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Some applications of full convexity

I full convexity of digital planes
I stability by intersection and local shape analysis
I tangency, tangential cover
I digital surface reconstruction
I shortest paths



Thick enough arithmetic planes are full convex

Arithmetic plane
I irreducible normal vector N ∈ Zd

I intercept µ ∈ Z
I positive thickness ω ∈ Z, ω > 0

P(µ,N, ω) := {x ∈ Zd , µ 6 x ·N < µ+ω}

Theorem
Arithmetic planes are fully convex for thickness ω > ‖N‖∞.
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Stability by intersection

I A subset Y of Rd is said stable whenever Y is convex and, for any
cell c of Cd , Y ∩ c 6= ∅ ⇒ c̄ ⊂ Y .

I If X ⊂ Zd is fully convex and Y ⊂ Rd is stable, then X ∩ Y is fully
convex.

I Any intersection of stable sets is stable
I Any half-space of integer intercept and axis normal vector is stable.
I Any axis-aligned slice or any cubical neighborhood is stable

fully convex still fully convex yet fully convex



Local analysis of shape X

k = 1 k = 2 k = 3 k = 4
I Let Nk(z) be the (2k + 1)d -neighborhood around z

Xk(z) := Nk(z) ∩ X X̄k(z) := Nk(z) ∩ (Zd \ X )

I X is j-convex at z iff Xj(z) is fully convex
I X is j-concave at z iff X̄j(z) is fully convex
I X is j-planar at z iff it is j-convex and j-concave at z
I otherwise X is j-atypical at z



Local multiscale analysis of shape X

Lemma
I X j + 1-convex at z ⇒ X j-convex at z
I X j + 1-concave at z ⇒ X j-concave at z
I X j + 1-planar at z ⇒ X j-planar at z
I X j-atypical at z ⇒ X j + 1-atypical at z



Tangency

Definition
The digital set A ⊂ X ⊂ Zd is said to be k-tangent to X for 0 6 k 6 d
whenever C̄dk [Cvxh (A)] ⊂ C̄dk [X ]. It is tangent to X if the relation holds
for all such k .

X and C̄d [X ] tangent tangent
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Side step: 2d tangential cover

Sequence of maximal digital straight segments = tangential cover of
[Feschet, Tougne 99]

Theorem ([Debled-Rennesson,Reiter-Doerksen 04])
A 4- or 8-connected subset S ⊂ Z2 is digitally convex, iff the directions
of its maximal digital straight segments are monotonous along Bd(S).



Tangential cover

Theorem
In 2D, if C is a simple 2-connected digital contour, then the fully convex
subsets of C that are maximal and tangent coincides with the classical
tangential cover of [Feschet, Tougne 99].



Tangential cover in 3D ? dD ?

I can we define facets of X as inextensible connected pieces of
arithmetic planes along X ?

I contrarily to 2D, maximal pieces of planes are not tangent.
I there are a lot of inextensible DPS
I most of them are meaningless

I greedy methods to isolate meaningful ones:
[Klette, Sun, Coeurjolly, Sivignon, Kenmochi, Provot, Debled-Rennesson, Charrier, L., . . . ]

Tangency extends to dD!

Tangent subsets in our sense are indeed tangent to X since their convex
hull must lie close to X .
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Piecewise linear reversible reconstruction in dD
Let Del (X ) be the Delaunay complex of X .

Definition
The tangent Delaunay complex DelT (X ) to X is the complex made of
the cells τ of Del (X ) such that the vertices of τ are tangent to X .

I its boundary is the convex hull when X is fully convex,

Input digital shape X Reconstruction DelT (X ) Bad simplices of Del (X )

Theorem
The body of DelT (X ) is at Hausdorff L∞-distance 1 to X . DelT (X ) is a
reversible polyhedrization, i.e. ‖DelT (X )‖ ∩ Zd = X .
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Piecewise linear reversible reconstruction in dD



Path

Definition (path)
Let γ = (xi )i=0,...,n, n > 0, be a sequence of points in some digital set X .
The sequence γ is a path from point a to point b in X , if and only if,
x0 = a, xn = b, and every two consecutive points of γ are co-tangent in
X .
Its embedding γ is the embedding of the straight segments joining
consecutive points.

Lemma
γ ⊂

∥∥C̄d [γ]
∥∥ ⊂ ∥∥C̄d [X ]

∥∥. Hence the L∞-distance of any point of γ to X
is smaller than 1.



Shortest path

Definition (path length; shortest path)
The length of γ is length(γ) :=

∑n−1
i=0 ‖xi+1 − xi‖. The path γ from a to

b is a shortest path from a to b if there exists no other path from a to b
with a smaller length.

