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Preliminary definitions

A graph is a pair of sets G = (V,E) where V is the set of vertices and
E ⊆ V × V is the set of edges.

Generalization: a hypergraph is a pair H = (V,E) where V is the set of vertices
and E ⊂ P(V ) is the set of hyperedges (briefly, edges);

The degree of a vertex v is the number of (hyper)edges in which v belongs;

a hypergraph H is k−uniform if its edges have fixed cardinality k. In particular
a graph is a 2−uniform hypergraph. In the following we denote them
k−hypergraphs;

a hypergraph is even if every vertex has even degree .
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Null label

Given a (hyper)graph, we can assign a label l with labels ±1 to each (hyper)edge,
resulting in positive and negative (hyper)edges.

The positive signed degree of a vertex v is the number of positive (hyper)edges in
which it compares and it is denoted as d+

l (v). A similar definition holds for the
negative signed degree. Thus, we define the signed degree of a vertex v as

dl(v) = d+
l (v)− d−l (v).

Definition (Null hypergraph)

An assignment of ±1 to the (hyper)edges of a (hyper)graph is a null label if d(v) = 0,
for all vertices v ∈ V . A (hyper)graph with a null labelling is said to be a null
(hyper)graph.
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Null label

An obvious necessary condition for a (hyper)graph to have a null labelling is that
each vertex must have even degree, i.e., it is an even (hyper)graph. We state the
general problem below.

Hypergraph Null Labelling Problem: let H be a connected, even
k−hypergraph. When can ±1 be assigned to the hyperedges of H to produce a
null-labelled k−hypergraph?

We study the problem in the case of 3−hypergraphs.
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Null label on graphs

The null label problem is completely solved for 2−hypergraphs (i.e. graphs), thanks
to the following Proposition.

Proposition

A graph G has a null labelling if and only if every connected component is an
Eulerian graph with an even number of edges.

Moving to 3−hypegraphs the situation becomes more complex. One of the first
results use the notion of intersection graph.

Definition

Let H = (V,E) be a 3−hypergraph. The intersection graph of H, denoted as I(H), is
a graph in which the nodes are the hyperedges of H and two hyperedges are adjacent
if their intersection is non-empty.
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Previous results

The following result holds.

Theorem

Let H be a connected, even 3−hypergraph, in which every vertex has degree two.
Then H has a null labelling if and only if I(H) is bipartite.

However, I(H) is not useful in general.

Consider the following 3−hypergraphs H1 and H2 on six vertices and whose
hyperedges, arranged in matrix form, are:

H1 =


1 2 3
1 4 5
2 4 6
3 5 6

 H2 =


1 2 5
2 3 5
2 3 4
1 2 4


It is easy to check that the vector of labels l = (1,−1, 1,−1) is a null label for H2,
while H1 has no null labelling. However, H1 and H2 have the same intersection
graph K4, i.e. the complete graph on four vertices.
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2−intersection graph

Relying on this fact, we decide to use the notion of 2-intersection graph.

Definition

Let H = (V,E) be a 3−hypergraph. The 2-intersection graph I2(H) is a graph in
which the nodes are the hyperedges of H and two hyperedges are adjacent if and
only if they a share a common pair of vertices.

{1,2,5} {2,3,5}

{2,3,4}{1,2,4}

{1,2,5} {2,3,5}

{2,3,4}{1,2,4}

I(H) I2(H)
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Hamiltonian cycle and null label

Idea: a connected, even graph G is Eulerian. An Euler tour in G corresponds to a
Hamiltonian cycle in its line graph L(G), and conversely. Furthermore, by alternate
labelling this cycle we find a null labelling of G.

Thus, Hamiltonian cycles in L(G) can be used to determine null labellings of G.

