An alternative definition for digital convexity

Context and objectives

Full convexity

Some applications of full convexity

Fully convex enveloppe and polyhedral models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Some applications of full convexity

- full convexity of digital planes
- stability by intersection and local shape analysis

- tangency, tangential cover
- digital surface reconstruction
- shortest paths

Thick enough arithmetic planes are full convex

Arithmetic plane

- irreducible normal vector $N \in \mathbb{Z}^d$
- ▶ intercept $\mu \in \mathbb{Z}$
- ▶ positive thickness $\omega \in \mathbb{Z}, \omega > 0$

$$P(\mu, \mathbf{N}, \omega) := \{ x \in \mathbb{Z}^d, \mu \leqslant x \cdot \mathbf{N} < \mu + \omega \}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Thick enough arithmetic planes are full convex

Arithmetic plane

- irreducible normal vector $N \in \mathbb{Z}^d$
- intercept $\mu \in \mathbb{Z}$
- ▶ positive thickness $\omega \in \mathbb{Z}, \omega > 0$

$$P(\mu, \mathbf{N}, \omega) := \{ x \in \mathbb{Z}^d, \mu \leqslant x \cdot \mathbf{N} < \mu + \omega \}$$

Thick enough arithmetic planes are full convex

Arithmetic plane

- irreducible normal vector $N \in \mathbb{Z}^d$
- intercept $\mu \in \mathbb{Z}$
- ▶ positive thickness $\omega \in \mathbb{Z}, \omega > 0$

$$P(\mu, \mathbf{N}, \omega) := \{ x \in \mathbb{Z}^d, \mu \leqslant x \cdot \mathbf{N} < \mu + \omega \}$$

Theorem Arithmetic planes are fully convex for thickness $\omega \ge \|N\|_{\infty}$.

Stability by intersection

- ▶ A subset *Y* of \mathbb{R}^d is said *stable* whenever *Y* is convex and, for any cell *c* of C^d , $Y \cap c \neq \emptyset \Rightarrow \overline{c} \subset Y$.
- ▶ If $X \subset \mathbb{Z}^d$ is fully convex and $Y \subset \mathbb{R}^d$ is stable, then $X \cap Y$ is fully convex.
- Any intersection of stable sets is stable
- Any half-space of integer intercept and axis normal vector is stable.
- Any axis-aligned slice or any cubical neighborhood is stable

Local analysis of shape X

 $k=1 \qquad \qquad k=2 \qquad \qquad k=3 \qquad \qquad k=4$

• Let $N_k(z)$ be the $(2k+1)^d$ -neighborhood around z

 $X_k(z) := N_k(z) \cap X$ $ar{X}_k(z) := N_k(z) \cap (\mathbb{Z}^d \setminus X)$

- X is *j*-convex at z iff $X_j(z)$ is fully convex
- X is *j*-concave at z iff $\bar{X}_j(z)$ is fully convex
- X is j-planar at z iff it is j-convex and j-concave at z
- otherwise X is j-atypical at z

Local multiscale analysis of shape X

◆□▶ ◆圖▶ ★ 国▶ ★ 国▶ 二 国

Lemma

- X j + 1-convex at $z \Rightarrow X j$ -convex at z
- ▶ X j + 1-concave at $z \Rightarrow X j$ -concave at z
- $\blacktriangleright X j + 1 \text{-planar at } z \Rightarrow X j \text{-planar at } z$
- $\blacktriangleright X j-atypical at z \Rightarrow X j+1-atypical at z$

Tangency

Definition

The digital set $A \subset X \subset \mathbb{Z}^d$ is said to be *k*-tangent to X for $0 \leq k \leq d$ whenever $\overline{C}_k^d[\operatorname{Cvxh}(A)] \subset \overline{C}_k^d[X]$. It is tangent to X if the relation holds for all such k.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Tangency

Definition

The digital set $A \subset X \subset \mathbb{Z}^d$ is said to be *k*-tangent to X for $0 \leq k \leq d$ whenever $\overline{C}_k^d[\operatorname{Cvxh}(A)] \subset \overline{C}_k^d[X]$. It is tangent to X if the relation holds for all such k.

