Geometric Multilevel Optimization For Discrete Tomography

Stefania Petra Mathematical Imaging Group Heidelberg University

IN MEMORIAM OF CARLA PERI

TAIR 2022 Politecnico di Milano, May 2, 2022 – May 4, 2022

Motivation: Multigrid for PDEs

2D discrete Poisson equation

$$-\Delta u = f$$

 $u \in \mathbf{R}^n$

Poisson solver complexity

- Gaussian elimination
- Jacobi iteration
- Gauss-Seidel iteration
- Conjugate gradient (CG)
- Fast Fourier transform (FFT)
- **Multigrid (iterative)**
- Multigrid (FMG)

 $O(n^2)$ $O(n^2\log\varepsilon)$ $O(n^2\log\varepsilon)$ $O(n^{3/2}\log\varepsilon)$ $O(n \log n)$ $O(n\log\varepsilon)$ O(n)

This Talk: Geometric Multilevel Optimization

problem discretization on a 3D grid graph

Information transfer between levels

1. Geometric multigrid for PDEs

2. Algebraic

•

Aplication Scenario: Discrete Tomography

$\min \operatorname{KL}(Ax, b) + \lambda \|\nabla x\|_{1,\rho}$ $[0,1]^n$

Kuske, P., *Performance Bounds For Co-/Sparse Box* Constrained Signal Recovery, 2019

problem

- limited angle/data: severely ill-posed problem
- integrality constraints

regularization

- constraints (few materials)
- sparse image gradient

Application Scenario: Discrete Tomography

3D image with finite range

few projection angles

 $Ax = b, A \in \mathbb{R}^{m \times n}, m \ll n$

Application Scenario: Discrete Tomography

3D image with finite range

few projection angles

 $\overline{A}\overline{x} = b, \quad \overline{A} \in \mathbb{R}^{m \times \overline{n}}, \quad m/\overline{n}$ gets larger

Related Work: Multiscale Acceleration for Discrete Tomography

- S. Roux, H. Leclerc, F. Hild, Efficient Binary Tomographic Reconstruction, J Math Imaging Vis, 2014

single scale

A. Dabravolski, K. J. Batenburg, J. Sijbers, A Multiresolution Approach to Discrete Tomography Using DART, PLoS One. 2014

multiscale

0: fine scale 1024 x 1024

- 1: coarse scale 512 x 512
- 2: coarse scale 256 x 256
- 3: coarse scale *128* x *128*
- 4: coarse scale 64 x 64

Challenges

principled information transfer between levels

Multilevel Optimization

smooth optimization

S. G. Nash, A multigrid approach to discretized optimization problems. Optimization Methods and Software, 2000

S. Gratton, A. Sartenaer, P. L. Toint, Recursive trust-region methods for multiscale nonlinear optimization. SIAM Journal on Optimization, 2008

W. Zaiwen, and D. Goldfarb, A line search multigrid method for large-scale nonlinear optimization. SIAM Journal on Optimization, 2009

C. P. Ho, M. Kocvara, P. Parpas, Newton-type Multilevel Optimization Method. Optimization Methods and Software, 2019

nonsmooth composite convex optimization

M. Kocvara and S. Mohammed, A first-order multigrid method for bound-constrained convex optimization. **Optimization Methods and Software, 2016**

P. Parpas, A multilevel proximal gradient algorithm for a class of composite optimization problems. SIAM J. Sci. *Comput.*, 2017

Contribution

We incorporate constraints **smoothly** into MLO by changing the geometry of the box

Outline

Optimization: local approximation

Two-grid optimization

Connection to nonlinear multigrid (FAS)

Connection to standard local approximation

Geometric two-grid optimization

Application to discrete tomography

Local Approximation: Smooth Unconstrained Optimization

 $\min_{x \in V} f(x)$

At a current guess x select h by minimizing local approximation

$$f(x+h) \approx f(x) + \langle \nabla f(x), h \rangle$$

linear

Update x by e.g. line search along h = x -

to improve $f(x^+) < f(x)$

$$B_x \succ 0$$

$$\vdash \alpha h$$

Success Story: Smoothness & Convexity

 $\min_{x \in V} f(x)$

At a current guess x select h by minimizing local approximation

$$f(x+h) \approx f(x) + \langle \nabla f(x), h \rangle$$

 $\mathcal{\Lambda}$

linear

 $- \lambda \top$

no line search!