Since the concept of I2(H) and L(G) are very similar, we extend the previous idea
and prove that, starting from an Hamiltonian cycle in I2(H) and alternate labelling
its nodes (i.e. hyperedges of H), we can determine a null label of H.
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Hamiltonian cycle and null label

Consider the 3-hypergraph H = (V,E) on six vertices and E = {e1, . . . , e8}, where
e1 = {1, 2, 3}, e2 = {1, 2, 4}, e3 = {1, 2, 5}, e4 = {1, 2, 6}, e5 = {1, 3, 4}, e6 =
{1, 3, 5}, e7 = {2, 3, 5}, e8 = {2, 5, 6}.

The related 2-intersection graph I2(H) in Fig. 1 has the Hamiltonian cycle
C1 = (ve1 , ve3 , ve2 , ve4 , ve8 , ve7 , ve6 , ve5 , ve1)

ve1

ve5 ve6

ve7

ve8ve4

ve2 ve3

Figure: The 2-intersection graph of the 3-hypergraph considered in the Example.
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Hamiltonian cycle and null label

It is easy to check that alternately labelling ±1 the vertices of C1, starting with +1,
we obtain the null labelling l1 = (1, 1,−1,−1,−1, 1,−1, 1) on the eight hyperedges of
H such that l1(i) is the label of ei, with 1 ≤ i ≤ 8.

Unfortunately, not every Hamiltonian cycle provides a null labelling. A second
Hamiltonian cycle C2 = (ve1 , ve2 , ve3 , ve4 , ve8 , ve7 , ve6 , ve5 , ve1) exists such that the
alternating labelling l2 = (1,−1, 1,−1,−1, 1,−1, 1) is not null on H, as d(v4) = −2
and d(v5) = +2.
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Notation

Suppose that vei and vej are two consecutive vertices of the alternate labelled
Hamiltonian cycle C of I2(H), with ei = {u, x, y} and ej = {v, x, y}. We see that
v 6∈ ei. There may be several consecutive vertices of C that contain v. Denote by
pv = (vej1 , . . . , vejk ) the longest sub-path of C starting in vej such that every vertex
of pv contains v.

{2,3,5}

{2,4,5}

{1,2,5}

{1,3,5}

{1,3,4}

{1,2,4}

 {2,4,6}

{2,3,6}

{1,3,4} {1,3,5} {2,3,5} {2,3,6}  {2,4,6} {2,4,5}{1,2,5} {1,2,4}

+ - + + +- - -

p3 p2

p5 p6

p1

p3 p4

p5

I2(H) :

C:
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Notation

Let l(pv) denote the labels of the vertices of pv, and let σ(l(pv)) denote the sum of
the elements of l(pv). Moreover, let |pv| denote the length k − 1 of pv.
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Notation

Moreover, we define the distance between two paths pu and pv as the distance along
C between the last point of pu and the first point of pv. Finally, given a path pu,
next(pu) is the path beginning in the first vertex following the last vertex of pu.

{2,3,5}

{2,4,5}
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Notation

Note: in general, C may contain several different sub-paths of the form pv, for each
vertex v; we indicate them by p1

v, . . . , p
n
v .
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Subpaths’ properties

Property

Given an alternating labelling ±1 on the vertices of a Hamiltonian cycle C of I2(H).
For each sub-path pv = (vej1 , . . . , vejk ), the following holds:

if pv has odd length, then σ(l(pv)) = 0, so that the labels of the hyperedges
ej1 , . . . , ejk containing v sum to zero in H. In this case the first and the last
vertex of pv have different labels;

if pv has even length, then σ(l(pv)) 6= 0 and the sum of the labels of the
hyperedges ej1 , . . . , ejk containing v contribute +1 or −1 to the signed degree of
v. In this case, the extremal vertices of pv have the same label.
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Subpaths’ properties

Lemma

Let H be an even 3-hypergraph and I2(H) its 2-intersection graph. If I2(H) has a
Hamiltonian cycle C, an alternating ±1 labelling l(C) defines a null label of H if and
only if, for each v ∈ V :

i) each subpath pv has odd length; OR

ii) the number of subpaths of v having even length is even and the
sum of their labels is zero.
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Algorithm

Let C be an Hamiltonian cycle not satisfying the conditions of Lemma 1. We define
an algorithm to obtain a null label from C. It relies on the Switch() operator defined
as follows:

Definition

Given two sub-paths pu = (vei1 , . . . , veik ) and pv = (vej1 , . . . , vejk′ ), where pv =

next(pu), and eik 6= ej1 , the operator Switch(pu, pv) produces a new labelling l′(C)
by changing the signs of eik and ej1 : l′(eik ) = −l(eik ) and l′(ej1) = −l(ej1) and
keeping the remaining labels of l(C) unchanged.

