Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
00000000000000000000000000	00000000000	000000000	00000

From fibers to brain diseases

C. Lagisquet, J. Shillcock, C. Lesieur, L. Vuillon

May, 2022

C. Lagisquet, J. Shillcock, C. Lesieur, L. Vuillon From fibers to brain diseases

Laboratoire de Mathématiques Université de Savoie CINIS

UMR 5127

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
000000000000000000000000000000000000000	00000000000	000000000	00000

Outline

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
	00000000000	000000000	00000

Proteins

PROTEIN: sequence of amino acids that folds and realises a biological function

R: 20 standard amino acids = protein building blocks

Main chain (backbone), side chain

Information flow: $1D \longrightarrow 3D$

Amino Acide

Dan Cojocari, Department of Medical Biophysics, University of Toronta, 20

Cyclic

Cyclic

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
Proteins	I 3	Fibers DODDDDDDDDDDDD I M	Coarse-grain simulations
	Ī		

FIGURE – Abstract view of C_4 symmetry. A tetramer formed by a single interface between the part *I* and \overline{I} . Each chain is adjacent via the interface to exactly 2 other chains

FIGURE – Heptamer 4H56 in the PDB with each chain adjacent to 2 other chains. Remark that in the beta barrel the adjacency between pairs of chains is the same as in the other part of the heptamer. This implies an oligomerization with exactly 1 interface.

Tilings of the plane

00000000000

Protein Data Bank

0.	010	ain	<u> </u>
	U.I.	_	
	_	_	

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
	00000000000	000000000	00000

_			
_	20	***	 -
		пн	 5
			 -

31-JAN-00 1EEI

0000000000

TITLE CHOLERA TOXIN B-PENTAMER COMPLEXED WITH METANITROPHENYL-TITLE 2 ALPHA-D-GALACTOSE

COMPND MOL ID: 1;

HEADER TOXIN

COMPND 2 MOLECULE: PROTEIN (CHOLERA TOXIN B);

COMPND 3 CHAIN: D, E, F, G, H;

COMPND 4 ENGINEERED: YES;

COMPND 5 OTHER_DETAILS: RECEPTOR BINDING SITE ON EACH MONOMER

COMPND 6 OCCUPIED BY METANITROPHENYL-ALPHA-D-GALACTOSIDE

SOURCE MOL_ID: 1;

SOURCE 2 ORGANISM_SCIENTIFIC: VIBRIO CHOLERAE;

SOURCE 3 ORGANISM TAXID: 666;

SOURCE 4 STRAIN: OGAWA 41 (CLASSICAL BIOTYPE);

SOURCE 5 EXPRESSION SYSTEM: ESCHERICHIA COLI;

SOURCE 6 EXPRESSION_SYSTEM_TAXID: 562

KEYWDS TOXIN, ENTEROTOXIN

EXPDTA X-RAY DIFFRACTION

AUTHOR E.A.MERRITT, W.G.J.HOL

REVDAT 4 24-FEB-09 1EEI 1 VERSN

REVDAT 3 01-APR-03 1EEI 1 JRNL

REVDAT 2 07-FEB-011EEI 1 JRNL

REVDAT 1 16-FEB-00 1EEI 0

JRNL AUTH E.FAN, E.A.MERRITT, Z.ZHANG, J.C.PICKENS, C.ROACH,

JRNL AUTH 2 M.AHN, W.G.HOL

JRNL TITL EXPLORATION OF THE GM1 RECEPTOR-BINDING SITE OF

JRNL TITL 2 HEAT-LABILE ENTEROTOXIN AND CHOLERA TOXIN BY

JRNL TITL 3 PHENYL-RING-CONTAINING GALACTOSE DERIVATIVES.