Update *x* by e.g. line search along *h*

$$+\frac{1}{2}L_{f}\|h\|^{2},$$

global convergence r

$$f(x^k) - f^* = O\left(\frac{L_f}{k}\right)$$

-*I l*

Success Story: Smoothness, Convexity and Acceleration

 $\min_{x \in V} f(x)$

At a current guess x select h by minimizing

$$f(x+h) \approx f(x) + \langle \nabla f(x), h \rangle$$

linear

 $y^+ = x + \frac{1}{L_x}h$ Update *y* by along *d* $x^+ = (1 - \gamma)y^+ + \gamma y$

no line search!

Nesterov '83 accelerated convergence rate

nonsmooth composite convex

state of the art e.g. FISTA $O(1/k^2)$

Example: Grid Dependent Smoothness

Least-squares with smoothed sparsity prior

$$f(x) = \frac{1}{2} ||Ax - b||^2 + 2$$

Lipschitz $L_f = \|A\|^2 + 8\lambda/\rho$ constant

$$\overline{f}(\overline{x}) = \frac{1}{2} \|\overline{A}\overline{x} - b\|^2 + \frac{1}{2$$

Lipschitz constant

$$L_{\bar{f}} = \|\overline{A}\|^2 + 8\overline{\lambda}/\rho$$

 $\lambda \|\nabla x\|_{1,\rho}$

coarse grid $\overline{x} \in \mathbf{R}^{\overline{n}}$

fine grid $x \in \mathbf{R}^n$

 $\overline{\lambda} \| \overline{\nabla} \overline{x} \|_{1,\rho}$

Example: Grid Dependent Smoothness

Least-squares with smoothed sparsity prior

Structure: Hierarchy of Grid Dependent Problems

Outline

Optimization: local approximation

Two-grid optimization

Connection to nonlinear multigrid (FAS)

Connection to standard local approximation

Geometric two-grid optimization

Application to discrete tomography

Hierarchical Representations on Two Grids

fine grid variable $x \in \mathbf{R}^n$

coarse grid variable $\overline{x} \in \mathbf{R}^{\overline{n}}$,

- fine objective $f \in C^1(\mathbb{R}^n, \mathbb{R})$
- $\min_{[0,1]^n} f(x) := \operatorname{KL}(Ax, b) + \lambda \|\nabla x\|_{1,\rho}$

- $\min_{[0,1]^{\bar{n}}} \bar{f}(\bar{x}) := \operatorname{KL}(\bar{A}\bar{x},\bar{b}) + \bar{\lambda} \|\bar{\nabla}\bar{x}\|_{1,\rho}$
- coarse objective $\bar{f} \in C^1(\mathbb{R}^{\bar{n}}, \mathbb{R})$

Intergrid Transfer Operators

$\overline{x} = Rx$

Euclidean Multilevel Optimization

 $\overline{x} = Rx$

Nash: A multigrid approach to discretized optimization problems, 2000

for *current* fine grid variable $x \in \mathbf{R}^n$ define coarse grid model

 $\overline{\psi}(\overline{y}) = \overline{f}(\overline{y}) - \langle \overline{v}_{x}, \overline{y} - \overline{x} \rangle$

with $\overline{v}_x = \nabla \overline{f}(Rx) - R \nabla f(x)$ and $\overline{x} = Rx$

(Nash, 2000, Gratton et al., 2008, Wen and Goldfarb, 2009)

for *current* fine grid variable $x \in \mathbf{R}^n$ define coarse grid model

$$\overline{\psi}(\overline{y}) = \overline{f}(\overline{y}) - \langle \overline{v}_x, \overline{y} - \overline{x} \rangle$$

with $\overline{v}_x = \nabla \overline{f}(Rx) - R \nabla f(x)$

first order coherence condition

 $\nabla \overline{\psi}(\overline{x}) = R \nabla f(x)$

(Nash, 2000, Gratton et al., 2008, Wen and Goldfarb, 2009)

