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About Me

Jiayang Shi

Leiden Institute of Advanced Computer Science (LIACS), Leiden University

PhD student under supervision from Daan Pelt and Prof. Joost Batenburg

Research focus:

• Denoising and artifacts reduction for computed tomography with deep-
learning

• Part of H2020 project “xCting”
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Background

Noise in Computed Tomography (CT)

To reduce radiation of CT

• Lower radiation amount, i.e., low dose CT

To improve scanning speed of CT

• Fewer projections 
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Normal dose vs. low dose [Yang et al, 2018]

180 vs. 18 projections [Van Daatselaar et al, 2004]
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Background

Artifacts in Computed Tomography (CT)

Systematic errors in some certain fixed detector elements (miscalibrated or defective) -> ring artifact

Prominent bright spots in projections-> zinger artifact 
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projection sinogram reconstruction

Ring artifact

Zinger artifact
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Problem

• A lot of deep-learning denoising techniques exist for reconstruction domain.  [Marcos et al., 2020] [Bepler et 
al. 2020] [Chen et al., 2016]

• But with high noise level and certain artifacts, those techniques could yield to suboptimal result.

• Full potential of CT is not used.
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Algorithm
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projection domain sinogram domain reconstruction domain

CNN1 CNN2 CNN3
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Algorithm – Experiment Setup

• For each stage, Unet [Ronneberger, 2015] with reduced channels or MSD-Net [D. M. Pelt & J. A. Sethian, 2017] 
is used

• Training with augmentation due to limited training examples, and early stopping

• Simulated foam phantom [D. M. Pelt et al., 2022] with ASTRA Toolbox [W. van Aarle et al., 2016]

- Low dose: fewer projections, add poisson noise, ring and zinger artifacts

- High dose: noise-free 

• Parallel beam, reconstruction with FBP
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Result – projection domain
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Result – sinogram domain
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Result – reconstruction domain
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• Noise is reduced gradually

• Effective against ring/zinger artifacts

• Ring/Zinger artifacts are easier to be 
removed in projection and sinogram 
domain 
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Result – reconstruction domain

Compare with supervised learning only in reconstruction domain

CNN with equal training parameters as CNNs for 3 stages in total, same training strategy
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Result – different Poisson level
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Poisson noise + ring + zinger

• Fixed ring and zinger artifact, and different Poisson 
noise level

PSNR: 5.26 dB PSNR: 1.42 dB
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Result – different ring artifact level
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Poisson noise + ring   

• Fixed Poisson noise and different ring artifact 
level

PSNR: 10.69 dB PSNR: 6.24 dB



Discover the world at Leiden University

Result – different zinger artifact level
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Poisson noise + zinger 

• Fixed Poisson noise and different zinger artifact 
level

PSNR: 8.85 dBPSNR: 10.78 dB



Discover the world at Leiden University

Summary

• Beside Poisson noise, our denoising strategy could also remove ring and 
zinger artifacts  

• Ring and zinger is easier to be removed in projection and sinogram domain

• Limits:

- Only tested on simulated data, Difficult to acquire two (similar) phantoms in practice

• Expanding this algorithm to self-supervised denoising

• Also works for cone beam, the performance is slightly worse than parallel 
beam case
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Thank you!
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j.shi@liacs.leidenuniv.nl