Side step: 2d tangential cover

Sequence of maximal digital straight segments = tangential cover of [Feschet, Tougne 99]

Theorem ([Debled-Rennesson,Reiter-Doerksen 04])

A 4- or 8-connected subset $S \subset \mathbb{Z}^2$ is digitally convex, iff the directions of its maximal digital straight segments are monotonous along Bd(S).

ヘロア ヘロア ヘロア ヘロア

Tangential cover

Theorem

In 2D, if C is a simple 2-connected digital contour, then the fully convex subsets of C that are maximal and tangent coincides with the classical tangential cover of [Feschet, Tougne 99].

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

can we define facets of X as inextensible connected pieces of arithmetic planes along X ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

can we define facets of X as inextensible connected pieces of arithmetic planes along X ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- contrarily to 2D, maximal pieces of planes are not tangent.
 - there are a lot of inextensible DPS
 - most of them are meaningless

can we define facets of X as inextensible connected pieces of arithmetic planes along X ?

- contrarily to 2D, maximal pieces of planes are not tangent.
 - there are a lot of inextensible DPS
 - most of them are meaningless
- greedy methods to isolate meaningful ones:

[Klette, Sun, Coeurjolly, Sivignon, Kenmochi, Provot, Debled-Rennesson, Charrier, L., ...]

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

can we define facets of X as inextensible connected pieces of arithmetic planes along X ?

- contrarily to 2D, maximal pieces of planes are not tangent.
 - there are a lot of inextensible DPS
 - most of them are meaningless
- greedy methods to isolate meaningful ones:

[Klette, Sun, Coeurjolly, Sivignon, Kenmochi, Provot, Debled-Rennesson, Charrier, L., ...]

Tangency extends to dD!

Tangent subsets in our sense are indeed tangent to X since their convex hull must lie close to X.

Piecewise linear reversible reconstruction in dD

Let Del(X) be the Delaunay complex of X.

Definition

The tangent Delaunay complex $\text{Del}_{\mathrm{T}}(X)$ to X is the complex made of the cells τ of Del(X) such that the vertices of τ are tangent to X.

▶ its boundary is the convex hull when X is fully convex,

Piecewise linear reversible reconstruction in dD

Let Del(X) be the Delaunay complex of X.

Definition

The tangent Delaunay complex $\text{Del}_{\mathrm{T}}(X)$ to X is the complex made of the cells τ of Del(X) such that the vertices of τ are tangent to X.

▶ its boundary is the convex hull when X is fully convex,

Input digital shape X

Reconstruction $Del_T(X) = E$

Bad simplices of Del(X)

・ロト・日本・ヨト・ヨト・日・ つへぐ

Theorem

The body of $\operatorname{Del}_{\mathrm{T}}(X)$ is at Hausdorff L_{∞} -distance 1 to X. $\operatorname{Del}_{\mathrm{T}}(X)$ is a reversible polyhedrization, i.e. $\|\operatorname{Del}_{\mathrm{T}}(X)\| \cap \mathbb{Z}^d = X$.

Piecewise linear reversible reconstruction in dD

(4日)(4日)(4日)(4日)(日)(90)

Path

Definition (path)

Let $\gamma = (x_i)_{i=0,...,n}$, $n \ge 0$, be a sequence of points in some digital set X. The sequence γ is a *path from point a to point b in X*, if and only if, $x_0 = a$, $x_n = b$, and every two consecutive points of γ are co-tangent in X.

Its embedding $\overline{\bar{\gamma}}$ is the embedding of the straight segments joining consecutive points.

Lemma

 $\overline{\overline{\gamma}} \subset \|\overline{C}^d[\overline{\gamma}]\| \subset \|\overline{C}^d[X]\|$. Hence the L_{∞} -distance of any point of $\overline{\overline{\gamma}}$ to X is smaller than 1.