,
$$\overline{x} = Rx$$

starting iterate at coarse level

for *current* fine grid variable $x \in \mathbf{R}^n$, set $\overline{x} = Rx$ and rewrite coarse grid model

$$\begin{split} \overline{\psi}(\overline{y}) &= \overline{f}\,\overline{y}) - \langle \nabla \overline{f}(\overline{x}) - R\,\nabla f(x), \overline{y} - \overline{x} \rangle, \\ &= \overline{f}(\overline{y}) - \overline{f}(\overline{x}) - \langle \nabla \overline{f}(\overline{x}) - R\,\nabla f(x), \overline{y} - \overline{x} \rangle + \overline{f}(\overline{x}), \\ &= D_{\overline{f}}(\overline{y}, \overline{x}) + \langle R\,\nabla f(x), \overline{y} - \overline{x} \rangle + const, \end{split}$$

with Bregman distance

$$D_{\bar{f}}(\bar{y},\bar{x}) = \bar{f}(\bar{y}) - \bar{f}(\bar{x}) - \langle \nabla$$

 $f(\overline{x}), \overline{y} - \overline{x}$

for *current* fine grid variable $x \in \mathbf{R}^n$, set $\overline{x} = Rx$ and rewrite coarse grid model

$$\overline{\psi}(\overline{y}) = D_{\overline{f}}(\overline{y}, \overline{x}) + \langle R \nabla f(x), \overline{y} - \overline{x} \rangle$$

$$= D_{\overline{f}}(\overline{y}, \overline{x}) + \langle \nabla f(x), P(\overline{y} - \overline{x}) \rangle$$

$$\uparrow$$

$$R = P^{\top}$$
Galerkin condition

with Bregman distance

$$D_{\bar{f}}(\bar{y},\bar{x}) = \bar{f}(\bar{y}) - \bar{f}(\bar{x}) - \langle \nabla \bar{f}(\bar{x}), \bar{y} - \bar{x} \rangle$$

DN

for *current* fine grid variable $x \in \mathbf{R}^n$, set $\overline{x} = Rx$

 $\overline{\psi}(\overline{y}) = D_{\overline{f}}(\overline{y}, \overline{x}) + \langle \nabla f(x),$ ≥ 0 if \overline{f} convex

$$\overline{\psi}(\overline{y}) < 0 \implies \langle \nabla f(x), h \rangle$$

$$P(\overline{y}-\overline{x})\rangle$$

$R = P^{\top}$

Outline

Optimization: local approximation

Two-grid optimization

Connection to nonlinear multigrid (FAS)

Connection to standard local approximation

Geometric two-grid optimization

Application to discrete tomography

Classical Multigrid Methods

Consider e.g. some elliptic PDE, discretize on some grid Ax = b

Discretisation $\overline{A}\overline{x} = \overline{b}$ of the same problem on coarser grid

- Relaxation methods no not eliminate smooth components of the error efficiently
- Smooth components projected on a coarser grid appear more oscillatory

Full Approximation Scheme

 $= D_{\overline{f}}(\overline{x} + \overline{h}, \overline{x}) + \langle R \nabla f(x), \overline{h} \rangle + C'(\overline{x})$

Outline

Optimization: local approximation **Two-grid optimization** Connection to nonlinear multigrid (FAS) Connection to standard local approximation

Geometric two-grid optimization

Application to discrete tomography

Connection to Standard Local Approximation

"hierarchical approximation", multilevel optimization

$$\overline{\psi}(\overline{y}) = \left\langle \nabla f(x), P(\overline{y} - \overline{x}) + \frac{D_{\overline{f}}(\overline{y}, \overline{x})}{D_{\overline{f}}(\overline{y}, \overline{x})} \right\rangle$$

1st order approximation

$$q(y) = f(x) + \langle \nabla f(x), y - x \rangle$$

quadratic approximation, quasi Newton

$$D_{\bar{f}}(\bar{y}, \bar{x})$$

$$= \frac{1}{2} \langle \bar{y} - \bar{x}, \nabla^2 \bar{f}(z), \bar{y} - \bar{x} \rangle,$$

$$z \in \{(1-t)\bar{x} + t\bar{y}\}_{t \in [0,1]}$$

2nd order approximation

$$\frac{1}{2}\langle y-x,B_x(y-x)\rangle,$$

 $B_x > 0$

Outline

Optimization: local approximation **Two-grid optimization** Connection to nonlinear multigrid (FAS) Connection to standard local approximation Geometric two-grid optimization

Application to discrete tomography

Smooth Bound Constrained Convex Optimization

least-squares with sparsity prior and box constraints

$$\|Ax - b\|^2 + \lambda \|\nabla$$

geometry!