This is an example of Switch(p2, p5) between the two consecutive paths p2 and p5,
i.e., such that p5 =next(p2).

{1,2,3} {2,3,4} {3,4,5} {3,5,6}

+ - + -+ -

p2 p5
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Algorithm

We will start with an alternating labelling l(C) and gradually change it using
Switch().

Property

Let H be a even 3-hypergraph, C a Hamiltonian cycle of I2(H) and l a ±1 labelling
of C. Consider a sub-path pu of C whose last element vei with label +1, and the
sub-path pv = next(pu) whose first element vej with label −1. The operator
Switch(pu, pv) modifies l into l′ so that dl′(u) = dl(u)− 2, dl′(v) = dl(v) + 2 and all
the remaining signed degrees are left unchanged.

Proof.

Without loss of generality, assume that ei = {u, x, y} and ej = {v, x, y}. It is
immediate that the change of the opposite labels of ei and ej keeps the signed degrees
of x and y, while it subtracts 2 from u and adds 2 to v. A symmetric result holds.
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Algorithm

The algorithm Balance() modifies a labelling l(C) of a Hamiltonian cycle C of I2(H)
in order to change the signed degree of two input vertices u and v of H, if possible,
otherwise it gives failure.

Balance() uses consecutive iterations of Switch() and it can be summarized in the
following steps:

1 choose a subpath piu (suppose dl(u) = 2 and dl(v) = −2);

2 if |piu| is even, suppose pt = next(pu). Apply Switch(pu, pt). Now d′l(u) = 0 and
and d′l(t) = dl(t) + 2. Set t = u and repeat step 2)

3 if |piu| is odd, we know that there exists another subpath pju such that σ(pju) = 1
(otherwise is not possible that dl(u) = 2). Choose pju and apply step 2).

The procedure stops when we (eventually) obtain d(u) = d(v) = 0
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Correctness of Balance

First, we proved that Balance() computes a null labelling starting from the
alternating labelling l(C) in the easiest case of having only two signed degrees u and
v different from zero, in particular +2 and −2, respectively.

Lemma

Let H be a 3-hypergraph, C a Hamiltonian cycle of I2(H), and l an alternating
labelling of C. If u and v are the only nodes of H with signed degree different from
zero, in particular dl(u) = +2 and dl(v) = −2, then Balance(u, v, l(C)) returns a
null labelling l′(C) of H.

The key of the proof relies on the fact that Switch() always changes + with a −.
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Correctness of Balance

The previous Lemma can be generalized thanks to two final results.

Lemma

Let H = (V,E) be a 3-hypergraph, C a Hamiltonian cycle of I2(H) and l an
alternating labelling of C. If v1 and v2 are the only nodes of H with signed degree
different from zero with respect to l, say dl(u) = +2k and dl(v) = −2k, where k ≥ 1,
then H admits a null labelling.

Theorem

Let H be a 3-hypergraph. If the 2-intersection graph I2(H) is Hamiltonian, then H
admits a null labelling.

The proof of these last results is simply based on a multiple iteration of Balance.
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Example

Consider the following 3−hypergraph H = (V,E) with V = {1, . . . , 8} and E =
{{2,3,5}, {2,5,8}, {2,4,8}, {1,4,8}, {1,4,7}, {1,6,7}, {1,4,6}, {1,5,6}, {5,6,7}, {1,5,7},
{1,2,7}, {1,2,3}, {2,3,6}, {3,6,8}, {3,7,8}, {3,5,8}}

This figure shows a Hamiltonian cycle C of I2(H), and one of its alternating
labellings l(C).

