Multi-stage Deep Learning Denoising for Computed Tomography

Jiayang Shi

About Me

Jiayang Shi

Leiden Institute of Advanced Computer Science (LIACS), Leiden University PhD student under supervision from Daan Pelt and Prof. Joost Batenburg

Research focus:

- Denoising and artifacts reduction for computed tomography with deeplearning
- Part of H2020 project "xCting"

Background

Noise in Computed Tomography (CT)

To reduce radiation of CT

- Lower radiation amount, i.e., low dose CT To improve scanning speed of CT
- Fewer projections

180 vs. 18 projections [Van Daatselaar et al, 2004]

Normal dose vs. low dose [Yang et al, 2018]

Background

Artifacts in Computed Tomography (CT)

Systematic errors in some certain fixed detector elements (miscalibrated or defective) -> ring artifact

Prominent bright spots in projections-> zinger artifact

Problem

- A lot of deep-learning denoising techniques exist for reconstruction domain. [Marcos et al., 2020] [Bepler et al. 2020] [Chen et al., 2016]
- But with high noise level and certain artifacts, those techniques could yield to suboptimal result.
- Full potential of CT is not used.

low dose recon

PSNR: 1.42 dB

cleaned

PSNR: 19.54 dB

high dose recon

Algorithm – Experiment Setup

- For each stage, Unet [Ronneberger, 2015] with reduced channels or MSD-Net [D. M. Pelt & J. A. Sethian, 2017] is used
- Training with augmentation due to limited training examples, and early stopping
- Simulated foam phantom [D. M. Pelt et al., 2022] with ASTRA Toolbox [W. van Aarle et al., 2016]
 - Low dose: fewer projections, add poisson noise, ring and zinger artifacts
 - High dose: noise-free
- Parallel beam, reconstruction with FBP
 low dose recon slice

high dose recon slice

Result – projection domain

PSNR: 15.16 dB

low dose projection cleaned projection high dose projection

PSNR: 26.95 dB

Result – sinogram domain

PSNR: 17.01 dB 27

cleaned p1

cleaned p2

high dose sino

Result – reconstruction domain

- Noise is reduced gradually
- Effective against ring/zinger artifacts
- Ring/Zinger artifacts are easier to be removed in projection and sinogram domain

low dose recon

cleaned p1

17.80 dB

cleaned p2

18.23 dB

cleaned p3

PSNR: 1.42 dB

21.15 dB

high dose recon

Result – reconstruction domain

Compare with supervised learning only in reconstruction domain CNN with equal training parameters as CNNs for 3 stages in total, same training strategy

Result – different Poisson level

Poisson noise + ring + zinger

• Fixed ring and zinger artifact, and different Poisson noise level

PSNR: 5.26 dB

Poisson noise level

Result – different ring artifact level

Poisson noise + ring

ring artifact level

Result – different zinger artifact level

Poisson noise + zinger

Fixed Poisson noise and different zinger artifact level

PSNR: 10.78 dB

zinger artifact level

Summary

- Beside Poisson noise, our denoising strategy could also remove ring and zinger artifacts
- Ring and zinger is easier to be removed in projection and sinogram domain
- Limits:
 - Only tested on simulated data, Difficult to acquire two (similar) phantoms in practice
- Expanding this algorithm to self-supervised denoising
- Also works for cone beam, the performance is slightly worse than parallel beam case

Thank you!

j.shi@liacs.leidenuniv.nl