Definition (digital distance)
The digital distance dX in X ⊂ Zd is

∀x , y ∈ X , dX (x , y) :=

{
+∞ if PX (x , y)is empty,
infγ∈PX (x,y) length(γ) otherwise.

where PX (x , y) is the set of path from x to y .

Lemma
If X is d-connected then the infimum above is a minimum, i.e.
dX (a, b) = length(γ) with γ any shortest path of PX (a, b).



Shortest paths and metric space

Theorem
If X ⊂ Zd is d-connected and non-empty, then (X , dX ) is a metric space.

Theorem
If X is a fully convex set, then for any pair of points x , y ∈ X , (x , y) is
the shortest path between x and y and dX = ‖x − y‖.



Computing shortest paths

Lemma
If γ is a path in X between a and b, then there exists a d-connected path
P of points in X between a and b such that P ⊂ Cl

(∥∥C̄d [γ]
∥∥) (it stays

close to γ), and P visits the digital points of γ in the same order.

I we can find shortest paths by visiting direct neighbors.



Computing shortest path; Dijkstra algorithm (variant)
Procedure ShortestPath( In X , In a, Out A, Out D )
In X : subset of Zd ; // Any non-empty subset of Zd

In a : Point ; // source point in X
Out A : map<Point,Point> ; // ancestor in the geodesic
Out D : map<Point,Real> ; // distance to a
Type Node = tuple<Point,Point,Real>
Var V : set<Point> ; // visited points
Var Q : priority_queue<Node>
begin

foreach p ∈ X do D[p]← +∞;
Q.push((a, a, 0.0)) ; // Starting point
while ¬Q.empty() do

(q, r , d)← Q.pop(); ; // pop top node
if d > D[q] then continue ;
A[q]← r , D[q]← d , V .insert(q);
N ← CotangentPoints(X , q,V );
foreach p ∈ N do

d ′ ← D[q] + ‖p − q‖;
if d ′ < D[p] then d ′ ← D[p], Q.push((p, q, d ′)); ;

end
end

end



Results
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What about digital convex hull ?

I digital convex hull CvxhZd (A) := Cvxh (A) ∩ Zd

properties H-convexity H-convexity
+ connect.

CvxhZd (A) convex + −
CvxhZd (A) = A (for A cvx) + +

idempotence + +
fast computation + +

increasing + +

How can we build fully convex sets from arbitrary A ⊂ Zd ?
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Fully convex hull through intersections ?

I half-spaces are fully convex
I can we intersect support half-spaces to get fully convex hull ?
I intersections of fully convex sets are not fully convex in general

A B A ∩ B



Local operators Star (·) , Skeleton (·) ,Extrema (·)

Y Star (Y ) = C̄d0 [Y ] ∪ C̄d1 [Y ] ∪ C̄d2 [Y ]

K K ′ = Skeleton (K ) Extrema (K ′)

I For any Y ⊂ Rd , let Star (Y ) := C̄d [Y ]
(coincides with the usual star of combinatorial topology)

I For any complex K ⊂ Cd , let Skeleton (K ) :=
⋂

K ′⊂K⊂Star(K ′) K
′

I For any complex K ⊂ Cd , let Extrema (K ) := Cl (K ) ∩ Zd



Operator FC(·) and fully convex enveloppe FC∗(·)
I Iterative method for computing a fully convex enveloppe
I Let FC(X ) := Extrema (Skeleton (Star (Cvxh (X ))))

I Iterative composition FCn(X ) := FC ◦ · · · ◦ FC︸ ︷︷ ︸
n times

(X )

I Fully convex envelope of X is FC∗(X ) := limn→∞ FCn(X ).

input X , Y := Cvxh (X ) Star (Y ), Skeleton (Star (Y )) X ′ = FC(X )

input X ′, Y ′ := Cvxh
(
X ′

)
Star

(
Y ′

)
, Skeleton

(
Star

(
Y ′

))
X ′′ = FC(X ′) = FC2(X )



The fully convex enveloppe is well defined

Lemma
For any X ⊂ Zd , X ⊂ FC(X ).

Lemma
For any finite X ⊂ Zd , X and FC(X ) have the same bounding box.

Theorem
For any finite digital set X ⊂ Zd , there exists a finite n such that
FCn(X ) = FCn+1(X ), hence FC∗(X ) exists and is equal to FCn(X ).



Consistency and idempotence of fully convex enveloppe

The fully convex enveloppe acts as a fully convex hull operator

Lemma
If X ⊂ Zd is fully convex, then FC(X ) = X . So FC∗(X ) = X .