{2,3,5} {2,5,8} {2,4,8} {1,4,8} {1,4,7} {1,6,7} {1,4,6} {1,5,6}

{5,6,7} {1,5,7} {1,2,7} {1,2,3} {2,3,6} {3,6,8} {3,7,8} {3,5,8}

+ - + - + +

+ + + +

- -

- - - -

p2 p1

p4p7p8

p4 p6

p7 p3

p2p2p2

p1 p6 p7

p5
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Example

The chosen labelling is not a null labelling of H. The vector of the signed degrees of
the vertices of H is

d = (−2, 2, 0, 2,−2, 0, 2,−2).

Let us perform a sequence of runs of Balance() to compute a null labelling of H
starting from l(C).
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p2 p1

p4p7p8

p4 p6

p7 p3

p2p2p2

p1 p6 p7

p5
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Example
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The importance of the 2−intersection graph in the null labelling problem lead to the
study of the following problem.

Problem: given a graph G, it is possible to decide in polynomial time the existence
of a 3-hypergraph H such that G = I2(H)?

In general, we say that a graph G has the 2−intersection property if it is the
2−intersection graph of some 3−hypergraph H.
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Properties of I2(H)

Property

The edges of a 3-hypergraph H sharing the same couple of vertices originate a clique
in the 2-intersection graph I2(H).

However, this Property does not characterize the cliques of I2(H) since there may
appear triangles (K3 cliques) whose edges do not share a common label. More
precisely, the configurations v1 = {x, y, z}, v2 = {x, y, t}, and v3 = {x, z, t} and
v1 = {x, y, z}, v2 = {x, y, t}, and v3 = {x, y, k} are both triangle in I2(H).

In order to distinguish them, we indicate the first and the second ones with T and K
triangles, respectively.
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A similar situation holds for K4 cliques, since they can arise from T or K triangles.
Maintaining the introduced notation, we indicate square configuration with S, and we
differentiate it from the K square, i.e., the 4-clique whose edges have a common label.

1

2

3 4

5 1 2

3 4

(b)(a)

{1,4,5}

{2,4,5}

{2,3,4}

{3,4,5}

{2,3,4}

{2,3}

{3,4}

{1,3,4}{1,2,3}

{1,2,4}

{4,5}

Figure: (a) example of adjacent T and K triangles. (b) example of S square.
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Property

The biggest clique that admit a label without a common couple is a S square.

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

?

Figure: Labelling a K5 clique without a common couple lead to an unsatisfactory labeling.
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Lemma

If G is has the 2−intersection property, then every node of G must belong to at most
3 maximal cliques or 5 maximal cliques two of which being non-adjacent T triangles.

{1,2,3}

{1,2,4}

{2,4,5}

{2,5,6}

{1,5,6}

{1,2,5}

K

T K

T

{1,5,7}

K

Figure: Reconstruction of the configuration in which a point belongs to 5 triangles.
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Complexity of the problem

We proved that is NP -complete to determine whether an arbitrary graph G is the
2-intersection graph of a 3-hypergraph. We reduced the problem to the following
variant of the 3-SAT.

MAX-3-SAT: Consider a set U of variables involved into C clauses over U such
that each clause c ∈ C has |c| = 3 and the literals related to a variable appear three
times at most. Is there a satisfying truth assignment for C?

Given an instance C of MAX-3-SAT, we construct a graph GC so that there is a
solution of the MAX-3-SAT instance if and only if GC is a 2-intersection graph.
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First results

Property

If two triangles intersecting in one vertex have the 2-intersection property, and there
are no edges joining the triangles, then they are not both T -triangles.

We will call two triangles sharing one vertex, with no edges between them, a ribbon
configuration.

{1,2,3}

{1,2,4}

{1,2,5}

{1,5,6}

{1,5,7}

(a) (b)

{1,2,3}

{1,2,4}

{2,3,4}

T

{3,4,5}

{3,4,6}

K3 K3 K3

Figure: Two possible labels of a ribbon configuration. In each of them at most one triangle is
a T -triangle.
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First results

Property

Let T1 and T2 be two triangular cliques. Suppose there are just two edges joining a
vertex of T1 to a vertex of T2, and that these edges have no common endpoints. Then
the obtained configuration has the 2-intersection property. Furthermore, T1 and T2

cannot both be T -triangles. It is possible for T1 and T2 to be both K-triangles.