JRNL REF ACTA CRYSTALLOGR., SECT.D V. 57 201 2001

JRNL REFN ISSN 0907-4449

JRNL PMID 11173465

JRNL DOI 10.1107/S0907444900016814

C. Lagisquet, J. Shillcock, C. Lesieur, L. Vuillon From fibers to brain diseases

00000

SEQRES 1 D 103 THR PRO GLN ASN ILE THR ASP LEU CYS ALA GLU TYR HIS SEORES 2 D 103 ASN THR GLN ILE HIS THR LEU ASN ASP LYS ILE PHE SER SEQRES 3 D 103 TYR THR GLU SER LEU ALA GLY LYS ARG GLU MET ALA ILE SEQRES 4 D 103 ILE THR PHE LYS ASN GLY ALA THR PHE GLN VAL GLU VAL SEQRES 5 D 103 PRO GLY SER GLN HIS ILE ASP SER GLN LYS LYS ALA ILE SEQRES 6 D 103 GLU ARG MET LYS ASP THR LEU ARG ILE ALA TYR LEU THR SEQRES 7 D 103 GLU ALA LYS VAL GLU LYS LEU CYS VAL TRP ASN ASN LYS SEQRES 8 D 103 THR PRO HIS ALA ILE ALA ALA ILE SER MET ALA ASN SEQRES 1 E 103 THR PRO GLN ASN ILE THR ASP LEU CYS ALA GLU TYR HIS SEQRES 2 E 103 ASN THR GLN ILE HIS THR LEU ASN ASP LYS ILE PHE SER SEORES 3 E 103 TYR THR GLU SER LEU ALA GLY LYS ARG GLU MET ALA ILE SEQRES 4 E 103 ILE THR PHE LYS ASN GLY ALA THR PHE GLN VAL GLU VAL SEQRES 5 E 103 PRO GLY SER GLN HIS ILE ASP SER GLN LYS LYS ALA ILE SEORES 6 E 103 GLU ARG MET LYS ASP THR LEU ARG ILE ALA TYR LEU THR SEORES 7 E 103 GLU ALA LYS VAL GLU LYS LEU CYS VAL TRP ASN ASN LYS SEQRES 8 E 103 THR PRO HIS ALA ILE ALA ALA ILE SER MET ALA ASN SEORES 1 F 103 THR PRO GLN ASN ILE THR ASP LEU CYS ALA GLU TYR HIS SEORES 2 F 103 ASN THR GLN ILE HIS THR LEU ASN ASP LYS ILE PHE SER SEQRES 3 F 103 TYR THR GLU SER LEU ALA GLY LYS ARG GLU MET ALA ILE SEQRES 4 F 103 ILE THR PHE LYS ASN GLY ALA THR PHE GLN VAL GLU VAL SEQRES 5 F 103 PRO GLY SER GLN HIS ILE ASP SER GLN LYS LYS ALA ILE

Tili	of	the	plane	
00	20	000	0000	

Ν С C 0 Ċ 0 С Ν С c 0 C C c N С c 0 c C 0 Ν Ν С C 0 C C O N

АТОМ	1	N	THR	D	1	38.037	31.348	29.862	1.00	33.00	
АТОМ	2	CA	THR	D	1	36.589	31.127	30.121	1.00	35.55	
АТОМ	3	C	THR	D	1	35.742	31.862	29.096	1.00	33.96	
АТОМ	4	0	THR	D	1	35.831	33.092	28.952	1.00	32.50	
АТОМ	5	CB	THR	D	1	36.193	31.558	31.545	1.00	35.17	
АТОМ	6	0G1	THR	D	1	36.841	30.686	32.469	1.00	39.57	
АТОМ	7	CG2	THR	D	1	34.687	31.426	31.763	1.00	33.50	
АТОМ	8	N	PRO	D	2	34.892	31.113	28.372	1.00	33.37	
АТОМ	9	CA	PRO	D	2	34.031	31.737	27.351	1.00	34.14	
АТОМ	10	C	PRO	D	2	33.093	32.795	27.950	1.00	31.05	
АТОМ	11	0	PRO	D	2	32.735	32.731	29.127	1.00	32.31	
АТОМ	12	CB	PRO	D	2	33.273	30.536	26.746	1.00	34.27	
АТОМ	13	CG	PRO	D	2	33.247	29.524	27.908	1.00	35.08	
АТОМ	14	CD	PRO	D	2	34.641	29.662	28.498	1.00	29.79	
АТОМ	15	N	GLN	D	3	32.710	33.770	27.141	1.00	29.08	
АТОМ	16	CA	GLN	D	3	31.830	34.806	27.619	1.00	30.28	
АТОМ	17	C	GLN	D	3	30.464	34.666	27.011	1.00	27.08	
АТОМ	18	0	GLN	D	3	29.554	35.366	27.398	1.00	25.73	
АТОМ	19	CB	GLN	D	3	32.414	36.182	27.330	1.00	39.02	
АТОМ	20	CG	GLN	D	3	33.767	36.404	28.018	1.00	48.24	
АТОМ	21	CD	GLN	D	3	33.898	37.791	28.618	1.00	51.86	
АТОМ	22	0E1	GLN	D	3	32.950	38.339	29.188	1.00	54.42	
АТОМ	23	NE2	GLN	D	3	35.083	38.370	28.499	1.00	53.78	
АТОМ	24	N	ASN	D	4	30.283	33.673	26.156	1.00	24.18	
АТОМ	25	CA	ASN	D	4	29.007	33.476	25.504	1.00	23.35	
АТОМ	26	C	ASN	D	4	28.898	32.053	24.991	1.00	24.80	
АТОМ	27	0	ASN	D	4	29.885	31.318	24.971	1.00	25.80	
АТОМ	28	CB	ASN	D	4	28.881	34.449	24.343	1.00	25.31	
АТОМ	29	CG	ASN	D	4	30.015	34.307	23.351	1.00	26.76	
АТОМ	30	0D1	ASN	D	4	30.162	33.270	22.716	1.00	28.05	
АТОМ	31	ND2	ASN	D	4	30.851	35.332	23.235	1.00	28.85	