Lemma
If X ⊂ Zd is not fully convex, then X ( FC(X )

Theorem
X ⊂ Zd is fully convex if and only if X = FC (X ).

Theorem
For any finite X ⊂ Zd , FC∗(X ) is fully convex.

Theorem
Computation of FC(·) is bounded by O

(
nb

d
2 c
)
, with n = # (X ).



A 3D digital triangle

vertices A = (8, 4, 18),B = (−22,−2, 4),C = (18,−20,−8)
(black),

edges FC∗({A,B}), FC∗({A,C}), FC∗({B,C}) (grey+black)
triangle FC∗({A,B,C}) (white+grey+black)



Is the fully convex enveloppe a hull operator ?

properties fully convex enveloppe
FC∗(A) convex +

FC∗(A) = A (for A fully cvx) +
idempotence +

fast computation ≈ ( # iterations )
increasing −

A B C

FC∗(A) FC∗(B) FC∗(C )
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A relative fully convex enveloppe

I For X ⊂ Y , let FC|Y (X ) := FC(X ) ∩ Y

I FCn
|Y (X ) := FC|Y ◦ · · · ◦ FC|Y (X ), composed n times

I Fully convex envelope of X relative to Y is
FC∗|Y (X ) := limn→∞ FCn

|Y (X )

I we have FC∗(X ) = FC∗|Zd (X )

Theorem
Let X ⊂ Zd and Y ⊂ Zd fully convex.
Then FC∗|Y (X ∩ Y ) is fully convex and is included in Y .



Intersections of fully convex sets

X ,Y Skeleton(Star(Cvxh (X ∩ Y )))

FC∗|Y (X ∩ Y ) FC∗|X (X ∩ Y )



Polyhedral models (here 3D)

I polyhedron P made of k-cells (facets, edges, vertices), with
incidence relations

I use relative full convexity to define facets that are pieces of
arithmetic planes

I T ⊂ Z3 made of coplanar points, P1(T ) is the median standard
plane (resp. P∞(T ) the median naive plane) defined by T .

Definition (standard digital polyhedron)
P∗1 is the collection of digital cells subsets of Zd :
• if σ is a facet of P with vertices V (σ), then σ∗1 is a cell of P∗1 with
σ∗1 := FC∗|P1(V (σ)) (V (σ)).

• if τ is an edge, then it has as many geometric realizations as incident
facets σ: (τ, σ)∗1 := FC∗|σ∗1 (V (τ)).

• vertices are simply digital points.

Definition (naive digital polyhedron)
P∗∞ defined similarly by replacing 1 with ∞ above.



Standard and naive 3D triangle

Theorem
All digital cells are fully convex.

standard triangle T ∗1 naive triangle T ∗∞
985 points 567 points

Polyhedron T with vertices A = (8, 4, 18), B = (−22,−2, 4),
C = (18,−20,−8), edges {(A,B), (A,C), (B,C)} and one facet {(A,B,C)}.



Generic/standard/naive digital polyhedron

Quad-mesh Q, non pla-
nar faces

]Q∗ = 81044 ]Q∗ = 373225



Generic/standard/naive digital polyhedron

Tri-mesh T , planar
faces

]T ∗1 = 68603 ]T ∗1 = 275931



Generic/standard/naive digital polyhedron

Tri-mesh T , planar
faces

]T ∗∞ = 46639 ]T ∗∞ = 182451



Full convexity packages in DGtal

dgtal.org

dD convex hull and De-
launay triangulation

Full convexity
tests in dD

Local shape analysis,
geodesic shortest paths

I most of full convexity and applications implemented in DGtal
I open source library
I efficient generic C++

dgtal.org


Conclusion

Pros of full convexity
I natural definition in arbitrary dimension that uses Zd ⊂ Cd

I guarantees connectedness and simple connectedness
I morphological characterization that allows simple convexity check
I thick enough arithmetic planes are fully convex
I entails a consistent definition of tangency
I simple tight and reversible polyhedrization
I local shape analysis, shortest paths
I fully convex enveloppe, digital polyhedra

Cons of full convexity
I (2d − 1) times slower to check convexity



Future works

Theoretical side
I intersection property and increasingness of enveloppe still under

study
I convergence of maximal tangent planes for normal estimation ?
I lattice cells enumeration falls into Ehrhart theory: are polynomials

specific ?
Algorithmic side
I fast lattice point enumeration within polytopes
I fast computation of maximal tangent planes (link with plane

probing)
Explore its natural applications
I other polyhedrization algorithms using tangency
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