Shortest path

Definition (path length; shortest path)

The length of γ is $\operatorname{length}(\gamma) := \sum_{i=0}^{n-1} ||x_{i+1} - x_i||$. The path γ from *a* to *b* is a *shortest path* from *a* to *b* if there exists no other path from *a* to *b* with a smaller length.

Definition (digital distance)

The digital distance d_X in $X \subset \mathbb{Z}^d$ is

$$\forall x, y \in X, \mathrm{d}_X(x, y) := \left\{ \begin{array}{l} +\infty \text{ if } \mathcal{P}_X(x, y) \text{ is empty}, \\ \mathrm{inf}_{\gamma \in \mathcal{P}_X(x, y)} \operatorname{length}(\gamma) \text{ otherwise.} \end{array} \right.$$

where $\mathcal{P}_X(x, y)$ is the set of path from x to y.

Lemma

If X is d-connected then the infimum above is a minimum, i.e. $d_X(a, b) = \text{length}(\gamma)$ with γ any shortest path of $\mathcal{P}_X(a, b)$.

Shortest paths and metric space

Theorem

If $X \subset \mathbb{Z}^d$ is d-connected and non-empty, then (X, d_X) is a metric space.

Theorem

If X is a fully convex set, then for any pair of points $x, y \in X$, (x, y) is the shortest path between x and y and $d_X = ||x - y||$.

Computing shortest paths

Lemma

If γ is a path in X between a and b, then there exists a d-connected path P of points in X between a and b such that $P \subset \operatorname{Cl}(\|\overline{C}^d[\overline{\gamma}]\|)$ (it stays close to γ), and P visits the digital points of γ in the same order.

we can find shortest paths by visiting direct neighbors.

Computing shortest path; Dijkstra algorithm (variant)

```
Procedure ShortestPath(In X, In a, Out A, Out D)
In X : subset of \mathbb{Z}^d ;
                                                // Any non-empty subset of \mathbb{Z}^d
In a : Point :
                                                            // source point in X
Out A : map<Point,Point>;
                                                   // ancestor in the geodesic
Out D : map<Point,Real> ;
                                                                  // distance to a
Type Node = tuple<Point,Point,Real>
Var V : set<Point> ;
                                                                 // visited points
Var Q : priority_queue<Node>
begin
    foreach p \in X do D[p] \leftarrow +\infty;
    Q.push((a, a, 0.0));
                                                                 // Starting point
    while \neg Q.empty() do
        (q, r, d) \leftarrow Q.pop();;
                                                                    // pop top node
        if d > D[q] then continue ;
        A[q] \leftarrow r, D[q] \leftarrow d, V.insert(q);
        N \leftarrow \text{CotangentPoints}(X, q, V);
        foreach p \in N do
          \begin{vmatrix} d' \leftarrow D[q] + \|p - q\|; \\ \text{if } d' < D[p] \text{ then } d' \leftarrow D[p], \text{ } Q.\text{push}((p, q, d')); ; \end{vmatrix} 
        end
    end
end
```

Results

▲口> ▲団> ▲豆> ▲豆> 三日 めんぐ

An alternative definition for digital convexity

Context and objectives

Full convexity

Some applications of full convexity

Fully convex enveloppe and polyhedral models

With Fabien Feschet Université d'Auvergne

э

What about digital convex hull ?

	digital	$convex \ hull$	$\mathrm{Cvxh}_{\mathbb{Z}^d}$	(A) :=	$\operatorname{Cvxh}(A) \cap \mathbb{Z}^d$
--	---------	-----------------	--------------------------------	--------	--

properties	H_conversity	<i>H</i> -convexity
properties	TT-COnvertey	+ connect.
$\operatorname{Cvxh}_{\mathbb{Z}^d}(A)$ convex	+	_
$\operatorname{Cvxh}_{\mathbb{Z}^d}(A) = A$ (for $A \operatorname{cvx}$)	+	+
idempotence	+	+
fast computation	+	+
increasing	+	+

What about digital convex hull ?