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
	00000000000	000000000	00000

Dihedral

Atomic Model of	⁷ Mm-cpn in	the Closed	State
-----------------	------------------------	------------	-------

DOI:10.2210/pdb3los/pdb

ENTRY 3LOS SUPERSEDES 3IYE

Primary Citation

Mechanism of folding chamber closure in a group II chaperonin.

Zhang, J., A., Baker, M.L., Schroder, G.F., Douglas, N.R., Reissmann, S., Jakana, J., Dougherty, M., Fu, C.J., Levitt, M., Ludtke, S.J., Frydman, J., Chiu, W.

Journal: (2010) Nature 463: 379-383

PubMed: 20090755 @ PubMedCentral: PMC2834796 @ DOI: 10.1038/nature08701 @ Search Related Articles in PubMed [3]

PubMed Abstract:

Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadaton, consist of two back-to-back rings encompassing a central cavity that accommodates polypetide substrates. Chaperonin-mediated protein folding is critically dependent... [Read More & Search Publed Abstracts]

‡ Molecular Desc	ription				Hid
Classification: Structure Weight:	Chaperon 932652.81	10.0 1.00			
Molecule: Polymer:	Chape 1	eronin Type:	protein	Length:	543

3LOS

Display Files -

* Download Files -

roteins	Tilings of the plane	Fibers	Coarse-grain simulations
	00000000000	000000000	00000

Dihedral

_	rot	OID	
	гол		

Tetrahedral

DOI:10.2210/pdb1xfo/pdb

Primary Citation	Biological Assembly 2	
Crystal structure of a dodecameric tetrahedral-shaped aminopeptidase.	+	
Russo, S. A, Baumann, U. A	all the second	
Journal: (2004) J.Biol.Chem. 279: 51275-51281	Start Andrew	
Publick15375155 양 DDT:10.1074/jbc.M409455200 양 Sarch Related Articles In Publied 요	100 Sta	
Publied Abstract: Protein turnover is an essential process in living cells. The degradation of cytosolic polypeptides is mainly carried out by the proteasome, resulting in 7-9-anino add king peptides. Further degradation is usually carried out by energy-independent proteases like the tricom protease [Read More & Search Publied Abstracts]		
Molecular Description Hide	🕹 3D View More Images	
Classification: Hydrolase Structure Weight: 158566.63 ()	Symmetry: T view Stoichiometry: Homo 12-mer - A12	
Molecule: Frv operan protein FrvX Polymer: 1 Type: protein Length: 357 Duling: 0.9 C C	Biological assembly 1 assigned by authors and generated by PISA, PQS (software)	
EC#: 3.4.11 Ø @	Downloadable viewers:	
Organism: Pyrococcus horikoshil⊅ Gene Names: fnX PH1527 UniFrotKB: È Protein Feature View Search PDB ₽ 059196 @	Kiosk Viewer	

teins	Tilings of the plane	Fibers	Coarse-grain simulations
	00000000000	0000000000	00000

