}(\vec{\delta}(G))$$

 the nullity of L_G and L_G⁻ is equal to the number of connected components of graph G

Let G be a connected graph. If $\vec{w} = -\vec{\delta}(G)$, then uncovering $\vec{\ell}$ requires one surgical probe.

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

• $\varepsilon_i \geq 0$, for every $i \in [1, n]$

Connected graph G, vector $\varepsilon \in \mathbb{R}^n$

- $\varepsilon_i \geq 0$, for every $i \in [1, n]$
- there exists $i \in [1, n]$ such that $\varepsilon_i > 0$

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

- $\varepsilon_i \geq 0$, for every $i \in [1, n]$
- there exists $i \in [1, n]$ such that $\varepsilon_i > 0$

Then, matrix $L_G^- - \text{diag}(\varepsilon)$ has full rank, i.e., uncovering $\vec{\ell}$ requires no surgical probes.

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

- $\varepsilon_i \geq 0$, for every $i \in [1, n]$
- there exists $i \in [1, n]$ such that $\varepsilon_i > 0$

Then, matrix $L_G^- - \text{diag}(\varepsilon)$ has full rank, i.e., uncovering $\vec{\ell}$ requires no surgical probes.

• $-ec{\delta}(G)$ is the negative boundary weight

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

- $\varepsilon_i \geq 0$, for every $i \in [1, n]$
- there exists $i \in [1, n]$ such that $\varepsilon_i > 0$

Then, matrix L_{G}^{-} - diag(ε) has full rank, i.e., uncovering $\vec{\ell}$ requires no surgical probes.

• $-ec{\delta}(G)$ is the negative boundary weight

• symmetric *M* is positive definite if $x^T M x > 0$ for any $x \neq 0$

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

- $\varepsilon_i \geq 0$, for every $i \in [1, n]$
- there exists $i \in [1, n]$ such that $\varepsilon_i > 0$

Then, matrix L_{G}^{-} - diag(ε) has full rank, i.e., uncovering $\vec{\ell}$ requires no surgical probes.

- $-ec{\delta}(G)$ is the negative boundary weight
- symmetric *M* is positive definite if $x^T M x > 0$ for any $x \neq 0$
- *L_G* is positive semi-definite

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

- $\varepsilon_i \geq 0$, for every $i \in [1, n]$
- there exists $i \in [1, n]$ such that $\varepsilon_i > 0$

Then, matrix L_{G}^{-} - diag(ε) has full rank, i.e., uncovering $\vec{\ell}$ requires no surgical probes.

- $-ec{\delta}(G)$ is the negative boundary weight
- symmetric *M* is positive definite if $x^T M x > 0$ for any $x \neq 0$
- *L_G* is positive semi-definite
- $L_{G}^{-} \operatorname{diag}(\varepsilon)$ is negative definite

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

- $\varepsilon_i \geq 0$, for every $i \in [1, n]$
- there exists $i \in [1, n]$ such that $\varepsilon_i > 0$

Then, matrix $L_G^- - \text{diag}(\varepsilon)$ has full rank, i.e., uncovering $\vec{\ell}$ requires no surgical probes.

- $-ec{\delta}(G)$ is the negative boundary weight
- symmetric *M* is positive definite if $x^T M x > 0$ for any $x \neq 0$
- *L_G* is positive semi-definite
- $L_{G}^{-} \operatorname{diag}(\varepsilon)$ is negative definite
- negative definite matrices have full rank

Connected graph *G*, vector $\varepsilon \in \mathbb{R}^n$

- $\varepsilon_i \geq 0$, for every $i \in [1, n]$
- there exists $i \in [1, n]$ such that $\varepsilon_i > 0$

Then, matrix $L_G^- - \text{diag}(\varepsilon)$ has full rank, i.e., uncovering $\vec{\ell}$ requires no surgical probes.