	digital	convex hull	$\mathrm{Cvxh}_{\mathbb{Z}^d}$	(A) :=	$\operatorname{Cvxh}\left(A\right)\cap\mathbb{Z}^{d}$
--	---------	-------------	--------------------------------	--------	---

properties	H_conversity	H-convexity
properties	TT-COnvertey	+ connect.
$\operatorname{Cvxh}_{\mathbb{Z}^d}(A)$ convex	+	
$\operatorname{Cvxh}_{\mathbb{Z}^d}(A) = A \text{ (for } A \text{ cvx)}$	+	+
idempotence	+	+
fast computation	+	+
increasing	+	+

How can we build fully convex sets from arbitrary $A \subset \mathbb{Z}^d$?

Fully convex hull through intersections ?

- half-spaces are fully convex
- can we intersect support half-spaces to get fully convex hull ?
- intersections of fully convex sets are not fully convex in general

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Local operators $Star(\cdot)$, Skeleton(\cdot), Extrema(\cdot)

For any Y ⊂ R^d, let Star (Y) := C^d[Y] (coincides with the usual star of combinatorial topology)
For any complex K ⊂ C^d, let Skeleton (K) := ∩_{K'⊂K⊂Star(K')} K'
For any complex K ⊂ C^d, let Extrema (K) := Cl(K) ∩ Z^d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Operator $FC(\cdot)$ and fully convex enveloppe $FC^*(\cdot)$

- Iterative method for computing a fully convex enveloppe
- Let FC(X) := Extrema (Skeleton (Star (Cvxh (X))))
- Iterative composition $FC^n(X) := FC \circ \cdots \circ FC(X)$

• Fully convex envelope of X is $FC^*(X) := \lim_{n \to \infty} FC^n(X)$.

n times

The fully convex enveloppe is well defined

Lemma For any $X \subset \mathbb{Z}^d$, $X \subset FC(X)$.

Lemma

For any finite $X \subset \mathbb{Z}^d$, X and FC(X) have the same bounding box.

Theorem

For any finite digital set $X \subset \mathbb{Z}^d$, there exists a finite n such that $FC^n(X) = FC^{n+1}(X)$, hence $FC^*(X)$ exists and is equal to $FC^n(X)$.

Consistency and idempotence of fully convex enveloppe

The fully convex enveloppe acts as a fully convex hull operator

Lemma If $X \subset \mathbb{Z}^d$ is fully convex, then FC(X) = X. So $FC^*(X) = X$.

Lemma If $X \subset \mathbb{Z}^d$ is not fully convex, then $X \subsetneq FC(X)$

Theorem $X \subset \mathbb{Z}^d$ is fully convex if and only if X = FC(X).

Theorem For any finite $X \subset \mathbb{Z}^d$, $FC^*(X)$ is fully convex.

Theorem

Computation of $FC(\cdot)$ is bounded by $O\left(n^{\lfloor \frac{d}{2} \rfloor}\right)$, with n = #(X).

A 3D digital triangle

vertices A = (8, 4, 18), B = (-22, -2, 4), C = (18, -20, -8)(black), edges $FC^*(\{A, B\}), FC^*(\{A, C\}), FC^*(\{B, C\})$ (grey+black) triangle $FC^*(\{A, B, C\})$ (white+grey+black)

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Is the fully convex enveloppe a hull operator ?

properties	fully convex enveloppe	
$FC^*(A)$ convex	+	
$FC^*(A) = A$ (for A fully cvx)	+	
idempotence	+	
fast computation	pprox ($#$ iterations)	
increasing	—	

Is the fully convex enveloppe a hull operator ?

properties	fully convex enveloppe	
$FC^*(A)$ convex	+	
$FC^*(A) = A$ (for A fully cvx)	+	
idempotence	+	
fast computation	pprox ($#$ iterations)	
increasing	—	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Is the fully convex enveloppe a hull operator ?

properties	fully convex enveloppe	
$FC^*(A)$ convex	+	
$FC^*(A) = A$ (for A fully cvx)	+	
idempotence	+	
fast computation	pprox ($#$ iterations)	
increasing	—	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A relative fully convex enveloppe