Tetrahedral

Pro

Proteins Tilings of the plane Fibers Coarse-grain sim

Octahedral

s		Tilings o	of the plane	Fibers	000	Coarse-grain simulat
osahe	dral					
						🕅 Display Files -
Life in the ex	tremes: atomic struct	ure of Sulfolob	us Turreted Icos	ahedral Virus	3J31	🛓 Download Files -
Primary Citation	31/pdb			EMDataBank @ :5584		
Atomic structure of crystallography.	the 75 MDa extremophile Sulfolo	bus turreted icosahed	al virus determined by Cr	yoEM and X-ray	 Biologie 	+
Veesler, D. P., Ng, T. C.Y. P Journal: (2013) Proc. PubMed: 23520050 PubMedCentral: PM DOI: 10.1027 (page	S. 우, Sendamarai, A.K. 우, Eilers, Nati.Acad.Sci.USA 110: 5504-5509 양 23619359 전 1300601110 전	B.J. ∕>, Lawrence, C.M	., , Lok, S.M., , Young, M	J.Ø, Johnson, J.E.Ø, Fu,		
Search Related Artic PubMed Abstract: Sulfolobus turreted ic determined the STIV polypeptide chains an	les in PubMed posshedral virus (STIV) was isolated in structure using near-atomic resolution d visualization of [Read More & S	acidic hot springs where in electron microscopy an earch PubMed Abstract	it infects the archeon Sulfold d X-ray crystallography allow ts]	bus solfataricus. We ing tracing of structural	and the second s	More Images
Molecular Descri Classification: Structure Weight:	ption Virus > [VIPERdb &] 335329.60 ()			Hide	Symmetry: I vie Stoichiometry: H A900B60C60 No info available I assembly	w etero 1020-mer - for origin of biological
Molecule: Polymer: Chains: Organism: Gono Namoi	A223 penton base 1 Type: Q Sulfolobus turreted icosah A223	protein edral virus 1 \wp	Length:	223	Downloadable v Simple Viewer Klosk Viewer	viewers: Protein Workshop

Tilings of the plane	Fibers	Coarse-grain simulations
000000000000	0000000000	00000

Icosahedral

Amyloid

Molecular Structure of β-Amyloid Fibrils in Alzheimer's Disease Brain Tissue

Jun-Xia Lu,¹ Wei Qiang,¹ Wai-Ming Yau,¹ Charles D. Schwieters,² Stephen C. Meredith,³ and Robert Tycko^{1,*} ¹Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA

²Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624, USA ³Department of Pathology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA *Correspondence: robertty@mail.nih.gov

http://dx.doi.org/10.1016/i.cell.2013.08.035

Fibers in brain tissue

Figure 1. Evidence for a Single Predominant A β 40 Fibril Structure in Brain Tissue of Patient I

(A) Light microscope image of cortical tissue from patient I, with immunchistochemical staining for β -amyloid using monoclonal antibody 6E10. Amyloid deposits are red or pink.

(B) Negatively stained TEM image of extract from occipital lobe tissue before addition of monomeric Aβ40. Fibril fragments are circled in red.

(C and D) TEM images of isotopically labeled Aβ40 fibrils, recorded 24 hr after addition of monomeric Aβ40 to sonicated extract from cocipital lobe tissue. Aβ40 was uniformly ¹⁵N, ¹³C-labeled at F19, V24, G25, A30, I31, L34, and M35.

(E) TEM image of fibrils prepared by seeding with sonicated extract from temporal/parietal lobe tissue.

(F and G) 2D ¹³C-¹³C and ¹⁵N-¹³C solid-state NMR spectra of A)40 fibrils, seeded with extract from occipital lobe tissue. Black lines and labels show site-specific cross-peak assignments.

(H and I) 2D 13 C 13 C and 15 N $^{-13}$ C solid-state NMR spectra of A()40 fibrils, seeded with extract from temporal/parietal lobe tissue, with the same black lines as in (F) and (H). See also Figures S1 and S2.

Amyloid fiber model

Figure 5. Molecular Structure of Aβ40 Fibrils from Patient I

(A) Structure with the lowest total experimental restraint energy in Xplor-NIH calculations. The 3-fold-symmetric repeat unit is shown, as viewed along the fibril growth axis. Backbone and sidechain carbon atoms are gray and green, respectively.

(B) Superposition of 20 structures that are consistent with experimental restraints (PDB code 2M4J). Sidechains of the three Aβ40 molecules in the repeat unit are yellow, green, or orange.

(C and D) Two views of the idealized fibril structure, created by repeating the trimeric unit 18 times with 0.48 nm displacements along the fibril axis.

(E and F) Structural models for Aj40 (finit) polymorphs with 3-fold and 2-fold symmetry about the finit) growth axis, developed previously from solidstate NMR and electron microscopy measurements on fihring grown in vitro. Repeat units from these models are shown, calculated as regularized averages of structure bundles in PDB codes 2LMP and 2LMN, respectively.