<u>smooth</u> non-quadratic data term with sparsity prior

$$\operatorname{KL}(x, y) = \sum_{i \in [n]} \left(x_i \log \frac{x_i}{y_i} + y_i - x_i \right)$$

positive x : positive (non-normalised) discrete measure

34

Generalize Algorithmic Operations to Riemannian Manifolds

Geometric Multilevel Optimization

 $\min f(x) := \operatorname{KL}(Ax, b) + \lambda \|\nabla x\|_{1.\rho}$ $x \in \mathcal{M}$

to into account **constraints** smoothly: $\mathcal{M} := (l, u) = (0, 1)^n$

change to a Riemannian metric

devise a **retraction** for first-order optimization

Plier, Savarino, Kocvara, P., SSVM, 2021

Geometric Multilevel Optimization

potential: convex Legendre-type function

$$\varphi(x) = \left\langle u - l, (x - l)\log(x - l) + (u - x)\log(u - x) \right\rangle$$

netric $g_x(v, w) = \left\langle v, \nabla^2 \varphi(x) w \right\rangle$

retraction

pullback

information geometry / e-connection

Alvarez, Bolte, Brahic, SIAM J Control Optim, 2004

Geometry of the Box

 $g_x(v,w) = \langle v, \nabla^2 \varphi(x) w \rangle =:$ metric

$$\nabla_{\mathcal{M}} f(x) = H_x^{-1} \nabla f(x) = \frac{(x - y)}{(x - y)}$$

retraction

$$\widetilde{exp}_{x}^{\mathscr{M}}: T_{x}\mathscr{M} \to \mathscr{M}, \qquad \widetilde{exp}_{x}^{\mathscr{M}}(v) = l + \frac{(u-l)(x-l)e^{\frac{u-l}{(x-l)(u-x)}v}}{(u-x) + (x-l)e^{\frac{u-l}{(x-l)(u-x)}v}}$$

Plier, Savarino, Kocvara, P., SSVM, 2021

$$\langle v, H_x w \rangle$$

$\frac{-l)(u-x)}{(u-l)^2}\nabla f(x)$ Riemannian gradient

Geometry of the Box

metric

$$g_x(v,w) = \left\langle v, \nabla^2 \varphi(x) w \right\rangle =: \left\langle v, H_x w \right\rangle$$

$$\nabla_{\mathcal{M}} f(x) = H_x^{-1} \nabla f(x) = \frac{(x - f(x))}{(x - f(x))}$$

retraction

 $\widetilde{exp}_x^{\mathscr{M}}: T_x \mathscr{M} \to \mathscr{M},$ $\widetilde{exp}_x^{-1} \colon \mathscr{M} \to T_x \mathscr{M}$

Plier, Savarino, Kocvara, P., SSVM, 2021

$\frac{-l)(u-x)}{(u-l)^2}\nabla f(x)$ Riemannian gradient

$$\mathcal{M}_{x}(v) = l + \frac{(u-l)(x-l)e^{\frac{u-l}{(x-l)(u-x)}v}}{(u-x) + (x-l)e^{\frac{u-l}{(x-l)(u-x)}v}}$$

Retraction

Prolongation by Geometric Averaging

$$P(\overline{x})_i = x_i := \begin{cases} x_i, \\ \text{mean}_{\Omega} \end{cases}$$