For
$$X \subset Y$$
, let $FC_{|Y}(X) := FC(X) \cap Y$

►
$$\operatorname{FC}_{|Y}^{n}(X) := \operatorname{FC}_{|Y} \circ \cdots \circ \operatorname{FC}_{|Y}(X)$$
, composed *n* times

► Fully convex envelope of X relative to Y is $FC^*_{|Y}(X) := \lim_{n \to \infty} FC^n_{|Y}(X)$

• we have
$$\operatorname{FC}^*(X) = \operatorname{FC}^*_{|\mathbb{Z}^d}(X)$$

Theorem

Let $X \subset \mathbb{Z}^d$ and $Y \subset \mathbb{Z}^d$ fully convex. Then $\operatorname{FC}^*_{|Y}(X \cap Y)$ is fully convex and is included in Y.

Intersections of fully convex sets

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Polyhedral models (here 3D)

- ▶ polyhedron P made of k-cells (facets, edges, vertices), with incidence relations
- use relative full convexity to define facets that are pieces of arithmetic planes
- $T \subset \mathbb{Z}^3$ made of coplanar points, $P_1(T)$ is the median standard plane (resp. $P_{\infty}(T)$ the median naive plane) defined by T.

Definition (standard digital polyhedron)

 \mathcal{P}_1^* is the collection of digital cells subsets of \mathbb{Z}^d :

- if σ is a facet of \mathcal{P} with vertices $V(\sigma)$, then σ_1^* is a cell of \mathcal{P}_1^* with $\sigma_1^* := \operatorname{FC}_{|P_1(V(\sigma))}^*(V(\sigma)).$
- if τ is an edge, then it has as many geometric realizations as incident facets σ : $(\tau, \sigma)_1^* := FC^*_{|\sigma_1^*}(V(\tau))$.
- vertices are simply digital points.

Definition (naive digital polyhedron)

 \mathcal{P}^*_∞ defined similarly by replacing 1 with ∞ above.

Standard and naive 3D triangle

Theorem All digital cells are fully convex.

standard triangle \mathcal{T}_1^* 985 points naive triangle \mathcal{T}^*_∞ 567 points

Polyhedron \mathcal{T} with vertices $A = (8, 4, 18), B = (-22, -2, 4), C = (18, -20, -8), \text{ edges } \{(A, B), (A, C), (B, C)\}$ and one facet $\{(A, B, C)\}.$

Generic/standard/naive digital polyhedron

イロト イロト イヨト イヨン

Generic/standard/naive digital polyhedron

Tri-mesh \mathcal{T} , planar $\sharp \mathcal{T}_1^* = 68603$ $\sharp \mathcal{T}_1^* = 275931$ faces

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Generic/standard/naive digital polyhedron

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Full convexity packages in DGtal

dgtal.org

*d*D convex hull and Delaunay triangulation

Full convex tests in *d*D

convexity Local shape analysis, dD geodesic shortest paths

- most of full convexity and applications implemented in DGtal
- open source library
- efficient generic C++

Conclusion

Pros of full convexity

- \blacktriangleright natural definition in arbitrary dimension that uses $\mathbb{Z}^d \subset \mathcal{C}^d$
- guarantees connectedness and simple connectedness
- morphological characterization that allows simple convexity check

- thick enough arithmetic planes are fully convex
- entails a consistent definition of tangency
- simple tight and reversible polyhedrization
- local shape analysis, shortest paths
- fully convex enveloppe, digital polyhedra

Cons of full convexity

• $(2^d - 1)$ times slower to check convexity

Future works

Theoretical side

- intersection property and increasingness of enveloppe still under study
- convergence of maximal tangent planes for normal estimation ?
- lattice cells enumeration falls into Ehrhart theory: are polynomials specific ?

Algorithmic side

- fast lattice point enumeration within polytopes
- fast computation of maximal tangent planes (link with plane probing)

Explore its natural applications

other polyhedrization algorithms using tangency