See also Figures S4 and S6 and Tables S3 and S4.

The second secon

Fibers

Coarse-grain simulatior

Fiber !

C. Lagisquet, J. Shillcock, C. Lesieur, L. Vuillon From fibers to brain diseases

Tilings of the plane

Définition

A *polyomino* is the interior of a closed non intersecting path in a square lattice.

Tilings of the plane

Definitions

A *tiling by translation* of a polyomino P is a covering of \mathbb{R}^2 by translation of copies of P without overlapping or hole.

Tilings of the plane

Isometries of the plane : translation, rotation, reflection and glide reflection.

17 crystalographic groups for the plane (Bravais 1847).

The 17 crystallographic groups are represented at the Alhambra of Grenada (by artists around 1350).

Cristallographic groups

Tilings of the plane	Fibers	Coarse-grain simulations
		00000

FIGURE - Spider silk.

FIGURE – From tiling to cylinder by using the translation of 8 times the vector \vec{e}_1 .

FIGURE – Two boundaries in correspondence by the translation $4 \vec{v}_1 + 2 \vec{v}_2)$

FIGURE – Fiber with a pseudo square shape. Each tile is surrounded by 4 tiles.

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
000000000000000000000000000000000000000	00000000000		00000

FIGURE – Tobacco Mosaic Virus.

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
000000000000000000000000000000000000000	00000000000		00000

FIGURE – Tobacco Mosaic Virus : an example of tiling of a fiber with 4 adjacent chains.

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
000000000000000000000000000000000000000	00000000000		00000

FIGURE – Tobacco Mosaic Virus : a 17-mer.

FIGURE – Fiber with a pseudo hexagon shape. Each tile is surrounded by 6 tiles. Remark that pseudo hexagon shapes appear in particular when there is a tilt on the fiber.

FIGURE – 3J1R : an example of tiling of a fiber with 6 adjacent chains.

FIGURE – **A.** The p53 tetrameric domain is made of 2 dimers. Each monomer is made of a β -strand followed by a small helix ended by a long α -helix parallel to the β -strand (1SAK). The residue R337 is sensitive to mutation.

Parkinson disease

Model biomolecular condensates have heterogeneous

structure quantitatively dependent on the interaction profile

of their constituent macromolecules

Julian C. Shillcock1*, Clément Lagisquet2, Jérémy Alexandre3,4, Laurent Vuillon2*,

John H. Ipsen⁵

¹ Blue Brain Project and Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland

² LAMA, Univ. Savoie Mont Blanc, CNRS, LAMA, 73376 Le Bourget du Lac, France

³ Brain Mind Institute, Ecole polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland

⁴ Current address: Aktiia SA, Rue du Bassin 8a, 2000 Neuchâtel, Switzerland

⁵ Dept. of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Fibers

0000000000

Intrinsically Disordered Proteins

Liquid-liquid phase separation of proteins

Folded proteins

Intrinsically Disordered Proteins

- Unique folded state
- · Lowest energy (energy dominated)
- Precise shape
- Precise functions
- · Disrupted by single aa mutation
- · Enriched in catalysis, ion transport, binding
- No unique folded state
- Many conformations of similar energy (entropy dominated)
- · Generic binding via multiple, weak sites
- Sequence not conserved but properties are
- · Can fold/unfold on binding
- · Fnriched in signalling and regulation

wikipedia.org

Oldfield and Dunker Ann. Rev. Biochem.I. 83:553 (2014)

Chong and Forman-Kay, Curr. Op. Struct. Biol. 41:180 (2016)

Semi flexible polymers

Reduce an IDP to its simplest form: a semi-flexible polymer with sticky end-caps (telechelic)

Still many parameters: molecular weight, backbone stiffness, end-cap affinity, concentration ...

Choose two

A) Backbone length (molecular weight) = 16, 24, 32, ... beads

B) Dimensionless end-cap affinity = [0, 1]; where 0 = no affinity and 1 = "very strong" affinity (defined in terms of the conservative interactions between end-caps and water)

N = 634 hydrophilic polymers with increasing affinity

From fluide to solid aggregates

A. Patel et al., Cell, 162:1066 (2015)

Proteins	Tilings of the plane	Fibers	Coarse-grain simulations
000000000000000000000000000000000000000	00000000000	0000000000	

Network theory