{1,2,3}

{1,2,4} {2,3,4}

{1,3,5}

{3,4,5} {3,5,6}

Figure: The configuration obtained by two triangles with joined by two edges. One possible
labelling is shown.
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Variables representation

Define a variable gadget, denoted Gx, to represent a variable x in U . The gadget is a
2-intersection graph obtained by the union of different configurations as defined in
the following figure.

Property

The variable gadget Gx is a 2-intersection graph.
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Variables representation

Lemma

A labelling of the vertices of Gx allows only the following configurations for triangles
T 1

2 , T 1
5 and T 2

3 :

i) if T 2
3 = T then T 1

2 = T 1
5 = K;

ii) if T 1
5 = T (resp. T 1

2 = T ) then T 2
3 = K.
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Clauses representation

The clause gadget Gc in Figure represents a single clause c ∈ C. It consists of a
central clique K6 whose vertices also belong to six different K3 cliques, called
boundary triangles.

T2
T1

T6

T5T4

T3

x1

x2

x3

x4

x5

x6

y6

z6

z6

y1y2

z2

z3

y3

y4

z4 z5

y5

Lemma

A clause gadget Gc is a 2-intersection graph if and only if its boundary triangles do
not contain either exactly three or exactly one T -triangles.

Note that by previous results Gc cannot have more than 3 T − triangles as boundary
triangles.
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NP-Completness

Let us consider the instance C = {c1, . . . , cn} of MAX-3-SAT involving the variables
in the set U = {x1, . . . xm}. Based on the gadgets already defined, we construct a
graph GC whose labels determine its 2-intersection property and express the desired
valuations of C.

We can assume that each variable must appear at most three times: one in a form
and two in the opposite form. For each variable xi ∈ U , we define a variable gadget
Gxi , and associate the triangle T 2

3 with the single occurrences of a literal xi. The
at-most-two remaining occurrences of the opposite literal are associated with the
triangles T 1

2 and T 1
5 .

For each clause cj ∈ C, we construct a clause gadget Gcj and label its boundary
triangles T1 . . . T6. Finally, we connect variable gadgets and clause gadgets together
as follows: for each clause cj , with 1 ≤ j ≤ n, we use a ribbon to the triangle T2i−1 of
the clause gadget Gc, to the corresponding triangle associated with the ith literal of c
in the Gx gadget of its variable.

Theorem

Given an instance C of MAX-3-SAT, the graph GC has the 2-intersection property if
and only if the instance C has a solution.
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Sketch of the proof

Let us assume that there exists a valuation for the MAX-3-SAT instance C. Given a
variable x ∈ U , for each literal with value true associated with x, we assign the
triangles associated with it to be T -triangles, and we assign the triangles associated
with its negation to be K-triangles. For each clause cj ∈ C, in its clause gadget Gcj ,
we assign the triangles associated with the literals having valuation true to be
K-triangles, but T -triangles for the literals having valuation false. The previous
Lemmas assure that GC has the 2−intersection property.

Suppose GC has the 2-intersection property. For each clause gadget Gcj , with
cj ∈ C, there exists at least one triangle among T1, T3 and T5, say T ′ of type K.
Previous properties assures that T ′ having type K leads to a T -triangle in the
variable gadget Gx to which a literal, say l, is associated. We assign such a literal
value true. The opposite literal l is then associated with false. The valuation defined
is a solution of the MAX-3-SAT instance C.
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Example

Figure: Example of the construction of the gadget for C = {c1, c2}, c1 = (x3, x1, x1),
c2 = (x1, x3, x2). One valuations obtained by the labelling of the corresponding GC graph is
x1 =true, x2 =true and x3 =false.
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Thanks for your attention!
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