With $\overline{x} = R(x)$ and $u \in T_{\overline{x}}M$ we have that $dP_{\overline{x}}u \in T_{x}M$

$$g_{x}(\mathrm{d}P_{\overline{x}}u,v)=g_{\overline{x}}(u,v)$$

 $dR_x v$), $v \in T_x \mathcal{M}$

Galerkin condition

$$R = P^{\top}$$

Two Grid Approach, Geometric Coarse Model

for *current* fine grid variable $x \in \mathcal{M}$ define coarse grid model

$$\overline{\psi}(\overline{y}) = \overline{f}(\overline{y}) - \xi$$

with $\overline{x} = R(x)$ and $\overline{v}_x = \nabla \overline{f}(\overline{x}) - dR_x \nabla f(x)$ starting iterate at coarse level

 $g_{\overline{x}}\left(\overline{v}_{x}, \widetilde{exp}_{\overline{x}}^{-1}(\overline{y})\right)$

yes
set
$$\overline{x} = Rx$$
, $\overline{\mathcal{M}} = (\overline{l}, \overline{u})$
find $\overline{y} \in \overline{\mathcal{M}}$ with $\overline{\phi}(\overline{y}) < \overline{\phi}(\overline{x})$
set $\overline{\eta} = \widetilde{exp}_{\overline{x}}^{-1}(\overline{y})$ and $\eta = dP_{\overline{x}}\overline{\eta}$
find α with $f(\widetilde{exp}_{x}^{\mathcal{M}}(\alpha\eta)) < f(x)$
update $x^{+} = \widetilde{exp}_{x}^{\mathcal{M}}(\alpha\eta)$

fine

Outline

Optimization: local approximation **Two-grid optimization** Connection to nonlinear multigrid (FAS) Connection to standard local approximation Geometric two-grid optimization Application to discrete tomography

Multilevel, Illustration

45

Multilevel, Numerical Results

1024 x 1024

Multilevel, Numerical Results

1024 x 1024

Multilevel vs FISTA-type Acceleration

relative objective

Hanzely et al, ArXiv, 2021

reconstruction

1024 x 1024

Conclusion

- Multilevel / multigrid optimization approach
- Coarse model: efficient descent direction computation
- Geometry takes into account constraints
- State-dependent restriction and prolongation
- *Recursive procedure*: more levels can be used

- Convergence rates; no line search; geodesic convexity
- Coarse models for *non-convex* problems

References I

U. Trottenberg, C. Oosterlee, A. Schüller, Multigrid, Academic Press, 2001

S. G. Nash, A multigrid approach to discretized optimization problems. Optimization Methods and Software, 2000

S. Gratton, A. Sartenaer, P. L. Toint, Recursive trust-region methods for multiscale nonlinear optimization. SIAM Journal on Optimization, 2008

Z. Wen, D. Goldfarb, A line search multigrid method for large-scale nonlinear optimization. SIAM Journal on Optimization, 2009

S. Gratton, M. Mouffe, P. L. Toint, M. Weber-Mendonca, A recursive formula-trust-region method for bound-constrained **nonlinear optimization.** IMA Journal of Numerical Analysis, 2008

M. Kocvara and S. Mohammed, A first-order multigrid method for bound-constrained convex optimization. Optimization Methods and Software, 2016

P. Parpas, A multilevel proximal gradient algorithm for a class of composite optimization problems. SIAM J. Sci. Comp., 2017

References II

S. Roux, H. Leclerc, F. Hild, Efficient Binary Tomographic Reconstruction, J Math Imaging Vis, 2014

A. Dabravolski, K. J. Batenburg, J. Sijbers, A Multiresolution Approach to Discrete Tomography Using DART, PLoS One. 2014

J. Plier, Theoretical and Numerical Approaches to Co-/Sparse Recovery in Discrete Tomography, PhD Thesis, HeiDOK, 2020

J. Plier, F. Savarino, M. Kocvara, S. Petra, First-Order Geometric Multilevel Optimization for Discrete Tomography, SSVM, 2021

S. I. Amari, H. Nagaoka, Methods of Information Geometry, Amer. Math. Soc. and Oxford Univ. Press, 2000

P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2008

Geometric Multilevel Optimization For Discrete Tomography

Stefania Petra Mathematical Imaging Group Heidelberg University

IN MEMORIAM OF CARLA PERI

TAIR 2022 Politecnico di Milano, May 2, 2022 – May 4, 2022