- $-ec{\delta}(G)$ is the negative boundary weight
- symmetric *M* is positive definite if $x^T M x > 0$ for any $x \neq 0$
- *L_G* is positive semi-definite
- $L_{G}^{-} \operatorname{diag}(\varepsilon)$ is negative definite
- negative definite matrices have full rank

• the Signless Laplacian of G:

$$L_{G}^{+} = A_{G} + \operatorname{diag}(\vec{\delta}(G))$$

• the Signless Laplacian of G:

$$L_G^+ = A_G + \operatorname{diag}(\vec{\delta}(G))$$

Let G be a connected bipartite graph.

• the Signless Laplacian of G:

$$L_G^+ = A_G + \operatorname{diag}(\vec{\delta}(G))$$

Let G be a connected bipartite graph.

• if $\vec{w} = \vec{\delta}(G)$, then uncovering $\vec{\ell}$ requires one surgical probe

• the Signless Laplacian of G:

$$L_G^+ = A_G + \operatorname{diag}(\vec{\delta}(G))$$

Let G be a connected bipartite graph.

- if $\vec{w} = \vec{\delta}(G)$, then uncovering $\vec{\ell}$ requires one surgical probe
- if $\vec{w} = \vec{\delta}(G) + \varepsilon$, then uncovering $\vec{\ell}$ requires no surgical probes

• the Signless Laplacian of G:

$$L_G^+ = A_G + \operatorname{diag}(\vec{\delta}(G))$$

Let G be a connected bipartite graph.

- if $\vec{w} = \vec{\delta}(G)$, then uncovering $\vec{\ell}$ requires one surgical probe
- if $\vec{w} = \vec{\delta}(G) + \varepsilon$, then uncovering $\vec{\ell}$ requires no surgical probes

Positive boundary weight

• bipartite graphs: $\vec{\delta}(G)$

• the Signless Laplacian of G:

$$L_G^+ = A_G + \operatorname{diag}(\vec{\delta}(G))$$

Let G be a connected bipartite graph.

- if $\vec{w} = \vec{\delta}(G)$, then uncovering $\vec{\ell}$ requires one surgical probe
- if $\vec{w} = \vec{\delta}(G) + \varepsilon$, then uncovering $\vec{\ell}$ requires no surgical probes

Positive boundary weight

- bipartite graphs: $\vec{\delta}(G)$
- non-bipartite graphs: $\vec{\delta}(G)-\mu$ where μ is the smallest eigenvalue of G

Talk Outline

- Minimum Surgical Probing
- Solving Minimum Surgical Probing
- Spectral Graph Theory and Graph Products
- Weighted MINIMUM SURGICAL PROBING
- Bipartite Graphs and Trees

• for a connected, bipartite graph, $\vec{\ell}$ can be uncovered with $\lfloor \frac{n}{2} \rfloor - 1$ surgical probes

- for a connected, bipartite graph, $\vec{\ell}$ can be uncovered with $\lfloor \frac{n}{2} \rfloor 1$ surgical probes
- there exist *n*-vertex trees, for odd *n*, that require $\lfloor \frac{n}{2} \rfloor 1$ surgical probes

/1	1	0	0	• • •	0/
1	1	0	0		1
0	0	1	1	• • •	0
0	0	1	1		1
:					
0/	1	0	1		1/

- for a connected, bipartite graph, $\vec{\ell}$ can be uncovered with $\lfloor \frac{n}{2} \rfloor 1$ surgical probes
- there exist *n*-vertex trees, for odd *n*, that require $\lfloor \frac{n}{2} \rfloor 1$ surgical probes

stars and perfect k-ary trees require no surgical probes

Talk Outline

- Minimum Surgical Probing
- Solving Minimum Surgical Probing
- Spectral Graph Theory and Graph Products
- Weighted MINIMUM SURGICAL PROBING
- Bipartite Graphs and Trees

Open Questions

Open Questions

• probes with a distance d on a grid

Open Questions

- probes with a distance d on a grid
- surgical probes with costs
Open Questions

- probes with a distance d on a grid
- surgical probes with costs
- restrictions on the labels ℓ_v

Open Questions

- probes with a distance d on a grid
- surgical probes with costs
- restrictions on the labels ℓ_v

Thanks!